
LH*LH*RSRS: A : A Highly AvailableHighly Available Scalable Scalable DistributedDistributed
Data Data StorageStorage SystemSystem

Thomas J.E. Schwarz
TjSchwarz@scu.edu

Santa Clara University, USA

Witold Litwin Rim Moussa
{Witold.Litwin, Rim.Moussa}@dauphine.fr

Université Paris Dauphine, France

• Stores application data on any number of storage servers at a local net

• Scales up dynamically & transparently to the application
• Uses scalable distributed linear hash partitioning (LH*LH scheme)
• Appends new servers by splits of existing ones 0,1,2…

• in the linear hash order 0, 0,1, 0,1,2,3, 0…2i – 1, 0…
• Provides k – availability

• All data remain available for the application despite unavailability (failure) of any k servers
• k = 0,1,2,3... on demand or k may scale with the file to preserve the reliability level

• Data in distributed RAM
• Data access & recovery speed orders of magnitude faster than to disk storage

• Close to minimal storage overhead for any k
• Intended for large scalable files, DBMSs, P2Ps, Grids...

VLDB 2004 TorontoVLDB 2004 Toronto

Basic Capabilities

Performance

Data bucket load factor : 70 %

Parity overhead : k / m
m is file parameter, m = 4,8,16…

larger m increases the recovery cost

Key search time
• Individual : 0.2419 ms

• Bulk : 0.0563 ms

File creation rate
• 0.33 MB/sec for k = 0,

• 0.25 MB/sec for k = 1,

• 0.23 MB/sec for k = 2

Record insert time (100 B)
• Individual : 0.29 ms for k = 0,

0.33 ms for k = 1,

0.36 ms for k = 2

• Bulk : 0.04 ms

Record recovery time
• About 1.3 ms

Bucket recovery rate (m = 4)
• 5.89 MB/sec from 1-unavailability,

• 7.43 MB/sec from 2-unavailability,

• 8.21 MB/sec from 3-unavailability

(Wintel P4 1.8GHz, 1Gbs Ethernet)

LH*LH*RSRS: A : A Highly AvailableHighly Available Scalable Scalable DistributedDistributed
Data Data StorageStorage SystemSystem

VLDB 2004 TorontoVLDB 2004 Toronto

Data Record = (Key, Non-Key Data)
• Linear hashing (LH) of the key defines the correct data bucket and server

• Where the record should be
• According to the file state meta-data

• Dynamically evolving at the coordinator server with the file size
• An application interfaces the LH*RS client software

• Located at its computer
• Each client maintains its image of the file state

• Possibly different from the actual state
• The coordinator does not post file state updates to clients

•To address a record, the client applies LH to its image
• The query may arrive to an incorrect bucket
• An incorrect bucket forwards the query to another bucket

• Any forwarding reaches the correct bucket in at most two hops
• Property of LH* unique at present
• Usually there is no hops

• A server getting a forwarded message sends back to the client the Image Adjustment
Message (IAM)

• The client updates its image
• The same addressing error cannot repeat.

Data Addressing & File Expansion

Data
Buckets

IAM

Clients

Images

Network

LH*LH*RSRS: A : A Highly AvailableHighly Available Scalable Scalable DistributedDistributed
Data Data StorageStorage SystemSystem

• Bucket groups of m data buckets each : 0,1…m – 1 ; m…2m – 1 ; 2m…

• Record groups of up to m data record each
• Records with the same rank r = 1,2… in a bucket group

• k parity buckets (records) per group
• Novel & fastest known generalized Reed Salomon code for parity encoding/decoding

• Galois Field GF (216)
• Parity matrix with 1st column of 1’s and first line of 1’s

• XOR only calculus for k = 1
• As in popular RAID systems (limited to k = 1 usually, k = 2 at most)

• XOR only calculus for 1st bucket (record) of the group for every k
• Use of the logarithmic parity matrices for encoding and decoding

VLDB 2004 TorontoVLDB 2004 Toronto

0000 0000 0000 …

0000 5ab5 e267 …

0000 e267 0dce …

0000 784d 2b66 …
… … … …

High Availability

• : Key Data Field

♣ : Rank [Key List] Parity Field

•
•
•

♣
♣
♣

Data Buckets

Parity Buckets

♣
♣
♣

•
•
•

•
•
•

•
•

Insert Rank
r

Key r

2

1

0

2

1

0

• : Key Data Field

♣ : Rank [Key List] Parity Field

• : Key Data Field

♣ : Rank [Key List] Parity Field

•
•
•

♣
♣
♣

Data Buckets

Parity Buckets

♣
♣
♣

•
•
•

•
•
•

•
•

Insert Rank
r

Key r

2

1

0

2

1

0

Group Structure

• Multithreading
• TCP/IP in Passive Mode for Large Transfers
• UDP for Individual Queries and Control Messages

• with Flow Control
• Multicast for Probing New Servers (Spares)

System Architecture

Logarithmic Parity Matrix

0001 0001 0001 …

0001 eb9b 2284 …

0001 2284 9é74 …

0001 9e44 d7f1 …
… … … …

Parity Matrix

Bucket Recovery Scenario

• File Creation
• Client and Server Setup
• Record Insert
• File Expansion (bucket splits)

• Key Search
• Record Update
• High Availability Level Increase
• k Data Bucket Recovery; k = 1, 2, 3
• Record Recovery

Demonstration Outline

VLDB 2004 TorontoVLDB 2004 Toronto

LH*LH*RSRS: A : A Highly AvailableHighly Available Scalable Scalable DistributedDistributed
Data Data StorageStorage SystemSystem

MS Research, CEE-ICONS,
SCU, IBM Research

Partial Support

Spare DBs & Recovery Manager Selection

Disconnected from

Blank PBs Multicast

Group

You are SelectedCoordinator

Spare DBs Multicast GroupParity Buckets

You are
Manager

Spare DBs & Recovery Manager Selection

Disconnected from

Blank PBs Multicast

Group

You are SelectedCoordinator

Spare DBs Multicast GroupParity Buckets

You are
Manager

Searching for 2 Spare DBs…

Wanna Work?
Coordinator

Spare DBs Multicast Group

I do

Searching for 2 Spare DBs…

Wanna Work?
Coordinator

Spare DBs Multicast Group

I do

Coordinator

Failure Detection

Data Buckets (DBs)

Parity Buckets

Are You Alive?

I am
Alive

Coordinator

Failure Detection

Data Buckets (DBs)

Parity Buckets

Are You Alive?

I am
Alive

Decoding Phase

Recovered Records

Recovered DBs

Requested Records

…
Reconstruction Phase

Recovery
Manager

Data Buckets

Parity Buckets

Alive Buckets
Participating in Recovery

Decoding Phase

Recovered Records

Recovered DBs

Requested Records

…
Reconstruction Phase

Recovery
Manager

Data Buckets

Parity Buckets

Alive Buckets
Participating in Recovery

You’re Hired

Unavailability Detection

I am I do

I do
I do

