

Trusted Cloud SQL DBS with On-the-fly AES Decryption/Encryption

Sushil Jajodia
George Mason U.
Fairfax, VA, USA
jagodia@gmu.edu

Witold Litwin
Univ. Paris Dauphine

Paris, France
witold.litwin@dauphine.fr

Thomas Schwarz
Marquette University

Milwaukee, Wisconsin
tschwarz@jesuits.org

Abstract — A Trusted Cloud Database System manages client-
side encrypted cloud DBs. Queries may include encryption
keys. The DBS decrypts/encrypts the data on-the-fly at the
cloud. Plaintext is only in protected run-time variables. Stored
data are by default probabilistically encrypted through AES.
Any SQL queries are feasible, with negligible processing over-
head and practical storage overhead. This is a major advance
over the current alternative research proposals. We detail
capabilities of a trusted DBS. We adapt SQL to client-side key
management. Queries may remain usually almost as non-
procedural as now. A prototype implementation appears easy.

Keywords—cloud DB; client-side encryption; AES; trusted DBS;

I. INTRODUCTION

A cloud outsourced database (DB) evidently welcomes
the client-side encryption. The traditional security paradigm
for a cloud DBs is that any cloud storage is simply (some-
how uniformly) insecure against unwelcome reading. Sensi-
tive plaintext data should never be at the cloud. In [2] we
proposed a new paradigm. We trust the cloud Database
System (DBS) secure at least for its run-time (temporary,
fugitive…) variables with sensitive client plaintext (me-
ta)data, encryption keys especially. We trust these protected,
even against disclosure by insiders of the cloud administra-
tion. Only the (persistent) files in cloud storage are eventual-
ly insecure, as usual. The sensitive plaintext never gets to
the storage. DBS wipes it out from the cloud at the end of a
query processing.

Our paradigm seemed new for a cloud DBS. It comes
nevertheless hardly out of the blue. Billions of users similar-
ly trust their favorite industrial OSs and browsers. We all
have no choice but to readily type-in various sensitive data:
passwords, credit card numbers, you name it. Trusting firm-
ly the values provided secure in some run-time variables
only. We are many to refuse Google Chrome offer to turn
these persistent. Likewise, we often do not trust the security
of (persistent) outsourced plaintext files. Usually we provide
the sensitive ones with the password encryption at least,
[14]. Our paradigm simply transposes this overwhelming
reality to the cloud DB arena.

Besides, the only difference between both paradigms is
that the new one trusts the DBS at the cloud and the one at
the client, while the traditional one trusts the latter only. In
practice, both should be made by third-part industrial play-
ers. Both are also obviously Internet accessible. No reason
to trust one installation more than the other. E.g., there is no
reasons to trust SQL Server secure for run-time variables

locally and a priori distrust it elsewhere. We all know also
that most attacks are remote now. Life shows finally that the
insider attacks are a priori about as likely at a client node as
at the cloud.

We recall that some clients at present apparently trust al-
so the cloud-side encryption, e.g., an option in Azure ver-
sion of SQL Server 2016. The encryption keys reside then in
cloud storage, a priori insecure, we recall, [9]. Our para-
digm amounts to a fugitive only presence of keys at the
cloud and only in run-time variables. Perhaps, even in the
same variables as for the cloud-side encryption that also
uses the on-the-fly encryption/decryption, we recall. The
security brought by our paradigm appears thus inherently
stronger than the current industrial offeringa.

To be practical, the cloud SQL DBS should evaluate
most queries at the cloud. This especially concerns the se-
lect-project-join (SPJ) queries, usual for the online
transaction processing (OLTP). If the cloud processing is
not feasible, an impractical transfer to the client may be the
must. This constraint appears plaguing the Online Analytical
Processing (OLAP), with frequent value expressions. Under
the traditional paradigm, to avoid the transfers to the client,
a practical fully homomorphic encryption is necessary. Pos-
sibly – providing for queries to an encrypted (ciphertext) DB
as rapid as queries to the plaintext DB. An intensive re-
search over almost four decades under the traditional para-
digm failed to deliver up to now. Only somewhat homomor-
phic schemes, e.g., the popular additively homomorphic
Paillier scheme, appear fast enough for specific applications.
See [2] for details.

Our paradigm led to a new homomorphic encryption
schema called THE-scheme [2]. THE-scheme was faster
than previous proposals, but limited to predefined finite
domains. THE-scheme sends to the cloud some sensitive
metadata, called client secret with each arithmetical query.
The cloud DBS discards all the secret run-time values at the
end of each query at latest.

In position paper [3], we proposed to explore our para-
digm further. We now develop the ideas only outlined there.
A query may carry the encryption/decryption key(s). Cloud
DBS uses these keys to encrypt/decrypt the data on-the-fly,
in some run-time variables, at the cloud. Cloud stored data
are by default a ciphertext. The plaintext, the keys and any

a https://www.youtube.com/watch?time_continue=15&v=e4BS5A4yqp0 instructs

how to disclose SQL Server cloud‐stored AES key(s) and DBs encrypted with.

other run-time variables used by the query reside during the
processing at the cloud in so-called trusted query execution
environment only. Clients trust this environment protected,
at least through the requirements already outlined. We dis-
cuss further possible protection tools for the trusted execu-
tion environment later.

A Select query uses the keys for the on-the-fly decryp-
tion of the ciphertext into a run-time plaintext processed at
the cloud. An Update query with the key(s), uses further-
more the on-the-fly encryption producing the updated ci-
phertext. Likewise, an Insert query may bring plaintext and
key(s) from the client to the trusted environment. The on-
the-fly encryption there produces again the ciphertext for the
cloud DB. Under these principles, any relational operation
possible over a plaintext, functionally applies to the cipher-
text. Whatever is the encryption scheme the cloud DB uses,
it behaves functionally as under a fully homomorphic en-
cryption.
We call trusted the (cloud) DBS designed as outlined. It
manages trusted (cloud) DBs. We believe trusted DBSs
promising research goal. Below, we start with the reference
architecture. We stress that it is software-only, i.e., without
any specific (trusted) hardware add-on box, unlike e.g., [14],
[15]. We believe our approach the only practical at present
for existing cloud nodes, likely many millions. Furthermore,
we postulate that trusted DB should be AES256 encrypted.
We speak accordingly about (trusted cloud) AES DBS and
AES DB.

We consider that the client-side defined encryption key
may have three levels of granularity. It can be a DB key,
valid throughout the DB. Clients trusting finer granularity
more secure can specify alternatively several keys, valid
each only for a table, or even only for a column. The column
granularity is backward compatible with MySQL. The DB
key one is the basis for the cloud-side encryption by SQL
Server. We adopt the DB key granularity as the default.
Other keys eventually override the default. For finer granu-
larities, the client may leave plaintext columns. This choice
may help backward compatibility, but we discourage it.
Frequency analysis of plaintext may endanger some cipher-
text, reasonably secure otherwise. Finally, the keys encrypt
by default data and metadata names, i.e., DB, table and
column names.

Next, we propose the basic encryption schemes for an
AES DB. These are deterministic or probabilistic. There are
two modes of the deterministic encryption. We call them
respectively group and individual. The former typically uses
less storage. Both usually save storage with respect to our
probabilistic encryption. The individual one is the only
backward compatible, e.g., with MySQL. It can be also the
fastest for an SPJ query. It may not need the decryption,
hence the send-out of the keys altogether. This may be con-
venient for OLTP. The well-known caveat of deterministic
schemes is the vulnerability to frequency analysis. Even a
skilled client may overlook an attack opportunity. The group
encryption should be usually less vulnerable that the indi-
vidual one for the same data. A probabilistic scheme is free
from this caveat. We take the stand that the probabilistic
encryption is the default for an AES DB.

We then propose T-SQL : an SQL dialect for AES DBS.
T-SQL data definition language (DDL) statements complete
the usual SQL with clauses for encryption type, key granu-
larity etc. Metadata names can get also client-side encrypted
or may remain plaintext. We recommend the former choice.
The metadata encryption shares the data encryption key(s).
T-SQL data manipulation language, (DML), provide for
non-procedural key management in queries. We show that
T-SQL queries to ciphertext may remain almost as non-
procedural as these to the same plaintext data. Actually,
Create Database and Use Database statements may be the
only affected. This implies defaults. T-SQL queries become
unavoidably more procedural otherwise.

Next, we overview T-SQL query execution plan genera-
tion. We complete the legacy rules with new, specific to on-
the-fly encryption/decryption. We then address performance
analysis. We focus on decryption/encryption processing
overhead, using recent AES benchmarks, [5] especially and
on storage overhead. The latter depends on encryption
mode. We show that on modern multi-core processors, the
popular Intel I5 especially, both processing and storage
overhead may be negligible for the group deterministic one.
For the probabilistic encryption, it should still be so for the
processing overhead, e.g., as little as 1.5¨%, benchmarked
for the SUM aggregation. This feature makes in particular
our proposal almost eighty five times faster than Paillier
cryptosystem scheme. In contrast, the storage overhead
should usually at least double. This is still however at least
eight times less than for Paillier scheme.

The analysis shows the need for experiments specific to
a cloud DBS. These remain a future work. We conjecture
our proposal nevertheless the first generally practical. Espe-
cially, since heavy weights of cloud DB industry like
Google with its version of MySQL and MS offer already the
cloud-side AES256 encryption. Implying however by its
sheer principle the security limitation we already hinted to
for SQL Server 2016. MS proposes in fact also a client-side
encryption. However, this one requires the cumbersome
download/upload of entire tables to encrypt or even of the
entire DB, to/from the client [13]. There are also other se-
vere limitations, e.g., no equijoins on probabilistically en-
crypted columns, [9].

Next section presents AES DBS. We first discuss the
reference architecture of a trusted DBS. We then discuss our
AES encryption modes. Next, we define the extensions to
SQL. We then discuss the query execution plan and the
implementation issues. Section III addresses the processing
and storage overhead. Finally, we conclude and discuss
further work in Section IV. We stress that prototyping an
AES DB appears finally perhaps surprisingly easy.

II. THE AES DBS

A. Reference Architecture of a Trusted Cloud DBS

Fig. 1, at end of the article, presents our reference archi-
tecture. We intend it for any trusted cloud DBS, regardless
of the cloud DB encryption scheme. In other words, AES
DBS is only a specific case of the architecture. The DB
administrator (DBA) at a client (site) initiates the cloud DB

through some upload. The DB should be strongly encrypted
since in presumably insecure storage. Clients manipulate
the DB through SQL queries. An SPJ query may end up
manipulating a deterministically client-side encrypted ci-
phertext only, i.e., without any cloud-side decryption, as it
will appear. We expect most queries nevertheless needing
the plaintext data, hence a cloud-side decryption. Any such
query brings the encryption key(s) for this purpose. An
update may require a re-encryption. The cloud DBS per-
forms the decryption/encryption on-the-fly, while read-
ing/writing the DB to/from run-time plaintext values. All the
data exchanged are encrypted for the transport using some
usual scheme (SSL, RSA, Diffie-Hellman…). The DBS
instantiates run-time variables with the metadata brought-in.
It deletes any sensitive run-time content, i.e., the metadata
and any retrieved/calculated plaintext data, at most by the
query processing end.

The cloud processes the queries using some core DBS.
This one is supposed to be some current plaintext cloud
DBS with additional capabilities for client-side encryption
management we detail progressively in what follows. The
current DBS could be, e.g., MySQL with its AES encryption
and decryption scalar functions. Our trusted cloud DBS is
the core DBS supposed reinforced with or up-front charac-
terized by security oriented software (only) engineering. The
rationale for our requirement is that trusted DBSs should run
on mass-produced cloud hardware, without then dedicated
add-on hardware (trusted computing module (TCM), FPGA
circuit…, [14], [15]). One may think of the protective com-
ponent as of a vault, firewall…. Whatever the name is, it
should protect the query execution so that clients may trust
the run-time values secure in practice against exploits dis-
closing them. Our threat model for these is the popular hon-
est-but-curious one, an insider being most likely culprit. The
strong and whenever needed probabilistic encryption usually
protects enough the stored data against such threat provided
the attacker does not learn the encryption key. Exploits
through malware disclosing the run-time variables while
they contain the key(s), appear then the basic way to dis-
close the trusted cloud DB content.

We believe trusted DBSs a promising goal for cloud
DBS research. Our requirement on sensitive data to be, at
the cloud, only fugitive run-time vales, is open-ended. As
mentioned, further technical base may be a moving target
defense, [4]. Such defenses secretly shuffle the location of
the program instructions and of run-time data. The results
appear promising. The concept seemingly traces back to a
decade old proposals for secure VMs, [1]. Alternatively,
many, perhaps most, users, may be happy with a trusted
DBS running on a cloud node simply as usual for software
today. First, the run-time data of trusted DBS are supposed
highly volatile only. This characteristic makes them usually
trusted more secure. We already said that this trust appears
universal for passwords released to major browsers. Recall
also reminders of your favorite bank to change your pass-
word often. Next, the DBS should usually run in a VM. The
security of client software is a prime goal for VMs for dec-
ades. The software protection is also gradually increasing in
general through the re-engineering taking advantage of new

capabilities of the basic hardware. E.g., Intel announced in
2013 its Software Guard Extensions (SGX) for the likely the
most popular I5 and I7 processors. Their current versions
with SGX are marketed since 2015. Probably there are
already millions around. The processor guards then specific
RAM areas called enclaves. No software outside an enclave
can access enclave’s content regardless of its privileges and
CPU mode (ring3/user-mode, ring0/kernel-mode, SMM,
VMM, or within another enclave). One may thus (reasona-
bly) trust enclaves. A trusted DBS protected software envi-
ronment (the vault) should be able to profit from these and
from future novelties.

We do not know however any formal model quantifying
the trust or protection against exploits. While the discussed
and other techniques are promising, one should not expect a
trusted cloud DBS secure once and forever. Trust is also
subjective: a cloud DBS trusted by some may not be by
others. Nevertheless, usual cloud DBs should not need the
strongest possible protection. Recall, e.g., that IRS usually
trusts its checks to paper envelopes. Also, stronger protec-
tion is likely to come for a cost. Altogether, one should
expect the trusted DBS technology to face endless race be-
tween offerings, exploits, patches, new exploits and so on.
As it is for our universally trusted OSs, browsers, VMs…

The trusted DBS may send back the selected data as ci-
phertext or plaintext or mix both. The ciphertext requires the
post-processing decryption at the client. Unlike under the
traditional paradigm, a client of a trusted DBS may alterna-
tively request the entire decryption at the cloud. Avoiding
the decryption burden may clearly make many clients hap-
pier. Even the popular browsers could then be clients of a
trusted DBS. The traditional paradigm obviously excludes
such clients.

As the result, two kinds of clients and queries appear,
Fig. 1. A smart client is basically a client DBS able to local-
ly encrypt/decrypt. A simple client, e.g., a popular browser
has not this capability. A smart client may send a ciphertext
query. Such query exchanges ciphertext between the cloud
DBS and the client. It may return selected column ciphertext
for final decryption at the client. An insert or update query
may in turn provide the ciphertext prepared at the client.
Finally the query may have a clause, e.g., a restriction of a
column ciphertext to some (ciphertext) constant. The cloud
detects a ciphertext query when it lacks a key to on-the-fly
decrypt/encrypt a column referred to by the query. The que-
ry may also explicitly state that some column values should
be dealt with encrypted.

A simple client emits in contrast the plaintext queries on-
ly. Those do not exchange any ciphertext. The cloud DBS
interprets every constant of a plaintext query as a plaintext
and every column name as referring to a plaintext. A
plaintext query must include the key(s), to encrypt/decrypt
every column for which there is some data exchange by the
query. Every encryption/decryption is done on-the-fly at the
cloud. A ciphertext query may avoid sending any keys, as it
might not need the decryption/encryption on the cloud.
Both properties may be considered advantageous by some
users over a plaintext queries, decrypting/encrypting the
related plaintext. Coming however, we recall, at the price of

burden for the client. Also, as we already stated, many typi-
cal queries cannot be in practice dealt that way. Altogether,
the advantage does not appear compelling. A smart client
may of course formulate any plaintext query as well.

Ex. 1. (a) The following SPJ query is a plaintext one to
the well-known Supplier-Part DB, usually called S-P. We
recall it has the suppliers in table S, parts supplied in table P,
and actual supplies in table SP. We discuss details of S-P for
trusted AES DB soon. The query provides two table encryp-
tion keys, using SQL syntax extended for trusted AES we
present soon;

(1) Select S.Name, SP.P# From S Key ‘S123’, SP Key
‘P123’ Where S.S# = SP.S# and SP.Qty = 200;

AES DBS recognizes that it is the plaintext query since it
finds the key ‘S123’ valid for all S columns and the key
‘P123’ for all SP columns. It uses the keys to decrypt the
final projection (S.S#, S.Name, P#) by default. We discuss
later how DBS may actually evaluate the query.

(b) The next query could be a ciphertext one of some
smart client. The hex constant is presumed 16B long and
encrypting 200 into an AES bloc.

(2) Select Into Client.CacheDB.CipherTbl S.Name,
SP.Qty From S, SP where S.S# = SP.S# and
SP.Qty = Ox1234... ;

Query (2) does not carry any keys. AES DBS cannot de-
crypt any column the query names. It thus considers the hex
constant in the query a ciphertext. Any of these properties
makes the query a ciphertext one.

The query brings back the ciphertext. The result goes to
CipherTbl table. The query dynamically creates it in some
cache DB for the cloud DB at the client, named CacheDB.
The client must decrypt the result for the user (application).
E.g. through the following local query, calling the decryp-
tion scalar function, say AESD, using some encryption key,
say ‘123’, known to the client:

 Select AESD (S.S#, ‘123’), AESD (S.Name, ‘123’)
From S;

As said, not sending any keys and economy of decryp-
tion time at the cloud could be an advantage over query (1).
However, as it will appear, the time saved is negligible.
There is also the time spent for decryption at the client then,
in exchange. Next, as we stated and detail below, query (2)
is correct only if the encryption of S# and QTY columns is
deterministic and individual. It will appear that some storage
gain may result, compared to a probabilistic encryption,
especially for strings. Deterministic encryption however is
then potentially not great in turn for S-P security. At least
QTY here may be supposed vulnerable to frequency analy-
sis. The cloud has no way also to figure out the intended
plaintext for the restriction, i.e., 200. The correctness is
solely in client’s hands.

Notice finally also that, under AES encryption, similar
ciphertext query would not be possible, if the clause on
QTY was the QTY >200, a quite typical clause obviously.
The cloud would need the key for ‘>” evaluation. Otherwise,
the client would need to basically ask for the transfer of
entire S (S#, SNAME) and SP (S#, QTY) at least to post-
process the clause locally. This should be usually clearly a
highly impractical operation.

Ciphertext query were the must for the traditional para-
digm. The example illustrates that, altogether, their practi-
cality for AES DBS does not appear compelling. Likely, the
most frequent client of a trusted DBS should be a simple
one, with plaintext queries thus. The design of AES DBS
follows this rationale.

B. Encryption Modes for an AES DB

From now on, we consider the AES256 on-the-fly en-
cryption/decryption only, as in Ex. 2. We consider three
encryption modes for AES DBs. Two are deterministic and
one is probabilistic.

1. Individual deterministic encryption: We recall that
an encryption is deterministic, if the same plaintext, e.g., in
the same column in different rows of a table, produces al-
ways the same ciphertext. The first mode encrypts every
column plaintext as a distinct ciphertext. We qualify it of
individual or, sometimes, of ungrouped.

We recall that AES is a symmetric basically determinis-
tic scheme that encrypts plaintexts into 16B blocks. Modern
workstation processors shifted to 64b arithmetic. We thus
consider that a numerical value is up to 8B long. Each nu-
merical plaintext gets encrypted thus to a single AES bloc.
A string may have any length, hence lead to any number of
blocs. If a plaintext does not fill a bloc, the client trivially
pads the plaintext with a given constant to the block length
before encryption. The cloud DBS knows the padding by
default or infer it from the metadata we discuss in next sec-
tion.

Fig. 2 illustrates the deterministic encryption modes with
128b wide AES blocs shown in plaintext ready for encryp-
tion. The upper blocs contain 64b wide integers. The left
bloc has a single integer left padded with zeros, ready for
the individual deterministic encryption. The lower two blocs
are filled up with a string. The string is presumed encoded
using the 8b UTF-8 symbols and left-padded with six spac-
es. These blocs are also ready for the individual encryption
creating a two-bloc long AES ciphertext.

The individual encryption is the usual one. It is well-
known in particular that the OLTP queries perform best if
columns are encrypted accordingly. Provided the client-side
decryption, the cloud DBS can use the ciphertext directly to
evaluate the selections and equijoins of a typical SPJ query,
i.e., without a value expression in particular. This could be
the case of query (2) provided S# and Qty columns are indi-
vidually deterministically encrypted. The client must be a
smart one, we recall. AES DBS may only send the outcome
of query (2) encrypted.

2. Group deterministic encryption: Our second deter-
ministic encryption is group encryption. A group is a con-
catenated collection of plaintext column values, possibly,
without any intermediate padding. AES DBS encrypts the
whole group into a single ciphertext. In Fig. 2, the upper
right 128b AES bloc groups two integers for their determin-
istic encryption within a single bloc. Saving the cumulated
128b long padding that would be added to their individual
encryption, into two blocs instead.

Notice that for the group encryption, even if one of the
values grouped in a bloc remains constant for selected rows,

e.g., QTY = 200 as intended for our queries (1) and (2), the
other(s) usually should change among these rows. Variable
length strings may also shift somehow in the bloc or even to
another one, the constant plaintext. Altogether, likely, a
pseudo-random ciphertext within the blocs encrypting
QTY = 200 should result. Unlike for the individually en-
crypted ciphertext, ciphertext queries like query (2) become
impossible. AES DBS decrypts therefore on-the-fly every
group encrypted ciphertext. The query must bring the key.
AES DBS knows the encryption mode from the metadata.
These also indicate how to ungroup the plaintext provided
by the decryption.

The default and only choice for a group in what follows
is the plaintext of all the column values formatted into a row
by the DBS. The rationale is that the usual internal DB
structure to be reused for an AES DB as we discuss later,
should be row-based. An AES DBS may alternatively be
columnar however. This could be when the core DBS reuses
a columnar DBS, e.g., Monet or Vertica. The group could be
then a plaintext columnar page.

The group deterministic encryption has no sense for the
traditional paradigm, as the cloud needs the key. The ra-
tionale is usually negligible or no storage overhead with
respect to the plaintext, unlike for the individual encryption.
We have outlined also that group encrypted plaintext en-
hances the variability of the ciphertext among blocs in dif-
ferent rows encrypting same columns, with respect to the
individual deterministic encryption of these columns. The
group encrypted deterministic ciphertext should be in con-
sequence usually less vulnerable to the frequency analysis.

We recall that the latter may render insecure an individ-
ually encrypted column with a popular skewed value distri-
bution, e.g., the zip code, [3]. The price to pay for the group
encryption, we recall as well, is the systematic on-the-fly
decryption. It will appear nevertheless that for AES, the
processing overhead of this operation should be negligible
in practice. Also, for an OLAP oriented AES DB, the simple
SPJ queries, like query (2), should be exceptions. While the
predominant there complex query should require the sys-
tematic decryption anyhow. All the discussed properties
weighted, one may expect a large fraction of AES DBS
clients preferring the group encryption over the individual.

Fig. 2. Deterministic encryption for AES DBS. Left upper 128b AES
bloc will individually encrypt 64b integer, left-padded with zeros.
Right upper bloc will group encrypt two integers, saving the padding.
Lower two blocs serve the individual encryption of a string.

Probabilistic AES DB encryption: We recall that any
probabilistic encryption encrypts occurrences of the same
plaintext into seemingly random (different) ciphertexts. This
frees the ciphertext from the discussed vulnerability. It
should be clear that AES is basically a deterministic encryp-
tion. Our third mode turns it into a probabilistic encryption
for AES DB as follows. We fill each bloc to encrypt with
the plaintext up to 64b large only, Fig. 2. Say putting it to
the right half. The left half of the block contains client-side
generated pseudo-random padding, i.e., an Initialization

Vector. For a numerical plaintext, the right half would typi-
cally contain a 64b integer or real number. For a string, it
may contain, e.g., up to 8 Utf-8 symbols.

Fig. 3. Probabilistic encryption for AES DBS. Blocs contain the same
plaintext in their right half. Left half of each bloc is randomly padded.
Ciphertext values will be necessarily different.

For the same plaintext in a bloc, AES may now generate
up to 264 apparently equally-likely ciphertexts. Encryptions
of a plaintext value in different blocs should be all different.
The result should preclude any frequency analysis. In turn,
as for the group encryption, this one also impairs SPJ que-
ries over the ciphertext. In particular, there is no practical
way to evaluate a join. The on-the-fly decryption is also the
must [3].

In other words, the result of query (2) should be usually
folkloric for any AES DBS encryption mode other than the
individual deterministic one. We therefore consider, by the
way, that AES DBS prohibits such outcomes. Query (1)
does not care about encryption type. It evaluates joins and
restrictions over the on-the-fly decrypted plaintext anyhow.

C. SQL for AES DBS

As Ex. 1 hinted to, the client-side encryption under trust-
ed DBS requires additional SQL clauses. We now propose
such clauses specifically for AES DBS, i.e., its core DBS.
The clauses extend both DLL and DML statements. New
DML clauses let the client to specify key values in queries,
e.g., as in Ex. 1. Through specific DDL clauses the client
defines or modifies key granularity or encryption type. The
client may also encrypt the metadata, the data names specif-
ically, as we spoke about or choose not to for selected name.
There are numerous default options. These aim on the least
procedural plaintext queries to the AES DB. Possibly, no
more procedural that would be equivalent queries to the
plaintext SQL DB, except for the key(s) definition perhaps.
Like the queries in Ex. 1.

We refer to the result as to Trusted SQL, (T-SQL). The
client trusts indeed the security of the sensitive values pro-
vided. It would not make sense to define here T-SQL gram-
mar. We use only basic SQL syntax that does not follow
strictly any specific dialect. We discuss T-SQL only infor-
mally, through examples. S-P DB is our motivating canvas.

As usual, a T-SQL query may involve several state-
ments. A key defined in a statement may apply to others in
the query, but only to these ones. It’s wiped out from the
cloud after the query processing, we recall.

The DDL statements define metadata for AES DB cata-
logs. These are supposed the usual SQL catalogs extended
with AES DBS encryption management metadata. T-SQL
new DDL clauses concern first the Create Database state-
ment. Any of these clauses applies to all the data and
metadata by default. A clause may be overwritten however
for a selected table in subsequent Create Table or Alter
Table statement. First default for Create Database is that if
the client does not provide the key, AES DBS stores the DB
name provided in plaintext. Same for all subsequent data
names, unless the client provides the key locally to a table or

column definition. If the client provides the key in a DDL
statement, then the key implicitly encrypts all the related
data name(s) in the statement, unless the client states explic-
itly not to be so for specific data definition. The reason for
the default is our belief that the metadata encryption is safer
for the client. Plaintext metadata may disclose some
knowledge of the DB evidently. For obvious practical rea-
sons, we limit this encryption to probabilistic only. As for
DML queries, the key itself remains in secured run-time
variable only and is wiped-out once DBS processes the DDL
query.

With respect to data, the probabilistic encryption is the
default as well. The client may override it by either type of
the deterministic one. The scope is according to the key
granularity.

Ex. 2. The following query may create S-P with its ta-
bles. All tables share the DB key ‘S-P123’. All data names
are encrypted accordingly. String symbols are, for change,
in Unicode, with 16b symbols, and integers are 64b wide.
All S-P column values are probabilistically encrypted.
Create Database ‘S-P’ Key ‘S-P123’;
Create Table S S# Char (6), SNAME Varchar (40),
STATUS Int, CITY Varchar (50). Primary Key S# :
Create Table SP S# Char (6), P# Char (6), QTY Int,
Primary Key (S#, P#) ;
Create Table P, P#..., PNAME…, COLOR…, CITY…,
WEIGHT… Primary Key P#;

The Create Database statement has the T-SQL specific
key definition clause. As one result of this one, the name S-
P gets probabilistically encrypted for the AES DBS catalogs.
The statement is the only in the query with any T-SQL spe-
cific clauses. One effect is that all the other data names
declared in the query are also stored in AES DBS catalogs
probabilistically encrypted. The key related clause makes
the above Create Database slightly more procedural than the
corresponding plaintext statement. In contrast, all the Create
Table statements are as their counterparts for the plaintext S-
P. The former and the latter are thus equally non-procedural
for the clients.

Notice that with the above S-P definition, query (2) is
impossible. By default, all columns would be probabilisti-
cally encrypted. To avoid it, DBA should explicitly define
above the columns referred to in Where clauses of (2). E.g.,
as S# Char 12 IND what would stand for individual deter-
ministic encryption. Also Create Database Key clause
should become the self-explaining Key ‘S-P123’ DATA
ONLY. But this would leave in turn in plaintext in the cata-
logs by default not only S-P, but all data names. Unless
some Create Table overrides this default for itself. E.g., the
following one: Create Table S Key ‘S123’, S# Char 12….
would (probabilistically) encrypt the name S and all the
column names in table S. It would leave all the other data
names in S-P in contrast here by default in plaintext. @

In what follows we suppose that operationally, AES
DBS produces the ciphertext using the AESE (X, K, E)
scalar function. Here, X is a column name or plaintext to
encrypt, K is the key and E is the encryption type for X. K
is optional. First, the function may reuse the key that the
query provides elsewhere. Next, the purpose of the whole

statement may be only to explicitly state that ciphertext
stored in column X should be dealt with as is. Finally, E is
also optional. Its absence means the default probabilistic
encryption for X or values within. If E is there, it is E = IND
or E = GRP. It stands then for the individual or group de-
terministic encryption. Here, the (probabilistic) encryption
of, e.g., S-P name could alternatively result operationally
from AESE (‘S-P’) reusing ‘S-P123’ as the key.

Alter Table DDL statement of T-SQL is supposed ex-
tended similarly. Using it for AES DB, DBA may alter all
encryption related new features. E.g., DBA may decide to
protect PNAME column specifically, by altering the default
definition as follows:

Alter Table P Key ‘S-P123’ As Alter PNAME To
PNAME Key ‘PNAME123’ ;

Notice that this could be a costly operation. It re-
encrypts both the column and its content. Actually, most
encryption related alterations would do and cost similarly.

 Finally, Drop Table T-SQL statement is the usual
plaintext one extended at most by the KEY clause only.
DBS needs the key to locate the table in the catalogs when-
ever its name is encrypted as well. What should be the wise
practice, as we stressed.

The T-SQL DML statements also the usual ones extend-
ed with the Key clause. In T-SQL Use statement this clause
provides the value of the DB key. This one may apply by
default to all the subsequent statements. Actually, these may
also be the DDL statement(s) Alter or Drop. In Select DML
statement, the clause adds to the usual ones in From clause.
It may follow a table name, applying then by default to all
its columns. Preceded with ‘,’, it may follow the list of all
the tables, providing then the DB key. This applies to all the
columns named in the Select. Except for the columns of a
table with its own key provided in the statement as well or
for any column with its own key. The column key may be
provided also through Key clause, but may result the invo-
cation of the already addressed AESD function. This choice
is basically backward compatible with MySQL.

For the Insert DML statement, Key clause may similarly
appear after the table name. In contrast to Select, it may also
follow a column name. It then applies to every tuple that
follows within the usual Values clause. For Update state-
ment, it may follow the table name or any column modifica-
tion clause. Finally, it may follow the table name in Delete
statement.

Ex. 3. Here are a few almost self-explanatory T-SQL
queries to S-P as defined through Ex. 2. Queries may have
comments, as usual after ‘/*’.

Use S-P Key ‘S-P123’ ; Select S.* From S, SP Where
S.S# = SP.S# and SP.QTY > 200 ; /* Key value from Use
applies by default to all columns in Select statement that is
then simply the usual SQL one.

Use S-P; Select AESD (PNAME, ‘PNAME123’), S.*
From P Key ‘P123’, SP, S, Key ‘S-P123’ Where
P.P# = SP.P# and S.S# = SP.S# and SP.QTY > 200 ; /* S-P
name is in plaintext, P has its own table key, except for
PNAME, Select statement provides the DB key value for SP
and S.

Use S-P Key ‘S-P123’; Update P Key ‘P123’ Set

COLOR = ‘Red’, PNAME Key ‘PNAME123’ = ‘Big
Wrench’ Where P# = ‘P3’ ;

Insert P Key ‘P123’ ([P#], PNAME Key ‘PNAME123’
Use S-P Key ‘S-P123’;) Values ('P8', ‘Nut’), (‘P9’,
‘Wrench’) ;

Use S-P Key ‘S-P123’; Drop P Key ‘P123’ ;

D. T-SQL Query Execution Plans

As usual, to evaluate a T-SQL query, AES DBS should
generate some execution plan, possibly optimizing pro-
cessing time or storage. We see such plan as the one gener-
ated as if the query manipulated the plaintext data only, with
additional decryption/encryption operations blended in. The
latter facet is subject to its own basic and amelioration rules.
As usual, the ameliorations aim on query performance, suc-
ceeding often, but not always. It would not make sense here
to define rules specific to the encryption/decryption formally
or exhaustively. We only sketch a few informally. Here are
two basic rules for the query plan generator, one could say,
naïve.

1. Let A be a column referred to in the query. For every
A, if the query provides the key for A, then decrypt or en-
crypt on-the-fly every manipulated value of A. Otherwise,
manipulate every A value as a ciphertext. Call further rules
to decide whether to decrypt or encrypt A values, or decrypt
then re-encrypt them. If A is a ciphertext, call further rules
to decide whether query formulation allows it to be pro-
cessed altogether or the plan generation should be halted.

We skip the further rules to which rule (1) refers as sim-
ple but tedious. In short, they should imply a decryption for
a Select query. Also basically, they should imply an encryp-
tion of values provided for Insert and Update queries. A
Select clause in these queries may however require a de-
cryption, perhaps followed by an encryption, perhaps of
even a different type. Details depend then on the column
definition in AES DBS catalogs. Finally the Select Into
query may require the same treatment.

2. Let the query have a restriction clause A C, where C
is a constant and {=, ≥, ≤, , , <>}, as usual for . If A
can be decrypted then consider C plaintext constant. Other-
wise, search for A in the catalogs. If A is declared plaintext,
then consider C plaintext as well. Otherwise, consider C a
ciphertext.

The following two rules are specific to the individual de-
terministic encryption.

3. Regardless of basic rules (1) and (2), let column A be
individually deterministically encrypted and subject to the
restriction by ORed equality clauses only: A = C1 Or
A = C2 Or…., where each C is a plaintext constant. Then
encrypt each C, and match visited A values as they are in
AES DB.

4. Likewise, if two individually deterministically en-
crypted columns A and B are in equijoin clause A = B, then
match the manipulated A and B values as they are stored.

Rules (3) and (4) are examples of the amelioration rules
specific to AES DBS encryption/decryption in the query
plans. The basic rules would systematically decrypt the
visited values. Usually, these or others amelioration rules
save some processing time, but not always. Other clauses

may imply that all the matched values are finally decrypted
anyhow.

 There are also rules for value expressions. Likewise,
there are basic rules for correctness of the query with respect
to its decryption/encryption facet. These are the rules we
referred to in rule (1). We also talked about, while discuss-
ing why query (2) may only support the individual determin-
istic encryption. These rules may consequently halt the plan
generation and the query processing. Or, at least, may issue
a warning SQL Error code. Next, there should be obviously
also the implementation dependent rules, e.g., related to
indexing. One may expect these to attempt to ameliorate the
basic rules sometimes. Altogether, as for a plaintext DB, the
plan generation appears a complex matter. We leave the
subject for future work.

The following example shows a few plans for queries to
our encrypted S-P.

Ex. 4. Consider query (1) to S-P created encrypted with
DB key ‘S-P123’ and defaults only. All columns are thus
probabilistically encrypted. The typical plaintext only plan
would start with processing the restriction on QTY, fol-
lowed by the processing of join over previously selected
rows and of the final projection. The AES DBS specific
facet will apply he basic rules (1) and (2) only, decrypting
thus on-the-fly all the visited stored values. Amelioration
rules would come to play only if QTY or both S# columns
were individually deterministically encrypted.

Consider now query (2) from the same example. The
plaintext plan would be the same. The AES DBS specific
facet should first include the test of query correctness, i.e.,
whether all S# and QTY columns are really individually
deterministically encrypted. If not the plan could issue the
critical error and halt. Otherwise, it can continue, generating
for the ciphertext the plan otherwise for a plaintext DB,
same as for query (1). It may also perhaps issue a warning
about potential issue with C we spoke about.

Consider finally the query: Use S-P Key ‘S-P123’; Se-
lect STD (Qty) from SP ;. Suppose SP stored row-wise as
usual. Then, the optimal plan for the plaintext S-P usually
would first have the value expression rewritten to
SQR ((AVG(QTY**2) – AVG (QTY)**2) at least. Perhaps,
AVG would be decomposed even further. Then, the plan
would perform a single scan of entire SP, processing every
QTY value once and only once (to process VAR without the
above rewrite would need a double scan). As outlined, AES
DBS should generate this plan with the additional rewrite,
replacing on-the-fly each visited QTY value V with
AESD (‘V’, ‘S-P123’).

Notice that we are not aware of any somewhat homo-
morphic encryption able to evaluate this query entirely at the
cloud at present, (actually our THE scheme would do, pro-
vided one first tabulates encrypted SQR function for the
domain of QTY). The fastest current solution for bigger SP
at present would be likely the lengthily upload of the whole
SP or of, at least, its QTY column, to the client for the
plaintext processing there. Likely, it would be the same
processing as the one above generated by AES DBS at the
cloud. But then, the cloud would send back a single value
only, i.e., the final one.@

E. Implementing AES DBS

Creating AES DBS from scratch seems a utopia. Rather
the core DBS, Fig. 1, should embed a legacy DBS. This one
should provide for encryption/decryption, at least through
User Defined Function (UDF). A 2-layer functional archi-
tecture appears accordingly for AES DBS, Fig 4. Both lay-
ers should process queries only within the trusted query
execution environment, as the reference architecture stipu-
lates. The legacy DBS code might need an update, invalid-
ing perhaps any code saving plaintext run-time values, e.g.,
into a log file.

The T-SQL layer is the client interface. Functionally, it
is the only to communicate with the clients. It receives T-
SQL queries and sends back the results. The legacy DBS
manages the DB and operationally processes all the queries.
It must be provided with encryption/decryption functions. It
is the legacy DBS indeed that ultimately generates the query
plan and executes it using the on-the-fly decryp-
tion/encryption internally. MySQL provides such functions
as the native scalar ones for the individual deterministic
encryption decryption and for this encryption mode of AES
DBS only. We are not aware of any other legacy DBS with
such functions. At least the remaining encryption/decryption
modes for MySQL and all the modes for another legacy
DBS must thus be added. The general way is to create
UDFs. Most major DBS support UDF libraries. Perhaps
even, the most practical way to implement the T-SQL layer
itself is to create an UDF.

Any legacy DBS will use some SQL dialect. Functional-
ly, T-SQL layer should reformulate T-SQL queries in this
dialect to get the required legacy services. At this stage we
can only outline the main services needed:
- AES DB metadata management. AES DB needs its own
catalogs used at T-SQL layer. These should contain the
original AES DB scheme, including encryption metadata,
e.g., the one of S-P we discussed. To implement these cata-
logs, the easiest is probably to internally create and manage
them as tables by the legacy DBS.
- Internal scheme management. Legacy DBS needs its own
scheme for AES DB. This should and may only contain the
usual characteristics of a DB managed by this DBS. These
do not concern the encryption metadata, in first place. In
particular, the original plaintext column data type at T-SQL
layer should usually be different from the encrypted one. In
general, the latter should be Blob () or Varbinary () for AES
blocs. The former can be any, e.g., Float for a numerical
column. The on-the-fly decryption using any existing algo-
rithm of our knowledge produces a Blob () string. This one
needs in fine get converted to the original plaintext type. T-
SQL layer has to handle the details of the internal scheme
generation and of the decrypted plaintext value type genera-
tion. Details may be surprisingly tedious at present, e.g., for
MySQL, [16].
- For the probabilistic or individual deterministic encryp-
tion, the internal DB scheme may have a column for each
original one. In contrast, for row based group-deterministic
encryption, it seems that most practical is to service a single
internal column per original table. Encryption/decryption

should be able to scope any individual column anyhow, i.e.,
select, insert or update an individual column value. As we
said, the legacy DBS services for T-SQL providing most or
all of these capabilities remain to be designed.
- Altogether, implementing an often likely to be sufficient
AES DBS architected as in Fig. 4, appears surely tedious,
but likely easy. Nowadays, as we discussed, one may indeed
reasonably trust the security of run-time variables in a major
legacy DBS, e.g., perhaps already or soon all in enclaves.
MySQL appears 1st choice for the legacy DBS. Its code is
public. One can inspect the run-time management & adapt
to AES DBS any perhaps subsisting need. The AES encryp-
tion/decryption we spoke about consists of SQL scalar func-
tions AES_ENCRYPT() and AES_DECRYPT(). These
should serve the AES DBS AESE () and AESD () functions
we discussed, for the individual deterministic encryption at
least. The RAND function should help with the AES DBS
probabilistic encryption. Finally, MySQL not only supports
UDFs to create the AES DBS specific functions, as we dis-
cussed already, but these functions may be created alterna-
tively as so-called native function or stored functions. Each
function type has its pros and cons, widely discussed in
MySQL manual and blogs.

Fig. 4. The 2-layer Functional Architecture for AES DBS.

- More generally, as said already, our goal seems feasible
for any existing plaintext cloud SQL DBS supporting UDFs.
Some major cloud SQL DBSs do not have this capability,
e.g., Google Cloud. Otherwise, SQL Server seems a runner
up candidate. Its code is not public, but it has native AES
encryption/decryption, although cloud-side only, [9]. It
encrypts/decrypts DB file pages, hence can be seen as
providing a group deterministic encryption, although only
this one and not our default one. In each case, a usual
browser should suffice as a simple client. These guidelines
are likely the way to start practicing our proposal.

III. PERFORMANCE ANALYSIS

A. Processing Overhead

What matters most for our proposal is the overhead of
on-the-fly AES256 decryption and encryption at the cloud,
induced by a query to the ciphertext in AES DB. There are
several recent benchmarks of AES256: [5], [6], [10]. They
consider the popular multi-core processors. Most of them
naturally consider the ciphertext in RAM cache or disk. The
encryption/decryption result can be measured as sent out (or
simply dropped) or with every ciphertext/plaintext written
back to RAM. The former measure is the basic one for Se-
lect queries. The latter one adds up for a systematic Update
query. For instance, - adding 10% to every price in some

AES DBS

Legacy DBS with
encryption/decryption

T-SQLClient

Cloud

table. The main measure is the number of encrypt-
ed/decrypted bytes per second (MBs). The decryption can be
little faster than encryption.

The encryption can be entirely in software. Two popular
public-domain algorithms are Truecrypt and Twofish. The
former uses the Rijndael’s algorithm that won NIST compe-
tition. The latter was a competitor as well, but appeared
slower, for 64b processors especially, [8], [7]. Within Intel
I5 processors family, several CPUs have instructions for
AES encryption/decryption hardware acceleration. These
are so-called AES-NI instructions. Some Xeon CPUs also
do, e.g., Xeon X5690. Pricing with or without NI is in prac-
tice the same. Truecrypt 7.0a takes advantage of AES-NI.
Twofish does not. The benchmarks show that AES-NI effec-
tively speeds up the processing. Results vary among bench-
marks.

For our purpose, we concentrate on Intel I5, seemingly
the most used. According to [G2], the bulk raw (straight)
encryption using the Truecript 70.a without RAM re-writing
provides the impressive 1900 MBs encryption/decryption
rate. Twofish leads to 273 MBs “only”. More recent results
in [5] for a wide range of CPUs, report for I5 661 CPU spe-
cifically, an even more impressive 4133 MBs rate. Presum-
ably, - with Truecript 70.a as well. Results for other CPUs
vary, the slowest being 317 MBs and the average being 1.9
GBs. For the deterministic encryption this leads up to
516,5M for AES-NI and to 34M for Twofish pf
plaintexts/ciphertexts processed per second. To decrypt
100K values, e.g., for sum SUM function, may take thus as
little as 0.2 ms with Truecript 70.a (and 3ms with Twofish).
For our probabilistic encryption, the timing multiplies by
two.

The processing naturally slows down when every de-
crypted/encrypted value is written back to RAM. Only [6]
reports the related experiment, using Truecript 70.a. It per-
formed at 763 MBs. However, the plaintext writing rate was
then limited to 880 MBs. Encrypting led thus to 13% over-
head only. Per value rate is about 100 - 50Ms and 100K
value decryption takes 1-2ms for our encryptions. How the
RAM writing impacts an SQL query depends obviously on
the aggregates and clauses (GROUP BY, ORDER BY
TOP…). Nevertheless, Select queries serve generally to
produce few values only. An aggregate is expected to read
perhaps very many tuples, but to produce a few only. The
writing timing of these results should therefore very little
impact of the read-only results above. It is not the same for a
large update. We come back to the issue below in SQL spe-
cific analysis.

The bulk transfer rate from hard or SS (flash) disk is disk
technology dependent. They appear to be at most 150MBs
in practice (SATA-3 interface). The random access times are
well-known, i.e., about 10ms in practice for a hard disk and
1ms for an SSD. The AES overhead appears negligible,
allowing for the real-time processing (Aegis Padlock disks).

The results for the decryption/encryption of selected val-
ues or of small groups of those are slower than for bulks.
The reason is so-called key set-up time. Experiments show
nevertheless that the key set-up may cost for the Rijndael’s
algorithm as little as 15% slow-down [8]. An SQL query is

typically expected to do a bulk search. We thus neglect this
(small anyway) specificity in what follows.

Finally, the AES algorithms above discussed appear pro-
grammed in assembly language. Use of a higher-level com-
piler, e.g., Java, may have a severe impact. For Oracle JDK
1.7, Intel reports thus at best 80 MBs rate, for AES-NI, [I5].
This is 10M values per second for us, “only”. The overhead
goes up to 10ms per 100K decryptions. We do not analyze
this DBS seems natural. The subject requires nevertheless a
specific study.

B. Storage Overhead

As we hinted, the AES DBS deterministic ciphertext
may have negligible or no storage overhead with respect to
the plaintext. The latter should occur mainly for the group
deterministic encryption, e.g., for our SP table, encrypted
into two blocs per row. In practice, a group is likely to have
some leftmost or rightmost padding. This could be the case
of our S table. Usually, a row has hundreds bytes at least.
The padding incidence should be thus negligible. The exact
overhead per row, table or entire DB, should be DB specific.
The individual deterministic encryption should obviously
usually increase the padding, hence the overhead. The actual
value is again DB specific. For SP we would have three
blocs with 16B of padding total, hence 33% overhead.

The probabilistic encryption should be the most storage
thirsty. It at least doubles the storage of every plaintext col-
umn. It carries the overhead of 100% for numerical col-
umns. The overhead may be still higher for strings, especial-
ly short ones, say a dozen of bytes at most. For our SP, we
would end up with five blocs hence 150% overhead. Such
cases appear nevertheless unlikely. One may expect the
overall usual overhead for a table or DB still close 100%. It
could be the case for S and P tables, because of longer
strings they should typically contain. The actual overhead
should be again obviously AES DB specific.

An AES DB may thus fit at best about the same storage
as the equivalent plaintext DB. At worst, it may require
about twice that storage. Especially, if the client chooses the
default encryption that is the probabilistic one we recall. The
worst case is still practical, e.g., it is about the overhead of
the popular DB mirroring. However, it may be of concern to
clients paying the cloud storage. The client may then per-
haps rethink the default choice of best possible randomness
for ciphertext. Perhaps, s/he can after all trust the limited
randomness of the storage-savvy group deterministic en-
cryption. Notice nevertheless that, even for the default
choice, AES DB overhead remains far smaller than a typical
one of probabilistic homomorphic schemes. E.g., Paillier
scheme requires at least 1Kb ciphertext per plaintext integer.
Thus about eight times more than AES DB in worst case.

C. Query Processing

The basic measure here is the overhead of on-the-fly de-
cryption for the otherwise plaintext execution plan. Such
decryption may deal with GBs. The study of the read/write
speeds for a ciphertext and a plaintext above showed only
13% overhead then. This suggests that even for an AES DB
in RAM storage, the overhead of the on-the-fly decryption,

including auxiliary data, e.g., indexes, could be usually
limited to a dozen of percent or so as well. It should become
negligible for AES DB on solid state or hard disc, with an
order of magnitude at least slower read/write speed thus.
Another measure can be the AES DBS query execution
speed with respect to the same query over a homomorphic
encryption. The Select SUM(x)… query adding 100K
plaintext values at the cloud server using Paillier, reputed
the fastest traditional additively homomorphic scheme,
needed 14ms for plaintext additions, and 1153ms for Paillier
additions, followed by 50ms decryption time at the client
[11], [12]. Our scheme adding up at best 0.2ms to the
plaintext time, its overhead could thus be as low as 1.5%.
This result appears thus even better than 13% above, match-
ing actually AES overhead of reads by SQL Server on AMD
processors, of 1.91 – 2.86%, [17]. All other benchmarks we
cited would cost a few milliseconds at most. With respect to
the homomorphic encryption, finally, AES DBS could thus
be up to eighty five times faster.

IV. CONCLUSION

The on-the-fly decryption/encryption by a trusted cloud
DBS, appears the first generally practical architecture for a
client-side encrypted relational cloud DB. It roots in the
intensive research for almost four decades. It is the only at
present potentially offering to large public any functional
capabilities, current or future, of a plaintext relational DBS.
It is also the only allowing for simple clients. The on-the-fly
decryption/encryption run-time overhead should be negligi-
ble for an AES DB, whether it uses the deterministic or our
probabilistic encryption. The queries can be also expected
about two orders of magnitude faster than for known ho-
momorphic schemes. In addition, the functional and pro-
cessing capabilities of all those schemes perhaps suffice for
selected applications, but are largely limited with respect to
our scheme.
Our study has shown several directions for further work. We
have highlighted some, see [3a] for more. The main conclu-
sion is that building an often likely sufficient AES DBS
appears rather easy. Nowadays, as we discussed, one may
indeed reasonably trust the safety of run-time variables of
major SQL DBSs, e.g., perhaps already or soon in enclaves.
Free MySQL appears the 1st choice as already stressed.
Likewise, SQL Server seems the runner up candidate. In
each case, a browser suffices to run plaintext queries as
simple client. Let us stress again that all this seems the way
to start practicing AES DBSs.

V. REFERENCES

[1] Holland, David A., Ada T. Lim, and Margo I. Seltzer. 2005. An archi-
tecture a day keeps the hacker away. 2004 Workshop on Architectural
Support for Security and Anti-Virus. Boston, MA. Special issue,

[2] Jajodia, S. Litwin, W. Schwarz, Th. Numerical SQL Value Expressions
over Encrypted Cloud Databases. 8th Intl. Conf. on Data Management
in Cloud, Grid and P2P Systems (Globe 2015). In DEXA 2015.
Springer, 2015.

[3] Jajodia, S. Litwin, W. Schwarz, Th. On-the fly AES256 Decryp-
tion/Encryption for Cloud SQL Databases. Position Paper. BDMICS
2016, Porto (Sept. 2016), 5p, IEEE, publ., to app. (a) Extended Prelim-
inary Version: Lamsade Res. Rep. June 2015, 13p.

[4] Jajodia & al. eds. Moving Target Defense. Advances in Information
Security. Vol 1 & 2. Springer, 2011-3.

[5] SiSoftware AES256 Benchmark. 2015.
http://www.sisoftware.co.uk/?d=qa&f=cpu_vs_gpu_crypto&l=en&a=

[6] Grant. Hardware AES Showdown - VIA Padlock vs Intel AES-NI vs
AMD Hexacore. 2011.
http://www.grantmcwilliams.com/tech/technology/387-hardware-aes-
showdown-via-padlock-vs-intel-aes-ni-vs-amd-hexacore

[7] Dandalis & al. A Comparative Study of Performance of AES Final
Candidates Using FPGAs In: Cryptographic Hardware and Embedded
Systems – CHES 2000, 2nd Intl. Workshop. Worcester, MA, USA,
2000. Lecture Notes in Computer Science, Springer (publ.).

[8] Schneier, B. & al. AES Performance Comparisons.
http://csrc.nist.gov/archive/aes/round1/conf2/Schneier.pdf.

[9] Hammer, J. Szymaszek, J. Overview and Roadmap for Microsoft SQL
Server Security. Microsoft Ignite, Chicago, Apr. 2015.
https://channel9.msdn.com/Events/Ignite/2015?t=mission-critical-oltp .

[10] Intel. AES-NI Performance Testing on Linux*/Java* Stack, 2012.
https://software.intel.com/en-us/articles/intel-aes-ni-performance-
testing-on-linuxjava-stack#aes256

 [11] Smith, K., Allen, D., Sillers, A., Lan, H., Kini, A.: How Practical Is
Computable Encryp-tion? http://csis.gmu.edu/albanese/events/march-
2013-cloud-security-meeting/04-Ken-Smith.pdf

 [12] Smith, K., Allen, M., D., Lan, H., and Sillers, A. Making Query
Execution Over Encrypted Data Practical. Secure Cloud Computing.
Springer, 2014, Jajodia, S. & al eds, 173-190.

 [13] Szymaszek, J. Encrypting Existing Data with Always Encrypted. SQL
Server Security Blog, July 28, 2015
http://blogs.msdn.com/b/sqlsecurity/archive/2015/07/28/encrypting-
existing-data-with-always-encrypted.aspx

[14] Trusted Computing Group. www.trustedcomputinggroup.org

[15] Arasu & al.Transaction Processing on Confidential Data using Cipher-
base. 31st Intl. Conf. on Data Engineering, ICDE-15.

[16] Ahsan, M. Encrypt MySQL data using AES techniques
http://thinkdiff.net/mysql/encrypt-mysql-data-using-aes-techniques

[17] Garrison, R. Performance Testing SQL 2008's Transparent Data
Encryption. Database Journal, April, 2009

Fig. 1 Reference Architecture of Trusted Cloud DBS

On‐the‐fly encryption

On‐the‐fly decryption

Query Processing

Run‐time variables

Clients
Insecure Persistent Cloud Storage

Query

Trusted (cloud) DBSCloud

 Simple Client

 Key(s)

 Smart Client

Data Encryption/Decryption

 Key(s)

 Trusted (protected) query
execution environment for

core DBS

Encrypted DB

Core plaintext DBS

