Pattern Matching Using Cumulative Algebraic Signatures and n-gram Sampling
Witold Litwin
, Riad Mokadem1, Philippe Rigaux1 & Thomas Schwarz

(Extended Abstract, 26 March 2006)

Abstract
We propose a novel string (pattern) matching algorithm called n-gram search. Unlike the prominent algorithms, ours does not process the visited string (record) and the pattern directly. Instead, it algebraically operates over their signatures in a Galois Field (GF), called logarithmic algebraic signatures (LSAs). It applies best to records stored once and searched many times, e.g. in an SDDS, a database or a file. The records are pre-encoded into their cumulative algebraic signatures. The algorithm starts with the pre-processing of the pattern. It encodes it and calculates the LAS of every n-gram in it, n (1. The value of n is a parameter that one may tune. The search attempts to match LSAs towards those of n-grams sampled in the record. Each attempt starts with the match of some n-gram to the terminal one of the pattern. The LSA value mismatch generates a shift of up to K-n symbols towards the next sample, where K denotes the pattern length. If the terminal n-gram matches, the algorithm matches LSA of the entire string against that of the K-symbol long substring ending with the sample in the record. Finally, there is the test of a collision. If M is the scanned record length, then the unsuccessful search speed, measured as number of LSA match attempts, is usually O ((M-K) / (K-n+1)). The 2-grams should typically suffice, leading this to O ((M-K) / (K-1)). We present the algorithm and analyse its behaviour. We show it particularly useful for larger strings. It appears in this context about (K - n + 1) faster than our previous algorithms. It also appears then among the fastest known, e.g., probably often faster than Boyer-Moore.
Extended Abstract
1. Algebraic Signatures
Let G be a GF(2f), i.e., a Galois Field with the elements 0,1…2f -1. We call these elements symbols and naturally consider them as bytes (f = 8) or words (f = 16 or 32 etc). Let SK be a string of K symbols p1..pK. Let (be a primitive element in G. The cumulative (1-symbol) algebraic signature (CAS) of SK, [LMS5], noted here CAS (SK), is string noted SK’ = p’1..p’K where for every i = 1,2…K :

p’i = p1(+…+pi(i.
Here the addition and the multiplication are in G. Accordingly, p’i is CAS of the prefix Si of SK ending with pi. We write p’i = CAS (Si) or simply p’i = CAS (pi).
The CAS replaces each individual symbol p with another symbol p’ whose value encodes not only p, but also some knowledge of several symbols preceding p. The rationale is that a single comparison of two symbols may indicate now not only whether these symbols are different or equal, but also whether two entire strings of the same length and ending with the compared symbols, differ or are likely to be equal. This property is of obvious potential interest for string search. In particular one may immediately observe that the complexity of prefix match operation, i.e., of the search for a record with a given prefix, of theoretically any length l (K, becomes independent of l reaching O (1). This, because, for an unsuccessful search, it suffices to compare only the last symbol of the searched prefix with that in the record at the same offset. Any prefix match attempt in the original record (non-encoded) could need up to O (l) comparisons.

The CASs have several practical properties completing the rationale. First we have for every p’i with i > 1:

p’i = p’i-1 + pi(i = s (pi-1) + pi(i.
We can thus reuse the signature of the previous symbol to encode the next symbol. This leads to O (K) (linear) complexity of the CAS encoding . Next, for every i, we have:

pi = (p’i – p’i-1) / (i = (p’i + p’i-1) / (i = (p’i + p’i-1) * (f – 1 – i = (p’i XOR p’i-1) * (f – 1 – i
This property provides also O (K) speed to the CAS decoding. It results from the well-known properties of any GF.
Consider now the substring Sk,l = pk…pl of S with 1 < k < l < K. To find the algebraic signature that it would have if it was instead a string S l-k+1 = p1…pl-k+1, it suffices to compute:
AS (S l-k+1) = (p’l XOR p’k - 1) / (k-1
This property let us to efficiently match the pattern to any substring within the visited record. For the fast calculus of multiplications and of divisions in GF(2f) with f = 8 or f = 16 the log(and antilog(tables seems the most convenient tool. See [LMS5a] for details. In our case above we have the formula:
AS (S l-k+1) = antilog([(log((p’l XOR p’k - 1) ‑ k+1) mod 2f – 1]
Similar transformations hold for the other formulae above. Notice that for the logs, the additions/subtractions are the usual ones.
2. The n-gram Search
Preprocessing

Let S’k be the CAS of the searched string SK (the pattern). Let n be a parameter. We basically consider that n = 2 below. An n-gram within Sk is any substring pi…pi+n-1 ; i = 1…K-n+1. We define similarly the n-grams in the visited record. Once called, the algorithm starts by pre-processing SK as follows.
- If S is some string, let the logarithmic algebraic signature (LAS) of S be log(AS (S). We put LAS (pK-n+1…pK), i.e., log(of the signature of the terminate n-gram of SK into some variable V. For any other n-gram, except the rightmost one, we hash LAS into the following table T.
- T has L entries: T [0…L-1]. We fix L as K + 2(with (chosen somehow arbitrarily as (= Int (0.25K). If P is an n-gram then we hash P to T (i) with i = AS (P) mod (K + &). The rationale for our choice of (is to have only a few collisions on the primary entries, thus T [0...K+(-1]. We use the last (entries of T for the overflows, managed using the well-known separate chaining collision resolution method.

- Each entry T (i) is the triplet denoted (s, p, d). We have:

 - s is LAS of the rightmost n-gram in SK hashed to T (i). Different LAS’s, of different n-grams thus, may indeed hash to the same i. A choice different from ours could lead to an incorrect search result, as it will appear.
 - p is the offset of the hashed n-gram with respect to that of the terminal n-gram in SK. We use p as basis for the shifts within the searched record described below.
 - d is zero or is the pointer towards the next overflow location on the collision chain starting at T (i). Thus T (i +d) contains the log(signature etc. of an n-gram P’ of SK, hashed to T (i) that happens to already store the data of n-gram P, also hashed there, while having a signature different of that of P’.
Processing

We describe the processing for a single record R of length M. In an SDDS and SDDS-2005 our description corresponds to the processing of the non-key field only. Each R is supposed stored pre-encoded into its CAS (R).

1. Let Rni denote the n-gram in R ending with pi. Likewise Sni is the n-gram in the pattern, let it be now denoted simply as S. We start with the matching for i = K. We consider that the n-grams match iff their AS’s, hence LAS’s, are equal (no bad jokes, please). We thus test whether V = LAS (RnK). We calculate the latter using the algebraic formulae of the previous section. Thus, if pRi is the symbol at the offset i in R we simply have:

LAS (RnK) = pRK XOR pRK-n.

2. If these n-grams match, we compare the AS’s of the entire S and of R1,K, i.e., we test LAS (S) = pRK. If OK, we finally test for the collision, by matching every corresponding symbol in (encoded) S and R. If this last test is also OK, the search is successful.

3. Otherwise, we hash LAS (RnK) into i and we test the LAS against s’s in the chain starting at T (i). If we do not find any (equality) match, then the search shifts forward in R by K – n +1 positions. We will now thus compare S to the substring p’K – n +1…p’2K – n +1 in R. Otherwise the search shifts by p (j) positions where j is the index of the matching entry in T. Notice that this shift has to be smaller than the previous one, by at least one.
4. The shift means that we basically loop over steps (1) to (3) for every new substring. The difference is that to calculate the signature of the terminal n-gram in the substring we XOR with p’K –n and divide the result by (K –n. We perform the latter using the logarithm, as explained in the previous section.
5. The looping ends when either the search is successful or the last shift aligning S on the suffix of R still shows no match. This means an unsuccessful search. Notice that the last shift may bounce a part of S beyond R. If it happens, the attempt leading to this shift is the last to consider. Otherwise, the (last) attempt uses the LSA of the entire pattern only.
Example

We first consider the search in a French text, choosing arbitrarily R = ‘Universite de Technologie Paris Dauphine’ and S = ‘Dauphine’, Figure 1. We choose n =2, i.e., the digram search. We start with the pre-processing of ‘Dauphine’. We put aside in a variable for fast access LAS of the terminal digram ‘ne’. Since the length of the pattern is K = 8, the choice of dim [T] = 12 should suffice with the hash mod 10
. We thus hash into T, one after the other, LAS’s of the digrams ‘in’, ‘hi’, ‘ph’…’Da’. We do not show the result here. We consider however that no digrams collided, rendering the same LAS. If it happened, the later one would not enter T. As if it was simply a repetition of the former digram in the pattern.

The search using the digrams needs then 6 attempts and thus 5 shifts, Figure 1a. This, assuming no collision of a visited LAS with some in T, what we did not test. We underlined the examined digrams. We show the successive shifts one after the other in two lines under the pattern. The 5th attempt visiting ‘up’ finds it in T at the offset 4 with respect to the end of the pattern. After the shift, the pattern aligns on the suffix of the record. This attempt calculates the signature of the entire pattern only.

(a)
Universite de Technologie Paris Dauphine

Dauphine Dauphine Dauphine

 Dauphine Dauphine Dauphine

(b)
Universite de Technologie Paris Dauphine

Dauphine Dauphine Dauphine Dauphine
 Dauphine Dauphine Dauphine

Figure 1 n-gram search in (encoded) French text using (a) n = 2 and (b) n =1.
The scan using n = 1 needs 7 attempts, Figure 1b. Notice that Boyer-Moore algorithm, [BM77], would need the same number of attempts. Whether it could be finally faster or slower, considering overall time, remains to be studied.

Notice also that digrams here perform also better by one attempt than 3-grams (not shown). All this illustrates the tunable behaviour of the algorithm. It is, besides, the only tunable pattern match algorithm we are aware of. While in our case, n = 2 is optimal, otherwise, if a single symbol is highly discriminative, n = 1 may be a better option. Generally, larger n appears preferable for patterns longer with respect to the size of the alphabet used. The symbols repeat then many times in the pattern. For n = 1, a typical shift moves in this case the search forward by a small fraction of the pattern only. A larger n, keeps the average pace close to K - n +1. Recall that to calculate and manipulate an LSA for an n-gram in R or S costs the same for any n under the consideration.
The example at

AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

(c)
AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT

 AGACAGAT

Figure 2
 illustrates this facet of our approach for a DNA sequence. It is inspired by the one in [CL4]. We have four letter alphabet of nucleotides: A, C, G, T. The pattern is ‘AGACAGAT’. Choosing n = 1 leads to 12 attempts. Choosing n =2 reduces the search cost three times to 4 attempts. Unlike for the text, the best choice is here however n = 3. It leads to 3 attempts only, hence accelerates the search by factor of four. No larger n does better. Notice that Boyer-Moore would need again the same number of attempts as for n =1. It thus should be typically much slower than our trigram search. The comparative analysis in depth remains however to be studied.
(a)
AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGAT

 AGACAGAT
(b)
AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

(c)
AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT AGACAGAT

 AGACAGAT

 AGACAGAT

Figure 2 n-gram search in (encoded) DNA sequence for (a) n = 3, then (b) n =2 and (c) n =1.
3. Performance

If we choose n so that n-grams are selective, then the signature of the visited one usually will not be in T. The typical shift will be the longest possible under the method which is K-n+1. Our basic choice of n = 2, i.e., of using digrams, amounts to K -1. The reason for this choice is that it should be typically more selective than of n = 1, or much more selective, as we have just seen. The ratio may be about the square of matching probability. The latter choice may then lead to many successful matches in T. This lowers the average shift length and increases uselessly the search cost. Assuming good practical selectivity of the digrams, the unsuccessful search speed of our algorithm should be O ((M – K) / (K -1)) attempts. This cost is the basic component of the overall search cost over the SDDS bucket, (the database or the file…), when, as usual, only a small fraction of existing records matches. The same cost characterizes the scan for all the occurrences of the pattern in a record. The pattern pre-processing itself costs O (2K – n + 1). It involves, we recall, the calculus of the LAS of the pattern and of its n-grams.
One aspect specific to the method is the possibility of a collision between n-grams in the pattern on their LSA’s. We recall that two different digrams have then the same signature. The collisions obviously slow the average search speed. We recall from the theory of the algebraic signatures in [LS4] that first if two n-grams differ by only one symbol, then the probability of the collision is strictly zero (the algebraic signatures were the first signature scheme known for this property and its more general formulation for l-symbol signatures not dealt with here.). Otherwise the collision probability for n > 1 is 2-f, e.g., 1/256 for byte based texts (ASCII, EBCDIC…) and 1 / 64K for Unicode. For this reason, the n-grams with two symbols switched, the digrams like ‘xy’ and ‘yx’ especially, typically do not collide.
4. Related Work
SDDS-2005 already allows to store the SDDS files with records encoded into their CAS’s. The goal was the protection against the incidental viewing of data at the servers, preserving the parallel distributed non-key scan capability at the servers. With CAS encoding, it is impossible to incidentally see the content of a record, e;g., while studying a storage dump by some utility after a crash. One needs to find the (value, not stored at the servers, and (voluntarily) decode the records. Like to open a sealed envelope in the real life with someone’s else letter. With all the legal consequences of the eavesdropping, if caught.

SDDS-2005 offers several string search algorithms, including for the pattern matching. The latter uses a Karp-Rabin alike sequential shift, [KR87], [CL4]. The scan calculus is different, especially since our data are encoded. Its complexity is nevertheless the same: O (M –K). Experiments with the Karp-Rabin version defined in [CL4] have shown the actual time also quite similar
. It appears in fact slightly faster in our case for patterns longer than 32 bytes. This algorithm requires about twice less pre-processing of the pattern than the n-gram search. It only calculates the LAS of the pattern, with the complexity of O (K). The n-gram search should thus be usually substantially faster within each record for K >> 1, and M >> K. As we have seen, the improvement ratio should be close to K – 1, hence linear with pattern length. The actual timing per record over the scan of the whole bucket remains to be found. One can expect a smaller ratio in practice, because of the time to move among the records the bucket structure. We recall that this one is a RAM B-tree in SDDS 2005.
In the open literature, the pattern matching is among the fundamental problems of computer science with several prominent contributions, [CL4]. The popular algorithms do not require any specific record pre-processing (encoding). The Boyer-Moore algorithm seems particularly efficient in practice. Its scan and shift complexity can be about ours for n = 1. This, whenever the “bad character” shift becomes prominent with respect to the “good suffix” suffix case. In all the already discussed conditions, the choice of the best n > 1 should make an average n-gram shift perhaps several times longer. The n-gram search time should then be often faster. Likewise, it should then outperform the other well-known algorithms. As we said, the precise comparison remains however an open research problem.

5. Conclusion
The algebraic signature based n-gram pattern matching appears particularly efficient for longer patterns in the context of the database search. It should be a useful new tool for text, image, DNA… string search, especially in the scalable distributed (P2P, grid…) environment. It seems possibly faster than the prominent algorithms. It also enhances the data security. Further work should precisely determine its best application conditions.
References
[BM77] Boyer R.S., Moore J.S. A fast string searching algorithm. CACM, 20, 1977.
[CL4] Crochemore, M., Lecroq, T. Pattern matching and text compression algorithms. Computer Science and Engineering Handbook. A. Tucker (ed.) CRC Press Inc., 2004

 [KR87] Karp, R. M., Rabin, M. O. Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development, 31, 2, March 1987.
[LMS5] W Litwin, R.Mokadem & Th.Schwarz. Cumulative Algebraic Signatures for fast string search. Protection Against Incidental Viewing and Corruption of Data in an SDDS. VLDB DBIS-P2P 2005, Springer, LNCS series.
[LMS5a] W Litwin, R. Moussa, T Schwartz. LH*RS – A Highly-Available Scalable Distributed Data Structure. ACM-TODS, Sept. 2005.
[LS4] Litwin, W., Schwarz, Th. Algebraic Signatures for Scalable Distributed Data Structures. IEE Intl. Conf. On Data Eng., ICDE-04, 2004.
� Université Paris Duaphine

� Santa Clara University

� The choice of 2i primary location, e.g., 16 instead of 10, could lead to faster hashing, but at this stage we neglect such optimisations.

� It is not the only version. For instance, Rivest in his book presents, what he calls a slightly different Rabin-Karp algorithm. Another known variant, e.g., taught by Ingold (Fribourg U.), uses a division by a large prime.

- 7 -

