Performance Measurements of RP* :
A Scalable Distributed Data Structure
For
Range Partitioning

Aly Wane Diene & Witold Litwin
CERIA
University Paris 9 Dauphine
http://ceria.dauphine.fr

Plan

SDDSs

RP* Schemes

Bucket Structure

SDDS-2000 Client/Server Architecture
Performance Analysis

Conclusion and Future Work

Scalable Distributed Data Structures

Introduced in 1993

Specifically for multicomputers
Files of records identified by keys
Accessible from client sites

Data on server sites
— Usually in distributed RAM

Overloaded servers split

Clients are not synchronously informed of splits
Clients may make addressing errors

Servers forward incorrectly addressed requests

Image Adjustment Messages sent back to improve the
client addressing scheme (client image)

Several SDDS known
— Hash partitioning (LH*), Range Partitioning (RP*)...

Scalable Distributed Data Structures

Early Prototype Implementations
— Distributed Dynamic Hashing
« UCB 1994 (Bob Devine), Unix
— LH*
e HPL 1994 (D. Schneider, J. Levy) on SUNs
 U. Linkoping 1996 (J. Karlson) on Parsytec multicomputer)

SDDS-2000
— SDDS Manager for Wintel Multicomputer
— Designed for any SDDS Schema

— Supports at present LH*, LH*RS, RP*

« LH*Rs is a high-availability schema using Reed Salomon erasure
correcting codes

— Interfaces AMOS main memory DBMS for database query
processing

RP* Schemes

Manage ordered files
B Range partitioning

B Bucket splitting using median key
M Like in a B-tree

Key search queries

Range queries

B Parallel all-records delivery

B In order pipelined delivery

Non-key parallel queries (scans)

B Evaluated locally by servers’ AMOS

B \With deterministic or probabilistic termination

RP* Schemes on SDDS-2000

*
RP*\
— No index
— gquery multicast

RP*.
—RP*, + client index

— gquery multicast only if the bucket address not in the index
— forwarding by multicast

»RP*-,

— variant of RP*, without multicast by the client
RP*
— RP*. + servers’ index

— Optional multicast
—For range queries only

RP* File Expansion

RP* Bucket Structure

Header

— Bucket range

— Address of the index
root

— Bucket size...

e [ndex

— Kind of of B+-tree

— Additional links

« for efficient index
splitting during RP*
bucket splits

e Dala

— Linked leaves with the
data

o
et hllis,
o0 T

Records

Index

SDDS-2000: Server Architecture

» Several buckets of different
SDDS files

> Multithread architecture

» Synchronization queues

» Listen Thread for incoming
requests

> SendAck Thread for flow
control

» Work Threads for
> request processing
» response sendout
> request forwarding

» UDP for shorter messages
(< 64K)

» TCP/IP for longer data
exchanges

Server

Main memory

RP* Buckets

BAT |

RP* Functions :

Insert, Search, Update, Delete,
Forward, Splite.

Results

Execution

/@uest Ana@\

Results

_
<:wﬂ?4 d1:>

________________________________ |
Respjonse i —_I— Respgnse

\
<W.Thread N

p

Ack
queue

N

Requests
queue

<L istenThread>

A/
SendAck

Network

(TCP/IP, UDP)

SDDS-2000: Client Architecture

> 2 Modules
»>Send Module
»Receive Module
»Multithread Architecture
>SendRequest
»>ReceiveRequest
»>AnalyzeResponsel..4
»>GetRequest
>ReturnResponse
»>Synchronization Queues
»>Client Images

> Flow control

Server |...| Server

o ————— —— e ————

|
Sehd
Request

Request

Send Module

..

Application 1

Network
(TCP/IP, UDP)

Recgve

_ esponse
Client

Flow control

Manager

Return
Response

Receive Module

...

...

Application N

Performance Analysis

Experimental Environment
B Six Pentium 111 700 MHZz

o Windows 2000

— 128 MB of RAM
— 100 Mb/s Ethernet

B Messages

— 180 bytes : 80 for the header, 100 for the record
— Keys are random integers within some interval
— Flow Control sliding window of 10 messages

B Index

—Capacity of an internal node : 80 index elements
—Capacity of a leaf : 100 records

11

Performance Analysis

File Creation

B Bucket capacity : 50.000 records
B 150.000 random inserts by a single client

B With flow control (FC) or without

80000
70000
60000
%950000
E

» 40000
E

F30000

20000
10000

0

;“44‘

P A
7

A}

0

50000 100000
Number of records

150000

—&— Rp*c/ Without FC —®—RP*c/ With FC

RP*n/ With FC RP*n/ Without FC

File creation time

Time (ms)

0.900

0.800

0.700 -

0,600 -

0,500 - S

0400 H&h\n—w" .
AR SRS VARV,

0.300 - e ————e—e
0.200

0.100
0.000

1«

0 50000 100000 150000
Number of records

—&— RP*c without FC —#— RP*c with FC
RP*n with FC RP*n without FC

Average insert time

Discussion

Creation time is almost linearly scalable
Flow control is quite expensive
— Losses without were negligible

Both schemes perform almost equally well

— RP*c slightly better
» As one could expect

Insert time 1s 30 faster than for a disk file
Insert time appears bound by the client speed

13

Performance Analysis
File Creation

File created by 120.000 random inserts by 2 simultaneous clients
Without flow control

50000 100000 150000 50000 100000 150000 200000

Number of records Number of servers

—eo— RP*c to.time / 2 clients —eo—RP*c / 1 client
RP*n to.time / 2 clients —— RP*n / 1 client
—#— RP*c / Time per record RP*c to.time / 2 clients

RP*n/ Time per record RP*n to.time / 2 clients

File creation by two clients : total time and Comparative file creation time by one or twp,
per insert clients

Discussion

 Performance improve

 Insert times appear bound now by a server
Speed

e More clients would not improve
performance of a single server

15

Performance Analysis

Split Time

b Time/Record
10000 | 1372 0.137
20000 | 1763 0.088
30000 | 1952 0.065
40000 | 2294 0.057
50000 | 2594 0.052
60000 | 2824 0.047
70000 | 3165 0.045
80000 | 3465 0.043
90000 | 3595 0.040

100000 | 3666 0.037 Bucket size

—&— Split time —#— Time per Record

Split times for different bucket capacity

Discusion

» About linear scalability in function of
bucket size

 Larger buckets are more efficient
 Splitting is very efficient
— Reaching as little as 40 s per record

17

Performance Analysis

Insert without splits

B Up to 100000 inserts into kK buckets ; k=1...5
B Either with empty client image adjusted by IAMs or with correct image

With flow control Wthout flow control With flow control Without flow

. Emptyimage | Correctimage | control

Time/Ins. Ttl Time/Ins. Ttl Time/1ns. Time/Ins. Time/Ins.
tlme time time tlme tlme

| 1] 3611 0355 358712 | 0359

Insert performance

18

Performance Analysis
Insert without splits

® 100 000 Inserts into up to kbuckets ; k=1...5
 Client image initially empty

2 3 2 3

Number of servers Number of servers

—— RP*c/ With FC RP*c/ Without FC —— RP*c/ With FC RP*c/ Without FC
RP*n/ With FC ~ —— RP*n/ Without FC RP*n/ With FC ~ —%— RP*n/ Without FC

Total insert time Per record time

Discussion

e Cost of IAMs is negligible

 Insert throughput 110 times faster than for a
disk file

— 90 s per insert

 RP*n appears surprisingly efficient for more
buckets closing on RP*c
— No explanation at present

20

Performance Analysis
Key Search

B A single client sends 100.000 successful random search requests

B The flow control means here that the client sends at most 10 requests
without reply

.k RP* RP*\

c RN
1 | 3419 0340] 3086) O031| 3460) 0346 3466| 035

20389 20720

Search time

21

Performance Analysis
Key Search

2

Number of servers

2 3

Number of servers

—— RP*c/ With FC RP*c/ Without FC
RP*n/ With FC ~ —%— RP*n/ Without FC

Total search time

—— RP*c/ With FC RP*c/ Without FC
RP*n/ With FC ~ —— RP*n/ Without FC

Search time per record

Discussion

 Single search time about 30 times faster
than for a disk file

— 350 s per insert

e Search throughput more than 65 times faster
than that of a disk file

— 145 ps per insert

o RP*N appears again surprisingly efficient with
respect RP*c for more buckets

23

Performance Analysis
Range Query

B Deterministic termination

B Parallel scan of the entire file with all the 100.000 records sent to the client

2 3 1 1
2 3
Number of servers

Number of servers

Range query total time Range query time per record

Discussion

» Range search appears also very efficient
— Reaching 100 ps per record delivered

* More servers should further improve the
efficiency

— Curves do not become flat yet

25

Scalability Analysis

B The largest file at the current configuration
— 64 MB buckets with b =640 K

— 448.000 records per bucket loaded at 70 % at the average.

— 2.240.000 records in total
— 320 MB of distributed RAM (5 servers)
— 264 s creation time by a single RP*n client
— 257 s creation time by a single RP*c client
— A record could reach 300 B
— The servers RAMs were recently upgraded to 256 MB

26

Scalability Analysis

B |f the example file with b = 50.000 had scaled to
10.000.000 records

— It would span over 286 buckets (servers)
— There are many more machines at Paris 9
—Creation time by random inserts would be
— 1235 s for RP*
— 1205 s for RP*,
— 285 splits would last 285 s in total
— Inserts alone would last
— 950 s for RP*
— 920 s for RP*,

27

Related Works

RP*Ny Imp. RP*c Impl.

With FC | No FC With FC | No FC

69209 47798 67838 45032
0.205 0.145 0.200 0.143
0.461 0.319 0.452 0.279
0.229 0.095 0.221 0.086
0.037 0.037 0.037 0.037
0.010 0.010 0.010 0.010

tc: time to create the file

ts: time per key search (throughput)

ti; time per random insert (throughput)

tic. time per random insert (throughput) during the file creation
tm: time per record for splitting

t;: time per record for a range query

Comparative Analysis

Discussion

 The 1994 theoretical performance
predictions for RP* were quite accurate

e RP* schemes at SDDS-2000 appears

surprisingly globally more efficient than
LH*

— No explanation at present

29

Conclusion

B SDDS-2000 : a prototype SDDS manager for Windows
multicomputer

— Various SDDSs

— Several variants of the RP*

B Performance of RP* schemes appears in line with the
expectations
—Access times In the range of a fraction of a millisecond
—About 30 to 100 times faster than a disk file access performance
— About ideal (linear) scalability

B Results prove also the overall efficiency of SDDS-2000 architecture

30

Future work

B Performance analysis

— Larger files
B High-availability RP* schemes using RS codes

B Experimental applications

31

End

Work was partly supported by Microsoft Research
Earlier work on SDDS-2000 partly supported by
HP Laboratories, Palo Alto, CA,
IBM Almaden Res. Cntr., San Jose, CA.

32

