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Abstract

In this paper, we describe the design of a highly-
available Grid data storage system. Increased availabil-
ity is ensured by data redundancy and file striping. Redun-
dant data is computed using Reed-Solomon (RS) codes. The
level of availability can be chosen for each individual file.
Storage overhead is minimal compared to traditional redun-
dancy strategies based on complete replication. Our proto-
type uses existing Grid data management tools (GridFTP)
for communication, and the RS encoding and decoding is
embedded in the client software. Performance measure-
ments in wide area network prove the efficiency of our de-
sign for high-availability and striped file transfers.

1 Introduction

A traditional mechanism to secure against data loss is to
replicate, i.e. mirror, the data. In replication, multiple ver-
batim copies of the file are created. These copies can then
be distributed to different locations in the network. With
replication entire files are used and the distribution, access
and management of data is straightforward. However, the
storage overhead with replication is always higher than it is
with erasure codes. When a certain level of availability is
targeted the erasure codes are able to provide service with a
lower storage overhead than replication techniques.

One of the well known erasure coding systems with low
overhead that has been widely deployed is the one used in
RAID [13] disk arrays. Despite the obvious advantages,
software-basd deployments of similar schemes have been
missing thus far. However, different approaches to use era-
sure codes for high redundancy in storage applications have

been recently discussed in the literature. Some of the work
has shown how erasure codes can be used to implement
scalable data storage in local cluster environments [11]. The
other studies have suggested the use of erasure codes for
file storages in wide area environments [17, 6]. However,
implementations for real world use and their wide scale de-
ployment is still something that has not been seen. In this
paper we will present an implementation of a file system
client that uses erasure codes and striping to ensure high
availability of files in Grid environment.

The Grid community has developed a data management
infrastructure that can be used to share and access data and
files securely in a distributed environment. We envision
that our application can benefit from features available in
the existing Grid and can provide value without requiring
changes to components that are finally beginning to become
standards. In particular, we benefit from the single-sign-
on framework as our application, by definition, communi-
cates with several secure systems. Moreover, the GridFTP
[9] protocol provides a good solution for data transfer in
our scheme. The mere requirement of digital certificates
and service oriented architecture makes Grid environments
a more stable platform to employ erasure codes than more
frequently changing peer-to-peer networks with high churn.

We employ erasure coding techniques for same purposes
that they are used in well known RAID disk arrays. How-
ever, in loosely coupled environment the capability to sur-
vive from one or two simultaneous failure is not usually
considered to be enough. As a solution we present a storage
system where the level of redundancy can be chosen freely
to meet the characteristics of the environment. Moreover,
we will present performance figures of our implementation
to enable the feasibility assessment of proposed design.

The structure of this work is as follows. In Section 2



we will present the related work and give an overview on
erasure coding. In Section 3 the structure of our implemen-
tation is explained. In Section 4 we provide performance
measurements both for the local coding operations and for
the involved data transfer operations in Grid environment.
In Section 5 we conclude our work and discuss future di-
rections.

2 Related Work

Our proposition is to apply erasure codes for data storage
in a Grid environement using GridFTP. To the best of our
knowledge there is no such earlier work. Here we briefly
review relevant work done within the erasure code commu-
nity. Additionally, we refer to related work that has been
done to study the distributed storages and parallel file ac-
cess in the Grid community.

2.1 Erasure Codes

In our work we use Reed Solomon codes based on Van-
dermonde matrices. The code that we use is based on the
work by Rizzo [18], which can be referred for a good ex-
planation of the working of the code. The RS erasure codes
can be used to encode k data items into n > k encoded data
items. Later, it is sufficient to have any k out of existing
n items to decode the original information. In our scheme
this means that the original data can be recovered even if
n − k of the stored data items become unavailable. In ad-
dition, the used code is a systematic code meaning that the
original k stripes form a verbatim copy of the input file. If
these stripes are available the decoding is unnecessary and
the file needs to be only reassembled.

Low-Density Parity-Check (LDPC) codes provide an al-
ternative for performing erasure coding to achieve high re-
dundancy with low storage requirements. The characteris-
tics of these codes are different than those of Reed Solomon
codes. Codes of the LDPC family can perform very fast
coding but they require slightly higher storage overhead.
However, a recent work by Collins and Plank [14] shows
how the RS codes can have better performance, regardless
of the rate of the encoding, when used with relatively small
n. We suggest use of coding in Grid environments where
even a modest amount of redundancy can be seen to pro-
vide significant value. This is due to the assumption that
in certificate based service infrastructure the churn is lower
and the entities more trustable than in unstructured P2P en-
vironments. Thus, we think that our choice to use RS codes
is justified.

From this point forward the discussion merely focuses
on comparing the characteristics of erasure codes and repli-
cation when they are used for file distribution. Replication,

or mirroring, is a traditional mechanism used for file distri-
bution in the Internet content distribution, peer-to-peer file
sharing [7] and in Grid infrastructures [16, 2].

2.2 Transferring Files in Wide Area Environment

Replication is very simple to implement and it provides
fast access to data. Moreover, it provides redundancy and
load balancing to file sharing environments. The require-
ment to facilitate fast access to frequently used data has
made replication one of the central techniques in Grid data
management.

PAST is a peer-to-peer storage utility which replicates
files around the network[7]. In PAST the efficiency of file
access is achieved by using a routing scheme that finds
replicas closest to the user. In addition,, PAST uses caching
of popular files to improve efficiency. Another distributed
storage utility called OceanStore [17] uses similar overlay
routing architecture to find nearby replicas. The OceanStore
also discusses the use of RS erasure codes for the archival
layer of their data storage. They show how the erasure codes
can be used to provide significantly higher availability fig-
ures than replication with similar space requirements.

In the Grid community a replication framework is devel-
oped to establish a data management infrastructure where
high availability, fault tolerance and minimal access times
are targeted. To minimize data access latencies automatic
replication and replica selection frameworks have been de-
veloped. By taking into account the networking monitoring
data during automatic replica selection the access time in
wide area transfers can be significantly reduced [10]. Other
work on Grid data management has studied the coupling
between data access and the scheduling of jobs. A study by
Ranganathan and Foster [16] showed that it is efficient to
schedule works close to data, but the data replication can be
an independently coordinated process. A study by Cameron
et al.[3] shows that is important to consider both the data ac-
cess and computing node queues in order to optimize usage
of computing and storage resources. Hence, even though
we stripe the data in our work, we see that it is important
to maintain locality information of data to enable the data
access with minimum costs.

When a file is moved in a network using our scheme the
operation involves transferring many fractions of the file.
This causes the load imposed by the transfers to be more
distributed across network links and servers. In this respect
we are very likely to see similar phenomena in our system
to those observed in a study by Vazhkudai [20] where the
data sets were accessed by using different parts of data sets
located in different network locations. In that study, co-
allocated transfers were used to access multiple Grid sites
simultaneously in order to download parts of the accessed
data set. The co-allocated downloads were seen to perform



better than accessing the best replica of the data set, espe-
cially when the files were large.

2.3 Using Erasure Codes to Archive Data
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Figure 1. 3-available replicated file and 3-
available RS encoded file (k=5,n=8)

Figure 1 illustrates the storage space requirements in dif-
ferent file distribution schemes. In our example the file has
been stored in such a way that any (n − k) = 3 missing
fractions can be tolerated; values n = 8 and k = 5 are
used as an example. With replication, multiple copies of
the entire file (consisting of parts 1 through 5) are stored
into separate places. The division of file into stripes in the
replication picture illustrates the approach used in BitTor-
rent [5]. BitTorrent divides the file into pieces which are
then replicated and distributed in P2P network. Fractions of
a file from different sources can be used to reconstruct the
file. The BitTorrent approach provides load balancing in the
network but still has similar storage space requirements as
traditional replication when high availability is targeted.

Buyers and Luby [1] have suggested a solution called
Digital Fountain where Tornado codes are used for many-
to-many file transfers. The codes they use have properties
of the LDPC family of codes. In their solution the storage
overhead is slightly larger than with RS codes, but very fast
coding is achieved. The Tornado code solution is feasible
for setups where many clients simultaneously access data
from many sites. Another study by Collins and Plank [6]
point out features of LDPC codes that make them less suit-
able choice for our storage design. Not All sets of different
stripes in LDPC codes can be used to perform decoding.
Thus the metadata management and server scheduling for
LDPC codes are more complicated when it cannot be as-
sumed that any n different stripes are good for reconstruc-
tion.

We propose a design for an archival storage where less

frequently used files are stored so we are not currently aim-
ing to benefit from Tornado code based solution’s ability to
serve large user populations with larger overhead. Instead,
we think that the approach presented in the OceanStore
work [17] would be suitable for our design. The sugges-
tion is that files once decoded from the archive can be made
available in faster accessible layer of storage. According
to this evaluation the downloading party may make a once
decoded file available through replica management infras-
tructure.

3 Storage Application

In this section we present our implementation for a Grid
data storage client which uses erasure codes. We explain
how we have implemented all the required functionality as
a client application. Due to this, the proposed implemen-
tation does not require any changes to existing Grid data
management infrastructure. All novel functionality that we
propose takes place in client computer and only files need
to be processed by the Grid infrastructure. We see this as an
advantage since the file management services are one of the
most stable parts of existing Grid infrastructure.

3.1 Client Architecture

The functionality of proposed storage application is im-
plemented as a Java client application than can be flexibly
run in various platforms. The modular design of the appli-
cation has helped us to reuse existing software, as we benefit
from two external modules. For erasure coding operations
we use a sightly modified version of an open source imple-
mentation for RS erasure codes [12] on Java. For the Grid
functionality we use an open source Java Commodity Grid
(CoG) Toolkit [4].

file manipulation client

erasure code library

Java CoG toolkit

Figure 2. Architecture of storage client imple-
mentation

Figure 2 illustrates the layered structure of our client ap-
plication. In the topmost level we have developed a software
layer that coordinates working with files and stripes of files
during the encoding and decoding processes. In the encod-
ing phase the topmost layer reads packets of the input file



and passes these to the erasure coding library. The erasure
coding library then produces redundancy packets for the in-
put information and the packets are returned to the file ma-
nipulation client, which writes redundant information to n
files. In addition to that a file distribution description is cre-
ated to contain the parameters of encoding. In the decoding
phase, the functionality is the opposite, the file manipula-
tion client reads blocks from at least k files to reconstruct
the original file.

After the encoding phase, the data is distributed to stor-
age elements around the network. The client application
uses GridFTP functionality of the CoG toolkit to securely
transfer the stripes of data to their destinations. After the
stripes are transferred, the information about their location
is added to a distribution description. The description con-
tains in a file the information needed to locate the stripes
and the appropriate parameters for reconstructing the origi-
nal copy from the striped data. In the beginning of the file
retrieval, the application uses GridFTP client to download
the stripes according to the description. After at least k
stripes have arrived, the erasure coding library is used to re-
construct the file under the control of the file manipulation
client.

3.2 Distribution Descriptions

One cost of using erasure codes is that during the decod-
ing the identity of the blocks needs to be available to be able
to reconstruct the original data. However, this information
usually has negligible size compared to the amount of the
stored data. To manage the required book-keeping task we
have created a distribution description format that contains
the needed information to retrieve files from our storage.

#FEC Properties for : test.file
#Thu Aug 25 15:29:28 CEST 2005
k=5
n=9
packetSize=20000
fileLength=104857600
test.file.0.tmp=db-ibm.fri.utc.sk
test.file.1.tmp=pchip69.cern.ch
test.file.2.tmp=pc15.hip.fi
test.file.3.tmp=stout.pc.cis.udel.edu
test.file.4.tmp=n2grid.pri.univie.ac.at
test.file.5.tmp=moonshine.pc.cis.udel.edu
test.file.6.tmp=pchip11.hip.fi
test.file.7.tmp=db-ibm.fri.utc.sk
test.file.8.tmp=pchip69.cern.ch
OPTION: CHECKSUM INFORMATION

Figure 3. Description for erasure code based
file distribution

Figure 3 illustrates a distribution description containing

the information about a striped and distributed file. The
stored parameters enable retrieval of stripes and define pa-
rameters used in decoding the original file. In the figure
the arguments k and n are striping factors as explained ear-
lier. Attribute packetSize describes the size of used encod-
ing packet and the self-explanatory fileLength is stored as
bytes. The mappings from a file stripe to a storage ele-
ment name contain the contact information to each host-
ing server. Moreover, we have extended implementation
to store checksum information for ensuring integrity of the
stored data.

3.3 Security Considerations

An important security implication that our solution has
is the increased level of information privacy. When using
replication for high availability many verbatim copies of the
file are distributed to the network. Thus, any single system
in the network may become compromised revealing the en-
tire contents of the stored file. When using erasure codes to
stripe files, however, a malevolent party needs to gain access
at least into k systems in order receive the entire contents of
a file. In addition to gaining access to these k systems the
attacker needs to get the file description to recover the orig-
inal file.

The initial design that we present in this paper stores the
file distribution meta data in the client computer. Only frac-
tions of the stored data are distributed to GridFTP servers,
which are identified by digital certificates. As we are deal-
ing with ordinary files, these can also be encrypted with
well known algorithms if a higher level of privacy is re-
quired for stored information. Moreover, when only a part
of a file is transferred to each destination the possibility for
an eavesdropper to gain the entire file on the way is signifi-
cantly smaller.

Work by Rabin [15] mentions a possible attack against
a distributed erasure coded storage. In this attack a stripe
of encoded data would be replaced with a different data D.
When the data D is used in the decoding process it would
produce a faulty file. Similar to Rabin’s suggestion to use
fingerprints to secure against such scenarios we have imple-
mented the possibility to store checksum information in the
file descriptions. However, we do not see that the need for
checksum information is more important than with repli-
cated content. The security implications and solutions to
them will be further addressed in our future work.

3.4 Network Wide Effects

When we propose our design to be used in a wide area
environment we need to evaluate how our design effects the
overall system operation. We store the data in compact form
but in addition to storage space requirements we also want



to minimize the amount of data moved in network. When a
(n− k)− available file is stored to network the replication
approach requires transferring and storing data (n−k+1)∗
filesize. With the erasure code approach that we propose
the amount of data moved and stored is significantly lower,
namely (n/k) ∗ filesize.

During the download each server is loaded by requesting
(1/k) fraction of the file, instead of the entire file. Thus,
we achieve load balancing on the servers. Moreover, traffic
in the “first mile” and in the wide area connections is di-
vided between multiple links and network segments. The
“last mile” connection in the client end will be, however, a
link that all the pieces of the file have to pass. For a good
evaluation on related transfer issues refer to [20].

The code that we use has a desirable property in that the
level of availability can be freely adjusted to meet the re-
quirements of the environment. In a Grid environment we
have relatively high level of trust in resources and we can
benefit from relatively small redundancy, e.g. parameters in
the range of k = 5 and n = 8, which can survive from three
simultaneously unavailable stripes of data. When large val-
ues for n are needed, e.g. in environments with high churn,
other codes of the LDPC family have shown better perfor-
mance [14]. The additional coding work our design imposes
on the system takes place in the client computer where the
owner of the resource can easily prepare for heavy tasks.

4 Performance Evaluation

In this section we present our results from performance
measurements that we have conducted using our client im-
plementation. The measurements are run on AMD Athlon
3000 computer with 1 GB memory and 300 GB hard disk.
We used Java 1.42 running on the Fedora Core 3 Linux dis-
tribution. For each measurement, test files containing arbi-
trary data were generated. First, we will discuss the gen-
eral perspective of encoding performance and discuss the
related issues. Second, we will explain issues that are faced
when manipulating files and provide related performance
measurements. Finally, we focus on the effect of network
performance in our distribution scheme.

4.1 Erasure Coding Performance

We have conducted performance measures with a real
implementation of our client application to evaluate fea-
sibility of using software erasure codes for file distribu-
tion in wide area environment. Some earlier work [18, 14]
provides measurements results for performing erasure cod-
ing of data with real software implementations. However,
these measurements provide performance figures which are
achieved by running erasure coding and decoding opera-
tions for data held in main memory. Thus, the performance

figures cannot be generalized to a general purpose file ma-
nipulation client.

We present a general design for file storage that is able to
work with file sizes bigger than the amount of free memory.
Thus, we have decided to use an approach where the data is
always stored to disk between operations that code the file
block-by-block. The performance measurements that we
have conducted show that the processing overhead caused
by file manipulations is not negligible. Especially, we face
large amount of input/output (I/O) operations. However,
with the chosen approach we are able to process very large
files and build a storage that is broadly applicable.

We considered two different approaches to interleave
erasure coding and networking operations. In our approach
we perform erasure coding operations in one step and all
network operations in a separate step. Another approach
would have been to transfer stripes over network while do-
ing the encoding, as has been proposed in Digital Fountain
solution [1]. By choosing the latter approach we would have
avoided the local disk bottleneck and achieved higher level
of parallelism. However, with chosen approach the con-
trolling of transfers is easy to manage and we avoid com-
plicated working in the event of connection breakdowns.
Moreover, we need to transfer only entire files over the Grid
infrastructure and do not require any changes to the existing
Grid service framework.

MATHEMATICAL I/O
ENCODING 57% 40%
DECODING 83% 14%

Table 1. Erasure coding performance profile,
k=5 and n=8.

Table 1 summarizes the execution profile of the storage
client during the local file striping and reassembling phases.
97% of the most significant tasks were divided into mathe-
matical operations related to erasure coding and to I/O op-
erations related to local file manipulations. The statistics
were collected by running the client application on Java vir-
tual machine with option -Xprofile. For the above fig-
ures attributes (packetSize = 20kB, k = 5 and n = 8),
were used and random files of 1GB were processed a to-
tal of 5 times to get the average results shown in the table.
In the following discussion we use original stripes to refer
to stripes that contain the information in the original file.
The label Parity stripes is used to refer to stripes that have
been constructed by the erasure code based on the origi-
nal stripes. Before measuring the decoding performance
three of the original stripes were removed to recover them
through the use of erasure codes. With a systematic erasure
code the file can be reassembled from the original stripes.
When all original stripes were present the decoding simply



consisted of I/O operations.
The computational complexity of the erasure codes is

usually seen as the main issue related to their applicabil-
ity. However, when manipulating large files we can notice
how the I/O operations also play significant role in the over-
all performance. To enable working with files larger than
main memory we must expose to frequent disk-to-memory-
to-disk operations. Hereafter, coding performance is used
to include the mathematical coding and related local I/O op-
erations in our storage scheme.
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different n.

Figure 4 illustrates erasure coding performance in a mea-
surement where a 1 GB file was coded from k = 5 to differ-
ent levels of redundancy. With encoding the measurements
are straightforward; at each step file is striped to k = 5
pieces, which are then encoded to n = 5...15 stripes. With
decoding the results are harder to illustrate as the the initial
setting may be any of the numerous alternatives. Some of
the original stripes as well as some of the parity stripes may
be missing, the only requirement being that at least k stripes
must be present. In the figure we have plotted decoding per-
formance for n = 8 so that the x−axis indicates how many
of the n stripes were present. At each step one of the origi-
nal files are removed and we can observe how the decoding
is faster when more original data is available. In the encod-
ing performance we can see decreasing performance as n
increases. The decrease is due to increased amount of work
producing n units of data in the encoding phase and larger
number of I/O operations caused by writing to more out-
put files. As an example we observe the case where n = 8
and the encoding speed is approximately 90 Mbit/s. Here
we have decided to use bits per second for throughput mea-
sures since we are working in a network environment. We
will later see how this performance relates to throughput
experienced in wide area file transfer operations.

4.2 Manipulating Files With Erasure Codes

In our scheme we are interested in running erasure codes
and file operations at the same time. These two classes
of operations have significantly different requirements from
the system. The erasure codes are computationally inten-
sive requiring CPU processing, while the file manipulations
require heavily on I/O performance.

In the encoding procedure we read the file through block
by block. Every block consists of k packets each having
size packetSize and these blocks are encoded in a way that
they expand to n packets. After encoding, the packets are
written to n files. After writing, the next block of the orig-
inal file is taken to processing. In the decoding phase we
proceed in an opposite way, at least k files are read, each
for a different stripe within the same block and the packets
from each stripe are decoded to form the original file block
by block.

Performance of erasure codes for encoding and decod-
ing scales linearly with the packet size for the coding. The
longer the packets are the fewer the number of needed pack-
ets. So the overall time spent doing the coding for a file re-
mains the same. However, in our application the packet size
has an effect on the amount of the I/O operations. The larger
packet size results in less frequent need to read data from
disk to main memory. We can thus optimize the perfor-
mance of the application by choosing an appropriate packet
size for the I/O operations.
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Figure 5. Effect of packet size on coding per-
formance.

Figure 5 shows the effect of packet size on the cod-
ing performance. In the measurement example parameters
k = 5 and n = 8 were used with a file size 1 GB. We have
plotted three cases. For encoding we simply encode k = 5
packets to n = 8 packets. For decoding we plotted the best
case, where we have all original files available to reassem-



ble the file. The worst case figures for decoding illustrate a
case where maximum number n − k of the original stripes
were missing and maximum number of reconstruction takes
place. Other initial setups for decoding are expected to have
performance that falls between these extreme cases . Figure
5 illustrates that the chosen packet size actually has a con-
siderable effect on the coding performance.

During coding a large amount of data needs to be passed
through the memory hierarchy consisting of hard disk, main
memory and CPU cache. Thus, the optimal packet size is
likely to show dependency on the system configuration. We
do not want to provide optimal value for the packet size
but rather encourage the user to configure the parameter on
system-by-system basis. In our measurements packet sizes
from 10 kB to 50 kB were seen to perform well. Future
work will include a test harness to automatically determine
the best values for a particular configuration.
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Figure 6. Effect of file size on coding perfor-
mance.

Figure 6 shows the effect of file size on the coding per-
formance. In the measurement parameters k = 5 and n = 8
were used with a packet size of 20 kB. Again, we have used
the maximum number of missing original stripes to mea-
sure the worst case decoding performance. The best case
for decoding performance has been measured by reassem-
bling the file from the original stripes. The figure shows
how performance can be significantly better with small files
which easily fit into the main memory. With large files, the
need to perform frequent transfers between disk and mem-
ory becomes the performance bottleneck. We use the per-
formance with 1 GB file as our reference performance as
the performance does not seem to drastically decrease with
larger files.

As we are aiming for a general solution we must consider
performance values that are achieved with files beyond the
capacity of available main memory. However, the signifi-

cantly faster coding with small file sizes can be benefitted
from in a scenario where a third party provides service for
file recovery and storage retrieval. The best case decoding
performance for small files between 100 MB and 300 MB
are not seen in figure5 since the figures were around 500
Mbit/s. That fast decoding performance can be achieved
when the original stripes need only to be reassembled in
main memory.

In this section we have shown that the structure of the
client system is a significant factor when applying erasure
codes for a file storage. As our goal is a general purpose
design where large files may be stored and archived for
high redundancy, we must consider performance factors be-
yond optimization of the erasure coding itself. With care-
ful choice of parameters, performance can often be signifi-
cantly improved.

4.3 Transferring Striped Files in Network

In this section we show how the time needed to perform
the coding for a file relates to the time needed to transfer the
stripes of the files over a wide area network. To perform our
measurements, we use the client to distribute n = 8 stripes
to four different storage elements. For the following mea-
surement we have established a testbed consisting of four
storage elements in different geographical locations and a
client computer. The components of the testbed are located
as follows: the client and one of the storage elements re-
side at CERN, one storage element is in Slovakia and two
storage elements are in Finland. All the components of the
testbed are connected to a high speed academic network to
enable a experiment setup that is characteristic to data in-
tensive Grid infrastructures.

We have used three file sizes to study how the size of the
manipulated file affects the relationship between the cod-
ing overhead and the network transfer times. We repeated
measurements 40 times with file sizes 10 MB and 100 MB
and 10 times with larger 1000 MB file. The average per-
formance of these transfers has been plotted for all the fig-
ures. For each stripe the client application creates a sepa-
rate thread to control the transfer between each pair of end-
points. The authentication and connection establishment
step is carried out separeately for each storage connection.

Figure 7 shows the required work during the process of
uploading a file with proposed storage design. First, the
file is encoded from k = 5 to n = 8 stripes and this is
illustrated as the lowest portion of each bar. Second, the
time for Grid security operations including authentication
and authorization are recorded for each of n = 8 transferred
stripes, the average value is plotted as the second lowest part
of each bar. Third, the time to complete all n transfers is
plotted in the upmost part of the bars. Thus the two upmost
portions of each bar illustrate the overhead spent in Grid
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Figure 7. Coding delays compared to network
delays during file upload.

security and wide area network operations.
The upload measurements illustrate how the time used

to encode a file in the client application is relatively small
compared to network related delays. With small file sizes,
the encoding takes even less time than the time used to au-
thenticate the user to storage resources. The proportional
time used for encoding increases with the larger files, but
as we have shown earlier in Figure 6, the coding perfor-
mance is close to constant with files larger than 1000 MB.
We can see that the originator of the file does not seem to ex-
perience processing overheads higher than 10% during the
file archiving procedure. The amount of data transferred
is (n/k) ∗ filesize and the client computer and its net-
work connection obviously experience an increased amount
of traffic. However, in the server end the network and the
server need to process only (1/k) ∗ filesize of data and
efficient load balancing can be achieved in the wide area
environment. Moreover, compared to fault tolerant replica-
tion, less storage resources have to be allocated from each
server.

Figure 8 illustrates the required processing overhead
when a file is accessed by our storage application. The low-
est portion of each bar describes the decoding processing
where the file is reassembled. The second lowest part of
the bar illustrates the time used by Grid security operations.
The third part illustrates the time to complete the first k = 5
stripes. This is the earliest time the decoding can begin. The
upmost part of the bars is the time to complete the n− k re-
maining transfers. The decoding could be started just after
the arrival of k:th stripe. However better decoding perfor-
mance can be achieved when more stripes are available as
was illustrated in figure 4.

The download figures show again how the time to re-
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Figure 8. Coding delays compared to network
delays during file download.

cover the original file from the stripes is significantly lower
than the time needed to transfer the data over the network.
The proportional time to decode the original file increases
with the file size but remains in the range of 25% of the
total time with files of 1000 MB. In case of slow connec-
tions our client can stop the slow transfers and files from
these connections can be treated as unavailable stripes and
recovered through decoding. The download procedure has
similar load distribution effects in the network as the upload
phase. Aggregated traffic of all stripes is experienced in the
client end and the access cost is balanced between several
servers and network links in the wide area.

The measurements that we have conducted are depen-
dent on the network performance between the client com-
puter and the storage element sites. However, we have cho-
sen to use storage sites that are have features characteristic
to an academic Grid environment. Many repetitions were
used to come up with describing averages and figures can
be considered to be representative. In future research we
plan to address the distribution model of transfer and cod-
ing performance and the effect of data transfer scheduling
on the performance distributions.

4.4 Comparison Against Replication

In the following we will provide measurement results
that compare the performance of our design to file replica-
tion approach. We compare the striped transfer to parallel
transfer of multiple replicas, the comparison is based on the
observation that in both cases the file will be available even
if n−k connections cannot be formed or if any n−k storage
elements are unavailable.

Figure 9 compares a striped 4-available upload to an
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Figure 9. Global 4-available file upload com-
pared to replication.

equally available replicated upload. For striping we have
used parameters k = 5 and n = 9 and for replication 5
replicas are concurrently uploaded. The used file size is 100
MB and the results are an average of 10 measurements. In
the experiment we have used seven GridFTP servers in five
geographically distributed sites. The storages are located in
Switzerland, Austria, Slovakia, Finland and the USA and
the client application was run in Switzerland. It can be
seen how the striped file upload time is significantly lower
than the replica transfer to costly locations. Even when two
stripes are transferred to a site in the USA and two to Fin-
land the overall upload time stays much lower than transfer-
ring entire file to a costly location. Moreover, the amount
of data that needs to be transfered for 4-availability in case
of striped data is (9/5) ∗ filesize against 5 ∗ filesize with
replication approach.

Figure 10 compares striped 4-available download to a
equally available replicated download. The measurement
setting is the same as in the experiment from Figure 9.
Again the striped download shows good performance when
compared to parallel downloads of replicas. The arrival
time for each stripe is plotted and it should be noted that the
decoding can be started immediately after the first k stripes
have arrived. The decoding performance will then depend
on how many of the original stripes are available for re-
construction. We can observe in both upload and download
measurements that our solution loses in performance com-
parison against access to a nearby replica. However, good
performance can be sustained even when some of the data
is accessed through slow connections or loaded severs.
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Figure 10. Global 4-available file download
compared to replication.

5 Conclusions and Future Directions

In this work we have proposed a novel solution for pro-
viding fault tolerant Grid data storage. The solution we pro-
pose is able to provide high level of redundancy and load
balancing with minimum storage overhead. The cost of us-
ing our storage application is essentially the coding over-
head in the client application. The advantage of using era-
sure codes lies in significantly lower storage space require-
ments and balancing the load across multiple servers. We
have shown with a real world implementation and realistic
testbed that it is feasible to use erasure codes for data stor-
ages in the Grid environment.

With an example case with k=5 and n=8 we we experi-
enced 10% overheads during the upload and 25% overheads
during the download caused by the erasure coding. At the
same time 3-availability of the files were achieved with only
40% of the storage space requirements as opposed to repli-
cation approach. Clearly the justification to choose our ap-
proach to store a file is dependent on the expected time to
store, and the frequency of file access. If a very fast and fre-
quent access to files are required a replication infrastructure
[10] can be used in addition to our application.

We have proposed a design where the coding opera-
tions are always performed in the client computer using
entire files and stripes of files. The chosen approach en-
ables robust operation and easy management of transfers
in the event of connection breakdowns. However, a trade-
off with the chosen approach is that we temporarily need
(n/k) ∗ filesize amount of free disk space to store the
file stripes between coding and network operations. This
space would not be needed when sending encoded informa-
tion immediately to network servers. We will continue our



work to study how coding time and transfer operations can
be coordinated in the Grid environment in an optimal way.

5.1 Future Work

Work done in OceanStore project [17] discusses how the
level of availability can be maintained in an erasure code
based file archive. The suggestion is that the owner of data
would sweep over the fragments of a file and if the avail-
ability has dropped below a threshold value, a repair pro-
cess would take place. In the repair process the owner of
the file would recalculate and redistribute the files to the
storage. We plan to extend our work to study how the Grid
data management infrastructure would be used to perform
the same task in an optimal way. Especially, we envision
services such as replica location service [2] and file transfer
service [8] to be used for these operations.

Wide scale deployment of erasure codes in Grid environ-
ment will change the load patterns in wide area networks. In
particular, load balancing between servers is an evident re-
sult. As the procedure of file access has significantly differ-
ent characteristics, the optimal file placement and schedul-
ing strategies as studied in [16, 3], are also likely to change.
To study the effect of the wide scale deployment of our de-
sign, we plan to extend our studies the PlanetLab environ-
ment (please see http://www.planet-lab.org for
more information).

Recent work in erasure codes has given motivation to
study new classes of codes to be applied to network file
storages. Whereas the RS codes have been shown to be suit-
able for our solution some other codes may be more suitable
when applied in different manner. In particular we are inter-
ested to study the applicability of LDPC [14], Raptor [19]
and LT [19] codes.
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