
SQL for Stored and Inherited Relations1
Witold Litwin

Université Paris-Dauphine PSL
Paris, France

Witold.Litwin@dauphine.fr

Keywords: SQL Databases, Information Systems, Non-procedural Data Definition and Manipulation, Logical Navigation

Abstract: A stored and inherited relation (SIR) is a stored relation (SR) extended with inherited attributes (IAs) calculated as in a view.
Without affecting the normal form of the SR, IAs can make queries free of logical navigation or of value expressions. A view
of the SR can do the same. The virtual (dynamic, computed…) attributes (VAs) possibly extending SRs at major DBSs, can do
as well for value expressions defining them. VAs are less procedural to declare than any alternate view. Likewise, altering any
attribute of an SR with VAs leading to view altering otherwise is less procedural. We propose extensions to SQL generalizing
the latter two properties to every IA. In particular, our proposal is backward compatible with the creation and altering of Vas at
present. We motivate our proposals with the biblical Supplier-Part DB. We show how to implement SIRs with negligible
operational overhead. We postulate SIRs standard on SQL DBSs.

11 This e-report complements at present the successive references to its content within the article published at 21st Intl. Conf. on
Enterprise Inf. Syst. (ICEIS 2019), pdf .

https://www.scitepress.org/PublicationsDetail.aspx?ID=uz4zRw/DaYA=&t=1

1. Default naming in a SIR

For every SIR R, its base has its proper default relation
name that was assumed to be R_, we recall. As every
relation name, every default name should be unique in the
DB. If a base name R_ conflicts, DBA should rename
either SIR R or the conflicting relation: SIR R_ or SR R_
or view R_. In practice, we presume DBA free to choose
any default base naming rule. Next, every SIR we consider
is an SQL relation implicitly. Furthermore, we suppose
every SQL naming rule applying to SIRs. For every SIR R
in particular, one may qualify every SA or IA A as R.A. In
addition one may qualify every SA A of every SIR R as
R_.A as well. The latter option is the default as well.

Recall furthermore that our rule for default source
naming of SAs in SIR R, keeps all the clauses From…
within C-view R referring there to R_, valid for SIR R as
well. Instead of referring to stand-alone SR R_, i.e.,
defined by dedicated Create Table R, they simply refer to
the base of SIR R. That one is equal to the former as an
SQL relation and with respect to the full attribute naming.
This whole property is the primary rationale for our
specific to SIRs naming rule. One can figure out however
also a less obvious one. Namely, referring to R_ rather
than to R whenever possible, from some other SIR R’,
when R already inherits an IA from R’, hence refers to R',
may avoid the circular referencing between R and R’. We
prohibit it, as it is for views. Referring to R_ may avoid
such referencing since every R_ inherits from nothing by
definition.

2. Procedurality Measures

We recall that the simplest measure of procedurality
gain (reduction) is p1/p2. ESP appears then 1.29 times less
procedural than Create View SP in (1). Notice furthermore
that one could alternatively prefer (p1-p2) / p1 as measure.
This would show that ESP saves 22% of procedurality of
(1). Finally, one could rather measure the procedurality
overhead (p1/p2 – 1). This would indicate 30% overhead of
(1) over ESP here.

3. Q-views

We recall that first the reduced procedurality of an IR may
result from new generic character we denote as '#'. There is
always IR with '#' less procedural than C-view R in form of
Select * From…., unlike perhaps any ER. Secondly, an IR may
also have element(s) (), each forming brackets around some
SAs in Create Table R.

As we discussed, unlike perhaps any ER, there is then
always IR less procedural than Create View of a view we
called query equivalent to SIR R, Q-view in short. It is not C-
view R, but an equivalent one that still provides in practice
for the same non-procedural queries as C-view R, hence as
SIR R. "In practice" means here that the query does not

(uselessly) prefix unambiguous proper attribute names, as
discussed in the Introduction. When Q-view R is a possibility,
without alternate IE less procedural than Create View R, a
DBA could reasonably prefer Create Table R_ and Create
View R to Create Table R for SIR R.

More in depth, under some restrictive conditions on the
DB, Q-view R may happen to be the same SQL relation as C-
view R and SIR R, except for different source name(s) for
some unique proper SA name(s) in SIR R. If so, whether an
SQL query to C-view R or SIR R, or to Q-view R selects every
such an attribute by its full source name in the view or SIR R,
or by its proper name only, the result at every popular DBS,
will have every such attribute labelled with its proper name
only. Every possible result of a query to C-view R or to SIR R
may then also result either from the same query to Q-view R or
from the same query, except that every discussed attribute
there would bear its proper name only.

In the same time, Create View for Q-view R may be
substantially less procedural than the least procedural for any
C-view R. It may become then even less procedural than ER
could ever be. The rationale is that Q-view R scheme may take
advantage of *. This may especially occur when (i) for some
relation F among those in From clause and different of R and
of R_, (F standing for "foreign" relation thus), IE and C-view
R inherit every attribute of F in the SQL order, except for some
attribute F.A, perhaps composed in some order, (ii) For every
such F, SIR R also has an SA R_.A identically composed, (iii)
for every tuple of SIR R, R_.A has the same value as this in
F.A if the latter was inherited within the tuple and (iv) in SIR
R, as well as in C-view thus, for every F, all the attributes
inherited from F and R_.A are in the order of F attributes. For
every K, Q-view R may then have F.A instead of R_.A. For Q-
view R, for every F, F.* may suffice then. In contrast, even the
least procedural ER has to name for every F all the IAs from.
Thus cannot take advantage from '*'. Every possible ER could
then turn out more procedural than Q-view R. Contradicting
our claim and making perhaps DBA again reasonably
preferring SR R_ and Q-view R to SIR R.

One may easily verify also from Ex. 3 in the main paper
that lower procedurality of ISP generalizes to any multi-
attribute A, common to some Ri and R_. It also generalizes to
any IR conform to Rule 2, regardless of the number of
constructs Ri.* in the Select list and of relation and attribute
names. Observe finally, that there is no Q-view R whose
Create View is less procedural than the one of C-view R,
hence, perhaps than ER as well, other than when Rule 2
suffices.

Besides, a natural SIR has the scheme with all foreign keys
parenthesed. It is easy to see that for every natural SIR R, its IR
with only necessary characters, say IN

R, is the minimal one,
i.e., the least procedural, with respect to every IR of SIR R
differing from the natural one by the attribute order only.
According to everything already said, the procedurality of IN

R

should be also lower than of Create View R for every Q-view
R. The gain should be even greater for any C-view R.

E.g., for our example above, IN
SP is ISP that (7) defines

except every unnecessary space there. IN
SP is then clearly the

minimal ISP or ESP of any SIR SP differing from (6) by the
order of attributes only. Then, Create View for Q-view SP as
in (11), is almost two times more procedural than IN

SP.
Likewise, Create View for C-view SP as in (11) is at best
more than 2.5 times more procedural. Next, even the savviest
C-view SP, mandatory when Q-view SP (11) is not possible,
with outer joins thus, is by far less attractive. Create View SP
becomes indeed then at best more than three times more
procedural than IN

SP. Finally, our example Create Table SP in
(2), with every unnecessary space removed, reveals 1.32 more
procedural than the similar Create Table SP for the natural SP
in (6). Altogether, we may expect natural SIRs to be
(naturally) the primary choice for DBAs.

4. More on Rule 3

For examples for Rule 3 that follow, formally, we see the
statement with VAs as creating SIR R where IR (i) consists of
all and only VA-clauses defining each IA and (ii) has not
From clause. IR expresses then EI

R where, (i) for every VA A,
there is IA A declared: V As A and no other IA is declared,
(ii) From clause is: From R_. This equivalence is the reason
why to define SR R with VAs may be seen as creating a
specific SIR R, unknowingly of course and since decades.
Rule 3 means then simply that no such SIR R is pre-processed
to EI

R.

Observe nevertheless that EI
R is in fact ER of SIR R one

could create as less procedural option than SR R_ and C-
view R, where the latter is formally the same relation as SR R
with VAs. Such a view is always a possibility instead of any
SR with the VAs. But, it is precisely what the latter choice
avoids, we recall. One could nonetheless always preprocess IR
to EI

R, instead of creating SR R with VA. The client does not
see indeed how SIR DBS actually deals with the statement.
DBS would then further process EI

R as any ER, as we detail
later. Rule 3 as stated seems nevertheless a more practical
choice. In contrast, if the kernel does not provide for VAs,
Rule 3 does not apply. SIR R with EI

R is mandatory with, as
always, EI

R remaining less procedural than creating C-view R.

Ex. Suppose that S-P2.P.WEIGHT provides for the
weight of every part in pounds, while the clients should also
know the weight in KG. This, as the attribute named
WEIGHT_KG and defined below, right after WEIGHT in P.

1. Suppose MS Access as the kernel dialect. Rule 3 does
not apply then. EP is the only option, e.g. we have,

(12) EP = WEIGHT_KG AS Round (WEIGHT*0.454,3)
From P;

The WEIGHT_KG scheme should be in Create Table P
immediately after SA WEIGHT scheme. From P clause in

(12) should follow SA CITY. It is easy to see that EP is less
procedural than would be any Create View for C-view P. More
precisely, with respect to SQL Server's SQL, Ep is 2.52 times
less procedural than C-view P, assuming again only necessary
spacing in both expressions.

2. Suppose now S-P2 on SQL Server. WEIGHT_KG could
be a VA. Rule 3 allows declaring WEIGHT_KG as:

(13) WEIGHT_KG As Round (WEIGHT * 0.454,3);

This declaration constitutes IP. It is clearly even less
procedural than (12). Namely, for SQL Server as kernel, the
gain would increase to 2.94 times. Through Rule 3, Create
Table P resulting from (13) would be assimilated to SQL
Server's statement creating SR P with SAs as at Figure 2 and
with VA WEIGHT_KG defined by (13). In the same time, the
result would be SIR P with IP defined by (13) and (12) as EI

P.
The procedurality reduction of almost three times would be
clearly of practical interest. It illustrates well why all major
general-purpose relational DBSs (Oracle, SQL Server,
MySQL, DB2) offered VAs. To a slightly lesser extent, the
2.52 times gain offered by EP (12) over C-view P being the
only current option on MsAccess, remains nevertheless also
substantial,.

3. Suppose now still for S-P2 at SQL Server SQL as the
kernel, that P should have not only WEIGHT_KG AS
conceptual attribute, but, also, after CITY, should have one
named T_ QTY, with the total weight of the supplies of this
part. E.g., in order to foresee the requirements on the
warehouse with the supplies.

As SA, T_ QTY would require impractically frequent
updates and a highly procedural TRIGGER statement on SP.
As IA then, T_QTY would clearly need V with an aggregate
function. T_QTY cannot be then VA for SQL Server, neither
for any DBS we are aware of. Rule 3 leaves EP the only choice
for SIR P. With WEIGHT_KG defined by (13), that one would
be:

Ep = WEIGHT_KG…, T_Weight AS WEIGHT * (Select
Sum (QTY) From SP Where SP.p# = SP.p#) FROM P_;@

Summing up, with Rule 3, creation of SIR R is never more
procedural than some SQL alternate capability available at
present for the same relation R or at least formally the same.

Our work here aims only at SQL clauses for SIRs
providing the non-procedurality necessary and sufficient for
our goal. Observe however, perhaps as further work, that there
are ways to decrease IE procedurality further at the expense of
additional processing. One easy way is to observe that foreign
keys are usually mono-attribute. Hence if A is such key,
instead of writing (A) in IE, one could rather write, say, A!.
This would save one character for each key. Likewise, one can
generalize Rule 3. Namely, every SIR R with every IA A
resulting from VE V, could be declared through IR with every
A stated as for a view, i.e., in the form of 'V As A' and with

implicit From R. This, regardless of whether every A
concerned could be VA at present. Again, at expense of more
processing, there would be procedurality gain for some
kernels, e.g., MySQL. Also, one could avoid From R_ clause
of EI

R, necessary with current Rule 3.

4. Other DDL Statements for SIRs

The SQL DDL statements we suppose for SIRs beyond
Create Table and Alter Table are all the other popular ones,
i.e., Drop Table, Alter View, Drop View and Create Index.

For Drop Table R, we simply consider it applying also to
every SIR R. As usual, one should not violate the referential
integrity. Likewise, the statement may cascade or may get
refused. Notice that dropping SIR R is substantially less
procedural than dropping SR R_ with any equivalent view R.
Single Drop Table R replaces indeed here Drop View R and
Drop Table R_. This makes the procedurality gain in favor of
the former already of about two. In addition, unless the DB is
private to DBA, these two statements should form an atomic
SQL transaction. That one requires even more statements we

recall later in Ex. 6, increasing the gain several times
consequently.

Next, we suppose Alter View and Drop View as in the
kernel. Observe then that dropping the IE in SIR R is
consequently substantially less procedural than dropping C-
view R. The former requires indeed only Alter Table R Drop
IE statement. The latter typically requires again an atomic
transaction with Drop View R and Alter Table R_ Rename to
R. Interestingly, to drop VAs in contrast, may be more
procedural than to drop C-view. One has to drop those
individually indeed, in every kernel's Alter Table we are aware
of. Still, the drawback apparently did not affect the popularity
of VAs. We thus can hope the same for the SIRs. Otherwise,
the additional clause Drop IE in Alter Table R could obviously
solve the issue.

Finally, we suppose for Create Index for SAs or IAs the
syntax of the kernel one for SAs, VAs and views.

	4. Other DDL Statements for SIRs

