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LH*RS is a high-availability scalable distributed data structure (SDDS). An LH*RS file is hash partitioned over 
the distributed RAM of a multicomputer, e.g., a network of PCs, and supports the unavailability of any of its  
k ≥ 1 server nodes. The value of k transparently grows with the file to offset the reliability decline. Only the 
number of the storage nodes potentially limits the file growth. The high-availability management uses a novel 
parity calculus that we have developed, based on the Reed-Salomon erasure correcting coding. The resulting 
parity storage overhead is about the minimal ever possible. The parity encoding and decoding are faster than for 
any other candidate coding we are aware of. We present our scheme and its performance analysis, including 
experiments with a prototype implementation on Wintel PCs. The capabilities of LH*RS offer new perspectives 
to data intensive applications, including the emerging ones of grids and of P2P computing. 
 
Categories and Subject Descriptors: E.1 Distributed data structures, D.4.3 Distributed file systems, D.4.5 
Reliability: Fault-tolerance, H.2.2 Physical Design : Access methods, Recovery and restart 
 
General Terms: Scalable Distributed Data Structure, Linear Hashing, High-Availability, 
Physical Database Design, P2P, Grid Computing 
________________________________________________________________________ 
 
Motto : Here is Edward Bear, coming downstairs now, bump, bump, bump, on the back of his head, behind 
Christopher Robin. It is, as far as he knows, the only way of coming downstairs, but sometimes he feels that 
there really is another way, if only he could stop bumping for a moment and think of it. And then he feels that 
perhaps there isn't.  Winnie-the-Pooh. By A. A. Milne, with decorations by E. H. Shepard. Methuen & Co, 
London (publ.)  
 
 
1 INTRODUCTION 

Shared–nothing configurations of computers connected by a high-speed link, often called 

multicomputers, allow for high aggregate performance. These systems gain in popularity 

with the emergence of grid computing and P2P applications. They need new data 

structures that scale with the number of components [CACM97].  The concept of a 

Scalable Distributed Data Structures (SDDS) aims at this goal [LNS93]. An SDDS file 

transparently scales over multiple nodes, called the SDDS servers.  As the file grows, so 

does the number of servers on which it resides. The SDDS addressing scheme has no 

centralized components. The speed of operations is then possibly independent of the file 

size. Many SDDS schemes are now known. They provide for hash, range or m-d 
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partitioned files of records identified with a primary or with multiple keys. See [SDDS] 

for a partial list of references. A prototype system, SDDS 2000, for Wintel PCs, is freely 

available for a non-commercial purpose [CERIA]. 

Among best-known SDDS schemes is the LH* scheme [LNS93, LNS96, KLR96, 

BVW96, B99a, K98v3, R98]. It creates scalable distributed hash partitioned files. Each 

server stores the records in a bucket. The buckets split when the file scales up. The splits 

follow the linear hashing (LH) principles [L80a, L80b].  Buckets are usually stored in 

distributed RAM. Only the maximum number of nodes of the multicomputer limits the 

file size.  A search or an insert of a record in an LH* file can be hundreds times faster 

than a disk access [BDNL00, B02].  

An LH* server may become unavailable (failed), which makes it impossible to access 

its data. The likelihood of a server unavailability increases with the scaling file. Similarly, 

the likelihood of k unavailable servers for any fixed k increases with file size.  Data loss 

or inaccessibility can be very costly [CRP06]. The well-known crash of EBay in June 

1999 resulted in a loss of $4B of market value and of $25M in operations.  The failure of 

a financial database may easily cost $10K-$27K per minute, [B99]. 

The information-theoretical minimum storage overhead for k-availability of m data 

servers is k/m [H&al94]. It requires the encoding of k parity symbols (records, 

buckets…), per m data symbols (records, buckets…). Decoding k unavailable symbols 

requires access to m available symbols among m + k. Large values for m seem 

impractical. One approach to reasonably limit m is to partition a data file into groups with 

independent parity calculus, of m nodes (buckets) at most per group.  

For a small file using a few servers, a failure of more than one node is unlikely. Thus, 

k = 1 availability should typically suffice. The parity overhead is then the smallest, 1/m, 

and the parity operations the fastest, using only XORing, as in RAID-5. The probability 

that a server becomes unavailable increases however with the size of the file. We need 

availability levels of k > 1 despite the increased storage overhead.  Any static choice for k 

becomes eventually too small. The probability that k servers become unavailable 

increases necessarily. The file reliability, which is the probability that all the data are 

available for the application, declines necessarily as well. To offset this decline, we need 

the scalable availability, making k dynamically growing with the file [LMR98].  

Below, we present an efficient scalable availability scheme we called LH*RS. It 

generalizes the LH* scheme, structuring the scaling data file into groups of m data 

buckets, as we indicated above. The parity calculus uses a novel variant of Reed-

Solomon (RS) erasure correcting coding/decoding we have designed. To our best 
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knowledge, it offers the fastest encoding for our needs. The storage overhead remains in 

particular in practice about optimal, between k/m and (k+1)/m.  

We recall that RS codes use a parity matrix in a Galois Field (GF), typically in a 

GF (2f). The GF (216) turned out to be the most efficient for us at present. The addition in 

a GF is fast, amounting to XORing. The multiplication is slower, regardless of the 

algorithm used [MS97]. Our parity calculus for k = 1 applies the XORing only, 

optimizing the most common case. We resort to GF multiplication only for k > 1. Our 

multiplication uses log and antilog tables. One novelty is that the XORing only encoding 

remains however then for the first parity symbol (record, bucket…), and for the decoding 

of a single unavailability of a data bucket.  Another novelty is an additional acceleration 

of the encoding, by needing only XOR operations for the first bucket in each bucket 

group. Finally, we innovate by using a logarithmic parity matrix, as we will explain, 

accelerating the parity calculus even more. Besides, the high-availability management 

does not affect the speed of searches and scans. These operations perform as in an LH* 

file with the same data records and bucket size.  

The study of LH*RS we present here stems from our initial proposals in [LS00]. The 

analysis reported below has perfected the scheme. This includes various improvements to 

the parity calculus, such as the use of GF(216) instead GF(28), as well as more extensive 

use of XORing and of the logarithmic parity matrices. We will show other aspects of the 

evolution in what follows. We have also completed the study of various operational 

aspects of the scheme, especially of messaging, crucial for the performance.  

LH*RS is the only high-availability SDDS scheme operational to the extend we 

present, demonstrated by a prototype for Wintel PCs,  [LMS04]. It is not however the 

only one known. There were proposals to use the mirroring for to achieve 1-availability 

[LN96, BV98, VBW98]. Two schemes using only XORing provide 1-availability 

[L&al97, LR01, L97]. Another XORing-only scheme LH*SA was the first to offer the 

scalable availability [LMRS99]. Its encoding speed can be faster than for LH*RS. The 

price is sometimes greater storage overhead. We compare various schemes in the related 

work section. 

We first describe the general structure of an LH*RS file and the addressing rules. Next, 

we discuss the mathematics of the parity calculus and its use for the LH*RS encoding and 

decoding.  We then present the basic LH*RS file manipulations.  We follow with a 

theoretical and experimental performance analysis of the prototype. Our measurements 

justify various design choices for the basic scheme and confirm its promising efficiency. 

In one of our experiments, about 1.5 sec sufficed to recover 100 000 records in three 
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unavailable data buckets, with more than 10MB of data. We investigate also variants with 

different trade-offs, including a different choice of an erasure correcting code.  Finally we 

discuss the related work, the conclusions and the directions for future work. The 

capabilities of LH*RS appear to open new perspectives for data intensive applications, 

including the emerging applications of grids and of P2P computing. 

Section 2 describes the LH*RS file structure.  Section 3 presents the parity encoding. 

Section 4 discusses the data decoding.  We explain the LH*RS file manipulations in 

Section 5.  Section 6 deals with the performance analysis.  In Section 7 we investigates 

variants to the scheme. Section 8 discusses the related work. Section 9 concludes the 

study and proposes directions for the future work. Appendix A shows our parity matrices 

for GF (216) and GF (28). Appendix B sums up our terminology.  

2 THE LH*RS FILE STRUCTURE   

LH*RS provides high availability to the LH* scheme [LNS93, LNS96, LMRS99]. LH* 

itself is the scalable distributed generalization of Linear Hashing (LH) [L80a, L80b].  An 

LH*RS file contains data records and parity records. Data records contain the application 

data.  The application interacts with the data records as in an LH* file.  Parity records 

provide high availability and are invisible to the application. 

We store the data and parity records at the server nodes of the LH*RS file. The 

application does not access the servers directly, but uses the services of the LH*RS client 

component. A client usually resides at the application node.  It acts as a middleware 

between the application and the servers. 

An LH*RS operation is in normal mode as long as it does not access an unavailable 

bucket.  If it does, the operation enters degraded mode.  In what follows, we assume 

normal mode unless otherwise stated.  We first present the storage and addressing of the 

data records. We introduce the parity management afterwards. 

2.1 Data Records 

2.1.1 Storage 

An LH*RS file stores data records as if they constituted an LH*LH file, a variant of LH* 

described in [KLR96]. The details and correctness proofs of the algorithms presented 

below are in [KLR96] and [LNS96].  A data record consists of a (primary) key field, that 

identifies the record, and a non-key field, Figure 1. The application provides the data for 

both fields. We write c for the key. The records are stored in data buckets, numbered 

0, 1, 2… and located each at a different server node of the multicomputer.  The location 

of bucket a, i.e., the actual address A of the node supporting it, results from a mapping  

a → A, e.g., through static or dynamic allocation tables at the clients and servers 
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[LNSb96]. A data bucket has the capacity to store b>>1 data records.  Additional records 

become overflow records.  Each bucket reports an overflow to the coordinator 

component of LH*. Typically, the coordinator resides at node of bucket 0. 

Initially, an LH*RS file typically stores its data records only in bucket 0 at some server 

A0. It also contains at least one parity bucket, at a different server, as we discuss later.  

The file adjusts to growth by dynamically increasing (or decreasing) the number of 

buckets. New buckets are created by splits. Inserts that overflow their buckets trigger 

these. Inversely, deletion causing an underflow may trigger bucket merges. Each merge 

undoes the last split, freeing the last bucket. The coordinator manages both splits and 

merges.  

We show now how LH*RS data buckets split in normal mode. In Section 5, we treat 

the processing of the parity records during the splits, as well the degraded mode. We 

postpone the description of the merge operation to that section too.  

As in LH file, the LH*RS buckets split in fixed order: 0; 0,1; 0,1,2,3; …; 0…n,…2i-

1; 0… The coordinator maintains the data (i, n) forming the file state. The variable i 

determines the hash function used to address the data records, as we discuss in Section 

2.1.2 below. We call i the LH* file level. The variable n points to the bucket to split; we 

call it the split pointer. Initially, (i, n) = (0,0).  

To trigger a split, the coordinator sends a split message to bucket n. It also 

dynamically appends a new bucket to the file with the address n + 2i.  The address of 

each key c in bucket n is then recalculated using a hash function hi+1: c → c mod 2i+1. We 

call the functions hi linear hash functions (LH-function). For any record in bucket n, 

either hi+1 (c) = n or hi+1 (c) = n + 2i. Accordingly, any record either remains in bucket n 

or migrates to the new bucket n + 2i.  Assuming as usual that key values are randomly 

distributed, both events are equally likely.  

After the split, the coordinator updates n as follows. If n < 2i - 1, it increments n to 

n + 1. Otherwise it sets it to n = 0 and increments i to i + 1.    

Internally, each LH*RS data bucket a is organized as an LH file. We call the internal 

buckets pages. There is also an internal file state, called the bucket state, (ĩ, ñ). We 

perform the LH*RS split, (and the LH*LH split in general [KLR96]), by moving all odd 

pages to the new bucket a’. This is faster than the basic technique of recalculating the 

address for every record in bucket a.  We rename the odd pages in the new bucket a’ to 0, 

1… by dropping the least significant bit.  Likewise, we rename the even pages in 

bucket a. In other words, page number p becomes page number p/2 in the new buckets.  
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We also decrement the level l of the pages by one.  The internal file state in the new 

bucket a’ becomes (ĩ –1, ⎣ñ/2⎦ ). We change the file state of the splitting bucket to  

(ĩ, ñ) := (ĩ, 0)  if ñ = 2ĩ – 1, and to (ĩ, ñ) := (ĩ –1, ⎣ñ+1⎦/2) otherwise.  See [KLR96] for 

details.  We deal with page merges accordingly. 

2.1.2 Addressing 

The LH* storage rules guarantee that for any given file state (i, n), the following LH 

addressing algorithm  [L80a] determines the bucket a for a data record with key c 

uniquely: 

(A1)  a := hi (c); if a < n then a := hi + 1 (c).   

Algorithm (A1) determines the correct (primary) address for key c. Its calculus 

depends on the file state at the coordinator. The general principles of SDDS mandate 

avoiding hot spots.  Therefore, LH*RS clients do not access the coordinator to obtain the 

file state. Each client uses instead (A1) on its private copy of the file state. We call it 

client image, and write as (i’,n’). Initially, for a new client or file, (i', n') = (0,0), as the 

initial file state.  In general, the client image differs from the file state, as the coordinator 

does not notify the clients of any bucket splits and merges.  The strategy reflects the basic 

SDDS design, avoiding excessive messaging after a split, problems with unavailable 

clients, etc. [LNS96]. As the result, any split or merge causes all client images to be out 

of date.  

Using (A1) on the client image can lead to an incorrect address.  The client then 

sends the request to an incorrect bucket. The receiving bucket forwards the request that 

normally reaches the correct server in one or at most two additional hops (as we will 

show more below).  The correct LH*RS server sends an image adjustment message (IAM).  

The IAM adjusts the image so that the same addressing error cannot occur again. It does 

not guarantee that the image becomes equal to the file state.  In general, different clients 

may have different images.  

The binding between bucket numbers and node addresses is done locally as well.  

Buckets can change their location.  For instance, a bucket can merge with its “father” 

bucket, and then again split off, but on another (spare) server.  A bucket located on a 

failed node is also reconstructed on a spare.  We call a bucket, and query to it, displaced 

if the bucket is located at a different server than the client knows. We use IAM message 

to update these data whenever the client deals with a displaced bucket. It will appear that 

the presence of displaced bucket may lead to one or two additional hops. 

Most LH*RS file operations are key-based.  The exception is the scan operation, which 
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returns all records satisfying a certain condition.  We treat scans in Section 5.5.  The key-

based operations are insert, delete, update, and (key) search.  To perform such an 

operation, the client uses (A1) to obtain a bucket address a1 and sends the operation to 

this bucket.  Most of the time [LNS96], the correct bucket number ã, is identical to a1.  

However, if the file grew and now contains more buckets, then a1 < ã is possible.  If the 

file shrank, then a1 > a is possible as well.  In both cases, the client image differed from 

the file image.   

To be able to resolve the incorrectly addressed operations, every bucket stores the j 

value of hj last used to split or to create the bucket. We call j the bucket level and we have 

j = i or j = i + 1. A server that receives a message intended for bucket ã, first tests 

whether it really has bucket ã. If not, it forwards the displaced query to the coordinator. 

The coordinator attempts to resolve the addressing using the file state.  We treat this case 

later in this section.   

Otherwise, bucket ã starts the LH* forwarding algorithm (A2): 

(A2) a' := hj (c) ; 
if  a' = ã  then accept c ;  
else a'' := hj - 1 (c) ; 

 if a'' > ã and a'' < a'  then a'  := a''  ;  
send c to bucket a' ;If the address a' provided by (A2) is not ã, then the client 

image was incorrect. Then, bucket ã forwards the query to bucket a2 = a', a2 > a1. If the 

query is not displaced, bucket a2 becomes the new intended bucket for the query, i.e., 

ã := a2. It acts accordingly, i.e., executes (A2). This may result in the query forwarded to 

yet another bucket a3 := a', with a' recalculated at bucket a2 and a3  > a2
 . Bucket a3 

becomes the next intended bucket, i.e., ã := a3. If the query is not displaced, bucket a3 

acts accordingly in turn, i.e., it executes (A2). A basic property of LH* scheme is then 

that (A2) must yield a' = a3, i.e., bucket a3 must be the correct bucket a. In other words, 

the scheme forwards a key-based operation at most twice.  

The correct bucket a performs the operation. In addition, if it received the operation 

through forwarding i.e. a ≠ a1, it sends an IAM to the client.  The IAM contains the level 

j of bucket a1 (as well as the locations known to bucket a, which are in fact all those of its 

preceding buckets). The client uses the IAM to update its image as follows, according to 

the LH* Image Adjustment algorithm: 

(A3)  if    j > i'  then i'  :=  j - 1, n'  :=  a +1 ;   
   if    n' ≥ 2i'  then  n' = 0,   i'  :=   i' +1 ; 

(A3) guarantees that the client cannot repeat the same error, although the client image 

typically still differs from the file image. The client also updates its location data. 
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We process the query within the correct bucket as a normal LH query.  We locate first 

the page that contains the key c.  However, if the bucket has level j > 0, we do not apply 

the addressing algorithm (A1) directly to c, but rather to c shifted by j bits to the right. In 

other words, we apply (A1) to ⎣c/2j⎦. The modification corresponds to the algorithm for 

splitting buckets described in the previous section, [KLR96].  

If a server forwards a displaced query to the coordinator, the latter calculates the 

correct address a. It does so according to (A1) and the file state.  It sends the actual 

location of the displaced bucket to the query originator and to the server. These update 

their locations accordingly. 

2.2 Parity Records 

The LH*RS parity records protect an application against the unavailability of servers with 

its stored data.  The LH*RS file tolerates up to k ≥ 1 unavailable server in a manner 

transparent to the application.  As usual, we call this property k-availability.  The (actual) 

availability level k depends on an LH*RS file specific parameter, the intended availability 

level K  ≥ 1.  We adjust K dynamically with the size of the file, (Section 2.2.3).  

Depending on the file state, the actual availability level k is either K or K–1. 

2.2.1 Record Grouping 

LH*RS parity records constitute a specific structure, invisible to the application, and 

separate from the LH* structure of the data records.  The structure consists of bucket 

groups and record groups.  We collect all buckets a with /a m g=⎢ ⎥⎣ ⎦ in a bucket group 

g, g = 0, 1 ... Here, m > 0 is a file parameter that is a power of 2.  In practice, we only 

consider m ≤ 128, as we do not envision currently any applications where a larger value 

might be practical.  A bucket group consists thus of m consecutively numbered buckets, 

except perhaps for the last bucket group with less than m members. 

Data records in a bucket group form record groups.  Each record group (g,r) is 

identified by a unique rank r, and the bucket group number g.  At most one record in a 

bucket has any given rank r.  The record gets its rank, when an insert or split operation 

places it into the bucket.  Essentially, records arriving at a bucket are given successive 

ranks, i.e. r = 1, 2…  However, we can reuse ranks of deleted records.  A record group 

contains up to m data records, each at a different bucket in the bucket group. A record 

that moves with a split obtains a new rank in the new bucket.  For example, the first 

record arriving at a bucket a, a = 0, 1 ... m–1, because of an insert or a split, obtains rank 

1. It thus joins the record group (0,1). If the record is not deleted, before the next record 

arrives at that bucket, that one joins group (0,2), etc. 
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Each record group has k ≥ 1 parity records p1 … pk in addition to the data records.  

The parity records are stored at different parity buckets P1, ... Pk.  The local availability 

level k depends on the intended availability level K, the bucket group number g, and the 

file state.  Using the parity calculus presented in Section 3 and given any s ≤  k parity 

records and any m-s data records, we can recover the remaining l data records in the 

group.  The availability level of the file is the minimum of the local availability levels. 

2.2.2 Record Structure 

Figure 1 (ii) shows the structure of a parity record for group (g,r).  The first field of every 

record pi of the group contains the rank r as the record key in Pi.  The next field is the 

(record) group structure field C = c0, c1, … cm-1.  If there is a data record in the ith bucket 

of the group, then ci is the key of that data record. Otherwise, ci is zero. 

 The final field is the parity field B. The contents of B are the parity symbols. We 

calculate them from the non-key data in the data records in the record group (Section 3) 

in a process called encoding.  Inversely, given s parity fields and m-s non-key data fields 

from records in the group, we can recover the remaining non-key data fields using the 

decoding process from Section 3.  We can recover the keys of the s lacking data records 

from any parity record. 

 

 

Figure 1: LH*RS record structure: (i) data record,  (ii) parity record. 

In [LS00], we used a variable length list of keys for existing data structures. The fixed 

structure presented here and introduced since in [Lj00], proved however more efficient. It 

typically needs slightly less storage. In addition, its position indicates the bucket at which 

data records are located.  During record recovery, we can directly access the bucket 

instead of using the LH* addressing algorithm. We avoid possible forwarding messages.  

2.2.3 Scalable Availability 

Storing and maintaining parity creates storage overhead increasing with k. For a file with 

only 1 data bucket, the overhead is k. For a larger file, the overhead is at least equal to 

k/m.  In addition, we have the run-time overhead to update all k parity records of a group 

whenever the application inserts, updates or deletes a data record.  A file with few 

buckets is less likely to suffer from multiple unavailable buckets.  However, as the size of 

the file increases, multiple failures become more probable.  For any given k, the 

probability of catastrophic loss, i.e. loss of more than k buckets in a single group and the 

resulting inability to access all records, increases with the file size [H&a94].  In response, 

c non-key data c0, c1, c2 r B (i) (ii) 



10 
 

the LH*RS scheme provides the scalable availability, [LMR98].  When the growing file 

reaches certain sizes, the file starts to incrementally increase every local k-availability to 

k+1-availability. We illustrate the principle in Figure 2 that we will discuss more in depth 

soon.   

Specifically, we maintain the file parameter termed intended availability level K.  If 

we create a new bucket that is the first in the group, then this group gets k = K parity 

buckets. Every data record in this group has then k = K parity records. Initially, K = 1, 

and any group has one parity bucket. We basically increment K when (i) the split pointer 

returns to bucket 0, and (ii) the total number of buckets reaches some predetermined 

level.  Then, any existing bucket group has k = K – 1 parity buckets (as we will see by 

induction).  Every new group gets then K parity buckets.  In addition, whenever we split 

the first bucket in a group, we equip this group with an additional parity bucket.  As the 

split pointer moves through the data buckets of the file, we create all new groups with K 

parity buckets, and add an additional parity bucket to all old groups.  Thus, by the time 

the split pointer reaches bucket 0 again, all groups have local availability level k = K. 

In Figure 2, a bucket group has the size of m = 4. Data buckets are white and parity 

buckets are grey. In Figure 2a, we create the file with one data bucket and one parity 

bucket, i.e., with K = 1. When the file size increases, we split the first bucket, but only 

maintain one parity bucket, Figure 2b,c. When the m+1st bucket is created, the new 

bucket group receives also receives a parity bucket.  Thus, the file is 1-available.  Each 

new bucket group has this availability level until the number N of data buckets in the file 

reaches some N1. In our example, N1 = 16, Figure 2e. More generally, N1 = 2l with 

some large l >> 1 in practice. That condition implies n = 0.  The next bucket to split is 

bucket 0.  

At this point of the file scale up, K increases by one.  From now on, starting with the 

split of bucket 0, each split creates two parity records per record group, Figure 2f.  Both 

the existing group and the one started by the split have 2 parity buckets.  The process 

continues until some size N2, also a power of 2 and, necessarily this time, a multiple of m. 

On the way, starting from the file size N = 2N1, all the bucket groups are 2-available, 

Figure 2g.  When the file grows to include N2 buckets, K increases by 1 again, to K = 3 

this time.  The next split adds a third parity bucket to the group of bucket 0 and initializes 

a new group starting with bucket N2 and carrying three parity buckets. The next series of 

splits provides all groups with K = 3 parity records.  When the file size reaches N3, K is 

again incremented, etc.  

Basically for our scheme, and in Figure 2, the successive values Ni are predefined as 
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Ni+1 =2 i N1. We call this strategy uncontrolled availability and justify it in [LMR98]. 

Alternatively, a controlled availability strategy implies that the coordinator calculates 

dynamically the values of the Ni. The decision may be based on the probability of k 

unavailable buckets in a bucket group, whenever the split pointer n comes back to 0.   

(a)       (b)                  (c) 

 

(d)        (e)  

 

(f) 

 

 

(g)  

 

 

(h)           …  
Figure 2: Scalable Availability of LH*RS File. 

The global file availability level Kfile is the maximum k so that we can recover any k 

buckets failing simultaneously.  Obviously, Kfile is equal to the minimum k for all groups 

in the file. We thus have Kfile = K or Kfile = K–1.  Kfile starts at 1 and increases to Kfile = 2, 

when N reaches 2N1.  In general, K increases to i after N reaches Ni and Kfile reaches i 

when N reaches 2Ni.  The growing LH*RS file is thus progressively able to recover from 

larger and larger numbers of unavailable buckets, as these events become increasingly 

likely, necessarily.  

One consequence of the scheme is the possible presence of transitional bucket groups 

where not all the data buckets are split yet. The split pointer n points there somewhere 

between the 2nd and the last bucket of the group. The first bucket group in Figure 2f is 

transitional, as well as in Figure 2h, both with n = 2.  In such a group, the newly added 

parity bucket only encodes the contents of the data buckets that have already split. LH*RS 

recovery cannot use this additional parity bucket in conjunction with data buckets that 

have not yet split.  As the result, the availability level of any transitional group is K – 1. It 

becomes K when the last bucket splits, (hence the group ceases to be transitional).     

3 PARITY ENCODING 

We now explain our parity encoding, that is, the calculation of the B field in a parity 
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record. Section 4 deals with the decoding for the reconstruction of an unavailable record.  

The parity encoding in general is based on Erasure Correcting Codes (ECC).  We have 

designed a generalization of a Reed-Solomon (RS) code. RS codes are popular,  [MS97], 

[P97], being sometimes indirectly referred to also as information dispersal codes, [R89].  

Other codes are a possibility, we discuss the trade-offs in Section 7.5.  Our parity 

calculations are operations in a Galois Field (GF) as detailed in Section 3.1. We use a 

parity matrix (Section 3.2), which is a submatrix of a generator matrix (Section 4.1).   

El. Log El. Log El. Log El. Log El. Log El. Log El. Log El. Log 

- - 10 4 20 5 30 29 40 6 50 54 60 30 70 202 
1 0 11 100 21 138 31 181 41 191 51 208 61 66 71 94 
2 1 12 224 22 101 32 194 42 139 52 148 62 182 72 155 
3 25 13 14 23 47 33 125 43 98 53 206 63 163 73 159 
4 2 14 52 24 225 34 106 44 102 54 143 64 195 74 10 
5 50 15 141 25 36 35 39 45 221 55 150 65 72 75 21 
6 26 16 239 26 15 36 249 46 48 56 219 66 126 76 121 
7 198 17 129 27 33 37 185 47 253 57 189 67 110 77 43 
8 3 18 28 28 53 38 201 48 226 58 241 68 107 78 78 
9 223 19 193 29 147 39 154 49 152 59 210 69 58 79 212 
A 51 1a 105 2a 142 3a 9 4a 37 5a 19 6a 40 7a 229 
B 238 1b 248 2b 218 3b 120 4b 179 5b 92 6b 84 7b 172 
C 27 1c 200 2c 240 3c 77 4c 16 5c 131 6c 250 7c 115 
D 104 1d 8 2d 18 3d 228 4d 145 5d 56 6d 133 7d 243 
E 199 1e 76 2e 130 3e 114 4e 34 5e 70 6e 186 7e 167 
F 75 1f 113 2f 69 3f 166 4f 136 5f 64 6f 61 7f 87 
80 7 90 227 a0 55 b0 242 c0 31 D0 108 e0 203 F0 79 
81 112 91 165 a1 63 b1 86 c1 45 D1 161 e1 89 F1 174 
82 192 92 153 a2 209 b2 211 c2 67 D2 59 e2 95 F2 213 
83 247 93 119 a3 91 b3 171 c3 216 D3 82 e3 176 F3 233 
84 140 94 38 a4 149 b4 20 c4 183 D4 41 e4 156 F4 230 
85 128 95 184 a5 188 b5 42 c5 123 D5 157 e5 169 F5 231 
86 99 96 180 a6 207 b6 93 c6 164 D6 85 e6 160 F6 173 
87 13 97 124 a7 205 b7 158 c7 118 D7 170 e7 81 F7 232 
88 103 98 17 a8 144 b8 132 c8 196 D8 251 e8 11 F8 116 
89 74 99 68 a9 135 b9 60 c9 23 D9 96 e9 245 F9 214 
8a 222 9a 146 aa 151 Ba 57 ca 73 da 134 ea 22 fa 244 
8b 237 9b 217 ab 178 Bb 83 cb 236 db 177 eb 235 fb 234 
8c 49 9c 35 ac 220 Bc 71 cc 127 dc 187 ec 122 fc 168 
8d 197 9d 32 ad 252 Bd 109 cd 12 dd 204 ed 117 fd 80 
8e 254 9e 137 ae 190 Be 65 ce 111 de 62 ee 44 fe 88 
8f 24 9f 46 af 97 Bf 162 cf 246 df 90 ef 215 ff 175 

Table 1: Logarithms for GF(256). 

3.1 Galois Field  

Our GF has 2f elements ; f = 1,2…, called symbols. Whenever the size 2f of a GF matters, 

we note the field as GF(2f). Each symbol in GF(2f) is a bit-string of length f. One symbol 

is zero, written as 0, consisting of f zero-bits. Another is the one symbol, written as 1, 

with f-1 bits 0 followed by bit 1.  Symbols can be added (+), multiplied (⋅), subtracted (-) 

and divided (/).  These operations in a GF possess the usual properties of their analogues 
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in the field of real or complex numbers, including the properties of 0 and 1. As usual, we 

may omit the ‘⋅’ symbol.  

Initially, we elaborated the LH*RS scheme for f = 4, [LS00]. First experiments showed 

that f = 8 was more efficient. The reason was the (8-bit) byte and word oriented structure 

of current computers [Lj00]. Later, the choice of f = 16 proved even more practical. It 

became our final choice, Section 6.3.  For didactic purposes, we discuss our parity 

calculus nevertheless for f = 8, i.e., for GF(28) = GF(256).  The reason is the sizes of the 

tables and matrices involved. We note this GF as F. The symbols of F are all the byte 

values. F has thus 256 symbols which are 0,1…255 in decimal notation, or 0,1...ff in 

hexadecimal notation. We use the latter in Table 1 and often in our examples.  

The addition and the subtraction in any our GF(2f ) are the same. These are the bit-

wise XOR (Exclusive-OR) operation on f-bit bytes or words. That is: 

a + b = a – b = b – a = a ⊕ b = a XOR b.   

The XOR operation is widely available, e.g., as the ^ operator in C and Java, i.e., a XOR 

b = a ^ b.  The multiplication and division are more complex operations. There are 

different methods for their calculus. We use a variant of the log/antilog table calculus 

[LS00], [MS97].  

GFElement mult (GFElement left,GFElement right) { 

 if(left==0 || right==0) return 0; 

 return antilog[log[left]+log[right]]; 

}  

Figure 3: Galois Field Multiplication Algorithm. 

The calculus exploits the existence in every GF of the primitive elements.  If α is 

primitive, then any element ξ ≠ 0 is αi for some integer power i, 0 ≤ i < 2f – 1. We call i 

the logarithm of ξ and write i = logα(ξ). Table 1 tabulates the non-zero GF(28) elements 

and their logarithms for α = 2.  Likewise, ξ = αi is then the antilogarithm of i that we 

write as ξ = antilog (i). 

The successive powers αi for any i, including i ≥ 2f – 1 form a cyclic group of order 

2f – 1, with αi = αi’ exactly if i’ = i mod 2f –1. Using the logarithms and the 

antilogarithms, we can calculate multiplication and division through the following 

formulae. They apply to symbols ξ,ψ ≠ 0. If one of the symbols is 0, then the product is 

obviously 0. The addition and subtraction in the formulae is the usual one of integers: 

ξ⋅ψ = antilog( log(ξ) + log(ψ) mod (2f–1)),     

ξ/ψ = antilog( log(ξ) – log(ψ) + 2f–1 mod (2f–1)). 
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To implement these formulae, we store symbols as char type (byte long) for GF(28) 

and  as short integers (2-byte long) for GF(216).  This way, we use them as offsets into 

arrays. We store the logarithms and antilogarithms in two arrays.  The logarithm array log 

has 2f entries.  Its offsets are symbols 0x00 … 0xff, and entry i contains log(i), an 

unsigned integer.  Since element 0 has no logarithm, that entry is a dummy value such as 

0xffffffff. Table 1 shows the logarithms for F.  

Our multiplication algorithm applies the antilogarithm to sums of logarithms modulo 

2f–1.  To avoid the modulus calculation, we use all possible sums of logarithms as 

offsets.  The resulting antilog array then stores antilog[i] = antilog( i mod (2f–1)) for 

entries i = 0, 1, 2…, 2(2f–2).  We double the size of the antilog array in this way to avoid 

the modulus calculus for the multiplication.  This speeds up both encoding and decoding 

times.  We could similarly avoid the modulo operation for the division as well. In our 

scheme however, division are rare and the savings seem too minute to justify the 

additional storage (128KB for our final choice of f = 16).  Figure 3 shows our final 

multiplication algorithm. Figure 4 shows the algorithm generating our two arrays. We 

call them respectively log and antilog arrays. The following example illustrates 

their use. 

Example 1 

We use the result of the following GF(28) calculation later in Example 2: 

 

45 1 49 1a 41 3b 41 ff
45 antilog(log(49)+log(1a)) antilog(log(41)+log(3b)) antilog(log(41)+log(ff))
45 + antilog(152 105) antilog(191 120) antilog(191+175)
45 + antilog(257) antilog(311) antilog(191+

⋅ + ⋅ + ⋅ + ⋅
= + + +
= + + + +
= + + 175)

45 antilog(2) antilog(56) antilog(111)
45 04 5d ce
d2

= + + +
= + + +
=

 

The first equality uses our multiplication formula but for the first term.   We use the 

logarithm array log to look up the logarithms. For the second term, the logarithms of 49 

and 1a are 152 and 105 (in decimal) respectively (Table 1).  We add these up as integers 

to obtain 257.  This value is not in Table 1, but antilog[257]=4, since logarithms 

repeat the cycle of mod (2f–1) that yields here 255.  The last equation sums up four 

addends in the Galois field, which in binary are 0100 0101, 0000 0100, 0101 1101, and 

1100 1110.  Their sum is the XOR of these bit strings yielding here 1101 0010 = d2.   

To illustrate the division, we calculate 1a / 49 in the same GF. The logarithm of 1a is 

105, the logarithm of 49 is 152. The integer difference is –47. We add 255, obtain 208, 
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hence read antilog[208]. According to Table 1 it contains 51 (in hex), which is the 

final result.  

3.2 Parity Matrix  

3.2.1 Parity Calculus 

We recall that a parity record contains the keys of the data records and the parity data of 

the non-key fields of the data records in a record group, Figure 1.  We encode the parity 

data from the non-key data as follows.  

We number the data records in the record group 0, 1,… m-1. We represent the non-

key field of the data record j as a sequence Kjjj aaa ,2,1,0 ,,  of symbols.  We give to 

all the records in the group the same length l by at least formally padding with zero 

symbols if necessary.  If the record group does not contain m records, then we 

(conceptually) replace the missing records with dummy records consisting of l zeroes. 

#define EXPONENT  16  // 16 or 8  
#define NRELEMS           (1 << EXPONENT)         
#if ((EXPONENT == 16) 

#define CARRYMASK     0x10000 
#define POLYMASK     0x1100b 

#elif (EXPONENT == 8) 
#define CARRYMASK     0x100 

       #define POLYMASK     0x11d         
#endif 
void generateGF() 
{  
   int i; 
   antigflog[0] = 1; 
   for (i = 1; i < NRELEMS; i++)  { 
      antigflog[i] = antigflog[i-1] << 1; 
      if(antigflog[i] & CARRYMASK) antigflog[i] ^= POLYMASK;} 
   gflog[0] = -1; 
   for(i = 0;i < NRELEMS-1;i++)  
      gflog[antigflog[i]] = i; 
   for(i = 0;i < NRELEMS-1;i++)  
      antigflog[NRELEMS-1+i]= antigflog[i]; 
} 

Figure 4: Calculus of tables log and antilog for GF(2f). 

We consider all the data records then in the group as the columns of an l by m 

matrix ( )jia ,=A .  We also number the parity records in the record group 0,1…k.  We 

write K,,, ,2,1,0 jjj bbb  for the B-field symbols of the jth parity record.  We arrange the 

parity records also in a matrix with l rows and k columns ( )jib ,=B .  Finally, we consider 

the parity matrix ( ),P λ µ= p  that is a matrix of symbols p forming m rows and k 

columns. We show the construction of P in next sections. Its key property is the linear 
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relationship between the non-key fields of data records in the group and the non-key 

fields of the parity records: 

.BPA =⋅  

More in depth, each jth row of A is a vector ( ),0 ,1 , 1, , ,a −= Kj
j j j ma a a of the 

symbols in all the successive data records with the same offset j.  Likewise, every jth line 

b j of B contains the parity symbols with the same offset j in the successive parity records 

of the record group. The above relationship means that: 

b j  = a j P. 

Each parity symbol is thus the sum of m products of data symbols with the same offset 

times m coefficients of a column of the parity matrix:  

(3.1)    
1

, , ,
0

.
m

j jb a pλ ν ν λ
ν

−

=

= ⋅∑  

The LH*RS parity calculus does not use P directly. Instead, we use the logarithmic 

parity matrix Q with coefficients qi,j = logα(pi,j).  The implementation of equation (3.1) 

gets the form: 

(3.2)   1
, 0 , ,antilog( log( ))mb q aι λ ν ν λ ι ν

−
== +⊕  

Here, ⊕  designates XOR and the antilog designates the calculus using our 

antilog table, which avoids the mod (2f–1) computation. Using (3.2) and Q instead of 

(3.1) and P speeds up the encoding, by avoiding half of the accesses to the log table.  

The overall speed-up of the encoding is however more moderate than one could perhaps 

expect from these figures (Section 6.3.1). While using Q that is our actual approach, we 

continue to present the parity calculus in terms of P for ease of presentation. 

3.2.2 Generic Parity Matrices  

We have designed for LH*RS several algorithms for generating parity matrices.  We 

presented the first one in [LS00] for 4-bit symbols of GF(24).  When implemented, 

operations turned out to be slower they could be on the byte-oriented structure of modern 

computers [Lj00]. We turned to byte sized symbols of GF(28) that proved faster, and to 

2-byte symbols of GF(216) that proved even more effective. We have reported early 

results in [M03]. We show further outcomes below.  

We upgraded our parity matrices with respect to [LS00] (and any other proposal we 

know about in the literature) so that the first column and the first row now only contain 

coefficients 1. The column of ones allows us to calculate the first parity records of the 

bucket group using the XOR only, as for the “traditional” RAID-like parity calculus.  Our 
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prior parity matrices required GF multiplications for this column, slower than XOR alone 

as we already discussed.  Next, if one data bucket in a group has failed and the first parity 

bucket is available, then we can decode the unavailable records using XOR only. Before, 

we also needed the GF multiplications.  The row of ones allows us to use XOR 

calculations for the encoding of each first record of a record group.  This also contributes 

to the overall speed up as well, with respect to any proposal requiring the multiplications, 

including our own earlier ones. Our final change was the use of Q instead of the original 

P (Section 3.2.1). The experiments confirmed the interest of all these changes (Section 

6.3.1).  

LH*RS files may differ by their group size m and availability level k.  Smaller m speed 

up the recovery time, but increase the storage overhead, and vice versa. The parity matrix 

P for a bucket group needs m rows and k columns, k = K or k = K –1. Different files in a 

system may need in this way different matrices P. We show in Section 4.2 that the choice 

of GF(2f
 ) limits the possibilities for any P to m + k ≤ 2f + 1. Except for this constraint, m 

and k can be chosen quite arbitrarily.  We also prove that for any parity matrix P’ with 

dimensions m’ and k’, every m < m’ by k < k’ top left corner of P’ is also a parity matrix. 

These properties govern our use of the parity matrices for different files. Namely, we use 

a generic parity matrix P’ and its logarithmic parity matrix Q’ in an LH*RS file system. 

The m’ and k’ dimensions of P’ and Q' should be big enough for any system application. 

Any actual P and Q we use are then the m ≤ m’ by k ≤ k’ top left corners of P’ and of Q’. 

Their columns are derived dynamically when needed. 

Section 4.2 below shows the construction of our P’ for GF(28), (within the generator 

matrix containing it). We have to respect the condition that m’ + k’ ≤ 257. Because of 

LH*RS specifically, m’ has to be a power of two. Our choice for m’ was therefore 

m’ = 128, to maximize the bound on the group size while allowing k’ > 1. Hence, 

k’ = 129. Figure 16 displays the 20 leftmost columns of Q’. Figure 17 displays these 

columns of P’. The selection suffices for 20-available files. We are not aware of any 

application that needs higer level of availability.  

As we said, we finally applied GF(216). P’ may then reach m’ = 32K by k’ = 32K + 1. 

This allows LH*RS files with more than 128 buckets per group. Ultimately, even a very 

large file could consist of a single group, if such an approach would ever prove useful.  

Example 2 

We continue to use GF(28) and the conventions of Section 3.1. We now illustrate the 

encoding principles presented until now, by the determination of the parity data that 
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should be in k =3 parity records for the record group of size of m = 4 whose description 

follows. Figure 5 shows P and Q. These are the top left four rows and three columns of 

P’ and Q’ in Figure 17 and Figure 16.  

1 1 1 0 0 0
1 1a 1c 0 105 200

              
1 3b 37 0 120 185
1 ff fd 0 175 80

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P Q  

Figure 5: Matrices P and Q derived from P’ and Q’ for a 3-available record group of size m = 4. 

We suppose the encoded data records to have the non-key fields as follows: “En arche 

en o logos …”, “In the beginning was the word …”, “Au commencement était le mot 

…”, and “Am Anfang war das Wort…”.  Using ASCII coding, these strings translate to 

(hex) strings of our GF symbols: “45 6e 20 61 72 63 68 …”, “49 6e 20 74 68 65 20 …”, 

“41 75 20 63 6f 6d 6d …”, and “41 6d 20 41 6e 66 61 …” To calculate the first parity 

symbols, we form the vector a0 = (45,49,41,41) and multiply it with P.  The result b0 = 

a0⋅P is (c, d2, d0).  We calculate the 1st symbol of b0 simply as 45 + 49 + 41 + 41 = c.  

This is the conventional parity, as in a RAID.  The calculation of the parity second 

symbol is in fact given in Example 1.  We use formally the second column of P and the 

GF multiplication to obtain: 

 
( ) ( )45 49 41 41 1 1a 3b ff 45 1 49 1a 41 3b 41 ff

45 4 5d ce
d2.

T• = ⋅ + ⋅ + ⋅ + ⋅

= + + +
=

 

In our implementation, we use Q and the ‘*’ multiplication between two GF elements 

(or matrices) when the right operand is a logarithm.  This yields, according to Table 1:  

( ) ( )45 49 41 41 0 105 120 175
45*0 49*105 41*120 41*175
45 antilog(log(49)+105) antilog(log(41)+120) antilog(log(41)+175)

= 45 + antilog(152 105) antilog(191 120) antilog(191+175)
= 45 + antilog(257) antilog(311

T∗

= + + +
= + + +

+ + + +
+ ) antilog(191+175)

45 04 5d ce
d2

+
= + + +
=

 

Analogously, we get the last element in b0.  The calculus iterates for b1 = (18,76,93), 

b2 = (0,e2,ff) …. As the result, the B-field in the 1st parity record, Figure 1, is encoded as 

B = “c 18 0…”. Likewise, the second B-field is “d2 76 e2…” and the third one is finally 

“d0 93 ff…”.  
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3.3 Parity Updating 

The application updates an LH*RS file a data record at a time. An insert, update or delete 

of a record, modifies the parity records of a record group. We call this parity updating. It 

is the actual calculus for the parity encoding in the LH*RS files.   We now introduce these 

principles. 

We formally assimilate an insert and a deletion to specific cases of the update that is 

here our generic operation.  Recall, we only operate in fact on the non-key fields. An 

insert changes the record from a zero string. A deletion does the opposite. We now 

consider an update in this way to the ith data record in its group.  Let matrix A of vectors 

a in Section 4.2 above be the symbols in the data records in the record group before the 

update. Let matrix A’ contain the symbols after the update.  The matrices only differ in 

the ith column.  Let B and B’ be the matrices of vectors b with the resulting parity codes.  

The codes should conform to the generic calculus rules in Section 4.2. We thus have 

B = AP, B’ = A’P. The difference B - B’ is ∆ = (A - A’) P. We have A -

 A’ = (0,...,0,∆i,0,...,0) where ∆i is the column with the differences between the same 

offset symbols in the former and new records. To calculate ∆ = (A - A’)P, we only need 

the ith row of P.  Since B’ = B + ∆, we calculate the new parity values by calculating ∆ 

first and then XOR this to the current B value.  In other words, with Pi being the ith row 

of P: 

(3.3)  B’ = A’⋅G = (A+(A’-A)) P = A P +  (A - A’) P = P + ∆i Pi. 

In particular, if bj is the old symbol, then we calculate the new symbol b’j in record j as 

(3.4)  b’j = bj + ∆i pi,j, 

where ∆i is the difference between the new and the old symbol in the updated record, and 

pi,j is the coefficient of P located in the ith row and jth column.  

The ∆-record is the string obtained as the XOR of the new and the old symbols with 

the same offset within the non-key field of the updated record.  For an insert or a delete, 

the ∆-record is the non-key data. We implement the parity updating operation resulting 

from an update of a data record with key c and rank r as follows. The LH*RS data bucket 

computes the ∆-record and sends it, together with c and r, to all the parity buckets of the 

record group.  Each bucket sets the B field value according to (3.3). It then either updates 

the existing parity record r or creates it.  Likewise, the data record deletion updates the B 

field of the parity record r or removes all records r in each parity bucket. We discuss 

these operations more in depth in Section 5.6 and 5.7. 

As we have seen, the lth parity bucket in a bucket group only needs the column pl of P 
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for the encoding. A parity bucket stores therefore basically only this column. Obviously, 

the first parity bucket does not have to store p1 if it is the column of ones as above.  

Notice that our parity updating needs only one data record in the group, i.e., the 

updated one. This property is crucial to the efficiency of the encoding scheme. In 

particular, update speed is independent of m. Its theoretical basis is that our coding 

scheme is systematic. We elaborate more on it while discussing alternate codes in 

Section 7.5.1. 

Example 3 

We continue with the running example.  We consider a file of four data buckets D0, D1, 

D2, and D3 forming the bucket group of size m = 4. We also consider three parity 

buckets P0, P1, P2 corresponding to the columns of matrices P and Q in Figure 5.  We 

now insert one by one the records from Example 2. We assume they end up in successive 

buckets and form a record group. At the end, we also update the record in D1. Figure 6 

shows vertically each non-key field of a data record in the group, and the evolution of the 

B-fields, also represented vertically. It thus illustrates also the matrices A, A’ and B, and 

B’ for each parity updating operation we perform.  

Figure 6a shows the insert into D0 of the 1st record, with non-key data “En arche ...”, 

i.e., (hex) “45 6e 20 61 72 63 68 65 20 65 ...”. The ∆-record is identical to the record, 

being the difference between this string and the previous non-key data string, which is 

here the zero string. The first row of P consisting of ones, we calculate the content of 

each parity bucket by XORing the ∆-record to its previous content. As there were no 

parity records for our group yet, each B-field gets the ∆-record and we create all three 

records. 

Figure 6b shows the evolution after the insert of “In principio …” into D1.  The ∆-

record is again identical to the data record. At P0, the existing parity record is XORed 

with the ∆-record.  At P1, we multiply the ∆-record by ‘1a’ and we XOR the result with 

the existing string. The ‘1a’ is the P-coefficient located in Figure 5 in the second row 

(corresponding to D1) and the second column (corresponding to P1). We update the 

parity data in P2 similarly, except that we multiply by ‘1c’.   

Figure 6c-d show the evolution after inserts of “Am Anfang war …” into D2 and 

“Dans le commencement …” into D3.  Finally, Figure 6e shows the update of the record 

in D0 to “In the beginning was …”. Here, the ∆-record is the XOR of “49 6e 20 74 68 65 

20 62 65 67 …” and of “45 6e 20 61 72 63 68 65 20 65”, yielding “c 0 0 15 1a 6 48 7 45 

67 …”.  We send this ∆-record to the parity buckets.  It comes from D0, so we only XOR 
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the ∆-record to the strings already there. 

 

 D0 D1 D2 D3 P0 P1 P2  D0 D1 D2 D3 P0 P1 P2 

 45 0 0 0 45 45 45  45 49 0 0 c 41 ea 

 6e 0 0 0 6e 6e 6e  6e 6e 0 0 0 4b 32 

 20 0 0 0 20 20 20  20 20 0 0 0 47 87 

(a) 61 0 0 0 61 61 61 (b) 61 70 0 0 11 75 48 

 72 0 0 0 72 72 72  72 72 0 0 0 52 63 

 63 0 0 0 63 63 63  63 69 0 0 a 0 6b 

 68 0 0 0 68 68 68  68 6e 0 0 6 4d 34 

                

 D0 D1 D2 D3 P0 P1 P2  D0 D1 D2 D3 P0 P1 P2 

 45 49 41 0 4d 1c 9c  45 49 41 44 9 f6 fe 

 6e 6e 6d 0 6d c 93  6e 6e 6d 61 c 54 09 

 20 20 20 0 20 74 29  20 20 20 6e 4e 40 c1 

(c) 61 70 41 0 50 28 3e (d) 61 70 41 73 23 d8 28 

 72 72 6e 0 6e 58 9b  72 72 6e 20 4e ce 4d 

 63 69 66 0 6c cf 36  63 69 66 6c 0 18 39 

 68 6e 61 0 67 23 ec  68 6e 61 65 2 a0 a5 

                

     D0 D1 D2 D3 P0 P1 P2     

     49 49 41 44 5 fa f2     

     6e 6e 6d 61 c 54 9     

     20 20 20 6e 4e 40 c1     

    (f) 74 70 41 73 36 cd 3d     

     68 72 6e 20 54 d4 57     

     65 69 66 6c 6 1e 3f     

     20 6e 61 65 4a e8 ed     

Figure 6: Example of Parity Updating Calculus. 

4 DATA DECODING 

4.1 Using Generator Matrix 

 The decoding calculus uses the concept of a generator matrix. Let I be an m x m 

identity matrix and P a parity matrix. The generator matrix G for P is the concatenation 

I|P. We recall from Section 3.2.1 that we organize the data records in a matrix A. Let U 

denote the matrix A⋅G.  U is the concatenation (A|B) of matrix A and matrix B from the 

previous section.  We refer to each line u = (a1, a2,..., am, am+1, ..., an) of U as a code 

word.  The first m coordinates of u are the coordinates of the corresponding line vector a 

of A. We recall that these are the data symbols with the same offset in all the data records 
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in the record group.  The remaining k coordinates of u are the newly generated parity 

codes.  A column u’ of U corresponds to an entire data or parity record.  

A crucial property of G is that any m by m square submatrix H is invertible. (See 

Section 4.2 for the proof.) We use this property for reconstructing up to k unavailable 

data or parity records. Consider first that we wish to recover only data records. We form a 

matrix H from any m columns of G that do not correspond to the unavailable records. Let 

S be A⋅H.  The columns of S are the m available data and parity records we picked in 

order to form H.  Using any matrix inversion algorithm, we compute H-1.  Since A⋅H = S, 

we have A = S⋅H-1.  We thus can decode all the data records in the record group. Hence, 

we can decode in particular our k data records. In contrast, we cannot perform the 

decoding if more than k data or parity records are unavailable. We would not be able to 

form any square matrix H of size m.  

 
Figure 7: Definition of matrices A, B, U. 

In general, if there are unavailable parity records, we can decode the data records first 

and then re-encode the unavailable parity records.  Alternatively, we may recover these 

records in a single pass. We form the recovery matrix R = H-1⋅G.  Since S = A⋅H, we 

have A = S⋅H-1, hence U = A⋅G = S⋅H-1⋅G = S⋅R. Although the recovery matrix has m 

rows and n columns, we only need the columns of the unavailable data and parity 

records.  

Our basic scheme in the prototype uses Gaussian elimination to compute H-1.  It also 

decodes data buckets before recovering parity buckets. Our generic matrix P’ has 128 

rows and 129 columns for GF (256).  As we said, to encode a group of size m < 128, we 

cut a submatrix P of size m x m. To apply P’ in full is possible, but wastes storage and 

calculation time, since all but m first symbols in each line of A and B are zero. Hence the 

elements of P’ other than in top left m x m submatrix would not serve any purpose.  

However, the decoding according to the above scheme a priori requires the use and, 



23 
 

especially, the inversion of full size H derived from the generic generator matrix G’ = 

I|P’. This despite the fact that as for the encoding using P’, the elements of H-1 other than 

those in the top left m x m submatrix of H-1 would not contribute to the result. Storing 

and inverting a 128 x 128 matrix is more involved than a smaller one. It would be more 

efficient to create the m x m submatrix H and invert only H. This requires however that 

the cut and the m by m inversion leads to the same submatrix H-1 as that derived by the 

full inversion followed by the m x m cut.  Fortunately, this is the case. 

Proof.  Consider that for the current group size m < m’.  There are m’ - m dummy data 

records padding each record group to size m’.  Let a be the vector of m’ symbols with the 

same offset in the data records of the group. The rightmost m’ - m coefficients of a are all 

zero.  We can write a = (b|o), where b is an m-dimensional vector and o is the m’-m 

dimensional zero vector.  We split G’ similarly by writing: 

0

1

'
G

G
G

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. 

Here G0 is a matrix with m rows and G1 is a matrix with m’ - m rows. We have 

u = a⋅G = b⋅G0 + o·G1 = b⋅G0.  Thus, we only use the first m coefficients of each row for 

encoding. 

Assume now that some data records are unavailable in a record group, but m records 

among m + k data and parity records in the group remain available.  We can now decode 

all the m data records of the group as follows.  We assemble the symbols with offset l 

from the m available records, in a vector bl.  The order of the coordinates of bl is the order 

of columns in G. Similarly; let xl denote the word consisting of m data symbols with 

same offset l from m data records, in the same order.  Some of the values in xl are from 

the unavailable buckets and thus unknown.  Our goal is to calculate x from b.   

To achieve this, we form an m’ by m’ matrix H’ with at the left the m columns of G’ 

corresponding to the available data or parity records and then the m’-m unit vectors 

formed by the column from the I portion of G’ corresponding to the dummy data buckets.  

This gives H’ a specific form: 

'
H O

H
Y I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. 

Here, H is an m by m matrix, Y an m’-m by m matrix, O the m by m’ - m zero matrix, 

and I is the m’− m by m’ − m identity matrix.  Let (xl|0) and (bl|0) be the m’ dimensional 
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vector consisting of the m coordinates of xl and bl respectively, and m’− m zero 

coefficients.   

( | ) ( | )
H O

x o b o
Y I

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

That is: 

=xA b . 

According to a well-known theorem of Linear Algebra, for matrices of this form 

det(H’) = det(H)⋅det(I) = det(H). So H is invertible since H’ is.  The last equation tells us 

that we only need to invert the m-by-m matrix H. This is precisely the desired submatrix 

H cut out from the generic one.   This concludes our proof.   

 Example 4 

Consider the situation where the first three data buckets in Example 3 are unavailable.  

We collect the columns of G corresponding to the remaining four buckets in matrix: 

0 1 1 1
0 1 1a 1c
0 1 3b 37
1 1 ff fd

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

H . 

We invert H to obtain: 

1

1 a7 a7 1

46 7a 3d 0
.

91 c8 59 0

d6 b2 64 0

− =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

H  

The fourth column of H-1 is a unit vector, since the fourth data record is among the 

survivors and we need not calculate it.  To reconstruct the first symbol in each data 

bucket simultaneously, we form vector b from the first symbols in the surviving buckets 

(D3, P0, P1, P2): b = (44, 5, fa, f2).  This vector is the first row of the matrix B. We 

multiply b⋅H-1 and obtain (49,49,41,44), which is the first row of matrix A.  We iterate 

over the lines of B to obtain the other rows of A. 

4.2 Constructing a Generic Generator Matrix  

We now show the construction of our generic generator matrix G’, illustrated in Figure 9. 

Matrix G used in Example 4 above is derived from G’.  The construction provides also 
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our matrix P’ as a byproduct.  Let aj be l elements of any field.  It is well known, see, e.g. 

[MS97], that the determinant of the l-by-l  matrix that has the ith
 power of element aj in 

row i and column j is: 

(4.1)   ( )
0 , 1

0 1

det ( )i
j j ii j l

i j l

a a a
≤ ≤ −

≤ < ≤ −

= −∏ . 

If the elements ai are all different, then the determinant is not zero and the matrix 
invertible.   

We start constructing G’ by forming a matrix V with n + 1 columns and m’ rows, 

Figure 8. The first n columns contain the successive powers of all the different elements 

in the Galois field GF(n) starting with 0. The first column has a 1 in the first row and 

zeroes below. The final column consists of all zeroes but for a 1 in row m’ − 1. V is the 

extended Vandermonde matrix [MS97, p.323]. It has the property that any submatrix S 

formed of m’ different columns is invertible.  This follows from (4.1), if S does not 

contain the last column of V.  If S contains the last column of V, then we can apply (4.1) 

to the submatrix of S obtained by removing the last row and column of V. This submatrix 

has the determinant of S and is invertible, so S is invertible.  

We transform V into G’, Figure 9, as follows.  Let U be the m’ by m’ matrix formed 

by the leftmost m’ columns of V.  We form an intermediate matrix W = U-1⋅V.  The 

leftmost m’ columns of W form the identity matrix, i.e. W has already the form W = I|R. 

If we pick any m’ columns of W and form a submatrix S, then S is the product U-1⋅T with 

T the submatrix of V picked from the same columns as S.  Hence, S is invertible.  If we 

transform W by multiplying a single column or a single row by a non-zero element, we 

retain the property that any m’ by m’ submatrix of the transformed matrix is still 

invertible.  The coefficients wm’,i of W located in the leftmost column of R are all non-

zero.  If this were not the case, and wm’,j = 0 for any index j, then the submatrix formed by 

the first m’ columns of W with the sole exception of column j and the leftmost column of 

R would have only zero coefficients in row j. It hence would be singular which would be 

a contradiction.  

We now transform W into our generic generator matrix G’ first by multiplying all 

rows j with wm’,j
-1.  As a result of these multiplications, column m’ now only contains 

coefficients 1? But the left m’ columns no longer form the identity matrix.  Hence we 

multiply all columns j ∈ {0,… m’-1} with wm’,j to recoup the identity matrix in these 

columns.  Third, we multiply all columns m’,... n with the inverse of the coefficient in the 

first row.  The resulting matrix has now also 1-entries in the first row.  This is our generic 
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generator matrix G’.   

We recall that the record group size for LH*RS is a power of 2. For the reasons 

already discussed for P’, for GF(256), our I’ matrix is 128 by 128 and P’ is 128 by 129. 

Hence, our G’ is 128 by 257.  Notice the absence of need to store I’ or even I. We recall 

also that Figure 17 shows the leftmost 20 columns of P’ produced by the algorithm using 

the above calculus. Likewise, Figure 14 shows a fragment of P’ computed for GF(216). 

Finally, notice that there is no need to store even these columns. At the recovery, they can 

be obviously dynamically reconstructed from columns of Q’ or Q, available for the 

encoding anyway.  
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Figure 8: An extended Vandermonde matrix V with m’ rows and n=2f+1 columns. 
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Figure 9: Our generic generator matrix G’. Left m’ columns form the identity matrix I.  The P’ matrix 

follows, with first column and row of ones. 

5 LH*RS FILE MANIPULATION 

The application manipulates an LH*RS file as an LH* file.  The coordinator manages 

high-availability invisibly to the application.  Internally, each bucket access starts in 

normal mode. It remains so as long as the bucket is available.  Bucket availability means 

here that the SDDS manager at the node where the bucket resides responds to the 

message.  If a node carrying a manipulation encounters an unavailable bucket a, it enters 

degraded mode.  The node passes the manipulation then to the coordinator.  The 

coordinator manages the degraded mode to possibly complete the manipulation. It 

initiates the bucket recovery operation of bucket a, unless it is already in progress.  It 

performs also some other operations specific to each manipulation handled to it that we 

show below. Operationally, the coordinator performs in fact the requested recovery of 

bucket a as a part of the bucket group recovery operation. The latter recovers all 
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unavailable bucket(s) in the group of bucket a at once, if up to k (k = K, or k = K − 1) 

buckets are unavailable.  For a key search, the coordinator also starts record recovery. 

This may speed up a key search by recovering the single data record or by finding that it 

is not in the file.  If a bucket recovery already goes on, then the coordinator waits until it 

finishes or starts the record recovery anyway. Once the record recovery alone or the 

entire bucket recovery successfully terminates, the coordinator completes the requested 

operation.  

We first present the bucket and record recovery operations. Next, we describe the 

application interface. The operations are file creation and removal, key search, non-key 

search (scan), and record insert, update or delete. Except for the file creation and 

removal, any of these operations may enter the degraded mode thus triggering at least a 

bucket recovery. Finally, we discuss the bucket split and merge that adds or removes 

buckets from the file, invisibly to the application. These can also enter degraded mode. 

5.1 Bucket Recovery 

The coordinator starts the bucket recovery by probing the m data and k parity buckets of 

the bucket group of bucket a for availability. Typically, k = K, unless the last change of K 

was not yet posted to all the groups or the group is a transitional one. The group 

availability level may be still then k = K - 1. The probe may find several unavailable 

buckets.   If the coordinator finds up to l ≤ k unavailable buckets, then the failure is not 

catastrophic. Otherwise, the coordinator halts and reports the catastrophic failure to the 

user. It may still be possible to recover some records, but the case is beyond our scheme.  

Otherwise, the coordinator starts the bucket group recovery. If l = 1, the group recovery 

reduces to recovering bucket a. This should be the most frequent case. Otherwise, the 

operation recovers also all other unavailable data or parity buckets of the group.  The 

coordinator first chooses a list LA of m available buckets.  The list includes the first parity 

bucket if it is available. The coordinator establishes also a list LS of l spare buckets. An 

entry into this list contains the unavailable bucket number and the spare address.  The 

coordinator chooses one spare as the recovery manager. It passes the rest of the bucket 

recovery task to it, with both lists. The handover prevents the coordinator from becoming 

a hot spot. It also avoids an additional load on a data or parity bucket that could slow 

down normal operations.   

The manager first recreates at each spare the complete, although yet empty, structure 

of the bucket to be recovered there. Next, it collects the columns of P it needs for LA, 
according to Section 4.1. It reads these from the parity buckets in LA. It then forms matrix 
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H. This may include dummy columns if the group is the last one in the file and not all m 

data buckets exist yet. Then, if the first parity bucket is not the sole parity bucket to use, 

the manager calculates H-1.  Next, it loops over the record group recovery that produces 

all the unavailable records of one group. First, it produces then all the data records. Next, 

- the parity records, provided there is any parity bucket number in LS. The loop is over all 

the ranks of the parity records in one of the parity buckets in LA. The manager chooses 

the bucket and reads one-by-one all its records.  If only one data bucket is unavailable, 

and 1st parity bucket is in LA, then the manager skips H-1 calculus and GF multiplications 

to recover the data bucket. We recall that the decoding is then faster, using the XORing 

only. 

During the loop, for each parity record encountered, the manager explores its group 

structure field C, Figure 1. For every non-null key ci, it requests the data record ci from its 

bucket, provided it is in LA (as already discussed, the bucket is also the ith in the group). 

The manager decodes the non-key fields of unavailable data records in the group. It uses 

XORing for the first parity bucket, and/ or H-1. Next, using the C-field, it reconstructs the 

keys of the recovered records. Finally, if there is any parity bucket to recover, it requests 

the missing Q columns from the coordinator. It then encodes the unavailable parity 

records using the m data records in the recovered group. Finally the manager sends the 

recovered records (in bulks, as we discussed later) to the spares for insertion into the 

recovered buckets.  

Once the bucket group recovery ends, the manager pushes the addresses of the 

recovered buckets to the existing buckets in the group so that they can update their 

location tables. It finally successfully returns the control to the coordinator. The 

coordinator considers the new buckets as ready to use. It updates accordingly its server 

addresses. A client or server will get the new address of a recovered bucket when it finds 

the bucket displaced.  

It is perhaps worth recalling the alternate decoding algorithm here, for a record group 

with the appropriate submatrix of 1−H G , mentioned in Section 4.1. The resulting variant 

can decode all unavailable data and parity records in the group at once.  Since typically 

only one bucket is lost, our choice is however typically faster. 

As mentioned above, our bucket group recovery moves records in bulks. Formerly, 

we transferred them individually using UDP. This turned out to be much less effective 

than the current approach with the TCP/IP in passive mode (Section 6.3).  
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5.2 Record Recovery 

The operation results from the key search for record c, (Section 5.4 below), that localizes 

it in an unavailable bucket a. The result for the application is nevertheless the delivery of 

record c alone, or the reply that it is not in the file.  We determine the latter by consulting 

the C-field in one of the parity records in the group.  More precisely, the coordinator 

performs record recovery in parallel with the recovery of bucket a.  It hands control to the 

recovery manager at an available parity bucket of the group, giving it c, a, and LA. The 

manager first scans the C-fields in the bucket for the existence of parity record (of rank) r 

with c in C (r).  Knowing a speeds up this search, as only one column in C needs to be 

examined, instead of typically m. If the manager does not find the record, it informs the 

coordinator that the search for c is unsuccessful. Otherwise, it decodes record c using 

group r as described previously. Except that it calculates only record c, even if several 

data records in the group are unavailable.  Finally, the manager sends the record to the 

coordinator. 

Record recovery access time to an unavailable data record is typically much faster 

than the time to recover the whole bucket group (what we do anyhow). See Sections 6.3.6 

and 6.3.7 below. For typically even better record recovery times, we need to avoid the 

intra parity bucket scan above mentioned, searching at present for key c.  This requires an 

index binding rank r to key c, or an algorithm making rank r a function of c etc. The 

obvious trade-off is some storage and run-time overhead. The variation is a candidate 

future work. 

5.3 File Creation and Removal 

The client creates an LH*RS file F as an empty data bucket 0.  File creation sets the 

parameters m and K. The latter is typically set to K = 1.  The SDDS manager at bucket 0 

becomes the coordinator for F.  The coordinator initializes the file state to (i = 1, n = 0). 

The coordinator creates also K empty parity buckets, to be used by the first m data 

buckets, which will form the first bucket group.  The coordinator stores column i of P 

with the ith parity bucket, with the exception of the first parity bucket (using P’ to 

generate these columns). There is no degraded mode for the file creation operation. 

Notice however that the operation fails if no K+1 available servers are to be found. 

If the application requests the removal of the file, the client sends the request to 

coordinator. The coordinator acknowledges the operation to the client. It also forwards 

the removal message to all data and parity buckets.  Every node acknowledges it.  The 

unresponsive servers enter an error list to be dealt with beyond the scope of our scheme.  
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5.4 Key Search 

In normal mode, LH*RS searches for a key with the LH* key search algorithm 

(Section 2.1.2).  The client or the forwarding server triggers degraded mode if it 

encounters an unavailable bucket, called a1. It passes then the control to the coordinator.  

The coordinator starts the recovery of bucket a1. It also uses the LH* file state parameters 

to calculate the address of the correct bucket for the record, call it bucket a2.  If a2 = a1, 

the coordinator starts also the record recovery. If a2 ≠ a1, and bucket a2 was not found to 

be unavailable during the probing phase of the bucket a1 recovery, then the coordinator 

forwards c to bucket a2.  If bucket a2 is available, it replies to the LH*RS client as in the 

normal mode, including the IAM.  If the coordinator finds it unavailable and the bucket is 

not yet being recovered, e.g., is in another group than bucket a1, then the coordinator 

starts the recovery of bucket a2 as well.  It performs than also the record recovery.  

5.5 Scan 

A scan returns all records in the file that satisfy a certain query Q in their non-key fields.  

A client performing a scan sends Q to all buckets in the propagation phase.  Each server 

executes Q and sends back the results during the termination phase. The termination can 

be probabilistic or deterministic, [LNS96]. The choice is up to the application. 

5.5.1 Scan Propagation 

The client sends Q to all the data buckets in its image using unicast or broadcast when 

possible.  Unicast messages only reach the buckets in the client image.  LH*RS applies 

then the following LH* scan propagation algorithm in the normal mode. The client sends 

Q with the message level j’ attached.  This is the presumed level j of the recipient bucket, 

according to the client image. Each recipient bucket executes Algorithm (A4) below. A4 

forwards Q recursively to all the buckets that are beyond the client image. Any of these 

must result, perhaps recursively through its parents, also beyond the image, a split of 

exactly one of the buckets in the image.  

Algorithm A4: Scan Propagation 
The client executes: 

n’ = split pointer of client. 
i’ = level of client. 
for a = 0,… 2i’+n’ do : 
 if (a < 2i’  and  n’ ≤ a)  then  j’ = i’  else  j’ = i’+1. 
 send (Q,j’) to a. 

Each bucket a executes upon receiving (Q,j’): 
j = level of a. 
while (j’<j) do: 
 j’=j+1; 
  forward (Q,j’) to bucket a+2j’-1.  
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In normal mode, Algorithm (A4) guarantees that the scan message arrives at every 

bucket exactly once [LNS96].  We detect unavailable buckets and enter degraded mode 

in the termination phase.  

Example   

Assume that the file consists of 12 buckets 0, 1, … 11.  The file state is n = 4 and i = 3.  

Assume also that the client has still the initial image (n’, i’) = (0,0).  According to this 

image, only bucket 0 exists.  The client sends only one message (Q,0) to bucket 0.  

Bucket 0 sends messages (Q,1) to bucket 1, (Q,2) to bucket 2, (Q,3) to bucket 4, and 

(Q,4) to bucket 8.  Bucket 1 receives the message from bucket 0 and sends (Q,2) to 

bucket 3, (Q,3) to bucket 5, (Q,4) to bucket 9.  Bucket 2 sends (Q,3) to 6 and (Q,4) to 11.  

Bucket 3 receives (Q,2) and forwards with level 3 to bucket 7 and with level 4 to 

bucket 11.  The remaining buckets receive messages with a message level equal to their 

own level and do not forward. 

5.5.2 Scan Termination 

A bucket responds to a scan with probabilistic termination only if it has a relevant record.  

The client assumes that the scan has successfully terminated if no message arrives after a 

timeout following the last reply.  A scan with probabilistic termination does not have the 

degraded mode. The operation cannot always discover indeed the unavailable buckets. 

In deterministic termination mode, every data bucket sends at least its level j. The 

client can then calculate whether all existing buckets have responded.  For this purpose, 

the client maintains a list L with every j received. It also maintains the count N’ of replies 

received. The client terminates Q normally if and only if it eventually meets one of the 

termination conditions  

(i) All levels j in L are equal and N’
 = 2j. (ii) There are two levels from consecutive 

buckets in the list such that ja – 1 =  ja + 1 and N’
 = 2ja + ja.  

Each condition determines in fact the actual file size N and compares N’ to N. Condition 

(i) applies if the split pointer n is 0. Condition (ii) corresponds to n > 0 and in fact 

determines n as a fulfilling ja -1 = ja + 1. The conditions on N’ test that the all N buckets 

answered. Otherwise, the client waits for further replies. 

A scan with deterministic termination enters degraded mode, when the client does not 

meet the termination conditions within a time-out period.  The client sends the scan 

request and the addresses in L to the coordinator.  From the addresses and the file state, 

the coordinator determines unavailable buckets. These may be in different groups.  If no 

catastrophic loss has occurred in a group, the coordinator initiates all recoveries as in 

Section 5.1. Once they are all completed, the coordinator sends the scan to the recovered 
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data buckets.  The client waits until the scan completes in this way. Whether the 

termination is normal or degraded, the client updates finally its image and perhaps the 

location data. 

Example  
For change, we consider now a file in state (n, i) = (0,3), hence with 8 buckets 0,1…7. 

The record group size is m = 4 and the intended availability level K is K =1.  The client 

image is (n’, i’) = (2, 2). Accordingly, the bucket knows of buckets 0, 1, 2, 3, 4, and 5. 

The client issues a scan Q with the deterministic termination.  It got replies with bucket 

levels j from buckets 0, 1, 2, 4, 5, and 6. None of the termination conditions are met.  

Condition (i) fails because, among other j0 > j4. Likewise, condition (ii) cannot become 

true until bucket 3 replies.  The client waits for further replies. 

Consider now that no bucket replied within the time-out. The client alerts the 

coordinator and sends Q and the addresses in list L = {0, 1, 2, 4, 5, 6}. Based on the file 

state and L, the coordinator determines that buckets 3 and 7 are unavailable.  Since the 

loss is not catastrophic (for m = 4 and k =1 in each group concerned), the coordinator 

now launches recovery of buckets 3 and 7.  Once this has succeeded, the coordinator 

sends the scan to these buckets.  Each of them finally sends its reply with its ja, perhaps 

some records, and its (new) address. The client adjusts its image to (n’, i’) = (0,3) and 

refreshes the location data for buckets 3 and 7.  

5.6 Insert 

In normal mode, an LH*RS client performs an insert like an LH* client.  The client sends 

the insert request to the bucket determined by the data record key c and the client’s 

image.  The client waits for an acknowledgement to terminate.  If it does not come within 

a timeout, then the client sends the insert to the coordinator and the operation enters 

degraded mode. 

The receiving data bucket follows algorithm A2 (Section 2.1.2) by forwarding the 

request if necessary.  If the correct data bucket receives the insert, it stores the record as 

for an LH* file.  If the data bucket overflows, the bucket informs the coordinator.  In 

addition, it assigns a rank r to the record.  Next, it sends the ∆-record (with key) c and r 

to the k parity buckets.  Recall that the ∆-record is essentially the inserted record. The 

data bucket then waits for the k acknowledgements from all parity buckets.  

Upon the reception of the message, each parity bucket creates the parity record r if it 

does not already exist, and inserts c into its key-list. It also encodes the non-key data of 

∆-record c through the update of B-field of record r. It first multiplies the ∆-record 

symbol-wise with the related coefficient of matrix P. Then, it either XORs the result to 
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the B-field already in record r or stores the result as the new B-field, if record r is new.   

Inserts (as well as updates and delete operations) need to maintain coherency between 

parity records and data records. That is, a data record should be changed with all its parity 

records or not at all.  Otherwise, the k-availability of all records in the group is no longer 

guaranteed. For instance, assume that (i) we have a group with k = 2, (ii) a data record 

was inserted, but finally only one of the parity records was updated. If the data record and 

one of the parity records become unavailable, then we can retrieve the inserted record if 

the updated parity record is still available, otherwise not.  As we will see, the situation is 

even more difficult for updates.  As the general rule, in order to maintain k-availability, 

we need to perform any insert (update / delete) operation at the data bucket and all k 

parity buckets. In other words, a change should be committed simultaneously at all 

buckets involved. 

The commit process between the data and the parity buckets differs for k = 1 and  

k > 1.  In the former case, we use an implicit 1-phase commit (1PC). The parity bucket 

simply acknowledges the reception of the ∆-record and creates/updates its record r. The 

data bucket then acknowledges the insert to the client that can eventually avert the 

application.  The server or the client enters the degraded mode if any of the expected 

messages does not arrive in time. 

We now discuss the case k > 1.  1PC no longer guarantees that all parity records and 

the data record are updated.   We therefore use a variant of 2PC that guarantees that the 

∆-record c updates all or none of the k buckets.  The data bucket sends the ∆-record (with 

key) c and r to all k parity buckets.  Each parity bucket starts the commit process by 

acknowledging the reception of the message with ∆-record c and with r. This 

confirmation constitutes the “ready-to-commit” message of 2PC.  Each parity bucket 

encodes the record as usual into parity record r. But it retains the ∆-record in a 

differential file (buffer) for a possible rollback.  If the data bucket gets all k “ready-to-

commit” messages, it acknowledges to the client after it sends out “commit” message to 

the k buckets. Each bucket that receives the message discards the ∆-record.  Notice that 

one could also use a more sophisticated scheme based on collective acknowledgements as 

in TCP/IP, but this variations is beyond our scope at present. 

The degraded mode starts when any of the buckets involved cannot get a response it 

waits for. The data bucket enters the degraded mode if it lacks any of the 

acknowledgments from the parity buckets. It alerts the coordinator, transmitting r and the 

number p of the unavailable parity bucket (its column index in P). The coordinator 
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probes the group for the availability of m buckets. It also probes all the parity buckets of 

the group, except bucket p, whether they have c or not. In the latter case, such a bucket 

either has c in the key-field C and the ∆-record in the differential file, or only has c, or 

lacks both. In every case, provided the coordinator finds m available buckets, it 

synchronizes all available parity buckets so that all reflect the insert. Then, the 

coordinator recovers the group and finally acknowledges to the client.   

Another degraded case occurs when parity bucket p does not receive a message from 

the data bucket.  The data bucket must then have just failed and bucket p must be in the 

“ready-to-commit” state and must have the ∆-record.  It then alerts the coordinator, 

sending out ∆-record c and r. The coordinator probes the bucket group for the 

recoverability.  If the probe is successful in finding the required number of available data 

buckets, the coordinator synchronizes all parity buckets so that all have processed the 

insert.  The recovery process can now proceed.  The recovered data bucket will contain 

the inserted record.  Finally, the coordinator sends an acknowledgement to the client. 

Next, the client might detect that the data bucket has failed because of a lacking 

acknowledgement.  The client informs the coordinator.  After the coordinator determines 

the availability of buckets in the group, it synchronizes the parity buckets with regard to 

the insert.  It might find that the data bucket never sent any messages to a parity bucket, 

because it failed before receiving the original insert command from the client or because 

it failed before it could forward the ∆-record. Alternatively it might find that all available 

parity buckets have already committed the insert.  Otherwise, a parity bucket would have 

informed the coordinator of the data bucket’s unavailability. In all the cases, the 

coordinator can determine the state because either the record key c is in the parity record 

or not.  After synchronization at the parity records, all unavailable buckets in the group 

are recovered and the insert is finally acknowledged to the client. 

 Finally, we have to deal with the simultaneous unavailability of client and data 

bucket.  In this case, either all (available) parity buckets have not received the ∆-record or 

all have committed the insert.  Only a later file operation will discover that the data 

bucket is unavailable.  Depending on the shared state of the parity records in regard to the 

insert, the data bucket will be recovered without or with the inserted record. 

An insert in a degraded mode where the correct data bucket was unavailable may 

generate an overflow at the recovered bucket. The new bucket itself alerts the coordinator 

to perform a split.  
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5.7 Delete 

In the normal mode, the client performs the delete of record c as for LH*. In addition, the 

correct bucket sends the ∆-record, the rank r of the deleted record, and key c to the k 

parity buckets.  Each bucket confirms the reception and removes key c. If c is the last 

actual key in the list, then the parity bucket deletes the entire parity record r. Otherwise, it 

adjusts the B-field of the parity record to reflect that there is no more record c in the 

record group.  

The data bucket communicates with the parity buckets using the 1PC or the 2PC. The 

latter is as for an insert, except for the inverse result of the key c test. As for the insert for 

k > 1, the parity buckets keep also the ∆-record till the commit message. More generally, 

the degraded mode for a delete is analogous to that of an insert. 

5.8 Update 

An update operation of record c changes its non-key field. In the normal mode, the client 

performs the update as in LH*.  The client sends the record with its key c and the new 

value of the non-key field. The data bucket uses c to look up the record, determines its 

rank r, calculates the ∆-record, and sends both to all k parity buckets.  These recalculate 

the parity records. Finally, the data bucket commits the operation. 

As for inserts and deletes, 1PC suffices only for k = 1.  But for k > 1, 2PC as used for 

inserts and deletes is no longer sufficient. We cannot always make out with that protocol 

whether a parity record has been actually updated.  

Our basic 2PC version for updates works as follows.  The data bucket sends the ∆-

record with key c and rank r to the k > 1 parity buckets. But now the messaging follows 

the order in P.  Each parity bucket starts the commit process by acknowledging c and r. 

As for an insert, the acknowledgement constitutes the “ready-to-commit” message of 

2PC.  Each parity bucket encodes the record as usual but also keeps the ∆-record in its 

differential file. If the data bucket gets all k “ready-to-commit” messages, it 

acknowledges to the client. It also sends out “commit” messages to the k buckets. 

However, it does so one at a time, waiting for each previous acknowledgement before 

sending to the next (in the order in P) parity bucket. Once a receiving bucket gets this 

message, it discards the ∆-record.  

Assume now that the coordinator is alerted because of the loss of parity bucket p after 

p entered the commit phase.  The coordinator can find that all parity buckets before p 

have committed and that the ones after p have not. Therefore, the coordinator can 

synchronize the parity buckets accordingly. 
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It is easy, but tedious, to prove the correct termination for an update with this protocol 

for all the other cases of the degraded mode. These are as for the insert. We avoid 

discussing them here. Let us say only that the algorithms are quite similar, although 

knowing the position of the alerter may make some faster.  

5.9 Split 

As in LH*, if an insert to an LH*RS data bucket a overflows a, then a alerts the 

coordinator.  The coordinator starts the split operation of bucket n, identified by the split 

pointer. Typically, we have n ≠ a. In the normal mode, the coordinator first locates an 

available server and allocates there the new data bucket N, where N denotes the number 

of data buckets in the file before the split. Bucket N is usually in the bucket group 

different from that of bucket n, unless the file is small and N<m.  If N is the first bucket 

in the group, then the coordinator allocates K new, empty parity buckets.  If K > k of the 

bucket group with bucket n, then the coordinator also allocates an additional Kth parity 

bucket to the group.  Provided all this performs normally, the coordinator sends the split 

message to bucket n with all the corresponding addresses. This hands control of the split 

to bucket n. The coordinator waits nevertheless for the final commit message.  The 

bucket sends all the data records that change the address when rehashed using hj + 1 to data 

bucket N. We recall from Section 2.1.1 that our implementation sends these records in 

bulks. 

For each data record that moves, bucket n finds its rank r, produces a ∆-record that is 

actually identical to the record itself, and requests its deletion from the parity records r in 

all the k buckets of its group. It also assigns new successive ranks r', starting from r' = 1, 

to the remaining data records. Bucket n sends then both ranks with each ∆-record to the 

K parity buckets. At the k existing buckets, it requests the delete of ∆-record from parity 

record r and its insert into parity record r'.  A new Kth parity bucket, if there is one, 

disregards the delete requests. 

At data bucket N, the bucket requests the inserts into its K parity buckets with the 

successive ranks it assigns. Once the split processing terminates at bucket N, N reports 

this to the waiting coordinator. 

The operations on the parity buckets use 1PC for K = 1 and 2PC as described for the 

inserts and deletes otherwise. The degraded mode starts when a data or a parity bucket 

does not reply. The various cases are similar to those already discussed. Likewise, the 

2PC termination algorithms are similar to those for an insert as well. We thus avoid the 

discussion of all these aspects of splitting here. Notice however that all unavailable 
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buckets are reported, as the coordinator waits for the commit messages from both 

buckets n and N.  

Once the split terminates successfully, the coordinator resets the value of n as already 

described in Section 2.1.1. Notice that bucket N becomes then "officially" bucket N - 1 

since N := N + 1. 

5.10 Merge 

Deletions may decrease the number of records in a bucket under an optional threshold 

b' << b, e.g., 0.4 b.  The bucket reports this to the coordinator. The coordinator may start 

a bucket merge operation.  The merge removes the last data bucket in the file, provided 

the file has at least two data buckets. It moves the records in this bucket back to its parent 

bucket that has created it during its split. The operation increases the load of the file.  

In the normal mode, for n > 0, the merge starts with setting the split pointer n to  

n := n – 1. For n = 0, it sets n = 2i – 1 - 1. Next, it moves the data records of bucket n + 2i 

(the last in the file), back into bucket n (the parent bucket). There, each record gets a new 

rank following consecutively the ranks of the records already in the bucket.  The merge 

finally removes the last data bucket of the file that is now empty. For n = 0 and i > 0, it 

decreases i to i = i – 1.   

If n is set to 0, the merge may also decrease K by one. This happens if N decreases to 

a value that previously caused K to increase.  Since merges are rare and merges that 

decrease K are even rarer, we omit discussion of the algorithm for this case. 

The merge updates also the k parity buckets. This undoes the result of a split. The 

number of parity buckets in the bucket group can remain the same. If the removed data 

bucket was the only in its group, then all the k parity buckets for this group are also 

deleted.  The merge commits the parity updates using 1PC or 2PC. It does it similarly to 

what we have discussed for splits. 

 As for the other operations, the degraded mode for a merge starts when any of the 

buckets involved does not reply. The sender other than the coordinator itself alerts the 

latter.  The various cases with which we are to counted are similar to those already 

discussed. Likewise, the 2PC termination algorithms in the degraded mode are similar to 

those for an insert or a delete. As for the split, every bucket involved reports any 

unavailability. We omit the details. 

6 PERFORMANCE ANALYSIS 

We now discuss the storage, communication, and processing performance of the scheme. 

As usual, we derive the formulae for the load factor, parity storage overhead, and the 

messaging costs. We discuss some design choices that appear. Next, we show the mostly 
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experimental analysis of the processing times. A purely formal analysis of these did not 

seem useful, because of the practical complexity of our system. The response times also 

depend heavily on various implementation level choices, as we will show. 

6.1 Storage Occupancy 

The file load factor α is the ratio of the number of data records in the file over the 

capacity of the file buckets.  The average load factor αd of the LH*RS data buckets is that 

of LH*. Under the typical assumptions (uniform hashing, few overflow records…), we 

have αd = ln(2) ≈  0.7.  Data records in LH*RS may be slightly larger than in LH*, since it 

may be convenient to store the rank with them.   

The parity overhead should be about k/m in practice.  This is the minimal possible 

overhead for k-available record or bucket group. Notice that parity records are slightly 

larger than data buckets, since they contain additional fields.  If we neglect these aspects, 

then the load factor of a bucket group is typically: 

αg = αd / (1 + k / m). 

The average load factor αf of the file depends on its state. As long as the file 

availability level K’ is the intended one K, we have αf 
 = αg, provided N  >> m so that the 

influence of the last group is negligible. The last group contains possibly less than m data 

buckets,.  If K’ = K – 1, i.e., if the file is in process of scaling to a higher availability 

level, then αf depends on the split pointer n and file level i as follows:  

αf  ≈ αd  ((2i  - n) / (1 + (K –1) / m ) + 2n / (1 + K / m ) ) / (2i + n). 

There are indeed 2n buckets in the groups with k = K and (2i − n) bucket in the groups 

whose k = K’. Again, we neglect the possible impact of the last group. If αg (k) denotes 

αg for given k, we have:  

αg (K’ + 1) < αf < αg (K’). 

In other words, αf is then slightly lower that αg (K’). It decreases progressively until 

its lower bound for K’, reaching it for n = 2i + 1 – 1. Then, if n = 0 again, K’ increases to 

K, and αf  is αg (K’) again. 

The increase in availability should concern in practice only relatively few N values of 

an LH*RS file. The practical choice of N1 should be indeed N1 >> 1. For any intended 

availability level K, and of group size m, the load factor of the scaling LH*RS file should 

be therefore in practice about constant and equal to αg (K). That one is the highest 

possible load factor for the availability level K and αd. We thus achieve the highest 

possible αf for any technique added upon an LH* file to make it K-available.  
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Our file availability scale-up to level K + 1 is incremental. One also accesses among 

the data buckets only to the existing splitting bucket and the new one at the time. This 

strategy induces a storage occupancy penalty with respect to best αf (K), as long as the 

file does not reach the new level. The worst case for K–available LH*RS is then in 

practice αf (K + 1). This value is in our case still close to the best for (K + 1) –available 

file. It does not seem possible to achieve a better evolution of αf for our type of an 

incremental availability increase strategy.  

The record group size m limits the record and bucket recovery times. If this time is of 

lesser concern than the storage occupancy, one can set m to a larger value, e.g., 64, 128, 

256… Then, all k values needed in practice should remain negligible with respect to m, 

and N >> 1. The parity overhead becomes negligible as well. The formula for αf becomes 

αf ≈ αd / (1 + k / min (N, m)). It converges rapidly to αd while N scales up, especially for 

the practical choices of Ni for the scalable availability.  We obtain high-availability at 

almost no storage occupancy cost. 

Observe that for given αf
 and the resulting acceptable parity storage overhead, the 

choice of a larger m benefits the availability.  While choosing for an αf some m1 and k1 

leads to the k1-available file, the choice of m2 = l m1 allows for k2 = l k1 which provides l 

more times available file. The penalty is however obviously about l times greater 

messaging cost of bucket recovery, since m buckets have to be read. It does not mean 

however (fortunately) that the recovery time also increases l times, as it will appear. 

Hence, the trade-off can be worthy in practice. 

Example 

We now illustrate the practical consequences of the above analysis. Consider m = 8. The 

parity overhead is then (only) about 12.5 % for the 1-availability of the group, 25 % for 

its 2-availability etc.  

We also choose uncontrolled scalable availability with N1 = 16. We thus have 1-

available file, up to N = 16 buckets. We can expect αf = αg(1) ≈ 0.62 which is the best for 

this availability level, given the load factor αd  of the data buckets. When N := 16, we set 

K := 2. The file remains still only 1-available, until it scales to N = 32 buckets. In the 

meantime, αf  decreases monotonically to ≈ 0.56. At N = 32, K’ reaches K and the file 

becomes 2-available. Then, αf  becomes again the best for the availability level and 

remains so until the file reaches N = 256. It stays thus optimal for fourteen times longer 

period than when the availability transition was in progress, and the file load was below 

the optimal one of αg(1). Then, we have K := 3 etc. 
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Assume now a file that has currently N = 32 buckets and is growing up to N = 256, 

hence it is 2-available. The file tolerates the unavailability of buckets 8 and 9, and, 

separately, that of bucket 10. But the unavailability of buckets 8-10 is catastrophic.  

Consider then rather the choice of m = N1 = 16 for the file starting with K = 2. The 

storage overhead remains the same hence is αf.  But now the file tolerates that 

unavailability as well, even that of up to any four buckets among 1 to 16.   

Consider further the choice of m = 256 and of N1 = 8. Then, K’ = 1 until N = 16, 

K’ = 2 until N = 128, then K’ = 3 etc. For N = 8, αf = αd / (11/8) ≈ 0.62. For N = 9 it drops 

to αd / (11/4) ≈ 0.56. It increases monotonically again to αf = αd / (11/8) for N = 16, when 

the file becomes 2-available. Next, it continues to increase towards  

αf = αd / (12/64) ≈ 0.68 for N = 64. For N = 65, it decreases again to αf = αd / (13/64) 

≈ 0.67. Next, it increases back to 0.68 for N = 128 when the file becomes 3-available. It 

continues towards almost 0.7 when N scales. And so on, with αf about constantly equal to 

almost 0.7 for all practical file sizes. The file has to reach N = 23k+1 buckets to become k-

available. For instance, it has to scale to a quite sizable 32M buckets to reach k = 8. The 

file still keeps then the parity overhead k / m rather negligible since under 3 %.  

6.2 Messaging 

We calculate the messaging cost of a record manipulation as the number of (logical) 

messages exchanged between the SDDS clients and servers, to accomplish the operation. 

This performance measure has the advantage of being independent of various practical 

factors such as network, and CPU performance, communication protocol, flow control 

strategy, bulk messaging policy etc. We consider one message per record sent or 

received, or a request for a service, or a reply carrying no record. We assume reliable 

messaging. In particular, we consider that the network level handles message 

acknowledgments, unless this is part of the SDDS layer, e.g., for the synchronous update 

of the parity buckets.  The sender considers a node unavailable if it cannot deliver its 

message. 

Table 2 shows the typical messaging costs of an LH*RS file operation for both normal 

and degraded mode. The expressions for the latter may refer to the costs for the normal 

mode.  We present the formulae for the dominant cost component. Their derivation is 

quite easy hence we only give an overview.  More in depth formulae such as for average 

costs seem difficult to derive. Their analysis remains an open issue. Notice however that 

the analysis of the messaging costs for LH* in [LNS96] applies to the messaging costs of 

LH*RS data buckets alone in normal mode.   
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To evaluate bucket recovery cost in this way, we follow the scheme in Section 5.1.  A 

client encountering an unavailable bucket sends a message to the coordinator.  The 

coordinator responds by scanning the bucket group, receiving acknowledgments of 

survivors, selecting spares, receiving acknowledgments from them, and selecting the 

recovery manager. This gives us a maximum of 3+2m+3l setup messages (if l buckets 

have failed). Next, the recovery manager reads m buckets filled at the average with αb 

records each. It dispatches the result to l-1 spares, using one message per record, since we 

assume reliable delivery. Here we also assume that typically the coordinator finds only 

the unavailable data buckets. Otherwise the recovery cost is higher as we recover parity 

buckets in 2nd step, reading the m data buckets. Finally, the recovery manager informs the 

coordinator. 

Manipulation Normal Mode (N) Degraded Mode (D) 

Bucket Recovery (B)    B ≈ (3+2m+3k)+αd bm+αd b(l-1) + 1 Not Applicable 

Record Rec. (R) R ≈ 2 or 2(m-1) Not Applicable 

Search (S) SN  ≈ 2 SD  ≈ SN + R 

Insert (I) IN  ≈ 4 or 2 + 3k ID  ≈1 + IN + B 

Delete (D) DN  ≈ 2 or 1 + 3k DD  ≈1 + DN + B 

Scan (C) CN  ≈ 1 + N CD  ≈ CN +l (1 + B1) 

Split (L) LN ≈ 1+ 0.5αd b (2IN – 1) LD ≈ LN + B 

Merge (M) MN = LN MD ≈ MN + B 

Table 2: Messaging costs of an LH*RS file. 

For the record recovery, the coordinator forwards the client request to an unavailable 

parity bucket.  That looks for the rank of the record.  If the record does not exist, two 

messages follow, to the coordinator and to the client. Otherwise, 2(m-1) messages are 

typically, and at most, necessary to recover the record.   

The other costs formulae are straightforward. The formulae for the insert and delete 

consider the use of 1PC or of 2PC. We do not provide the formulae for the updates. The 

cost of a blind update is that of an insert. The cost of a conditional update is that of a key 

search plus the cost of the blind one. Notice however that because of the specific 2PC the 

messages of an update to k > 1 parity buckets are sequential. The values of SN, IN, DN, 

and CN do not consider any forwarding to reach the correct bucket. The calculus of CN 
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considers the propagation by multicast. We also consider that l unavailable buckets found 

are each in a different group. The coefficient B1 denotes the recovery cost of a single 

bucket. Several formulae can be obviously simplified without noticeable loss of precision 

in practice. Some factors should be typically largely dominant, the B costs especially.  

The parity management does not impact the normal search costs.  In contrast, the 

parity overhead of the normal updating operations is substantial. For k = 1, it doubles IN 

and DN costs with respect to those of LH*. For k > 1, it is substantially more than the 

costs for manipulating the data buckets alone as in LH*. Already for k = 2, it implies IN = 

DN = 8. Each time we increment k, an insert or delete incurs three more messages.   

The parity overhead is similarly substantial for split and merge operations, as it 

depends on IN. The overhead of related updates is linearly dependent on k.  Through k 

and the scalable availability strategy, it is also indirectly dependant on N. For the 

uncontrolled availability, the dependence is of order of O(log N1 N). A rather large N1 

should suffice in practice; at least N1 = 16 most often. This dependence should thus little 

affect the scalability of the file.  

The messaging costs of recovery operations are linearly dependent on m and l. The 

bucket recovery also depends linearly on b. While increasing m benefits αf, it 

proportionally affects the recovery. To offset the incidence at B, one may possibly 

decrease b accordingly.  This increases CN for the same records, since N increases 

accordingly. This does not mean however that the scan time increases as well. In practice, 

it should even often decrease. 

6.3 Experimental Results 

We have prototyped LH*RS to study the timing of various operations and prove the 

viability of the scheme. The prototype was a many-year effort.  The earliest 

implementation is presented in [Lj00]. It put into practice the parity calculus defined in 

[LS00]. It also reused an LH*LH implementation for the data bucket management, [B02]. 

Experiments with next version of LH*RS prototyping were presented in [ML02]. The 

current version used for the experiments below builds upon that one. We present the 

prototype itself more in [LMS04]. Further details of the prototype, as well as the deeper 

discussion of the experiments discussed below, are in [M03].  

The prototype consists of the LH*RS client and server nodes. These are C++ programs 

running under Windows 2000 Server.  Internally, each client and server processes the 

queries and data using threads. The threads communicate through queues and other data 

structures and synchronize on events. There are basically two kinds of threads. The 

listening threads manage the communications at each node. There is one thread for UDP, 
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one for TCP/IP and one for multicast messaging. Next, four working threads process 

simultaneously the queries and data, received or send out. 

The communication uses the standard UDP and TCP/IP protocols.  Clients 

communicate with servers using UDP.  A listening thread timely unloads the UDP 

buffers to prevent loosing a datagram.  The servers communicate using TCP/IP for data 

transmission during the bucket split or recovery, and UDP for other needs. Again, a 

listening thread unloads the UDP buffers. Another such thread manages the TCP/IP stack.  

This stack has the listening socket in passive open mode [RFC793].  This new connection 

mode, available in Windows 2000, [MB00], replaced those studied in our earlier 

prototypes. It handles more effectively a larger number of incoming requests. It skipps 

indeed the connection dialogs, previously necessary for each request. It proved by far the 

most efficient up to now for our scheme.  

We have designed the prototype to experimentally measure the speed of the 

operations using the parity calculus, depending on design choices. Most experiments 

compared the use of GF(28) and of GF(216).  We ourselves assumed that using the latter 

was faster, but could not quantify this assumption nor validate it.  Experiments confirmed 

that using the latter was indeed usually, faster, but not always. Most noticeable speed up 

occurred for the decoding. We could also confirm the utility and measure the benefit of 

using our newest logarithmic matrix Q, derived from our also newest matrix P, with a 

first column and first row of ones. We then measured the speed of the operations 

involving the parity updating, namely the inserts, file creation with splits, updates, as well 

as the bucket and record recovery. The study used various availability levels, namely k = 

0… 3. We left the study of deletes, of merges and of scans for the future. First two 

operations are of lesser practical interest. The last one is out of our goal here, as normally 

independent of the parity calculus. We have measured nevertheless the key search speed, 

as the referential of the time to operate over a data record. Each measure was averaged 

over several experiments. 

Practical considerations lead to simplified implementation of some operations 

compared to their description in previous sections. Also, the experiments modified our 

own ideas on the best design of some operations. We discuss the differences in respective 

section.  

The configuration for our experiments included five P4 PCs with 1.8 GHz clock rate 

and 512 MB memory, and a 2.6 GHz, 512 MB P4 machine.  The latter was used as a 

client. Others were data or parity servers. Sometimes, we also used additional client 

machines (733 MHz, P3). Our network was a 1 Gbps Ethernet. 
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6.3.1 Parity Calculus Optimization                        

To test the efficacy of using Q, we conducted experiments creating parity records in a 

bucket with a logarithmic Q column, versus its original P column.  We used the group of 

m = 4 data buckets and created a parity bucket using the second or third or fourth parity 

column of each matrix (the first column of P was that of ones). A data bucket contained 

31250 records.  Using GF(28), the average processing time shrank from 1.809 sec to 

1.721 sec. We saved 4.86%. Use of GF(216), reduced the time from 1.462 sec to 1.412 

sec, i.e., by 3.42%.  Notice that GF(216) was always faster, by about 20 %.  

We next experimented similarly with P having the first column and the first row of 

ones Operationally, we used thus Q with first column and row of zeros. We recall that 

then we encode the updates to the 1st data bucket simply by XORing with the ∆-record. 

We wished to evaluate further speed up if any. For GF(28), the processing shrank indeed 

further from 1.721 sec to 1.606 sec, i.e., by 6.68%. Using GF(216), we measured 1.412 

sec and 1.359 sec, i.e., 3.75% of additional savings.  Notice that GF(216) is again always 

faster. But slightly less this time, by about 15 % only.  

Using Q with the first column and first row of zeros makes thus the encoding the 

fastest. Such Q was therefore our final choice for the scheme and all the experiments we 

report below. We attribute the better savings for GF(28), with respect to the above 

percentages for GF(216),  to the higher efficacy of the XORing for byte sized symbols. 

6.3.2 Key Search 

The key search time is the basic referential of access performance of the prototype, since 

it does not involve the parity calculus for k > 0. We have measured the time to perform 

random individual (synchronous) and bulk (asynchronous) successful key searches. All 

measures were at the client. The timing of an individual search starts when the client gets 

the key from the application. It ends when the client returns the record received from the 

correct server. The search time measured is the average over a synchronous series of 

individual searches, i.e., one after the end of another. Measuring the bulk search starts 

when the client gets the first key in bulk from the application. It lasts until the application 

gets the last record searched. Finally, we average it over the bulk size. During the bulk 

search, the client launches searches asynchronously, as is done usually for a database 

query. Our searches use UDP, hence a custom flow control method prevents a loss due to 

a server overload during a bulk operation. In fact, the experiments typically did not even 

invoke it, without showing any losses.   

We have measured in this way the search times in the file of 125000 records, 

distributed over four buckets and servers. A record had a 4 B key and 100 B of non-key 
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data. The average individual and bulk search times were 0.2419 ms and 0.0563 ms 

respectively. Thus the former is about 40 times faster than a disk key search. The latter 

reaches a speed-up of almost 200 times. The server processing speed basically bounds the 

former. The client speed bounds the latter. 

6.3.3 Insert 

We have measured series of individual and bulk inserts into an empty bucket, so as to 

avoid a split. The timing of an individual insert starts when the client gets the record from 

the application. It ends when the client returns to the application the acknowledgement 

received from the data bucket. We only implemented the 1PC, neglecting thus in our 

experiments the rare case of the double failure of the data bucket and of the client. Also, 

in these experiments the data bucket sent the acknowledgement to the client, after 

sending the messages to the k parity buckets, but without waiting for the 

acknowledgements from these buckets. In other words, we have assumed reliable 

messaging. The only cause of a missing acknowledgement could be the unavailability of 

a parity bucket, triggering the degraded mode.  The insert times measured in these 

conditions are the fastest possible for k–availability, except for the neglected case. Later, 

for the experiments with the updates, we report on the unreliable messaging performance 

assumption as well.  

As for the experiment, we have timed the series of 10 000 inserts into an initially 

empty bucket of b = 10 000. We avoided any split in this way, unlike for the measure of 

the file creation time in Section 6.3.4 below. A record has again the 4 B key and 100 B of 

non-key data. The average times were in practice identical for both GFs used. We 

recorded 0.29 ms for k = 0, 0.33 ms for k = 1 and 0.36 ms for k = 2. The average bulk 

insert times were seven to nine times faster reaching 0.04 ms. These times were the same 

as for the updates, discussed in Section 6.3.5 below. They were measured in the same 

way, and are similarly independent of k. 

The figures above show that adding the first parity bucket to 0-available file, slows 

down an insert on the average by 0.04 ms or 14 %.  Adding one more parity bucket costs 

slightly less, 0.03 ms or 10 %, despite the XOR only calculus on the first bucket. The 

reason is that most of the operations at the data bucket are in common, and the operations 

at the parity buckets proceed in parallel. All this appears to be a quite efficient behavior.  

Finally, the measured times are respectively about 30 to 250 times faster than to local 

disks (assuming 10 ms per access). As for a key search, the individual insert time was 

bound mainly by the server speed, while the bulk insert was due to the maximal client 

speed. 
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6.3.4 File Creation  

Figure 10 shows the average file creation time, by inserts with splits this time, for a 

bucket group of m = 4 data buckets and k = 0,1,2 parity buckets. The inserts are 

individual ones. We did not experiment with the bulk inserts, as they need a more 

complex design of splits left for future work, to prevent side effects resulting from the 

concurrent processing of splits and of inserts. Besides, the average time to create a file 

using l record bulk inserts would be at the client simply 0.04 l ms, given the bulk insert 

time above. At a server, the time could be somehow longer, to complete the last inserts 

(see the discussion of the bulk updates below). For the experiments with inserts above, 

during the file creation the data bucket sends the acknowledgement to the client, after 

sending the messages to the k parity buckets, but without waiting for the 

acknowledgements from these buckets. The results we measured were practically the 

same for GF(216) and GF(28). Hence, the charts shown apply to both fields, although the 

numerical values shown are for GF(28). We inserted a series of 25000 records, again with 

a 4 B key and 100 B of non-key data per record. The bucket size was b = 10 000. A point 

of the chart corresponding to l inserts shows the total time to perform these inserts.  

The inserts caused the file to split thrice.  The split of bucket 0 occurred naturally 

after the insert 10 000.  A temporary slow down of the insert times resulted, greater for 

greater k.  The next inserts went uniformly into buckets 0 and 1.  After slightly more than 

10 000 further inserts, both buckets split almost concurrently.  That is why the chart 

seems to show only two splits.   

From the times to insert the 25,000 records, in the figure, we can gauge the typical 

cost of additional parity buckets for our file, once it scales to the steady state with many 

groups.  For k = 0, we have the creation time of 7.985 s. For k = 1, we have 10.125 s that 

is 27 % more. Finally, for k = 2, the time is 10.974 s that is 8 % slower than for k = 1.  

The related average times per record inserted were 0.32 ms, 0.41 ms, and 0.44 ms for k = 

0, 1, 2 respectively. Splits introduced thus respectively the additional average costs, of 3, 

8 and 8 ms, as compared to the costs of individual inserts alone. The percentage values 

are respectively of 10.4 %, and of 24 %. All together, these times remain nevertheless at 

least 20-30 times faster than to disk buckets.  

As is to be expected, adding the first parity bucket causes the most noticeable 

degradation. The percentage value of 27 % is about twice that for an insert alone. There is 

indeed now the parity calculus cost also for the splits.  Adding additional parity buckets 

has again globally much lesser effect (a 8 % slow down), also because of the parallelism 

of the parity updates. Notice however that there is no incidence on the cost of the updates 



47 
 

to the new parity bucket during the splits, as the difference to the average time per insert 

for k  = 2 remains the 8 ms. It confirms logically that split processing on the parity 

buckets is about fully parallel. We extrapolate the increase for each value of k > 2 to be 

the same 8%. Indeed mainly the additional messaging done at the data bucket causes it. 

The charts in the figure are about linear. The experiments confirm thus the scalability 

of the scheme, and we can predict the creation times for larger files. We create our files 

for k = 0,1,2 at the rate (speed), respectively, of 3 131, 2 469 and of 2 278 records per 

second. For instance, to scale up our 2-available file to 1 M records should take thus 

439 s, i.e. about 7.3 m. More generally, as our records are 104 B long, we create our files 

at the rate of 0.33 MBs for k = 0, 0.25 MBs for k  = 1, and of 0.23 MBs for k = 2. These 

numbers allow us to predict linear creation times for other record sizes. Bulk creation 

times and rates should be at the client and for the application yet about ten times faster. 

For instance thus, less than a minute should suffice for a 1 M record file. 

We also timed the use of our former Q matrix, without the first column and row of 

ones. The creation time for k = 1 was 10.011 sec. Thus, our new Q effectively speeds up 

the encoding time, by almost 2 % here. We recall that this acceleration, although slight 

here, is at no other cost. 

 

Figure 10: File creation times (seconds) 

6.3.5 Update  

To determine the update performance, we generated series of 500, 1000, 5000, and 8000 

blind updates to the records in our LH*RS file (same as for the insert experiments). We 

updated different records, to prevent caching effects.  The results are in Table 3 for bulk 

and individual updates. All updates are sent using UDP and 1PC. As before, we neglect 

the rare case of double unavailability of data bucket and of the client. This time, however, 

the data bucket waits for the acknowledgements before sending the commitment to the 
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client. The second column gives the average bulk update time in the normal mode. These 

measures start with the reception of the first update from the application and ends with 

the send-out of the last of the series. The processing at the servers may last longer. Also, 

if the series is longer, then more records are perhaps temporarily stored in the Listen 

Queue of the Listen Thread at each server. Some acknowledgements may come back to 

the client after the end of the bulk update. The processing time at the data bucket depends 

on k. But it does not influence the bulk update time as defined here. If any 

acknowledgements were negative, or missing, the client would start the degraded mode. 

Notice that the bulk insert time is independent of the GF used. 

      

    Individual 

 Bulk   k = 0  k = 1  k = 2  k = 3 

GF(28)  0.04 0.25  0.48  0.57  0.58  

GF(216)  0.04 0.24  0.50  0.55  0.59  

Table 3: Average bulk and individual blind update times (milliseconds) per record. 

The other columns list the average individual update times for k = 0...3. The bulk 

insert times are basically six times faster, as the comparison for k = 0 shows.  The 

numbers show also that using one parity bucket doubles the insert time into the data 

bucket alone. This result matches the intuition. It also shows that unreliable messaging 

assumption costs quite a lot, when compared to the results for the experiments with the 

inserts.  But adding more parity buckets only increases the time by 10% to 20%. Notice 

that adding the 3rd parity bucket adds on 2 - 7 % only. All this is again nice behavior. One 

may further extrapolate these results to the server side processing of the bulk updates. 

Finally, using GF(216) does not appear uniformly faster. The results are practically 

identical for both fields, as for inserts. 

Compared also to the insert times, the bulk times do not change, as the client 

processes inserts and updates at the same possible speed. The update processing takes in 

contrast longer per record at the servers, with perhaps longer Listen Queues. This results 

from Table 3, as the individual update time for k = 1 already is almost 45 % longer than 

the time to insert. The individual insert time for k = 0 is in contrast about 15 % longer 

than that of an individual update. This is due to the internal LH splits within the bucket.    

6.3.6 Bucket Recovery 

As described in Section 5.1, the recovery manager organizes bucket recovery. For 

implementation related reasons, our prototype locates the recovery manager at a parity 
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bucket and not at a spare.  To measure the performance, we simulated the creation of an 

LH*RS group with 4 data buckets and 1, 2, or 3 parity buckets.  The group contained 

125 000 = 4 * 31 250 data records consisting again of a 4 B key and 100 B non-key data.  

We then reconstructed 1, 2, and 3 “unavailable” buckets.  The recovery manager loops 

conceptually over all the existing record groups, i.e., over all the parity records in the 

parity bucket (Section 5.1). In fact, it recovers records by slices of a given size s. It 

requests s successive records from each of the m data/parity buckets, and recovers the s 

record groups. Then, it requests next s records from each bucket. While waiting, it sends 

the recovered slice to the spare(s).  Figure 11 presents the effect of slice size on the 

recovery of a data bucket in the sample case of using the first parity bucket with 1’s only 

and GF(216). We measured the total recovery time T, the processing time P, and the 

communication time C.   
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Figure 11: A single data bucket recovery time (milliseconds) as function of the slice size s. 

The basic finding is that the recovery time greatly decreases for a larger s. For s = 1, 

we have C = 149 s, P = 1.735 s and T = 165 s.  Figure 11 does not give these values since 

they are so large but rather displays values only for s ≥ 100. Once s is above 1000, T 

drops under 1s, and P and C under 0.5 s. All the times decrease slightly for larger s and 

become constant when we choose s over 3000. This is a consequence of our latest 

communication architecture that uses the passive TCP connections we already spoke 

about. The result means also that a server may efficiently work with buffers much smaller 

than the bucket capacity b, e.g., 10 times smaller. The experiments with our earlier 

architectures are in [M03]. They prove the great superiority of the current one. 

Table 4 completes Figure 11 by listing the T, P, C times for s values minimizing T 

and k = 1,2,3. We used GF(28) and GF(216).  The difference between a T value and the 
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related P + C is the thread synchronization and switching time. We have measured all 

these times also for the other s values marked in Figure 11. For s ≥ 1250, the differences 

to the times listed here were under 15 % for 1-DB recovery, 5 % for 2-DB recovery and 

2 % for 3-DBs.The 1st line of the table presents the recovery of a single data bucket (1-

DB), using the XOR decoding only, as at Figure 11. The second line of the table shows 1-

DB recovery using the RS decoding (with the XORing and multiplications). We used 

another parity bucket or the first one in our initial scheme, [LS00], but not that with ones 

only.  The XOR calculus proves notably faster for both GFs used. The gain was expected, 

but not its actual magnitude. P becomes indeed almost three times smaller for GF(28), 

and almost 1.5 times smaller for GF(216). T decreases less, given the incidence of the C 

value. That value is naturally rather stable and reveals relatively important with respect to 

P, despite our fast 1 Gbs network.  For the RS decoding we have C > 0.5P at least. Even 

more interestingly, we reach C > P for the XOR decoding.  

 GF(28) GF(216) 

 s T P C s T P C 

1-DB (XOR)  6250 0,646 0,245 0,349 6250 0,667 0,260 0,360 

1-DB (RS) 6250 1,083 0,672 0,376 6250 0,828 0,385 0,303 

2-DBs  31250 1,776 1,250 0,422 31250 1,088 0,599 0,442 

3-DBs 15625 2,443 1,860 0,442 15625 1,468 0,906 0,495 

Table 4: Best data bucket recovery times (seconds) and slice sizes. 

All together, our numbers prove the efficiency of the LH*RS bucket recovery 

mechanism. It takes only 0,667 s to recover 1 DB in our experiments, and less than 1.5 s 

to recover 3 DBs, i.e., 9.375 MB of data in three buckets. Notice that the growth of T 

appears sub-linear with respect to the number of buckets recovered. This is the 

consequence of the parallelism at the implementation level, and of the recovery of the 

bucket group as the whole, at the conceptual level. The numbers greatly contribute also to 

the advantage of using GF(216). It halves P of any recovery measured, but that using 

XOR only.  This was the rationale for our choice of this field for the basic LH*RS scheme, 

given also its behavior for the encoding as good in practice as of GF(28).  Notice that C in 

Table 4 increases more moderately than T as the function of the number of DBs 

recovered. 

The flat character of charts in Figure 11 for larger values of s confirms the scalability 



51 
 

of the scheme. It allows us also to guess the recovery times for larger buckets. We can 

infer from the above numbers that we recover a data bucket group of size m = 4 from 1-

unavailability at the rate (speed) of 4.68 MBs of data. Next, we recover 2 data buckets of 

the group at the rate of 5.74 MBs. Finally, we recover the group from 3-unavailability at 

the rate of 6.38 MBs. If we thus have 1 GB of data per bucket, the figures imply T of 

about 3.5, 5.5 and 8 minutes, respectively. If we choose the group size m = 8, to halve the 

storage overhead, the recovery rates will halve as well, while the recovery time will 

double, etc. 

Table 5 presents a single parity bucket recovery time, again for 31 250 records to 

recover and s = 31 250. The time T to recover the first parity bucket, using XOR only, 

analyzed in the line noted PB (XOR), is faster than for the other buckets using the RS 

calculus. We observe again fast performance. The XOR only recovery using 2B symbols, 

for GF(216), is less efficient than that using the 1B symbols, for GF(28). The picture 

reverses for the other parity bucket, as the RS line in the table shows. A small difference 

in P value with respect to that reported in Section 6.3.1 is due to the experimental nature 

of the analysis. The measurements naturally slightly vary among experiments. Similarly 

as for the data buckets, we can infer from Table 5, the parity bucket recovery rates 

per MB of data stored for various values of m, and the recovery times of the parity 

buckets of various sizes. 

 GF(28) GF(216) 

 T  P   C  T   P  C  

PB (XOR) 1.872 1.316  0.317  2.062  1.484  0.322  

PB (RS) 2.228 1.656  0.307  2.103  1.531  0.322  

Table 5: Parity bucket recovery times  (seconds) for the slice size of s = 31 250 records. 

6.3.7 Record Recovery 

 The record recovery manager is in our prototype located at one of the parity buckets. It 

acts as described in Section 5.2.   Table 6 shows the average total record recovery time T 

we have measured. The bucket size was b = 50 000.  The group size was m = 4. The 

times are measured at the parity bucket and starts when the bucket gets the message from 

the coordinator, until the recovery of the record.   

The times for GF(216) are slightly higher. The reason is that we convert 1B characters 

to 2B symbols and back.  In any case, the average scan time of our parity bucket to locate 

the key c of the data record, as described in Section 5.2, was measured to be 0.822 ms. 
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This is the dominant part of the total time as it represents 62% and 64% respectively.  

The results match the intuition and the experimental key search time. They confirm 

that the basic record recovery capability should be often sufficient in practice. If one 

seeks for faster record recovery, or buckets are much larger, the additional already 

mentioned index (c, r) at the parity bucket should help. For GF(216) and our 1st parity 

bucket one may estimate the decrease to almost 1.296 – 0.822 = 0.474 ms.  The 

knowledge of the scan time, allows us to evaluate the record recovery time for other 

values of m or b. The communication and processing time are about linear with m, while 

the bucket scan time is linear with b. Notice finally that even the basic record recovery 

times remain significantly faster than for a disk file. In our case, the typical ratio should 

be about eight times at least. 

GF(28) GF(216) 

XOR RS XOR RS 

1.285 1.308  1.297 1.327 

Table 6: Record recovery times (milliseconds) 

7 VARIANTS 

There are several ways to enhance the basic scheme with additional capabilities, or to 

amend the design choices, so as to favor specific capabilities at the expense of others. We 

now discuss a few such variations, potentially attractive to some applications. We show 

the advantages, but also the price to pay for them, with respect to the basic scheme. First, 

we address the messaging of the parity records. Next, we discuss the on-demand tuning 

of the availability level, and of the group size. We also discuss a variant where the data 

bucket nodes share the load of the parity records. We recall that in the basic scheme, the 

parity and data records are at separate nodes. The sharing decreases substantially the total 

number of nodes necessary for a larger file. Finally, we consider alternate coding 

schemes.   

7.1 Parity Messaging 

Often, an update changes only a small part of the existing data record. This is for instance 

the case of a relational database, where an update concerns usually one or a few attributes 

among many. For such applications, the ∆-record would consist mainly of zeros, except 

for a few symbols.  If we compress the ∆-record and no longer have to transmit these 

zeroes explicitly, our messages should be noticeably smaller. 

Furthermore, in the basic scheme the data bucket manages its messaging to every 
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parity bucket. It also manages the rank that it sends along with the ∆-record. An alternate 

design is to send the ∆-record only to the first parity bucket, and without the rank. The 

first parity bucket assigns the rank. It is also in charge of the updates to the k-1 other 

parity buckets, if there are any, using 1PC or 2PC. The drawback of the variant is that 

now updating needs two rounds of messages. The advantage is simpler parity 

management at the data buckets. The 1 PC suffices for the dialog between the data bucket 

and the first parity bucket. The management of the ranks becomes also transparent to the 

data buckets, as well as of the scalable availability. The parity subsystem is more 

autonomous. An arbitrary 0-available SDDS scheme can be more easily generalized to a 

highly-available scheme.  

Finally, it is also possible to avoid the commit ordering during 2PC for updates. It 

suffices to add to each parity record the commit state field, which we call S. The field has 

the binary value sl per lth data bucket in the group. When a parity bucket p gets the 

commit message from this bucket, it sets sl to sl = sl XOR 1. If bucket p alerts the 

coordinator because of the lack of the commit message, the coordinator probes each other 

available parity bucket for its sl. The parity update was done iff any bucket p' probed had 

sl 
p' ≠ sl 

p. Recall that the update had to be posted to all or none of the available parity 

buckets that were not in the ready-to-commit state during the probing. The coordinator 

synchronizes the parity buckets accordingly, using the ∆-record in the differential file of 

bucket p. The advantage is a faster commit process as the data bucket may send messages 

in parallel. The disadvantage is an additional field to manage, necessary for updates only.  

7.2 Availability Tuning 

We can add to the basic data record manipulations the operations over the parity 

management.  First, we may wish to be able to decrease or increase the availability level 

K of the file. Such availability tuning could perhaps reflect the past experience. It differs 

from scalable availability, where splits change k incrementally. To decrease K, we drop, 

in one operation, the last parity bucket(s) of every bucket group. Vice versa, to increase 

the availability, we add the parity bucket(s) and records to every group. The parity 

overhead decreases or increases accordingly, as well as the cost of updates.  

More precisely, to decrease the availability of a group from k > 1 to k-1, it suffices to 

delete the kth parity bucket in the group.  The parity records in the remaining buckets do 

not need to be recomputed. Notice that this is not true for every alternate coding scheme 

we discuss below. This reorganization may be trivially set up in parallel for the entire 

file. As the client might not have all the data buckets in its image, it may use as the basis 
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the scan operation discussed previously. Alternatively, it may simply send the query to 

the coordinator. The need being rare, there is no danger of a hot spot.  

Vice versa, to add a parity bucket to a group requires a new node for it with (k + 1) 

column of Q (or P).  Next, one should read all the data records in the group and calculate 

the new parity records, as if each data record was an insert. Various strategies exist to 

efficiently read in parallel the data buckets. Their efficiency remains to be studied.  As 

above, it is easy to set up the operation in parallel for all the groups in the file. Also as 

above, the existing parity records do not need the recalculation, unlike for other candidate 

coding schemes for LH*RS we investigate below.  

Adding a parity bucket operation can be concurrent with normal data bucket updates. 

Some synchronization is however necessary over the new bucket. For instance, the data 

buckets may be made aware of the existence of this bucket before it requests the first data 

records. As the result they will start sending there the ∆-record for each update coming 

afterwards. Next, the new bucket may create its parity records in their rank order. The 

bucket encodes then any incoming ∆-record it did not request. This, provided it already 

has created the parity record; hence it processed its rank. It disregards any other ∆-record. 

In both cases, it commits the ∆-record. The parity record will include the disregarded ∆-

record when the bucket will encode the data records with that rank, requesting then also 

the ∆-record.  

7.3 Group Size Tuning 

We recall that the group size m for LH*RS is basically a power of two. The group size 

tuning may double or halve m synchronously for the entire file, one or more times. The 

doubling merges two successive groups, which we will call left and right that become a 

single group of 2m buckets. The first left group starts with bucket 0.  Typically the 

merged groups have each k parity buckets. Seldom, if the split pointer is in the left group, 

and the file is changing its availability level, the right group may have an availability 

level of k-1. We discuss the former case only. The generalization to the latter and to the 

entire file is trivial.  

The operation reuses the k buckets of the left group as the parity buckets for the new 

group. Each of the k-1 columns of the parity matrices P and Q for the parity buckets other 

than the first one is however now provided with 2m elements, instead of top m only 

previously. The parity for the new group is computed in these buckets as if all the data 

records in the right group were reinserted to the file. There are a number of ways to 

perform this operation efficiently that remain for the further study. It is easy to see 
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however that for the first new parity bucket, a faster computation may consist simply in 

XORing rank-wise the B-field of each record with this of the parity record in the first 

bucket of the right group, and unioning their key lists.  Once the merge, ends the former 

parity buckets of the right group are discarded. 

The group size halving splits in contrast each group into two. The existing k parity 

buckets become those of the new left group. The right group gets k new empty parity 

buckets. In both sets of parity buckets, the columns of P or Q need only the top m 

elements. Afterwards, each record of the right group is read. It is then encoded into the 

existing buckets as if it was deleted, i.e., its key is removed from the key list of its parity 

records and its non-key data are XORed to the B-fields of these records. In the same time, 

it is encoded into the new parity buckets as if it was just inserted into the file. Again, 

there is a number of ways to implement the group size halving efficiently that remain 

open for study. 

7.4 Parity Load Balancing 

In the basic scheme, the data and parity buckets are at separate nodes. A parity bucket 

sustains also the updating processing load up to m times that of the update load of data 

bucket, as all the data buckets in the group may get updated simultaneously. The scheme 

requires about Nk/m nodes for the parity buckets, in addition to N data bucket nodes. This 

number scales out with the file. In practice, for a larger file, e.g., on, let us say, N = 1K 

data nodes, with m = 16 and K = 2, this leads to 128 parity nodes.  These parity nodes do 

not carry any load for queries.  On the other hand, the update load on a parity bucket is 

about 16 times that of a data bucket. If there are intensive burst of updates, the parity 

nodes could form a bottleneck that slows down commits.  This argues against using 

larger m.  Besides, some user may be troubled with the sheer number of the additional 

nodes.   

The following variant decreases the storage and processing load of the parity records 

on the node supporting them. This happens provided that k ≤ m which seems a practical 

assumption. It also balances the load so that the parity records are located mostly on data 

bucket nodes.  This reduces the number of additional nodes needed for the parity records 

to m at most. The variant works as follows.  

Consider the ith parity record in the record group with rank r, i = 0,1…k - 1. Assume 

that for each (data) bucket group there is a parity bucket group of m buckets, numbered 

0,1…m – 1, of capacity kb/m records each. Store each parity record in parity bucket 

j = (r + i) mod m. Does it as the primary record, or an overflow one if needed, as usual.  

Place the m parity buckets of the first group, i.e., containing data buckets 0,…, m-1, on 
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the nodes of the data buckets of its immediately right group, i.e., with data buckets 

m,...,2m – 1. Place the parity records of this group on the nodes of its (immediately) left 

group. Repeat for any next groups while the file scales out.  

 The result is that each parity record of a record group is in a different parity bucket.  

Thus, if we no longer can access a parity bucket, then we loss access to a single parity 

record per group.  This is the key requirement to the k-availability, as for the basic 

scheme. The LH*RS file remains consequently K available.  The parity storage overhead, 

i.e., the parity bucket size at a node decreases now uniformly by factor m/k. In our 

example, it divides by 8. The update load on a parity bucket becomes also twice that of a 

data bucket. In general, the total processing and storage load is about balanced over the 

data nodes, for both the updates and searches.  

The file needs at most m additional nodes for the parity records. This, when the last 

group is the left one, and the last file bucket N - 1 is its last one. Vice versa, when this 

bucket is the last in a right group, this overhead is zero. On the average over N, the file 

needs m/2 additional nodes. The number of additional nodes becomes a constant and a 

parameter independent of the file size. The total number of nodes for the file becomes 

N + m at worst. For a larger file the difference with respect to the basic scheme is 

substantial. In our example, the number of additional nodes drops from 128 to 8 at most 

and 4 on the average. In other words, it reduces from 12.5 % to less than 1 % at worst. 

For our N = 1K it drops in fact to zero, since the last group is the right one. The file 

remains 2-available. 

Partitioning should usually also shrink the recovery time. The recovery operation can 

now occur in parallel at each parity bucket. The time for decoding the data records in the 

l unavailable data buckets is then close to l/m fraction of the basic one. In our example 

above, the time to decode a double unavailability decreases accordingly 8 times.  The 

total recovery time would not decrease that much. There are other phases of the recovery 

process whose time remains basically unchanged. The available data records still have to 

be sent to the buckets performing the operation, the decoded records have to be sent to 

the spare and inserted there etc. A deeper design and performance analysis of the scheme 

remain to be done. 

Notice finally that if n > 1 nodes, possibly spares, may participate in the recovery 

calculus, then the idea, described above, of partitioning of a parity bucket onto the n 

nodes may be usefully applied to speed up the recovery phase. The partitioning would 

become dynamically the first step of the recovery process. As discussed, this would 

decrease the calculus time by the factor possibly about reaching l/n.  The overall recovery 
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time possibly improves as well. The gain may be substantial for large buckets and n >> 1.  

7.5 Alternative Erasure Correcting Codes   

In principle, we can retain the basic LH*RS architecture with a different erasure correcting 

code.  The interest in these codes stems first the interest in higher availability RAID 

[H&a94, SB96,BM93, BBM93, BBM95, B&al95, SS96]. Proposals for high availability 

storage systems [CMST03,X&a03] (encompassing thousands of disks for applications 

such as large email servers [Ma02]), massive downloads over the WWW 

[BLMR98,BLM99], and globally distributed storage [AK02],[WK02] maintain the  

constant interest in new erasure correcting codes. These may compare favorably with 

generalized Reed-Solomon codes.  Nevertheless, one has to be careful to carry over the 

conclusions about the fitness of a code to LH*RS. Our scheme is indeed largely different 

from these applications. It favors smaller group sizes (to limit communication costs 

during recovery), utilizes main memory (hence is sensitive to parity overhead), can 

recover small units (the individual record), has scalable availability, etc.  

We will now discuss therefore replacing our code with other erasure correcting codes, 

within the scope of our scheme. Certain codes allow to trade-off performance factors. 

Typically, a variant can offer faster calculus than our scheme at the expense of parity 

storage overhead or limitations on the maximum value of k.  For the sake of comparison, 

we first list a number of necessary and desirable properties for a code. Next, we discuss 

how our code fits them.  Finally, we use the framework for the analysis. 

7.5.1 Design Properties of an Erasure Correcting Code for LH*RS 

1. Systematic code. The code words consist of data symbols concatenated with parity 
symbols.  This means that the application data remains unchanged and that the parity 
symbols are stored separately. 

2. Linear code.  We can use ∆-records when we update, insert, or delete a single data 
record.  Otherwise, after a change we would have to access all data records and 
recalculate all parity from them. 

3. Minimal, or near-minimal, parity storage overhead.  

4. Fast encoding and decoding.  

5. Constant bucket group size, independent of the availability level.   

Notice that it is (2) that also allows us to compress the delta record by only transmitting 

non-zero symbols and their location within the delta record. 

Our codes (as defined in Section 3) fulfill all these properties. They are systematic 

and linear.  They have minimal possible overhead for parity data within a group of any 

size. This is a consequence of being Maximum Distance Separable (MDS).  Since the 



58 
 

parity matrix contains a column of ones, record reconstruction in the most important case 

(a single data record failure) proceeds at the highest speed possible.  As long as k=1, any 

update incurs the minimal parity update cost for the same reason.  In addition, for any k, 

updates to a group’s first data bucket result also in XORing because of the row of ones in 

the parity matrix.  Finally, we can use the logarithmic matrices.  

Our performance results (Section 6.3) show, that the update performance at the 

second, third, etc. parity bucket is therefore adequate. We recall that for GF(216), the slow 

down was of 10 % for the 2nd parity bucket and of additional 7 % for the 3rd one, with 

respect to the 1st bucket only, Table 3. It is further impossible to improve the parity 

matrix further by introducing additional one-coefficients to avoid GF multiplication, (we 

omit the proof of this statement). Next, a bucket group can be extended to a total of 

n = 257 or n = 65,537, depending whether we use the Galois field with 28 or 216 elements.  

Up to these bounds, we can freely choose m and k subject to m + k = n, in particular, we 

can keep m constant. An additional nice property is that small changes in a data record 

result in small changes in the parity records. In particular, if a single bit is changed, then a 

single parity symbol only in each parity record changes, (except for the first parity record 

where only a single bit changes).   

7.5.2 Candidate Codes 

Array Codes 

These are two-dimensional codes in which the parity symbols are the XOR of symbols in 

lines in one or more directions.  One type is the convolutional array codes that we discuss 

now. We address some others later in this section. The convolutional codes were 

developed originally for tapes, adding parity tracks with parity records to the data tracks 

with data records [PB76], [Pat85], [FHB89]. Figure 12 shows an example with m = 3 

data records and k = 3 parity records. The data records form the three leftmost columns, 

that is, a0,a1,..., b0,b1,..., c0,c1,...  Data record symbols with indices higher than the length 

of the data record are zero, in our figure this applies to a6, a7, etc. The next three columns 

numbered K = 0, 1, 2 contain the parity records.  The record in parity column 0 contains 

the XOR of the data records along a line of slope 0, i.e., a horizontal line. Parity column 1 

contains the XOR of data record symbols aligned in a line of slope 1. The final column 

contains the XOR along a line of slope 2.   

The last two columns are longer than the data columns. They have an overhang of 

respectively 2 and 4 symbols.  In general, parity record or column K has an overhang of 

K(m-1) symbols.  A group with k parity records and m data records of length L has a 

combined overhang of k(k-1)(m – 1)/2 symbols, so that the parity overhead comes 
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+  symbols.  The first addend here is the minimal storage overhead 

of any MDS code. The second addend shows that a convolutional array code with k > 1 is 

not MDS.  The difference is however typically not significant. For instance, choosing 

k = 5, m = 4, and L = 100 (the record length in our experiments) adds only 5%.  

The attractive property of a convolutional code in our context is its updating and 

decoding speed.  During an update, we change all parity records only by XORing them 

with the ∆-record. We start for that at different positions in each parity record, Figure 12.  

The updates proceed at the fastest possible speed for all data and parity buckets. Unlike in 

our case where this is true only for the first parity bucket and the first data bucket. 

Likewise, the decoding iterates by XORing and shifting of records. This should be faster 

than our GF multiplications. Notice however that writing a generic decoding algorithm 

for any m and k is more difficult than for the RS code.   

All things considered, these codes can replace RS codes in the LH*RS framework, 

offering faster performance at the costs of larger parity overhead. Notice that we can 

reduce the parity overhead by using also negative slopes, at the added expense of the 

decoding complexity (inversion of a matrix in the field of Laurent series over GF(2)).  
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Figure 12: Convolutional array code. 

Block array codes are another type of codes that are MDS. They avoid indeed the 

overhang in the parity records.  As an example, we sketch the code family Bk(p), 

[BFT98], where k is the availability level and p is a prime, corresponding to our m, i.e., 

p ≥  k + m. Prime p is not a restriction, since we may introduce dummy symbols and data 

records.  

In Figure 12 for instance, ai, bi, ci with i > 5 at are dummy symbols. Next, in Figure 
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13 we have chosen k = 2 and m = 3, hence p = 5. We encode first four symbols from three 

data records a0, a1,..., b0, b1,..., and c0,c1,... The pattern repeats for following symbols in 

groups of four symbols. We arrange the data and parity records as the columns of a 4 by 

5 matrix. For ease of presentation, and because slopes are generally defined for square 

matrices, we added a fictional row of zeroes (which are not stored).  We now require that 

the five symbols in all rows and all lines of slope -1 in the resulting 5 by 5 matrix have 

parity zero.  The line in parentheses in Figure 13 is the third such line.   

Block array codes are linear and systematic. As for our code, we update the parity 

records using ∆-records. As the figure illustrates, we only use XORing. In contrast to our 

code however, and to the convolutional array code, the calculus of most parity symbols 

involves more than one ∆-record symbol.  For example, the updating of the 1st parity 

symbol in Figure 13 requires XORing of two symbols of any ∆-record. For instance, - the 

first and second symbol of the ∆-record if record a0,a1,… changes. This results in 

between one and two times more XORing. Decoding turns out to have about the same 

complexity as encoding for k = 2. All this should translate to faster processing than for 

our code.  

For k ≥ 3, we generalize by using k parity columns, increasing p if needed, and 

requiring parity zero along additional slopes -2, -3, etc.   In our example, increasing k to 3 

involves setting p to next prime, which is 7, to accommodate the additional parity column 

and adding a dummy data record to each record group.  We could use p = 7 also for k = 2, 

but this choice slows down the encoding by adding terms to XOR in the parity 

expressions. The main problem with Bk(p) for k > 2 is that the decoding algorithm 

becomes fundamentally more complicated than for k = 2.  Judging from the available 

literature, an implementation is not trivial, and we can guess that even an optimized 

decoder should perform slower than our RS decoder, [BFT98]. All things considered, 

using Bk(p) does not seems a good choice for k > 2.  

The EvenOdd code, [BBM93, BBBM95, BFT98], is a variant of B2(p) that improves 

encoding and decoding.  The idea is that the 1st parity column is the usual parity and the 

2nd parity column is either the parity or its binary complement of all the diagonals of the 

data columns with the exception of a special diagonal whose parity decides on the 

alternative used. The experimental analysis in [S03] showed that both encoding and 

decoding of EvenOdd are faster than for our fastest RS code.  In the experiment, 

EvenOdd repaired a double record erasure four times faster. The experiment did not 

measure the network delay, so that the actual performance advantage is less pronounced. 
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It is therefore attractive to consider a variant of LH*RS using EvenOdd for k = 2.  An 

alternative to EvenOdd is the Row-Diagonal Parity code presented in [C&al04]. 

EvenOdd can be generalized to k > 2, [BFT98]. For k = 3, one obtains an MDS code 

with the same difficulties of decoding as for B3(p).   For k > 3 the result is known to not 

be MDS.  

A final block-array code for k = 2 is X-code [XB99]. These have zero parity only 

along the lines with slopes 1 and –1 and as all block-array codes use only XORing for 

encoding and decoding. They too seem to be faster than our code, but they cannot be 

generalized to higher values of k. 
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Figure 13: A codeword of B2(5) with a fictional row of zeroes added. 

Low density parity check codes 

Low density parity check (LDPC) codes are systematic and linear codes that use a large 

M×N parity matrix with only zero and one coefficients, [AEL95, BG96, G63, MN97, 

MN99, Ma00].  We can use bits, bytes, words, or larger bit strings as symbols.  The 

weights, i.e. the number of ones in a parity matrix column or row are always small, and 

often a constant. Recent research (e.g. [LMSSS97, CMST03]) established the advantage 

of varying weights.  We obtain the parity symbols by multiplying the M-dimensional 

vector of data units with the parity matrix. Thus, we generate a parity symbol by XORing 

w data units, where w denotes the column weight.   

Good LDPC codes use sparse matrix computation to calculate most parity symbols, 

resulting in fast encoding.  Fast decoders exist as well, [Ma00].  LDPC codes are not 

MDS, but good ones come close to being MDS.  Speed and closeness to MDS improve as 

the matrix size increase.  The Digital Fountain project used a Tornado (LDPC) code for 

M = 16000, with 11% additional storage overhead at most, [BLMR98].  [Ma00] gives a 

very fast decoding LDPC with M = 10,000.   

There are several ways to apply sparse matrix codes to LH*RS. One is to choose the 

byte as data unit size and use chunks of M/m bytes per data bucket.  Each block of M 

bytes is distributed so the ith chunk is in ith bucket. Successive chunks in a bucket come 

from successive blocks. The number of chunks and their size determines the bucket 

length.  

Currently, the best M values are large. A larger choice of m increases the load on the 
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parity record during the updates, as for the record groups using our coding. This choice 

also increases recovery cost. However, the choice of the m value is less critical here, as 

there is no m by m matrix inversion.  Practical values of m appear to be m = 4, 8, 16, 32. 

If the application record is in Kbytes, then a larger m allows for a few chunks per record 

or a single one.  If the record size is not a chunk multiple, then we pad with zeros the last 

bytes. One can use ∆-records calculated over the chunk(s) of the updated data record to 

send updates to the parity buckets as LDPC codes are linear.  

If application data records consist of hundreds of bytes or are smaller, then it seems 

best to pack several records into a chunk. As typical updates address only a single record 

at a time, we should use compressed ∆-records. Unlike in our code however, an update 

will usually change then more parity symbols than in the compressed ∆-record. This 

obviously comparatively affects the encoding speed. 

In both cases, the parity records would consists of full parity chunks of size M/m+ε, 

where ε reflects the deviation from MDS, .e.g., the 11% quoted above.  The padding, if 

any, introduces some additional overhead. The incidence of all the discussed details on 

the performance of the LDPC coding within LH*RS as well as further related design 

issues are open research problems. At this stage, all things considered, the attractiveness 

of LDPC codes is their encoding and decoding speed, close to the fastest possible, i.e., of 

the symbol-wise XORing of the data and parity symbols, like for the first parity record of 

our coding scheme, [BLM99]. Notice however, that encoding and decoding are only part 

of the processing cost in LH*RS parity management. The figures in Section 6.3 show that 

the difference in processing using only the 1st parity bucket and the others is by far not 

that pronounced. Thus, the speed-up resulting from replacing RS with a potentially faster 

code is limited. Notice also that finding good LDPC codes for smaller M is an active 

research area.  

RAID Codes 

The interest in RAID generated specialized erasure correcting codes. One approach is 

XOR operations only, generating parity data for a k-available disk array with typical 

values of k = 2 and k = 3, e.g., [H&al94], [CCL00], [CC01.  For a larger k, the only 

RAID code known to us is based on the k-dimensional cube.  RAID codes are designed 

for a relatively large number of disks, e.g., more than 20 in the array. Each time we scale 

from k = 2 to k = 3 and beyond, we change the number of data disks. Implementing these 

changing group sizes would destroy the LH*RS architecture, but could result in some 

interesting scalable availability variant of LH*.  
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For the sake of completeness, we finally mention other flavors of generalized RS 

codes used in erasure correction, but not suited for LH*RS.  The Digital Fountain project 

used a non-systematic RS code in order to speed up the matrix inversion during decoding.  

The Kohinoor project, [M02], developed a specialized RS code for group size n = 257 

and k = 3 for a large disk array to support an email server. [P97] seemed to give a simpler 

and longer (and hence better) generator matrix for an RS code, but [PD03] retracts this 

statement.  

8 RELATED WORK 

Traditionally, in both the centralized and distributed environment, high availability was 

not part of a (key-based) data structure.  If needed, a lower storage level provided it such 

as mirroring or a RAID like technique.  This approach simplifies the design of a data 

structure. It can in contrast deteriorate access times in the distributed environment.  For 

example, a dictionary data structure using hashing could place a data unit at some 

particular node.  But the underlying RAID system could replace the data at a different 

node or even distributes it over several nodes.  This lower level interference would results 

in additional messaging that an integration of the parity data management into the 

hashing structure could avoid. 

The problem is more acute for a scalable distributed storage environment with a large 

number of nodes. The elementary reliability calculus shows that higher levels of 

availability are often necessary for a data structure stored on many nodes.  One approach 

provides the high level at each node.  This approach fails if the storage nodes are standard 

PCs or workstations, especially in a P2P network where nodes may have low availability 

[WK02].  In addition, files in the same environment may require different availability 

levels just because of their different sizes.  The alternative is to integrate high availability 

into scalable distributed data structures and let the availability level itself scale.   

In response to the need of integrating high-availability and SDDS the concept of a 

high-availability data structure appeared, [LN96]. The first high-availability SDDS was 

LH*M, where high-availability results from mirroring two LH* files.  The files contain 

exactly the same records. They may however differ by the internal structures, e.g., the 

bucket size.  In any case, the two files in LH*M are more strongly coupled than usual 

mirrors. This resolves some double and more failures that would be otherwise 

catastrophic. 

[L&al97] proposed another 1-availability SDDS called LH*S. Here, one partitions a 

record into n segments, stored each at a different site. There is also the (n+ 1) XOR parity 

segment at some other site.  Compared with LH*M, the parity overhead is much smaller, 
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namely close to 1/n. The operations require in contrast more messages. A LH*S key 

search in normal mode needs n messages, even though the messages are shorter.  

Another 1-available SDDS, LH*g, [LR97, L97, LR01] keeps records intact.  It 

introduces the concept of record groups used by LH*RS. Retrospectively, the LH*RS 

parity calculus could generalize LH*g to higher availability.  As for LH*RS, an LH*g 

record enters a record group when it is created. The group members are always on 

different servers and the group contains an additional parity record of the same structure 

as a LH*RS parity record.  The initial record group is the same for an LH*g record as for 

an LH*RS record.  However, an LH*g record keeps its initial record group membership, 

regardless of its moves caused by splits. In comparison to LH*RS, LH*g splits are then 

faster.  In contrast, a data bucket recovery processing is more costly. In particular, one 

always scans all the parity buckets, instead of usually one only for LH*RS. Notice that the 

recovery is not then necessarily longer than for LH*RS, as the scans can be parallel. If the 

communication is slow with respect to the processing time, it can be even faster.  

LH*SA was the first SDDS to achieve scalable availability, [LMR98], [LMRS99].  To 

achieve k-availability, LH*SA places each records in k or k+1 different record groups that 

only intersect in this one record.  Each record group has an additional parity record, 

basically consisting of the XOR of the other records.  LH*SA places the buckets 

conceptually into a high-dimensional cube with n buckets in the first k or k+1 

dimensions.  Just as for LH*RS, a controlled or an uncontrolled strategy adds parity 

buckets.  A small LH*SA file with a k > 1 has a larger storage overhead than a 

corresponding LH*RS file. This advantage of LH*RS dissipates however for larger files.  

LH*SA parity calculations use only XORing, which gives it an advantage over k-available 

LH*RS files for k > 1.  However, if there is more than one unavailable bucket, recovering 

a lost record can involve additional recovery steps.  Deeper comparison of trade-offs 

between LH*SA and LH*RS remains to be explored. 

Outside the domain of SDDSs, research has addressed high-availability needs for 

distributed flat files for many years.  The dominant approach was the replication, [H96]. 

The major issue was the replicas consistency, [P93]. Disk arrays in a centralized 

environment needed historically high availability with less storage overhead [BM93], 

[H&a94].  The arrays have typically a fixed number of disks so that the proposed high-

availability schemes were static. The aspects under investigation were mainly the parity 

update mechanisms (e.g. parity logging), and the parity placement providing the 1-

availability through XORing. These were the performance determinants of a disk array. 

Next, parity placement schemes appeared intended for larger, but still static, arrays, e.g., 
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[ABC97]. Current research increasingly focuses on very large storage systems, using an 

expandable number of storage units, whether disks or entire servers. Recent proposals for 

the k > 1 k-available erasure correcting codes already discussed in Section 7.5 came in 

this context.  

High-availability is also a general goal for a DBMS. Nevertheless, our facet of this 

concept, concerning the unavailability of a part of data storage, received relatively little 

attention. The general assumption seems to be the use of a high-availability storage or file 

system underneath. Typically, it should be a software or hardware RAID storage. For a 

parallel DBMS, this should concern each DBMS node. At the database layer, the 

replication seems the only technique used. The DBMS is then typically 1-available, with 

respect to storage node unavailability.  

The Clustra DBMS, now a commercial product, proposes a DBMS level structure that 

some claim the most efficient in the domain, [S99]. It hashes partitions a table into 

fragments located each at a different node. The nodes communicate using a dedicated 

high-speed switch. The Clustra hashing is static, hence with limited scalability compared 

to LH*RS. The practical limit is 24 nodes at present. Each fragment is replicated on two 

nodes, using the primary copy approach. If a fragment is unavailable, (detected by lack of 

heart beat basically), its available copy, possible the primary one, is copied to a spare. 

The partitioning limits the recovery to a single fragment typically. The whole scheme 

makes Clustra tables only 1-available and limits its scalability compared to our scheme. 

The conclusion holds for other prominent DBMSs, whether they use for the parallel table 

partitioning the (static) hashing (DB2), or range partitioning (SQL Server) or both 

(Oracle). 

Research also starts addressing the high-availability needs of scalable disk farms, 

[X&al03], [X&al04]. These should be soon necessary for the grid computing, and very 

large Internet databases. Some simple techniques are already in everyday use. They are 

apparently replication based, but covered by the corporate secret. The prominent example 

is Google.  The gray literature estimates its farm spreading already over more than 10 000 

Linux nodes, perhaps as much as 54 000, [D03], [E03].  There are also open research 

proposals for high-availability distributed data structures over large clusters specifically 

intended for the Internet access. One is a distributed hash table scheme with built-in 

specific replication, [G00]. An on-going research project follows up with the goal of a 

scalable distributed highly-available linked B-tree, [B03].  

Emerging P2P applications, including the Wi-Fi ones, also lead to compelling high-

availability storage needs, [AK02], [K03], [D00]. In this new environment the 
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availability of the nodes should be more “chaotic” than one typically supposed in the 

past. Their number and geographical spread-out should often be also orders of magnitude 

larger. Possibly easily running in near future into hundreds of thousands and soon 

reaching millions, spread worldwide. This thinking clearly shares some rationales for 

LH*RS. Our scheme could thus reveal useful for these new applications as well.  

9 CONCLUSION 

LH*RS is a high-availability scalable distributed data structure. It scales up to any size and 

any availability level k one can reasonably foresee for an application these days. The file 

scalability is transparent to the application, as for any SDDS. The k-availability may scale 

transparently as well, or may be adjusted by the application on demand. 

The scheme matured in many aspects with respect to our initial proposals, [LS00].  

The evolution concerned the parity calculus, and various algorithmic issues to make the 

file always at least (K – 1) – available, and the parity calculus the fastest. We thus have 

increased the Galois Field size to GF(216). We have evolved the parity matrix P so it has 

1st column and row of 1s. We have also improved  the calculus so to take advantage of 

the logarithmic parity. We have built a prototype implementation, proving the feasibility 

of the scheme.  We have experimented on this basis with the new, and the former, parity 

calculus, as well as with the above-mentioned algorithmic issues. Performance analysis 

proved substantial speed-up of various operations.  

At present, for the most frequent case of k = 1, the scheme performs as well as any 

popular 1-available RAID scheme using XORing only. For k > 1, it appears more 

effective in practice than if we used any alternate parity code or scheme we are aware of. 

This concerns our own earlier approach, as we just mentioned. The yet unique presence 

of the row of 1’s contributes to this performance. In particular, while the parity storage 

and communication overhead increase substantially with k used, they globally always 

remain close to the optimal bounds. Another known high-availability SDDS scheme may 

nevertheless eventually outperform the LH*RS on a selected feature. The diversity should 

profit the applications. 

“Au finale”, the experimental performance analysis has shown very fast access and 

recovery performance.  Our testbed files with 125K records, recovered in less than a 

second from a single unavailability and in about two seconds from a triple one.   

Individual search, insert and update times were at most 0.5 msec for a 3-available file.  

Bulk operations were several times faster. This performance is also due to the data 

processing in the distributed RAM. All together, the capabilities of our scheme should 

attract numerous applications, including the exciting new ones in the domains of grid 
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computing and of P2P.   In particular, they should be useful for DBMSs. Those still use 

for the high-availability the more limited static and 1-available replication or RAID 

storage schemes.  

Future work should concern experiments with applications of our scheme. One should 

also port the parity subsystem to other known 0-available SDDS schemes. The range 

partitioning schemes appear preferential candidates. One should also add the capabilities 

of the concurrent and transactional access to LH*RS. Notice that the data records of a 

record group conflict on the parity records.  One should finally study more in depth the 

outlined variants.   
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APPENDIX A PARITY MATRICES 

We present first 32 rows by 10 columns submatrices of the generic parity matrix P’ and 

of the generic logarithmic parity matrix Q’ for GF(216)  we use for LH*RS.  The values 

are four hexadecimal digits. The submatrices allow for actual matrices P and Q for 

groups of size m up to 32, with k up to 10. These values should suffice in practice. Next, 

we show similar but 32 x 20 portions of P’ and Q’ for GF(28) used in the examples. The 

entries of P’ are now GF(28) elements given as two hexadecimal digits. For change, the 

entries of Q’ are given in decimal as logarithms numbers between 0 and 254. The 

program to generate the complete matrices should be requested from the authors at 

[CERIA].  
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0001 
0001 
0001 
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0001 
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0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 

0001 
eb9b 
2284 
9e44 
f91c 
7ab9 
2897 
41f6 
a9dd 
5933 
52d5 
3f68 
47b5 
8656 
db71 
92fe 
99f1 
2c68 
7502 
227d 
1027 
0a46 
27df 
3dad 
8dd7 
1e27 
0cf7 
651e 
71ec 
00a1 
b4ca 
59c3 

0001 
2284 
9e74 
d7f1 
0fe3 
79bb 
5658 
efa6 
30f3 
641c 
59c3 
3d2b 
cb3c 
b46f 
b612 
acb3 
6d93 
2d00 
c6a6 
16a8 
496e 
87b4 
9523 
27bc 
f6e2 
fdd3 
46f5 
a0d6 
0f8d 
fda5 
b385 
73b6 

 0001 
 9e44 
 d7f1 
 75ee 
 512d 
 4e14 
 16bb 
 2ce0 
 36c8 
 0f9a 
 94f7 
 00f1 
 6f1f 
 59c3 
 eb07 
 3045 
 5803 
 4fef 
 8f58 
 eacf 
 a06a 
 74c2 
 379a 
 9f64 
 f125 
 93fd 
 2d00 
 58d3 
 496e 
 564f 
 025b 
 b325 

0001 
f91c 
0fe3 
512d 
59c3 
d037 
b205 
cb3c 
f6e2 
c606 
4d4d 
32c2 
2d00 
903a 
496e 
fef2 
1ce8 
50bf 
5a03 
0f59 
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f85b 
7e8d 
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9c04 
86cd 
cf2f 
dbb0 
7702 
dc72 
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4b4b 
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7ab9 
79bb 
4e14 
d037 
b259 
e9b9 
2c40 
81b2 
70b5 
e9b2 
dfb2 
39e6 
7432 
ac26 
7607 
4099 
16af 
2887 
67af 
61ab 
e8ef 
0301 
5cf1 
f720 
9ca4 
6f7b 
96ed 
51a4 
6924 
47bd 
6ba7 

0001 
2897 
5658 
16bb 
b205 
e9b9 
c7b6 
07c7 
8670 
86ac 
40f1 
6ab4 
799c 
9aef 
74c2 
ad10 
136c 
88ec 
89ca 
7702 
131f 
5b03 
0221 
eef2 
c0a3 
2614 
2f80 
f57a 
f85b 
b699 
31f6 
7ca5 

 0001 
 41f6 
 efa6 
 2ce0 
 cb3c 
 2c40 
 07c7 
 2c2c 
 5ddc 
 148f 
 2d00 
 c6a6 
 c83b 
 46f5 
 04cc 
 2df0 
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 2ec0 
 6724 
 838d 
 2e00 
 3163 
 7702 
 2e48 
 92df 
 9961 
 8497 
 2f20 
 ba6f 
 9d44 
 f173 
 2fd0 

0001 
a9dd 
30f3 
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f6e2 
81b2 
8670 
5ddc 
7702 
1f19 
9c04 
9eba 
92df 
3b50 
5f5d 
0b2f 
35b6 
bfa2 
e0be 
3517 
b405 
8b11 
fe93 
64a0 
ee07 
8483 
4baf 
5c03 
a34b 
de6d 
a768 
5e55 

0001 
5933 
641c 
0f9a 
c606 
70b5 
86ac 
148f 
1f19 
9c98 
bc3f 
0241 
c24d 
e867 
23b9 
1eaa 
3274 
2b90 
39e1 
85a1 
fafc 
b4a5 
d06b 
a751 
1d73 
c26e 
2900 
69d3 
ce4b 
a90c 
798b 
9ac4 

Figure 14 Generic parity matrix P’ for GF(216): first 32 rows by 10 columns.  
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0000 
0000 
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0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
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0000 
0000 
0000 
0000 
0000 
0000 

0000 
5ab5 
e267 
784d 
9444 
c670 
9df5 
bcbf 
05b6 
54ff 
cc60 
8e54 
ae54 
ac60 
782d 
e287 
a753 
b361 
8593 
d521 
81ab 
d909 
8fa8 
cb0c 
d9a6 
810e 
1445 
4670 
381e 
2297 
55a8 
050d 

0000 
e267 
0dce 
2b66 
0e6b 
181c 
ff62 
f5b1 
08c1 
cf6b 
050d 
3e62 
3b14 
04ed 
d2b9 
08e1 
27c7 
0607 
e606 
07c7 
d3b3 
e1b0 
3a1a 
2c1d 
ff05 
39a4 
0ec8 
d429 
6073 
7dfd 
ad5a 
8fd0 

0000 
784d 
2b66 
a3b3 
c9f8 
f273 
b13f 
d9ba 
f2b9 
7b58 
285b 
b0f9 
d0d9 
050d 
9ea6 
d2d9 
caf2 
f8c0 
aaf2 
d8c0 
80f4 
ca55 
d95d 
22bf 
30e3 
9dac 
0607 
72d0 
d3b3 
a0a2 
0311 
cfff 

0000 
9444 
0e6b 
c9f8 
050d 
70c8 
f6a1 
3b14 
ff05 
a7a4 
3159 
dd25 
0607 
5d68 
d3b3 
27e7 
3333 
0d8b 
df1f 
e934 
d1d9 
f781 
25ed 
1bd8 
fe25 
5c9d 
5f93 
a0f6 
06e7 
a86f 
a579 
6416 

0000 
c670 
181c 
f273 
70c8 
3739 
44c5 
1f1d 
1916 
bfc0 
1542 
2b69 
7778 
1e23 
0bd0 
21f7 
209a 
5250 
da83 
1ffd 
e4e8 
169f 
173c 
5cb5 
a1ff 
eaef 
20f7 
11bf 
4c49 
9539 
257a 
1642 

0000 
9df5 
ff62 
b13f 
f6a1 
44c5 
f604 
580f 
2baf 
9e26 
f5a7 
d79b 
005d 
1e69 
ca55 
57de 
f87b 
e0d0 
0acf 
06e7 
eb35 
ef1d 
fd88 
1534 
502e 
cc2f 
fe82 
225c 
f781 
d3a8 
a5d6 
29d5 

0000 
bcbf 
f5b1 
d9ba 
3b14 
1f1d 
580f 
14cf 
05e7 
e2b8 
0607 
e606 
2ec8 
0ec8 
3216 
0ee8 
ea2e 
0de8 
ee84 
41fb 
d2d3 
264a 
06e7 
2aa0 
07e1 
3347 
98ab 
a6fd 
6dd1 
7c23 
e187 
0cee 

0000 
05b6 
08c1 
f2b9 
ff05 
1916 
2baf 
05e7 
06e7 
0131 
fe25 
142d 
07e1 
edd0 
db37 
0100 
8460 
b6b3 
5b9f 
ea50 
4f53 
05c6 
dc12 
a212 
8286 
5033 
ab47 
1c96 
b793 
0121 
2ad4 
64d4 

0000 
54ff 
cf6b 
7b58 
a7a4 
bfc0 
9e26 
e2b8 
0131 
5630 
dad7 
86c4 
966f 
ae8b 
7377 
b809 
5851 
320c 
6a2e 
2b0b 
81bb 
22a7 
2c05 
a169 
2424 
fdde 
2b25 
ec01 
3389 
d474 
b4c6 
2a2b 

Figure 15 Generic logarithmic parity matrix Q’ for GF(216): first 32 rows by 10 columns.  
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1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1 1a 1c a0 cd 7d b1 e5 30 48 2c 26 68 52 f4  3 de 19 4e 45 
1 3b 37 a9 d4 7c f9 84 4f 5b 93 63  5 f6 a7 d3 89 9f 31 a2 
1 ff fd 2c cc 30 48 85 76 68 52 da  3  7 ba f4 d0 cd 7d 29 
1 16 b6 fb 6d 4c bf 75 50 b8  9 f2 38 c5 9d b5 57 cb 3d 6c 
1 90 4b 52 18 76 68 1e d1  3  7  b f4 71 98 ba 77 cc 30 32 
1 86 14 93 e0 4f 5b e4  d  5 f6 6a d3 ef aa a7 23 d4 7c ae 
1 87 5f 68 52 41 b0 40 f0  f  3 a5 c2 f4 96 e3 88 2c 12 e7 
1 94 24 74 a3 6e 11 fa d9 9b 60 e9 c6 2f 72 e8 59 af 80 d5 
1 3a 59  3  7 f0  f 13 cf c2 f4 c1 e3 ba 58 96 73 52 41 3d 
1 2e e1 f6 15  d  5 bc 3f d3 ef 33 a7 95 3e aa e7 e0 4f  a 
1 4d c7 a8 f8 17 d5 56 ce 9e 67 f4 25 43 66 42 74 5a d6 44 
1 d7 19  9 4a 50 b8 c0 2b 38 c5 12 b5 d6 de 9d 82 6d 4c ca 
1 a1 fc 1b 61  3 ed 9f f4 57 a2 21 82 ae 80 7f 64 2e 68 8b 
1 fe 54  5 f6 9a d8 32 10 6f d3 bd 81 a7 83 7e df 93 c7 7f 
1 1f 6c  7 b7 d1  3 91 df f4 71 af ba 20 2a 98 31 18 76 6b 
1 70 35 85 44  e f1 a8 b1 40 1e b4 13 91 ed f3 ac 28 c3 cc 
1 84 ca 71 b2 df f4 fe 9c ba 20 a3 98 bf 51 2a 7c b7 d1 62 
1 1b ac d3 ef 10 6f 6b 79 81 a7 e5 7e aa 56 83 9c f6 9a 80 
1 f9  c b4 4c e0 d7 f4 15 c4 39 ac  8 b9 8a fa eb 3d d4 81 
1 c4 cd c5 fc 2b 38 a4 99 b5 d6 41 9d 17 d0 de 7f 4a 50 34 
1 89 99 c2 f4 e4 eb 7c bc 35 e3 11 cb 96 4a 6d 86  3 84 b4 
1 7d 39 a1 b0 3a cc 88 45 18 dc a7 b7 eb 8b b2 85 49 87 cf 
1 dc 1d a2 75 f4 57 d4 ba 82 ae 70 7f  a 6e 80 f9 61  3 fb 
1 ee 9f 60 1a d9 9b 8a 5c c6 2f c7 e8 87 89 72 97 a3 6e 9e 
1 e2 f4 22 d0 b6 28 5c 19 44 88 6b 3b 73 2e 86 92 de b3 49 
1 55 ff 4b  8 d3 5f cb a7 59 6c 65 97 ca c3 e2 20 c4  5 c1 
1 45 97 f4 71 cf c2 f3 16 e3 ba 74 96 98 5e 58 e9  7 f0 4c 
1 fd a0 38 c5 b9 51  a be 4d b5 1f 3c 9d 22 e6 ab  9 39 e2 
1 3c 9a 67 65 ce 9e ec f1 25 43 ba 42 24 a9 66 60 f8 17 3b 
1 61 d5 ef 36 3f d3 1c ab a7 95 28 aa 78  c 3e 3d 15  d db 
1 f4 e6 79 ab 8b c0 d8 fb a4 94  e 37 ee e1 14 e0 3f b2 5e 

Figure 16: Generic parity matrix P’ for GF(28): first 32 rows by 20 columns. 

 
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
0 105 200  55  12 243  86 169  29 226 240  15 107 148 230  25  62 193  34 221 
0 120 185 135  41 115 214 140 136  92 119 163  50 173 205  82  74  46 181 209 
0 175  80 240 127  29 226 128 121 107 148 134  25 198  57 230 108  12 243 147 
0 239  93 234 133  16 162  21  54 132 223 213 201 123  32  42 189 236 228 250 
0 227 179 148  28 121 107  76 161  25 198 238 230  94  17  57  43 127  29 194 
0  99  52 119 203 136  92 156 104  50 173  40  82 215 151 205  47  41 115 190 
0  13  64 107 148 191 242   6  79  75  25 188  67 230 180 176 103 240 224  81 
0  38 225  10  91 186 100 244  96 217  30 245 164  69 155  11 210  97   7 157 
0   9 210  25 198  79  75  14 246  67 230  45 176  57 241 180 159 148 191 228 
0 130  89 173 141 104  50  71 166  82 215 125 205 184 114 151  81 203 136  51 
0 145 118 144 116 129 157 219 111 137 110 230  36  98 126 139  10  19  85 102 
0 170 193 223  37  54 132  31 218 201 123 224  42  85  62  32 192 133  16  73 
0  63 168 248  66  25 117  46 230 189 209 138 192 190   7  87 195 130 107 237 
0  88 143  50 173 146 251 194   4  61  82 109 112 205 247 167  90 119 118  87 
0 113 250 198 158 161  25 165  90 230  94  97  57   5 142  17 181  28 121  84 
0 202  39 128 102 199 174 144  86   6  76  20  14 165 117 233 220  53 216 127 
0 140  73  94 211  90 230  88  35  57   5  91  17 162 208 142 115 158 161 182 
0 248 220  82 215   4  61  84 212 112 205 169 167 151 219 247  35 173 146   7 
0 214  27  20  16 203 170 230 141 183 154 220   3  60 222 244 235 228  41 112 
0 183  12 123 168 218 201 149  68  42  85 191  32 129 108  62  87  37  54 106 
0  74  68  67 230 156 235 115  71  39 176 100 236 180  37 133  99  25 140  20 
0 243 154  63 242   9 127 103 221  28 187 205 158 235 237 211 128 152  13 246 
0 187   8 209  21 230 189  41  57 192 190 202  87  51 186   7 214  66  25 234 
0  44  46  30 105  96 217 222 131 164  69 118  11  13  74 155 124  91 186 137 
0  95 230 101 108  93  53 131 193 102 103  84 120 159 130  99 153  62 171 152 
0 150 175 179   3  82  64 236 205 210 250  72 124  73 216  95   5 183  50  45 
0 221 124 230  94 246  67 233 239 176  57  10 180  17  70 241 245 198  79  16 
0  80  55 201 123  60 208  51  65 145  42 113  77  32 101 160 178 223 154  95 
0  77 146 110  72 111 137 122 174  36  98  57 139 225 135 126  30 116 129 120 
0  66 157 215 249 166  82 200 178 205 184  53 151  78  27 114 228 141 104 177 
0 230 160 212 178 237  31 251 234 149  38 199 185  44  89  52 203 166 211  70 

Figure 17: Generic logarithmic parity matrix Q’ for GF(28): first 32 rows by 20 columns. 
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APPENDIX B DEFINITION OF TERMS 
 
Term Description Typical value 

Addressing 
an LH*RS file 
file level 
split pointer 
file state 
internal file state in a data bucket 
client's view of i 
client's view of n 
current number of data buckets in the file 
logical address of a data bucket server 
physical address of a data bucket server 
initial physical address of the file (server of data bucket 0) 
data bucket level 
(primary) key of a data record  
series of hash functions  
load factor 

Parity calculus 

 
F 
i 
n 
(i, n) 
(ĩ, ñ) 
i’ 
n’ 
N 
a 
A 
A0 
j 
c 
hi 

α 
 
 
GF (2f) 
F 
ECC 
RS 
B 
C 
k  
Kfile 
g 
r 
α 
logα(ξ) 
antilog (i) 
I 
P’ 
P 
Q’ 
Q 
H, H-1 

LA 
LS  

Galois Field of size (2f) 
Galois Field of size (28) 
Erasure Correcting Code 
Reed-Solomon Code 
parity field (in parity record) 
record group structure field (in parity record) 
bucket (record) group local availability level 
global file availability level 
bucket group number 
data record rank (and parity record key)  
primitive element in GF  
logarithm of symbol ξ ;  ξ ∈ GF (2f), ξ ≠ 0 
antilogarithm of integer i ; 0 ≤ i < 2f – 1 
identity matrix m x m 
generic parity matrix   
actual parity matrix 
generic logarithmic parity matrix 
actual logarithmic parity matrix 
decoding matrices (m x m, formed from  avail. columns of P) 
list of  available buckets in a bucket group recovery 
list of spare buckets for a bucket group recovery 

 
 
initially 0, scales monotonically 
0 ⎯ 2i – 1 
 
 
0  ⎯ i 
0 ⎯ n 
2i + n 
[0; 1; 2;…;M - 1] 
IP address 
IP address 
i or i + 1 
random; 0 ⎯ 232 - 1 
C mod N * 2i 
0.6 ⎯ 1.0 
 

GF (216) 
 
 
 
GF (216) symbols   
c0, c1, … cm-1 
1 ⎯  10 
1 ⎯  10 
1,2… 
1 ⎯  b 
α = 2 
Table 1 
Table 1 
 
Figure 14 
upper left m x K submatrix of P’ 
Figure 15 
upper left m x K submatrix of Q’ 
 
m 
l ≤ k 

File 
Param. 

Description Typical value 

B 
K 
m 

bucket capacity (records per data bucket) 
intended file availability level (scales monotonically) 
bucket group size (also max.  record group size) 

50 ⎯ 1,000,000 
1 ⎯ 5 
4 ⎯ 32 

 
 


