
1

Performance Measurements of RP* : Performance Measurements of RP* :
A Scalable Distributed Data Structure A Scalable Distributed Data Structure

For For
Range PartitioningRange Partitioning

AlyAly Wane Wane DiDièènene & Witold Litwin& Witold Litwin
CERIA CERIA

UniversityUniversity Paris 9 DauphineParis 9 Dauphine
http://http://ceriaceria.dauphine..dauphine.frfr

2

PlanPlan

�� SDDSsSDDSs

�� RP* SchemesRP* Schemes

�� Bucket Structure Bucket Structure

�� SDDSSDDS--2000 Client/Server Architecture2000 Client/Server Architecture

�� Performance AnalysisPerformance Analysis

�� ConclusionConclusion and Future Workand Future Work

3

Scalable Distributed Data StructuresScalable Distributed Data Structures
• Introduced in 1993
• Specifically for multicomputers
• Files of records identified by keys
• Accessible from client sites
• Data on server sites

– Usually in distributed RAM
• Overloaded servers split
• Clients are not synchronously informed of splits
• Clients may make addressing errors
• Servers forward incorrectly addressed requests
• Image Adjustment Messages sent back to improve the

client addressing scheme (client image)
• Several SDDS known

– Hash partitioning (LH*), Range Partitioning (RP*)…

4

Scalable Distributed Data StructuresScalable Distributed Data Structures
• Early Prototype Implementations

– Distributed Dynamic Hashing
• UCB 1994 (Bob Devine), Unix

– LH*
• HPL 1994 (D. Schneider, J. Levy) on SUNs
• U. Linkoping 1996 (J. Karlson) on Parsytec multicomputer)
• …

• SDDS-2000
– SDDS Manager for Wintel Multicomputer
– Designed for any SDDS Schema
– Supports at present LH*, LH*RS, RP*

• LH*RS is a high-availability schema using Reed Salomon erasure
correcting codes

– Interfaces AMOS main memory DBMS for database query
processing

5

RP* RP* SchemesSchemes
�� Manage ordered filesManage ordered files

�� Range partitioningRange partitioning

�� Bucket splitting using median key Bucket splitting using median key
�� Like in a BLike in a B--treetree

�� Key search queries Key search queries
�� Range queriesRange queries

�� Parallel allParallel all--records deliveryrecords delivery
�� In order pipelined deliveryIn order pipelined delivery

�� NonNon--key parallel queries (scans)key parallel queries (scans)
�� Evaluated locally by servers’ AMOSEvaluated locally by servers’ AMOS
�� With deterministic or probabilistic termination With deterministic or probabilistic termination

6

RP* RP* Schemes Schemes on SDDSon SDDS--20002000
�� RP*RP*NN

–– no index no index
–– query multicastquery multicast

�� RP*RP*C C
––RP*RP*NN + client index+ client index
–– query multicast only if the bucket address not in the indexquery multicast only if the bucket address not in the index
–– forwarding by multicastforwarding by multicast

��RP*RP*CCuu
–– variant of RP*variant of RP*CC, without multicast by the client, without multicast by the client

�� RP*RP*SS
–– RP*RP*CC + servers’ index+ servers’ index
–– Optional multicast Optional multicast

––For range For range queries only queries only

7

RP* File Expansion RP* File Expansion

∞

−∞

the
of
and

to
a

−∞

of
and

∞
the

of

to
a

of

−∞

of

and

∞

the

of

to

a

of

in

that

is

−∞

and

∞

the
to

a

of

in

that
of

in

is
of
in

−∞

and

∞

the
to

a

of

in

that

of

in

it

of
in

i

is

−∞

and

∞

the
to

a

of

that

of

is
of
in

i
in

in for

it

for

for

for

0 1 2 3

0 0

0 0

0

1

1

1

1 2

2

1st
split

2nd
split

3rd
split

8

RP* RP* BucketBucket StructureStructure

Header
–– BBucketucket rangerange
–– Address of the index Address of the index

rootroot
–– Bucket sizeBucket size……

• Index
– Kind of of B+-tree
–– Additional links Additional links

•• for efficient index for efficient index
splitting during RP* splitting during RP*
bucket splitsbucket splits

• Data
– Linked leaves with the

data

 Header B+-tree index Data (Linked list of index leaves)

Index

Root

Leaf
headers

Records

…

9

SDDSSDDS--2000: 2000: ServerServer ArchitectureArchitecture

. . .

R esp o n se

 R esu lts R esu lts

E x ecu tio n

M a in m em o ryS erve r

R P * B u ck ets

N etw o rk
(T C P / IP , U D P)

R esp o n se

W .T h read 1
 � �

W .T h read N
 � �

L isten T h read

C lien t

. . .

R P * F u n c tio n s :
 In se rt , S ea rch , U p d a te , D ele te ,
 F o rw ard , Sp lite .

. . .

R eq u est A n alyze

B A T

S en d A ck

R eq u ests
q u eu e

A ck
q u eu e

C lien t

��Several buckets of different Several buckets of different
SDDS filesSDDS files

�� Multithread architectureMultithread architecture

�� Synchronization queues Synchronization queues

�� Listen Thread for incoming Listen Thread for incoming
requestsrequests

�� SendAckSendAck Thread for flow Thread for flow
control control

�� Work Threads for Work Threads for

�� request processing request processing

�� response response sendoutsendout

�� request forwardingrequest forwarding

�� UDP for shorter messages UDP for shorter messages
(< 64K)(< 64K)

�� TCP/IP for longer data TCP/IP for longer data
exchangesexchanges

10

SDDSSDDS--2000: Client Architecture2000: Client Architecture

Receive Module Send Module

. . .

Requests Journal

Update

Return
Response

Get
Request

Client

Application 1

IP Add.

Request

Images

Response

Network
(TCP/IP, UDP)

Send
Request

Receive
Response

Server

Key IP Add.

… …

SDDS Applications Interface

Analyze Response

Id_Req Id_App
… …

Client
Flow control

Manager

Application N . . .

Server

1 4…

�� 2 Modules2 Modules

��Send ModuleSend Module

��Receive ModuleReceive Module

��Multithread ArchitectureMultithread Architecture

��SendRequestSendRequest

��ReceiveRequestReceiveRequest

��AnalyzeResponse1..4AnalyzeResponse1..4

��GetRequestGetRequest

��ReturnResponseReturnResponse

��Synchronization Queues Synchronization Queues

��Client ImagesClient Images

��Flow controlFlow control

11

Performance AnalysisPerformance Analysis

Experimental EnvironmentExperimental Environment
�� SSix Pentium III 700 MHz ix Pentium III 700 MHz

oo Windows 2000Windows 2000
–– 128 MB of RAM128 MB of RAM
–– 100 Mb/s Ethernet100 Mb/s Ethernet

�� MessagesMessages
–– 180 bytes : 80 for the header, 100 for the record180 bytes : 80 for the header, 100 for the record
–– Keys are random integers within some intervalKeys are random integers within some interval
–– Flow Control sliding window of 10 messages Flow Control sliding window of 10 messages

�� IndexIndex
––Capacity of an internal node : 80 index elementsCapacity of an internal node : 80 index elements
––Capacity of a leaf : 100 recordsCapacity of a leaf : 100 records

12

Performance Performance AnalysisAnalysis
File CreationFile Creation

�� Bucket capacity : 50.000 recordsBucket capacity : 50.000 records
�� 150.000 random inserts by a single client 150.000 random inserts by a single client
�� With flow control (FC) or withoutWith flow control (FC) or without

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50000 100000 150000
Number of records

T
im

e
(m

s)

Rp*c/ Without FC RP*c/ With FC

RP*n/ With FC RP*n/ Without FC

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0 50000 100000 150000
Number of records

Ti
m

e
(m

s)

RP*c without FC RP*c with FC

RP*n with FC RP*n without FC

File creation timeFile creation time Average insert timeAverage insert time

13

Discussion

• Creation time is almost linearly scalable
• Flow control is quite expensive

– Losses without were negligible

• Both schemes perform almost equally well
– RP*C slightly better

• As one could expect

• Insert time is 30 faster than for a disk file
• Insert time appears bound by the client speed

14

Performance Performance AnalysisAnalysis
File CreationFile Creation

�� FFileile created by 120.000 random inserts by 2 simultaneous clientscreated by 120.000 random inserts by 2 simultaneous clients
�� Without flow controlWithout flow control

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 50000 100000 150000

Nu m b e r o f re c o rd s

Ti
m

e
(m

s)

0 .000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450

R P*c to . tim e / 2 c l ie n ts

R P*n to . tim e / 2 c l ie n ts

R P*c / T im e p e r re c o rd

R P*n / T im e p e r re c o rd

0

10000

20000

30000

40000

50000

60000

0 50000 100000 150000 200000

Nu m b e r o f se rve r s
Ti

m
e

(m
s)

R P*c / 1 c l ie n t

R P*n / 1 c l ie n t

R P*c to . tim e / 2 c l ie n ts

R P*n to . tim e / 2 c l i e n ts

File creation by two clients : total time and File creation by two clients : total time and
per insertper insert

Comparative fileComparative file creation time by one or two creation time by one or two
clients clients

15

Discussion

• Performance improve
• Insert times appear bound now by a server

speed
• More clients would not improve

performance of a single server

16

Performance Performance AnalysisAnalysis
Split TimeSplit Time

0

500
1000

1500

2000

2500
3000

3500

4000

10
00

0

20
00

0
30

00
0

40
00

0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

0

Bucket size

Sp
lit

 ti
m

e
(m

s)
0

0.02
0.04

0.06

0.08

0.1
0.12

0.14

0.16

Split time Time per Record

b Time Time/Record
10000 1372 0.137
20000 1763 0.088
30000 1952 0.065
40000 2294 0.057
50000 2594 0.052
60000 2824 0.047
70000 3165 0.045
80000 3465 0.043
90000 3595 0.040

100000 3666 0.037

Split times for different bucket capacitySplit times for different bucket capacity

17

Discusion

• About linear scalability in function of
bucket size

• Larger buckets are more efficient
• Splitting is very efficient

– Reaching as little as 40 µs per record

18

Performance Performance AnalysisAnalysis
Insert without splitsInsert without splits

�� Up to 100000 inserts into Up to 100000 inserts into k k buckets ; buckets ; k k = 1= 1……55
�� Either with empty client image adjusted by IAMs or with correct Either with empty client image adjusted by IAMs or with correct imageimage

RP*C RP*N
Without flow control With flow control

Empty image Correct image
With flow control Without flow

control

k

Ttl
time

Time/Ins. Ttl
time

Time/Ins. Ttl
time

Time/Ins. Ttl
time

Time/Ins. Ttl
time

Time/Ins.

1 35511 0.355 27480 0.275 27480 0.275 35872 0.359 27540 0.275
2 27767 0.258 14440 0.144 13652 0.137 28350 0.284 18357 0.184
3 23514 0.235 11176 0.112 10632 0.106 25426 0.254 15312 0.153
4 22332 0.223 9213 0.092 9048 0.090 23745 0.237 9824 0.098
5 22101 0.221 9224 0.092 8902 0.089 22911 0.229 9532 0.095

Insert performanceInsert performance

19

Performance Performance AnalysisAnalysis
Insert without splitsInsert without splits

0
5000

10000
15000
20000
25000
30000
35000
40000

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC

RP*n/ With FC RP*n/ Without FC

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC

RP*n/ With FC RP*n/ Without FC

Total insert timeTotal insert time Per record timePer record time

•• 100 000 inserts into up to 100 000 inserts into up to k k buckets ; buckets ; k k = 1...5= 1...5
•• Client image initially emptyClient image initially empty

20

Discussion

• Cost of IAMs is negligible
• Insert throughput 110 times faster than for a

disk file
– 90 µs per insert

• RP*N appears surprisingly efficient for more
buckets closing on RP*c
– No explanation at present

21

Performance Performance AnalysisAnalysis
Key Search Key Search

�� A single A single client sends 100.000client sends 100.000 successful random search requestssuccessful random search requests

�� The flowThe flow control control means here that themeans here that the client client sends at mostsends at most 10 10 requests requests
without replywithout reply

RP*C RP*N
With flow control Without flow control With flow control Without flow control

. k

Ttl time Avg time Ttl time Avg time Ttl time Avg time Ttl time Avg time
1 34019 0.340 32086 0.321 34620 0.346 32466 0.325
2 25767 0.258 17686 0.177 27550 0.276 20850 0.209
3 21431 0.214 16002 0.160 23594 0.236 17105 0.171
4 20389 0.204 15312 0.153 20720 0.207 15432 0.154
5 19987 0.200 14256 0.143 20542 0.205 14521 0.145

Search timeSearch time

22

Performance Performance AnalysisAnalysis
Key Search Key Search

0
5000

10000
15000
20000
25000
30000
35000
40000

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC

RP*n/ With FC RP*n/ Without FC

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 1 2 3 4 5

Number of servers
Ti

m
e

(m
s)

RP*c/ With FC RP*c/ Without FC

RP*n/ With FC RP*n/ Without FC

Total search time Total search time Search time per record Search time per record

23

Discussion

• Single search time about 30 times faster
than for a disk file
– 350 µs per insert

• Search throughput more than 65 times faster
than that of a disk file
– 145 µs per insert

• RP*N appears again surprisingly efficient with
respect RP*c for more buckets

24

Performance Performance AnalysisAnalysis
Range QueryRange Query

�� Deterministic termination Deterministic termination

�� Parallel scan of the entire file with all the 100.000 records seParallel scan of the entire file with all the 100.000 records sent to the clientnt to the client

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

Range query total time Range query total time Range query time per record Range query time per record

25

Discussion

• Range search appears also very efficient
– Reaching 100 µs per record delivered

• More servers should further improve the
efficiency
– Curves do not become flat yet

26

Scalability AnalysisScalability Analysis
�� TThe largest file at the current configurationhe largest file at the current configuration

−− 64 MB buckets with 64 MB buckets with b b = 640 K= 640 K

−− 448.000 records per bucket loaded at 70 % at the average. 448.000 records per bucket loaded at 70 % at the average.

−− 2.240.000 records in total 2.240.000 records in total

−− 320 MB of distributed RAM (5 servers)320 MB of distributed RAM (5 servers)

−− 264 s264 s creationcreation time by a single RP*time by a single RP*N N clientclient

−− 257 s257 s creationcreation time by a single RP*time by a single RP*C C client client

−− A record could reach 300 BA record could reach 300 B

−− The servers The servers RAMsRAMs were recently upgraded to 256 MBwere recently upgraded to 256 MB

27

Scalability AnalysisScalability Analysis
�� IfIf the example file with the example file with b b = 50.000 had scaled to = 50.000 had scaled to
10.000.000 records10.000.000 records

−− It would span over 286It would span over 286 bucketsbuckets (servers)(servers)
−− There are many more machines at Paris 9 There are many more machines at Paris 9

−−Creation time by random inserts would be Creation time by random inserts would be
−− 12351235 s for RP*s for RP*NN

−− 12051205 s fors for RP*RP*CC

−− 285 splits would last 285 splits would last 285 s285 s in totalin total
−− Inserts alone would last Inserts alone would last

−− 950 s for RP*950 s for RP*NN

−− 920 s for920 s for RP*RP*CC

28

Related WorksRelated Works
R P *N Im p . R P * C Im p l. L H * Im p . R P *N T h r.

W ith F C N o F C W ith F C N o F C

tc 51 000 40 250 692 09 4 77 98 6 78 38 4 50 32

ts 0 .3 50 0 .1 86 0 .2 05 0 .1 45 0 .2 00 0 .14 3

t i,c 0 .3 40 0 ,2 68 0 .4 61 0 .3 19 0 .4 52 0 .27 9

t i 0 .3 30 0 .1 61 0 .2 29 0 .0 95 0 .2 21 0 .08 6

tm 0 .1 6 0 .1 61 0 .0 37 0 .0 37 0 .0 37 0 .03 7

tr 0 .0 05 0 .0 10 0 .0 10 0 .0 10 0 .01 0

tc: tim e to c rea te th e f ile
ts: tim e p er k ey sea rch (th ro u gh p u t)
t i: tim e p er ran d o m in se rt (th ro u gh p u t)
t i,c: tim e p e r ran d o m in se rt (th ro u gh p u t) d u r in g th e file c re a tio n
tm : tim e p er re co rd fo r sp littin g
tr: tim e p er re co rd fo r a ran ge q u ery

Comparative Analysis Comparative Analysis

29

Discussion

• The 1994 theoretical performance
predictions for RP* were quite accurate

• RP* schemes at SDDS-2000 appears
surprisingly globally more efficient than
LH*
– No explanation at present

30

ConclusionConclusion
�� SDDSSDDS--20002000 :: a prototype a prototype SDDS manager SDDS manager for Windowsfor Windows
mmulticomputerulticomputer

−− Various SDDSsVarious SDDSs

−− Several variants of the RP*Several variants of the RP*

�� Performance of Performance of RP*RP* schemes appears in line with the schemes appears in line with the
expectationsexpectations

−−Access timesAccess times in the range of a fraction of a millisecondin the range of a fraction of a millisecond

−−About 30 to 100 times faster than a disk file access performanceAbout 30 to 100 times faster than a disk file access performance

−− About About ideal ideal ((linearlinear)) scalabilityscalability

�� Results prove also the overall efficiency of SDDSResults prove also the overall efficiency of SDDS--2000 architecture2000 architecture

31

Future workFuture work

�� Performance analysis Performance analysis
−− Larger filesLarger files

�� HighHigh--availability RP* schemes using RS codesavailability RP* schemes using RS codes

�� Experimental applicationsExperimental applications

32

EndEnd
Work was partly supported by Microsoft ResearchWork was partly supported by Microsoft Research

Earlier work on SDDSEarlier work on SDDS--2000 partly supported by 2000 partly supported by

HP Laboratories, Palo Alto, CA, HP Laboratories, Palo Alto, CA,

IBM Almaden Res. IBM Almaden Res. CntrCntr., San Jose, CA.., San Jose, CA.

