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Abstract

We present an implementation of LH*RS: a high-availability Scalable
Distributed Data Structure on Windows 2000. We show experimental de-
termination of the time for £le creation, key search, record recovery, parity
bucket creation, and data bucket recovery. The measures prove the ef£ciency
of the LH*RS scheme, the scalability especially.
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1 Introduction

Scalable Distributed Data Structures [SDDS] are being developed for computers
over fast networks, usually local networks, i.e. for the multicomputers. This new
hardware architecture is promising and is becoming highly popular. In spite of
the advantages given by the data distribution layout, failures remain the problem,
and the vulnerability accentuates with the increase of the number of machines
in the network. Many approaches to build highly available, i.e., fault tolerating,
distributed data storage systems have been proposed. They generally fall into the
two categories of (i) data mirroring and (ii) parity information. The latter approach
uses erasure correcting codes to guard against failures The simplest codes, e.g.
in RAID systems, use XOR calculus for the tolerance of a single site failure.
For multiple failures more complex codes are needed. These can be the binary
codes [H94] for double or triple failure, or character codes. Examples of character
codes are: the array codes as the EVENODD code [BB94], the X-code [XB99] or
the Reed Solomon codes. The latter appear best at present to deal with multiple
failures [R89] [BK95] [P97] [LS00].
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The Scalable and Distributed Data Structure (SDDS) schema called [LS00]
provides high-availability server nodes of data buckets by using Reed Solomon
codes. We present our contribution to the design and implementation of a proto-
type system for LH*RS £les on Windows 2000 multicomputers. The goal of the
prototype is to tune the system and experimentally determine the LH*RS perfor-
mance. Our LH*RS implementation completes and improves the one presented in
[L00]. The entire prototype reuses an existing LH* implementation that does not
provide the high-availability [B00]. Our contribution to the prototype design con-
sists in the solutions to the problems encountered by the £rst prototype, namely,
(1) a more reliable data bucket split, (2) a more ef£cient data buckets’recovery,
and (3) a parity bucket creation algorithm increasing the availability of a data
bucket group. We show experimental determination of the time for £le creation,
key search, record recovery, parity bucket creation, and data bucket recovery.

Below, Section 2 recalls the LH*RS £le structure. Section 3 overviews our con-
tribution to the implementation. Further sections present the performance analy-
sis. Section 8 concludes the article.

The hardware testbed consists of six machines; each has 128 MB of RAM,
with a 731MHz Pentium III processor, and runs Windows 2000. All the machines
are connected by a 100 Mbps Ethernet. For the experiments, the record size is set
to 100 bytes and the con£guration tested consists of one client, four data buckets
and k parity buckets; k ∈ {0, 1, 2}.

2 LH*RS Data Structure

LH*RS scheme is described in detail in [LS00]. An LH*RS £le is subdivided into
groups. Each group is composed of m data buckets and k parity buckets. The
data buckets store the data records, while the parity buckets store the parity ones.
Every data record £lls a rank r in its data bucket. A record group consists of all
records with the same rank in a bucket group. We construct parity records from
data records having the same rank within data buckets forming a bucket group Fig.
1a. The record grouping has an impact on the data structure of a parity record. The
latter keeps track of the data records it is computed from. Fig. 1b-c, shows each
the structure of a data record and a parity record. The parity calculus is done using
Reed Solomon codes.

The £le starts with one data bucket and one parity bucket. It scales up through
data buckets splits, as the data buckets get overloaded. Each data bucket contains
a maximum number of b records. The value of b is the bucket capacity. When the
number of records within a data bucket exceeds b, the bucket adverts a special
entity called the split coordinator. The latter designates a data bucket to split.
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(a) An LH*RS £le group (m = 4, k = 2)
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Figure 1: An LH*RS £le Structure.

3 File Creation

3.1 Bucket Splitting

During a data bucket split, half of the splitting data bucket move to a newly cre-
ated data bucket. As a consequence to the data transfer, the records remaining in
the data bucket and those moving get new ranks. The parity buckets belonging to
g1, the splitting data bucket group, and to g2, the new data bucket’s group, have to
be updated. A £rst update scenario is proposed in [L00]. It consists in sending up-
date messages to parity buckets. Each parity bucket belonging to g1 receives one
message per record to delete, i.e., b delete messages in total and one message per
record to insert, i.e., about b/2 insert messages, a total of 1.5∗b update messages.
Same for each parity bucket belonging to g2, it receives b/2 insert messages.
Those messages are sent through an unreliable protocol that is UDP without ac-
knowledgements. The parity buckets may be inconsistent if the messages are lost,
besides the communication is inef£cient since many small messages are sent.

We have implemented a splitting scenario overcoming disadvantages of the
above one. We have replaced UDP by TCP/IP, sending a single message with all
parity records to update. The update buffer is a collection of the structure S:

− Record’s key;
− Record’s Data £eld;
− Old Rank: the rank occupied by the record; and it has to be deleted from it;
− New rank: the rank of the record after the split, that it has to be inserted on it.

We now give the details of this scenario at the level of the involved buckets:

→The splitting data bucket:
The splitting data bucket £lls in each structure S as follows: If the
data record is moving: then it is to be deleted from parity records of
rank oldrank in the parity buckets, belonging to the same group as
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the splitting data bucket. And, newrank is set to -1. Else, if the data
record is staying: the data record is to be £rst deleted from parity
records of rank oldrank, and then reinserted at rank newrank.

→New data Bucket:
Following a data bucket split, the new data bucket receives a buffer,
containing about b/2 records to insert. While inserting, it prepares a
buffer to update the content of its parity buckets. The parity bucket
uses the structure S, the £eld oldrank is set to –1, and the £eld
newrank indicates the rank occupied by the record just inserted.

→Parity bucket:
Each parity bucket, receiving an update buffer, processes each struc-
ture S as follows: (1)If S.oldrank �= 1, delete the data record {S.key,
S.data f ield} from parity record of rank oldrank. (2) Else if S.newrank
�= 1, insert the data record {S.key, S.data f ield} in the parity record
of rank newrank.

3.2 Experimentation description

First we create a £le of 25000 records. The £le spread on four data buckets, each
containing 6250 records. During the £le creation, three splits occurred. The £rst
split is of the data bucket numbered 0. Then, data buckets 0 and 1 split at approx-
imately the same time. Hereafter, Figure 2 reports on £le creation performance.
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Figure 2: Performance Measurements of the creation of a k-available LH*RS File,
that spread on 4 data buckets (25000 data records) k ∈ {0, 1, 2}

Following a data bucket split, there is an increase in the insert average time
of 40% from k = 0 to k = 1, and of 7% from k = 1 to k = 2. The increase is
mainly due to the preparation and sending of TCP/IP update buffers (case of k �1)
from the splitting data bucket and new data bucket to their group reliability. We
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estimate that the splitting process may become cumbersome when k increases, and
a more ef£cient parity buckets’ update strategy is then required. One can release
the splitting data bucket and the new data bucket from the task of communicating
the updates to all parity buckets of its group.

To prove the scalability of the £le creation scenario, we conduct experiments
£rst on the creation of an LH*RS £le, that spread on 8 data buckets, and con-
taining 50000 records (see Figure 3), and another £le containing 25000 records,
that spread on 4 data buckets, but has group size 2. We obtain an insert time per
record approximately equal to {0.40ms, 0.44ms, 0.48ms} respectively to k ∈ {0,
1, 2}. We notice that the insert time per record is invariant of group size and of
the number of records inserted.
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Figure 3: Performance Measurements of the creation of a k-available LH*RS File,
that spread on 8 data buckets (50000 data records) k ∈ {0, 1, 2}

4 Parity Bucket Creation

The high availability scenario ensures the increase of the availability of a group,
just by adding a parity bucket. We begin by describing the scenario, then we on
report the time to create a parity bucket.

4.1 Creation Scenario

The new parity bucket is created in at most x ≤ m steps, such that x is the number
of not dummy data buckets in the group g. At each step, the parity bucket estab-
lishes a TCP/IP connection with one data bucket, and the latter sends its contents.
The received buffer is so processed for insert/ update.

Each data bucket of the group adds the new parity bucket to the list of its
group reliability, and will be able to re¤ect the client’s manipulations on this parity
bucket.
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4.2 Parity Bucket Creation Performances

In each experiment, we create a £le of 2.5∗Bucket Size records. The £le spreads
on up to four data buckets, each of 0.625∗Bucket Size records. The performance
results are in Table 1. We highlight The Communication Time, i.e. the time spent
on establishing TCP/IP connections to receive each data bucket content; and The
Process Time, i.e. time spent on processing the buffer.

BucketSize Com.Time(sec) ProcessTime(sec) Total(sec)
5000 2,211 0,302 2,523

10000 2,433 0,611 3,044
25000 3,185 1,652 4,847
50000 4,667 3,395 8,062

Table 1: Parity Bucket Creation Performance Results

We notice that the time spent on establishing TCP/IP connections with the
four data buckets is relatively high compared to process time. Indeed, the com-
munication time is {87.63%, 79.93%, 65.71%, 57.89%} for buckets sizes {5000,
10000, 25000, 50000}. It appears interesting to choose a larger bucket to amortize
TCP/IP connection cost.

5 Basic Key Search Performance

We measure both parallel searches, during which a client sends a ¤ow of search
messages in parallel to the four data buckets, and synchronized search, where the
client waits for a reply before issuing another request. Figure 4 presents the times
for a £le of size 125000 distributed over 4 buckets.

The search times per record are essentially independent of the number of
searches. The synchronized search time measures the server access time. Let’s
notice that it is 30 times faster than that to a £le on a typical local disk. The par-
allel search time measures the maximal client speed. Notice also that this search
time is about 100 times faster than that to a local disk.
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Figure 4: Search Performance Results

6 Data Record Recovery

6.1 Recovery Algorithm

The routine “recover one record” follows the following steps:

1. Look for the data record’s key inside the parity bucket structure,
2. Send search queries to alive buckets,
3. Wait until receiving replies to sent queries,
4. Compute the missing data record through RS-decoding,
5. Send the recovered record to the client.

6.2 Performance Analysis

We create an LH*RS, 1-available £le of 125000 records. Then, we simulate the
failure of one data bucket. Figure 5 summarizes the performance results of recov-
ering x records of the failed data bucket.

The time to look for a data record’s key inside a parity bucket structure, of
32150 records, is approximately equal to 0.7ms. It is 56% of the average time to
recover a data record.
Notice that while the record recovery time is 15 times higher than that of a normal
key search, it is still 8 times faster than a normal key search on a local disk.

7 Data Bucket Recovery

We describe and we report the performance results of two scenarios devised.
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Figure 5: Data Records Recovery Performance Results

7.1 UDP-based Data Buckets’ recovery Scenario

The data buckets’ recovery scenario starts at the coordinator level. The coordina-
tor probes all buckets belonging to the group, waits a time-out, then either noti£es
the application of the impossibility of recovery, due to the lack of surviving buck-
ets; or assigns to the £rst parity bucket replying to the probe the task of failed
buckets’ recovery. In the case of recovery, the elected parity bucket is adverted
of the bucket’s states and addresses. It chooses m buckets among surviving ones,
parity buckets being preferred. This is to let the data buckets being available for
the application requests, while the recovery is in progress.

To measure the performance of the scenario, we create a k-available LH*RS

£les, with k ∈ {1, 2, 3}. The created £le spreads over four data buckets. At each
experiment, we simulate the failure of k data buckets, and then we recover them.
Table 2 reports decoding performance for the recovery of k data buckets, such that
k ∈ {1, 2, 3} for different bucket sizes.

Bucket
Size

Bucket
contents

1 DB
recovery (s)

2 DBs
recovery (s)

3 DBs
recovery (s)

5000 3125 1.742 2.043 2.564
10000 6250 3.465 4.076 4.797
25000 15625 8.662 10.185 11.928
50000 31250 17.375 20.349 23.895

Table 2: Performance Measurements of k Data Buckets Recovery using UDP pro-
tocol, k ∈ {1,2,3}.

Figure 6 proves the scalability of the algorithm. Independently of bucket size
parameter, we get same recovery time to recover k data buckets. Indeed, the time
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Figure 6: Performance Measurements of the recovery time per iteration, for k Data
Buckets Recovery, k ∈ {1,2,3}, for bucket size ∈ {5000,10000,25000,50000},
and using UDP protocol.

to recover k data records per iteration is approximately 0.557 ms for k = 1, 0.652
ms for k = 2, and 0.763 ms for k = 3. The obtained results show that independently
of the value of bucket size, there is constant time needed to compute a record per
iteration, which is approximately equal to 0.10 ms for a record size set to 100
bytes. We notice that the time to recover a record decreases when k increases.
This is due to the querying messages being factorized. Since, in each iteration, we
query m-1 buckets, to recover k data records.

Despite the scalability and the linearity in the results obtained for different
buckets sizes, we estimate that the UDP-based recovery scenario becomes un-
suitable for higher values of bucket size. Thus, we have sketched a new scenario
based on TCP/IP.

7.2 TCP/IP-based Data Buckets’ recovery Scenario

At each iteration, the recovery manager asks participating buckets to search a
slice of s records, corresponding to ranks: r, . . . ,r + s−1. Then, r is incremented
by s. The buckets reply in the limit of the number of records they hold. And, on
the receipt of the buffers, data records having same rank are retrieved from the
buffers and from the local data structure, to compute missing records. Finally, the
recovery manager sends to each spare data bucket its slice of recovered contents.
All the buffers are sent through a TCP/IP-connection.

To measure the performance results of our scenario, we create a k-available
LH*RS £le, k = 1,2,3. The created £le spreads over four data buckets. At each
experiment, we simulate the failure of k data buckets, and then we recover them.
We have varied the slice size, which is the number of data records recovered
per iteration, to determine best performance. Table 3 reports on the performance
results of recovering k data buckets, k ∈ {1, 2, 3}, using TCP/IP-based recovery
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scenario.

Recovery of 1 Data Bucket
Slice Tot. Time (sec) Com. Time (sec) Process Time (sec)
1250 50.352 46.968 1.161
3125 23.073 20.008 1.052
6250 13.650 10.523 1.043

15625 8.292 1.986 1.042
31250 6.700 3.134 1.042

Recovery of 2 Data Buckets
Slice Tot. Time (sec) Com. Time (sec) Process Time (sec)
1250 62.620 57.083 2.495
3125 29.893 24.081 2.403
6250 19.529 14.243 2.402

15625 14.510 8.556 2.364
31250 12.718 7.580 2.354

Recovery of 3 Data Buckets
Slice Tot. Time (sec) Com. Time (sec) Process Time (sec)
1250 82.619 74.227 3.996
3125 38.675 30.824 3.815
6250 26.028 18.387 3.775

15625 19.638 11.436 3.756
31250 17.825 9.233 3.735

Table 3: Performance Measurements of k Data Buckets Recovery, k ∈ {1,2,3}
using TCP/IP protocol.

7.3 Performance comparison

The cost of recovery of 31250 records using UDP lasts 17.375 sec. We get better
performance results using TCP/IP when slices are either a £fth of the bucket:
13.65sec, a half: 8.292sec, or the entire bucket: 6.7sec. The best result is when
we recover the entire bucket. The cost of recovery using UDP is 2.6 times greater
than TCP/IP, so the improvement is 260%. Similar remarks hold for multiple data
buckets recovery. Indeed, we get better performance results for slice in the range
[b/5,b], where b is the bucket size.
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8 Conclusion

We have evaluated the LH*RS £le creation, parity bucket creation, data retrieval
in both normal mode and degraded mode, and £nally the recovery of more than
one data bucket. Experiments prove the ef£ciency of the proposed scenarios. They
also prove the scalability of the LH*RS scheme. The curves of the total insert time
are about linear function of the £le size. Hence should remain so for further in-
serts and £les scaling to much larger sizes. Likewise, the record processing times
of a normal search or of a recovery remain constant. They should remain so for
much further scaling £les.
Further work concerns in depth performance analysis and implementation im-
provements to our parity calculus [S02]. It will also concern the full integration
of our system under SDDS-2002 prototype. Finally, we plan to investigate other
encoding and decoding techniques.
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