IR

g

A A S T LN L TH it

s w

From Database Systems to

Multidatabase Systems:
Why and How

W Litwin
INRIA, 78150 Le Chesnay, France

The concept of a database (ie an integrated, centrally ad-
ministered, non-duplicated eollection of company wide data) has
been applied so widely now that many companies have many
databases on one, or possibly many, computers. Users, therefore,
now need shared access to multiple databases. In determining
the principles for accessing such databases should one reapply
the principles behind the database approach, but at one level up,
or should new principles and types of system be introduced.

In the following paper it is claimed that database principles
are inapplicable to collections of autonomous databases, uniike
they were to files, New principles offer the only possible solution
and they will deeply modify the design of database systems at all
levels. A new type of system is appearing, referred to as a multi-
database system. The various capabilities which such a system
should provide are analysed and the basic capabilities for muiti-
database management which are beginning to appear in major
relational systems and industriaf prototypes are presented.

Finally, some research issues are discussed.

1. Introduction

Database systems were proposad as a solaticn to the problem of shared access
to heterogeneous files created by multiple autonomous applications. These
files were hard to manage by a single applicaticn. They presented duplica-
tions and various types of heterogeneities, such as differences in field
naming, value types and file structures for a similar purpose. In particular it
was difficult under these conditons to provide interfile consisiency and over-
all privacy and efficiency.

162 W Lirwin

To remove these difficulties, it was proposed to replace the autonomous
files by a centrally defined collection of data called a database. The authority
responsible for the centralized control was called the database administrator.
His task was 10 make the database integrated which meant that it should be
defined without duplications and heterogeneities. The database should then
be managed under a centralized control by a system called a database system
{DBS). This sysiem should in particular give each application the illusion of

eing alone 1o use data, while providing overall consistency, privacy, ef-
ficiency eic.

The idea was successful 10 a large extent. There are many dawbases in any
larger company ard frequently even on the same computer. There will be
even more on workstations and servers on local nets. Unavoidably, users now
need shared access to muhiple dawbases. The developments in distributed
computing and in networking gave the technical basis at least for the physical
access. The question arose as to what the corresponding principles should be.
Should one reapply the database approach principles one level up or should
nzw principles and types of sysiems be inroducad ?

In what follows we will claim that database principles are inapplicable 10
collections of autonomous databases, unlike they were o files. New prin-
cinles offer the oniy possible solution and they will deeply modify the design
of dawabase systems at all levels. A new type of system is appearing that we
have calied multidatabase systems. We will analyze various capabilities a
muitdatabase system should provide. We will show that the basic capabilities
for the multdatabase management have started to appear in major relational

systems and industrial prototypes. Finally, we will discuss some research is-
sues.

2. Database Design

2.1 Principles

Database principles were claborated when users had generally no direct ac-
cess to data and systems. The computer universe was so complex that they
had to employ application programmers for their data manipulations, The sys-
tems were mostly baich and business oriented. Therefore manipulations were
rather short and could be rerun,

The main idea in the database design in these conditions was that the
database administrator and system should insulate the users and even applica-
tion programmers from the complexity of shared data management , The ad-
ministrator was supposed Lo analyze the needs of all applications sharing the
files and/or the database to be created. From this analysis, he should defing:

Database Systems to Multidatabase Systems 163

+ the conceptual schema of the database. This schema sheuld define all the
dara in the daabase. The whole collection was supposed 1o be:

+ exhaustive. It should contain all data needed by the applications or at
least data sufficient for deriving the application data through views.

« integrated. This meant that data of the same type should constitute 2
single data type. Also, there should not be replicated data types or
replicated data in a type.

+ consistent. This means that data should respect some predicates
defined by the administrators. The predicate may concamn a single data
type or may interrelate different typss.

+ confidential. This means that the interuser privacy should be
respected.

» the internal schema of the database. At this level the administrator was
supposed to choose data structures providing optimal performance of the
database.

+ the external schemas of the database. These schemas should adapt the
conceptual schema 1o needs of a pardcular user if the conceptual data
definition was not that required by the user. The adaptation could be a

simple restriction or a translation of names or value types or of data struc-
tures.

Ex. 1: Consider a company having suppliers supplying parts. The relational
database design principles would lead to the definition of a database with
three well known tables S, SP and P. The choice of table names, columns,
column names and of value types would be made by the administrator for all
users. The administrator would also define the internal structures for the max-
imal efficiency of the database. Finally, views would be used 10 accom-
modate the needs of users requiring names or structures or value types dif-
ferent from the common ones.

The database system was intended as a computer emulation of the database
administrator. Its objectives were:

- to provide the database adminisirator with the tools for the definition of
the conceptual schema and of external schemas, including the consistency
and privacy constrainis,

= to provide him with the tools for the intemnal schema definition.

« to give any user the possibility of manipulaung his data as simply as pos-
sible.

= 1o give any user the illusion of being the only user of the database.

At the language level, two main concepis were created 1o fulfill these goals.
They were the daw definition language and the data manipulaticn language.

164 W Litwin

To enhance the simplicity of the user manipulations further, but also to allow
the administrator to choose the physical structures independently of an ap-
plication coding, the principle of the independence between the logical and
the physical level was introduced. Finally a number of capabilities was
proposed to ensure the above objectives and in particular:

+ the concumency control. The system should be able 10 manage concurrent
accesses in a transparent way,

» the database reliability. Users should not be concerned with the crashes of
the database, operational errors of other applications, etc.

In both cases, it was assumed that if a manipulation is not executed as il
should be, then the systemn simply reruns it.

2.2 Moiivations

The administrator was supposed to act as a mediator whose action should
remove daia from independenty created files. The reason for the goal of ex-
haustivity at the level of the conceptual schema was 1o let an application
program carry out operations in as simple way as possible, like get record or
get next, etc. The main reason for integration was to avoid multiple searches
and replicated updates that created difficulties in multiple and heterogeneous
files. The idea behind consistency was to maintain known relationship be-
tween values in different structures. Finally, confidentiality was needed to
prevent the leak of user information as the sharing of user data should be
transparent.

It is worth recalling the ultimate purpose of all this methodology. It was the
easiness of data manipulation by a user or rather an application program, All
other concepts were tools to achieve this goal. In particular, the notion of con-
ceptual schema and of varicus complex data structures proposed for such
schemas were tools:

* 1o resolve the problem of binding of names and of corresponding vaiue
types in the query. The name in the query should be one of the names in
the schema.

* tuleave to the user only the problem of traversing a data structure through
simple statements like those above, the structures themselves being al-
ready identified and provided.

* 10 have for DBS the explicit definition for the corresponding consistency
and confidentiality requirements,

Ex. 2: Consider the database dealing with the suppliers and parts. The goal of
the user wishing data about suppliers of some parts, is probably only o for-

Database Systems 1o Multidatabase Systems 165

mulate the manipulation using the most convenient form for himself, his
vocabulary in particular, and to obtain data in the form wished explicitly or
implicitly. The user basically does not care what, if any, the schema of the
database is. Also, every other capability of the DBS is not of interest to the
user and should remain transparent.

Note that ideal is basically not yet the case of the current database systems,
Users are supposed to know the schema, at least to know how they should
name suppliers and parts to be understood by the system. Then, they obtain
value types and data names as they are in the database, unless they specify
conversions (value expressions and labels of SQL).

2.3 Drawbacks
The database approach is a genercus idea, but unfortunately largely utopian

with respect to its goals. There are indeed fundamental problems with the
concept of data sharing that cannot have a solution:

= the administrator is in charge of optimizing the usage of the database in
priority for all users. The local optimization for a user may be in con-
tradiction with the global goal.

= the user has to explain his needs to the administrator. This may be a dif-
ficult process and the needs may change.

* there may be very many data structures one may imagine over a collection
of data. It is unrealistic t0 assume their existence in a conceptual schema
for simple expression of queries, name binding etc. The popularity of the
relational model with its very simple data structures, but with the
manipulation language undoubtedly more complex than CODASYL state-
ments is a proof of the failure of this idea. The complexity of the language
is in fact the tool for dynamic definition and creation of data structures
that ideally should be all in the conceptual schema and the database.

= auser is supposed to use the common (globally optimized) data names,
values and structures, unless an external schema provides him with a more
subjective picture, However, this view must be subject to the following
constraints;

» there is no way to introduce attributes that do not exist in the conceptual
schema.

» the precision of derived values cannot be greater than that in the database,

* there may be no way to update the view data, as the comresponding update
to the database may be undecidable or it may violate an integrity con-
straint the user should not be aware of.

= sometimes the user data may be badly affected by side-effects of other
users” manipulations or of an arbitrary decision of the administrator. For

166 W Litwin

instance, if the administrator changes a table definition, in most current
DBSs, the view definition would no longer be valid at the execution time.

* manipulating a large collection of data is fundamentally more complex
than manipulating a small one. If most user needs are directed 10 a subset
of dawa, a large database management must be less efficient than the
management of the user data oaly.

* in particular, dala that some users manipulate today through various nets
seem already too large a collection o be ever manageable as a database.

Summing up, the database approach is an auractive idea, as it proposes 1o free
the users from many annoying aspects of data manipulation. The required
price is however the loss of the user control over his own data e.g. of the user
autonomy. Some of the corresponding drawbacks may be corrected through
the sophistication of DBSs. Some are however inherent to the foundations of
the database approach and more specifically 1o the complexity of sharing a
large collection of data.

These drawbacks become therefore even more pronounced in the current
situation where a user has the capabilities 1o access even very large collec-
tions of data. The data may especially be in many autonomous databases, like
thousands of public databases, on the same large computer or on several in-
terconnected computers. These databases present heterogenecities similar to
those that were in files and triggered the whole database methodology. One
may feel therefore that the database design principles should be reapplied,
e.g. all data should be made again a (distributed) database. This would mean
centralized control and at least the presence of the common conceptual
schema (the global schema). We felt that the increase in the size of the collec-
tion makes the drawbacks important enough to prohibit the reapplication of
this approach. This reason has motivated us to propose the multidatabase ap-
proach in [19] and its earlier less known references.

3. Multidatabase Design

The multidatabase design principles were intended as a generalization of the
database approach, keeping ils advantages, while avoiding or lessening the
drawbacks. For this purpose, it was proposed 1o consider that the data the user
may need o manage together may be in several databases without a global
schema. These databases may not therefore be mutually integrated and data in
different databases may present duplications and discrepancies in naming,
data structures etc. as well as inconsistencies the database design was sup-
posed o remove. These phenomena are considered as the user’s right
(autonomy) to sausfy firstly his own needs. The user should nevertheless be
able to manipulate data not only in his database, but also to combine data
from different databases. These multidatabase manipulations should further

Database Systems to Mullidatabase Systems 167

be simpie e.g. non-procedural, despite the heterogeneity. To attain this goal
the following methodology was proposed. Details are in (19] - [22] and the
references of these articles.

3.1 The concept of a multidaiabase system

A mulidatabase sysiem (MBS) is a system for the management of several
databases without a global schema. The system is therefore supposed 1o
provide two new functions for data management:

- a multidatabase manipulation language for queries (and updates) to more
than cne database,

+ possibly, a language for the definition of interdatabase dependencies.

The concept of a multidatabase system is widely discussed in {19] though it
was proposed in earlier references of [19]. By analogy to the concept of a
database language, the overall language of an MBS for both data definition
and manipulation was called a mulidaabase language. A set of
{multi)databases for which a multidatabase language exists was called a mul-
tidatabase. Thus a set of databases without a multidatabase language is just a
set, whereas provided with a multidatabase langunage it becomes a multi-
database. This principle has its roots in that of making a set of tables (flat
files) a relational database,

One motivation for the concept of a multidatabase system was easy access
to thousands of databases available today. Another intention was to allow ap-
plications to be designed in a way where different data could reside in dedi-
cated databases, especially on users’ workstations. It was felt that the user and
the administrator should more frequentdy be the same person so the user
autonomy would be better preserved (the programmers representing the user
become eliminated anyhow by the general progress). Furthermore, the
databases should usually be much smaller and the computational complexity
should decrease. The need for systematic sharing should be replaced by that
of occcasional cooperation. The user should in particular be more able to op-
timize his own needs with respect 10 names, value types data structures and
physical optimization. If a conflict with other users cccurred, it would affect
only the global level, the user remaining able to preserve his own needs in
priority. Al together, it was expected that the drawbacks that would affect
many applications if designed according to the database approach, should dis-
appear or should be attenuated using the new approach.

Ex. 3: Consider users working in a largely autonomous departments. It is
likely that most manipulations in each department would concern this depart-
ment data e.g suppliers and parts. The multidatabase approach would then be

168 W Litwin

to constitute one database per department. A multidatabase definition lan-
guage should ailow the definition of the databases as well as the depend-
encies if needed. The multidatabase manipulation language should let the user
manipulate a database and combine if needed data from different databases.
Each department could have priority in the control of its data, as it has its own
database and the corresponding drawbacks of the database approach could be
avoided.

Indeed, a database could be designed in cooperation with others for the
choice of some column names and value types, as well as for the cheice of
table names and structures. However, other columns and tables could be
designed purely for local needs differing from one database to another, Fur-
thermore, the user could have the possibility of adding columns or renaming
some even if it could create a conflict at the multidatabase (global) level with
users in other departments. The limitations of a view concept on definiticn
and manipulation of a department data would thus no longer apply. Also, the
user could refuse an update that would be inconvenient for his department
data, even if an inconsistency would appear at the multidatabase level, etc. If
however, some interdatabase consistency should be enforced, the appropriate
dependencies would allow the administrators to preserve them.,

3.2 Reference architecture

The mulidatabase language is assumed to be backed by specific capabilities
at the implementation level. These capabilities may be more or less complex
and numerous depending on the generality of the system. They should be em-
bedded in the reference architecture for an MBS as in Fig. 1. This architecture
comes from [19] and extends the classical database architecture of ANSI-
SPARC. The multidatabase architecture layers are as follows:

« at the bottom, there are existing DBSs.

- a DBS presents to the next layer, called the multidatabase layer, the con-
ceptual schema of the database of the owner willing 1o cooperate. This
schema may be the actual conceptual schema or a local external schema.
In the latter case the actual conceptual schema is calied an internal logical
schema. The conceptual schema at the multidatabase layer may in par-
ticular support a different data model and may hide some (private) data. I
at this layer some common model is required, it is the responsibility of
each DBS to stick to it.

« the multidatabase layer includes in particular schemas for the definition of
dependencies between subcollections of databases. The dependencies may
be transitive and uni or bidirectional. They are intended for database ad-
ministrators and allow them to tie the databases together more or less for
interdatabase consistency, privacy, etc. In the absence of the global

Database Systems to Multidatabase Systems 169

Concapal

favel I

Extarnal lavel

Canceptual
muitidatabase
levei

X
[
%3]

DS

Intarnal
level

ILS 1 .
ES - External Schama
€S - Canceplual Schema
Phs) Prs2) e DS - Dapendancies Schema
ILS - Internal logical Schama

- . PhS - Physical schema
] Y

Fig. 1 General Architecture of a multidatabase system

schema they may be the only tool to preserve the consistency of data in
different databases.

» above this layer, one may construct external schemas. These mono or
multidatabase schemas may in particular present subcollections of
databases as single integrated databases. An actual database may however
enter different external schemas. It may also be manipulated locally. Thus,
uniike with the global schema, even if data from different databases are
presented as a single database, the consistency cannot be guaranieed if no
appropriate interdatabase dependencies are declared.

As the figure illustrates, it was considered that the user may access muitiple
databases in two ways:

» directly at the multidatabase level, using the functions of the muld-
database language,

« through an external view, using either a multidatabase language or a
database language, if the schema defines a single database.

170 W Litwin

In particular, it was proposed that at the current stage of database technology,
there is a common data model at the multidatabase layer. Furthermore, it was
proposed to use the relational model for this purpose, in the sense that each
database appears at the multidatabase layer with local relational capabiliues.
For multidatabase manipulations, it appeared useful to consider additional
capabilities at both data definition and data manipulation levels, Other
models, DAPLEX in particular, studied at that time by the MULTIBASE
project, seemed less attractive for the common medel, as no database sysiem
supported them and they were not yet sufficiently understood (view
manipulation in particular).

The analysis showed that the implementation of basic multidatabase
capabilities should be simple. It was therefore postulated in [19] 1o evolve the
design of database system towards multidatabase systems, whether the sys-
temns were intended o be monosite or distributed. The postulate was especial-
ly directed towards the relational systems, as they seemed the dominating
technology for the 80s.

3.3 Related methodologies

3.3.1 Distributed databases and systems. A distributed database (DDB) is
a database transparently implemented on several sites, instead of a single one.
This widely known concept differs thus from that of a multidatabase and
keeps by its nature the drawbacks inherent to the database appreach. The
multidatabase approach carefully distinguishes further the notion of a mulu-
database system and of a distributed system. The concept of MBS is intended
as a new general type of database system applicable to both cases: of all
databases at the same site and of databases at different sites. It requires func-
tions for the distributed management only in the latter case. The notion of site
and of database were carefully distinguished, unlike in particular, in System
R and in System R*. A site is a distinct network node supporting a DBS, that
belongs to the physical level. A database is a logical model of a universe,
bearing in particular a semantically meaningful name. For instance it could be
a database AIR-FRANCE at site GCAM. A site may support several
databases, like for instance MRDS or Ingres systems. If an MBS is dis-
tributed, it is assumed to provide location transparency. This means that the
user manipulates the databases as if they were all at a single site.

It should be noted however that while the distinction between a distributed
database and a multidatabase used 10 be strict in research prototypes and the
theory, it is now largely disappearing in practice, Most of the commercial sys- -
tems claiming to be distributed database systems are in fact the distributed

Database Systems to Multidatabase Systems 171

multidatabase systems as we will show soon. The only exception is the Tan-
dem NonStop system.

3.3.2 Federated databases The report [13] proposed the notion of a
federated database that was a loosely coupled set of its components. This
principle was then extended 1o the notion of federated databases which were a
federation of loosely coupled databases without a global schema [14]. The
main principles for a federation constitution were as follows:

- for cooperation, each database presenis a schema called an export schema.
This schema is either the actual conceptual schema or a derived schema
hiding the private data. These data, whose schema is called a private
schema, are all those in the local database.

. data to be manipulated by a user are defined by an import schema. This
schema may in particular group data from several export schemas.

. there are mechanisms called derivation operators to produce the import
schema. There is also a mechanism for negotiation between databases
along a dedicated protoco! like that in {15} when they wish to cooperate.

. each federation has a single federal dictionary, which is a distinguished
component whose information province is the federation itself.

The reference architectures proposed by both approaches are very close.
“This is not a coincidence, as {14] relies in particutar on the multdatabase ap-
proach (see its references) and the multidatabase approach is inspired by
ideas in [13]. An import schema is an external schema. A private schema is
either the internal logical schema or the conceptual schema at the multi-
database level. An export schema may be considered equivalent to a concep-
tual schema at the muliidatabase layer. However it does not seem to be
specified in the federated architecture whether the user may manipulate the
export schemas directly, separately or jointly.

In contrast, the federated architecture as defined in [14] does not seem t©
have the concept of interdatabase dependencies between the export schemas.
There is nevertheless the concept of object equality functions that seems lar-
gely equivalent to that of equivalence dependencies in the multidatabase ar-
chitecture, except the functions are in import schemas. Anyhow, one may
easily add interdatabase dependencies to the architecture, as in [15] for in-
stance.

Conversely, the multidatabase architecture does not assume as a basic fea-
ture of 2 multidatabase, a single dictionary that would be an equivalent of the
federal dictionary. By the same token, it does not consider as a general fea-
ture of an MBS, the capabilities for inter-DBS negotiation. Apart from these
aspects, the differences between the methodologies are only in the terms used

172 W Litwin

for similar concepts, and in the aspects of multiple databases management put
forward as key ramifications of the principle of the absence of a global
schema. If these differences are neglected, then both methedologies are
equivalent. This 1s in fact the case for the popular usage of these
methodologies.

The key words for the federated approach are indeed aulonomy plus
cooperaiion in interdatabase sharing. The multidatabase approach also has
these goals, though it specifically stresses the concept of multidatabase
manipulaions. A multidatabase ianguage is assumed to be the minimal tool
for the existence of a non trivial federation. A multidatabase is a federation of
databases, coupled most loosely through the sole existence of the mulu-
database language and more and more swongly with the increase of declara-
tions of the interdatabase dependencies. A conceptual schema at the multi-
database layer (federative layer) may be termed an export schema, as in par-
ticular it has no dedicated name in {19], The federal dictionary and the
negotiation may be among the functions supposed secondary for an MBS in
the multidatabase approach, depending on the system type or the implementa-
tion issues. The single dicticnary is probably best choice for a centralized
MEBS, while negotiation protecols are probably necessary in the open MBSs.

3.3.3 Other methodologies While the above approaches are relatively
clearly defined, one may also find in the literature other terms and concepts
which are usually rather loosely defined. They frequently overlap with the
above terminology or even use the same terms with different meanings. See
{23] for deeper discussion of this problem.

34 Functions of a multidatabase language
Unlike data in a single database, those at the muludatabase layer will be
visibly in different dawbases. Data from autonomous databases will furiher
be usually mutually not integrated, as the same universe will be modelled dif-
ferendy (ex. different restaurant guides or different poliucal parties, ses
TELETEL). A multidatabase language should allow such data to be managed
in a non-procedural way. In particular, it should be possible for formulations
of multidatabase queries to remain unaffected by changes to the local
schemas. Such changes will occur under the authority of local administrators
and will be frequent in the presence of many databases. It would be cumber-
some if they usually made a formulation of a multidatabase query obsolete.
One may speak in this context about the overall goals of openness of the mul-
tidatabase language or about the degree of query reusability.

The analysis showed that all these goals require on the one hand new func-
tions for a cooperative definition of data at the data definition level. On the

Database Systems (o Multidatabase Systems 173

other hand, they require new functions at the manipulation level, for non-pro-
cedural manipulation of data located in different databases. These data may in
particular be replicated and should usually differ with respect to names, struc-
tures or values despite a similar purpose. The duplication may have the
semantic meaning. For instance, two different recommendations of a res-
taurant are usually more meaningful than a single one.

Database languages lacked such functions, as they were designed for a
single integrated database [8]. As Ex. 1 points out, the relational model as-
sumes all the suppliers in the same S table, and not in several 1ables, especial-
ly in distinct databases, as in Ex. 3 (see also the example in {21}). If suppliers
are split into many tables, even in the same database, the model loses its non-
procedurality. For instance, the query “select all suppliers™ would require as
many SQL SELECT statements as there are tables.

"The basic new characteristic of multidatabase languages appeared (o be the
possibility of using the logical database names in the queries, especially to
gualify relations in different databases to resolve name conflicts. The reason
for the absence of this feature in classical systems does not seem technical,
but rather philosophical, as the corresponding implementation is easy. It is
probably a blind application of the classical methodology considering that in-
terrelated data are all in the same database and so there is no need for a com-
mon manipulation of different databases. Examples in [19] - [21] show it may
be false for even immediate real-life needs.

To deal with further needs, several functions were found through the ex-
perimental design of the MRDSM system [20]. While some of these functions
were intended as general notions, others were specific to the relational data.
Their detailed analysis and implementation, was carried out at INRIA within
the SESAME project, and aimed at demonstrating the feasibility and the high

utility of relational multidatabase systems. These functions are basically as
follows:

« the definition and alteration of multidatabases,

« cooperative daia definition: single statement creation (alteration, drop,..)
of a relation in several databases, import of data definition, etc.

+ classical retrievals and updates of relations, being however in different
databases, called elementary multidatabase queries in the MRDSM ter-
minology,

+ so-called multiple queries, performing relational operations on sets of pos-
sibly heterogeneous tables. For instance a single statement selection from
a set of Supplier tables in different departmental dawbases, each table
being to some exient particularized for the department neads.

174 W Litwin

+ possibility of multiple identification of data objects bearing the same
name, to deal with data duplication and fragmentation {the multiple iden-
tifiers in [19]).)

+ possibility of dynamic unification of heterogeneous names of data objects
to deal with name heterogeneity (the semantic variables in [20] and
column labels in [21]}).

« implicit joins for queries to databases with similar data, but different
decomposition into refations, {213).

« dynamic atributes, for ad-hoc transforms of heterogeneous data values to
a user defined basis.

« inparticular, the capability to update the dynamic atiributes.

« various new built-in functions. For instance, for transformation of data
names into data values subject to relational operations (names in one
database may correspond to a data value in another).

+ view definition, using the (multidatabase) query modification technique

« multidatabase external schema definition (called virtual database in [21]).

« interdatabase queries for data flow between databases.

. auxiliary cbjects like manipulation dependencies, equivalence depend-
encies and procedures {ransactions, stored queries,...) [21].

Some of these functions required extending the expressive power of database
languages. Others concerned only the implementation level {ex. implicit
joins; dynamic atzibute updates). MRDSM showed that these functions are
feasible. For a while, they were exclusive to MRDSM. Starting from 1987,
several now characterize commercial systems and industrial prototypes,
which we will discuss now.

4, Commercial Systems and Industrial Prototypes

4.1 Commercial systems

Up to 1987, the work on multidatabase systems had been theoretical and on a
few research prototypes. It was therefore still a matter of discussion whether
operational multidatabase systems would ever be constructed. The year 1987
is important in this respect, as the first commercial sysiems appeared. They
are Sybase, Empress V2 and Ingres/Star. There is now also an operational
multidatabase version of Oracle. These systems appear to be major achieve-
ments, destined for widespread and durable use. We will now present their
main features, using the MRDSM funciions as the framewaork.

Database Systems to Multidatabase Systems - 175

Sybase

This system is designed by Sybase Inc. in Berkeley, California. It is a high
performance relational system, curreatly available on SUN workstations, Vax
computers and Pyramid. The implementaton on the SUN may be entirely on
one machine or it may consist of the front-end software on one machine and
of the server software on another. Several front-ends may Share a server and a
front end may access several servers. This does not mean however that
Sybase is a distributed system. The distributed version should be released in
mid-88.

Sybase language is an extension of SQL, called Transac-SQL. Also, one
may use a more user friendly interface called Visual Query Language (VQL).
Transac-SQL and VQL are multidatabase languages, the first on the market,
as far as we know. They have several interesting features:

+ the user may qualify the relation name, let it be T, with the database name,
let it be B using the form B.T . Thus one may formulate elementary mulii:
database queries. There is however currently the limitation that the
databases have to be at the same server. Theoretically, up to 32 K
databases may be used simultaneously.

= the user may define multidatabase views, but not virtual databases.

» the queries may include implicit joins. Unlike in MRDSM, they are
however limited to relations with a single connection through primary or
foreign keys.

« the user may formulate interdatabase queries using multidatabase IN-
SERT and UPDATE statements. The latter statement then takes values in
a table and puts them accordingly into a target table. These statements
map column names only by order of their enumeration in the SELECT
clause, while MRDSM also allows columns to be mapped by name.

+ the user may define interdatabase manipulation dependencies. Thus a
manipulation of one database, may trigger that of another. In the current
version, unlike in the earlier one, the dependencies may be transitive i.e.
fire one another. They may be defined by independent users. The tength
of the chain is however arbitrarily limited 10 § elemens, o avoid cycles,

* in the distributed version, the language will allow multiple queries to be
formulated.

It is also interesting to note the differences in the user interface with respect
to these functions, compared to MRDSM and MSQL:

» the user opens explicitly only one database at a time, through USE
<database name> statemeni. This database constitutes the default scope
for wble and column names. All other databases remain however, avail-

176 W Litwin

able to the user, provided he has the access rights. The access 10 a
database is triggered by the use of its name as the prefix. In contrast,
MRDSM allows the user to open explicitly severat databases and does not
allow other databases to be used. The database name is then required as
the prefix only if table names conflict.

* MRDSM had no interdatabase UPDATE. This feature of Sybase inspired
the corresponding one of MSQL.

+ the multiple queries will most likely be generated through the new stage-
ment FOR EACH <table names> <elementary query>. This js somewhat
more procedural than the use of multiple identifiers or semantic variables
in MRDSM. It also makes the query formulation less open 10 the local
autonomy. For instance, if a new database using the same table name and
pertinent to the query intention enters the federation, then the Sybase
statement has to be modified, while the MSQL statement may remain
valid,

As may be seen, Sybase puts into operational practice many concepts of the
multidatabase approach. It is an important system that should be widely used
and was indeed selected by Microsoft to become the Microsoft system for
IBM-PS2, replying to OS2/DB of IBM. It was also selected by Apple for Mac
SE and Mac-2 and by Ashton-Tate o replace the famous Dbase. If these
plans finalize, the most frequently used systems for database management
will be multidatabase systems, as was postulated in [19]. This will be the case
not only for the distributed databases, but also the monosite {(physically
centralized) environment, as was also conjectured in the same paper.

Empress V2

This system is made by Rhodius Inc, in Toronto, Canada. The version
described below is V2, following the “classical” version 1, installed in
a number of countries. Unlike Sybase, Empress V2 is a distributed
system that runs on a number of computers over the Ethernet network:
Sun, Vax, Apollo, IBM-PC/PS,... Currently, however it does not allow
different computers to mix under the same system. It uses a mult-
database extension of SQL that is currently as follows:

* table names in a query may be prefixed with database names. The
. database names may themselves be further prefixed by multidaiabase
names that are ultimately the site names.
* several databases may be open simultaneously.
* the user may define multidatabase views and virtual databases. Both
views and virtual databases may be distributed. A virtual database is

Database Systems to Multidatabase Systems 177

manipulated as a single actual one, with location transparency, except for
some updates.

» Empress V2 supports distributed updates using two phase locking and two
phase commitment.

Empress V2 has multidatabase features that Sybase has not and vice versa.
The possibility of using multidatabase names, in particular allows the resolu-
tion of name conflict between database names. Note also that Empress V2 is
already a distributed multidatabase system, unlike Sybase.,

An auxiliary from our point of view, but interesting feature of Empress V2
is that it supports multimedia data. These data may be declared as a particular
“bulk™ column of a table. They may then be interpreted as text, image or
voice data. This feature is an opening towards future multidatabase and multi-
media systems and towards the interoperability with information systems
other than DBSs,

Distributed Ingres

Distributed Ingres, also called Ingres/Star, is a sofiware layer to Ingres sys-
tems and, in the future, to other types of DBSs, supporting locally an SQL in-
terface. The component providing this interface, for instance to IMS, is called
“gateway”. It corresponds to the Intemal Logical Schema in our mult-
database architecture in Fig. 1.

Documents on Ingres/Siar say it differs from traditional distributed DBSs,
by its “non monolithic” architecture. The analysis of the system principles
shows that this term designates the absence of the global schema. The ar-
chitecture of Ingres/Star is that of Fig. 1. However, there are currently no in-
terdatabase dependencies. Thus, the consistency of replicated data cannot be
guaranteed, unlike in Sybase. However, it has no importance for the current
version, as updates through external (import schemas) are not supported, with
the exception discussed below.,

The main features of Ingres/Star, from the point of view of this survey, are
as follows:

+ the system allows the definition of any number of the extemnal muld-
database schemas over subcollections of SQL databases, currently only
Ingres databases. The virtual database defined by this schema is called a
distributed database (DDB) and its elements are called links. Once the
DDB is created, it is used as an actual Ingres database, except for update
limitations. The DDBs may in particular share an actual 1able or database.

= In fact, if a DDB creation is requested over n databases, then it is created
over n + 1 databases. The latter database is a hidden actual database
created at the node of the DDB schema definition and simultaneously

178 W Lirwin

with it. This database is named upon the DDB and allows a DDB user Lo
transparently invoke the CREATE TABLE statement. This statement
could not work otherwise, as any table has to be in an actual database,
while the user cannot indicate in SQL where it should be. These tables
may be updated, altered esc,

= the system does not aliow the user to directly formulate multidatabase
queries to actual dawbases or, more precisely, to their export schemas.
The reason for this seems mainly implementation dependent, namely the
necessity of a dictionary entry, created when a link is declared. The only
way to formulate an ad-hoc query is to define a DDB whose links are the
addressed tables and formulate the query to the links. The links may be
declared temporary in which case the DDB is automatically dropped.
Otherwise, the user must drop the DDB himself or keep it for further
needs. In both cases, the additional manipulations required clearly make
Ingres/Star less flexible for ad-hoc multidatabase queries than Sybase and
Empress. In addition there is a danger of system pollution with DDBs and
the underlying hidden actual databases, created for a particular query and
then forgotten.

Oracle V5

In its new version V5.1.17, Oracle also became an MBS (although the cor-
responding capabilities were announced for V3 in general, we could see them
working only in this release}. It allows the creation of several databases at the
same site and the formulation of elementary multidatabase queries. The
Oracle multidatabase language is termed SQL*PLUS. Unlike in Sybase or
Empress, the database name does not prefix the table name, but postfixes it,
after the character ‘@’. The user has also particular statements defining
aliases for table names and for database names. The former capability allows
the resolution of the name conflict, avoiding the use of the database name.
The latter, called database links, should not be confused with the different
meaning of this term in Ingres/Star.

The language offers also statements for interdatabase queries unknown to
other commercial systems and largely similar 10 the corresponding ones in
MRDSM. All the multidatabase manipulations are moreover available for
distributed databases, through the distributed database management com-
ponent SQL*STAR. It is likely that the latter will be permanently included in
Oracle which means that the concept of centralized and monodatabase Oracle
will disappear. However, the distributed updates are not vet available, like in
Ingres/Siar V1.

Database Systems to Multidatabase Systems 179

4.2 Industrial prototypes
We designate in this way prototypes that are likely to give rise to operational
systems in the near future. Work on two such prototypes is in progress.

Mermaid

This system is being developed in the System Development Group of
UNISYS [29] and {30]. While it was initially intended as a classical dis-
tributed DBS, it is now evolving towards the federated architecture. Its over-
all featres now resemble those of Ingres/Star and so will not be discussed
here, However, there are numerous differences at the implementation level. In
particular, Mermaid uses an criginal pivot language designed for easy transla-
tion towards heterogeneous relational languages.

Calida

This system is currently under development in GTE Research Laboratories.
The operational version is destined for the management of numerous
databases of GTE, mostly the relational ones. The 1st operational implemen-
taticn should be in 1988 in California, where, ultimately, there are about 3
hundred large bases to be connected. If the experimeniation is satisfactory,
Calida will be extended to other states in the U.S. The main features of the
systern, largely unpublished as yet, are as follows:

» Calida makes it possible to access relational and Codasyl-like databases.
The intemal logical schema and the corresponding manipulation are
generated through the original rule processing system. This system
provides a particularly flexible interface to data model heterogeneous
databases.

* the multidatabase manipulation language is not the SQL, but a proprietary
relational language called DELPHIL This language is used as a final lan-
guage for the sophisticated user and as an intermediate language for a
natural language for interface. DELPHI allows the formulation of elemen-
tary multidatabase queries, including the updates, where database names
may be used as prefixes to solve name conflict. The query decomposition
is carefully optimized, using field statistics gathered by the systern, Calida
moreover allows the definition of external schemas and of views through
the usual query modification techntique,

the system supports the implicit joins that, in particular, may concern

columns in tables in different databases. This feature existed only in

MRDSM, as it requires the definition of equivalencies between domains

or tables of different databases. In the GTE system, the corresponding

equivalence dependencies are stored in a so-called global dictionary. The
algorithm for the query completion is similar to that of MRDSM in that it

180 W Litwin

searches for a minimal spanning tree over the intersection of the non- con-
nected query graph and the connected database graph whose nodes are
relations and edges are connections through keys. However, the algorithm
is limited to the case of a single connection between two relations (acyclic
graphs), If there are multiple connections, the user is asked to make a
choice, unlike in MRDSM. One advantage is a fast recursive algorithm
for the spanning tree edges computation.

DOSIMultisiar

The relational model also seems an appropriate common model for access to
non-relational databases. The Distributed Query System (DQS) prototype is a
multidatabase system developed for investigation of the corresponding issues
{2]. The system should soon lead to a commercial version called Multistar. It
allows multidatabase retrievals from IMS/VS, IDMS, ADABAS and
RODAN databases, as well as from standard VSAM files. The objects of
these databases are presented as relations through dedicated mapping com-
mands. The retrievals are formulated in SQL over so- called global schema in
DQS terminology. However the DQS global schema is in fact an impon
schema, as several different schemas may be defined which may be partial,
and they may overlap. These schemas may also include views, in the SQL
sense of this term. Views are the principal data abstraction mechanism for ag-
gregations and generalizations in DQS.

DQS has several interesting features, especially its algorithm for SQL
query decomposition. Views are dealt with using the query modification tech-
nique. The query is represented as a tree subject to the algebraic transforma-
tions to reduce intermediate relations. A heuristic algorithm is also used to
produce the query tres optimized with respect to data movements between the
sites. For execution, this tree is finally transformed o a Petri Condition-Event
net,

Interoperable database system

This title refers to the name of a large national project in Japan [17]. As with
the 5-th Generation Project, this one is backed by MITI and involves all
major Japanese computer manufacturers grouped into an organization named
INTAP. The project budget is around 120 MS over five years. The project
goal is 1o build the software and hardware which would permit distributed
database sysiems 10 exchange data and 1o be manipulable together. The
databases are not in general integrated under a global schema, they are only
interoperable. External multidatabase schemas may be created and it is as-
sumed that there may be several over the same collection of databases. The -
ultimate goal of the project is further 10 make DBSs interoperable also with
other types of information systems. For both multidatabase interoperability

Database Systems to Multidatabase Systems 181

and interface 10 other systems the vehicle should be the ISQ/OSI Open Sys-
tem Architecture and protocols. The description of the current stage of the
projectis in {17].

4.3 Impact on standardization

18O has currently issued the SQL standard of the so-cailed level 1. This
standard is the kemel of the classical SQL, without the concept of the
database name in the statements, and thus inappropriate for multidatabase
manipulations. Given the new extensions to SQL that appeared in the com-
mercial systems, it was proposed to ISO to include them into the so-called
level 2 standard. Work on the level 2 standard is currently on-going.

In this context one should note the proposals of Chr. Date for improve-
meats o SQL [6]. One of the proposals is 10 provide names for the resulis of
SQL value expressions (p. 35). This will give rise to dynamic attributes in
SQL.

The notion of a multidatabase system, as distinct from the classical dis-
tributed database system concept was on the other hand recognized by ISO in
its work on Remote Database Access Protocol (RDA) [28). MBSs are as-
sumed more common. The RDA protocol is intended mainly for these sys-
tems though in its current version it lacks many features,

5. Research Issues

The number of investigations of multidatabase (federated) systems design has
greatly increased recently. Some are reported in the references o this survey,
in particular in [7], and [10]. They have led to interesting results and new
general concepts, some of which we report below. The classical ideas on the
transparency of data sharing by other users, on transaction duration, atomicity
and isolation, on the possibility of transparent roll- back proved too simplistic
for the new needs.

5.1 Transaction management and concurrency control

The autonomy and lack of integration between databases put new require-
ments on the concurrency control. The classical two phase locking and com-
mitment will be increasingly inappropriate. In particular, a multidatabase
operation (a multidatabase manipulation language statement or a sequence of
such statements) may not need to hold on to all of its resources until it com-
pletes. In this case, it is useful either to extend the classical notion of a trans-
action, or to create new concepts. The following ones seem particularly
promising [1], as they are close to real life procedures in many organizations:

182 W Litwin

+ a global procedure is a procedure initiated at some node that can request
other nodes to execute procedures (usually transactions). At each node the
global procedures are managed by a global procedure manager (GPM), in-
terfacing for local operations the local transaction manager (LTM). Be.
cause of local autonomy, the GPM has no control over the local concur-
rency control and transaction processing. In particular, once a transaction
has been run by an LTM on behalf of some global transaction, it cannot be
undone or rolled-back by the GPM. The cnly recourse of the GPM is o
request the execution of another ransaction, called compensating transac-
tion. Thus, a global procedure cannot be atomic in the wansactional sense.

= For many applications, it is not necessary to serialize global procedures.
For instance, consider a multiple query to several “Scheduled Meetings”
personal databases proposing a meeting for a given date, provided all per-
sons are available. As the serial consistency for the entire corresponding
procedure is not required, this procedure may be broken up into a number
of transactions which can be interleaved in any way with other transac-
tions. Such a procedure is a saga and as the example shows, many opera-
tions in the mullidatabase environments may be run as sagas. It may be
shown that by running global procedures as sagas, instead of ensuring
their total serializability with other global procedures, substantial perfor-
mance benefits may be achieved.

= Sagas are not however always appropriate, especially if a multidatabase
manipulation uses an aggregate function. In this case, two phase locking
may be used. However, there may be a substantial performance problem
when many nodes are involved, as no lock should be released, until the
last lock is requested. Even warse, the corresponding delay may be greater
than the local time-out of an LTM which will then release the lock,
believing a dead-lock. To avoid these problems, new locking protocols
providing a higher degree of concurrency are needed. Also, it may be
necessary to combine locking with other protocols and methods for the
recovery.

= Iiis possible, on the one hand, to then use the altruistic locking {1]. On the
other hand, the same order of subtransactions at each site may be main-
tained, detecting and recovering from global deadlocks in a simple way
{3]. Furthermore, providing the knowledge of the serial ordering at each
sile, one may atlempt to group databases into sets called superdatabases
inside which different concurrency control and crash recovery methods
may be used together [27]. Finally, under similar assumptions, the op-
timistic control {11} may be used.

This synthesis is by no means complete. The concepts discussed have
ramifications either discussed in the corresponding papers or which remain 10

Database Systems to Multidatabase Systems - 183

be studied. However, it already appears that the muitidatabase systems put
new constraints on the transaction processing and trigger inleresting exten-
sions {9], {31]. These extensions are closer to real life procedures in human
organization than the classical rather idealized concepts and algorithms. It is
therefore likely that the corresponding studies will fargely widen their scope.

5.2 Access control

There are many aspects of access control in a multdatabase system. One
problem is that the autonomous system may require different login proce-
dures and may assign different passwords to the same user, One of the first
solutions to this problem was investigaied in the Mermaid prototype,
developed at UNISYS. This prototype provides the SQL interface to
federated databases through import schemas. See [29] for more details.

For the management of the passwords and of login procadures, the system
uses three approaches. If security is not crtical, the sysiem presents itself as
the user to the accessed databases with its own unigue name and password.
Otherwise, various passwords of the actual user are stored in the data diction-
ary-directory (DD/D) and retricved transparently when needed. Finally, if
security is crucial, the user is asked for different passwords, when opening the
corresponding databases,

This pragmatic mechanism requires an efficient coding of the passwords
stored in the DD/D. As the DD/D may be replicated on different nodes, the
encryptionfdecryption algorithm has to be portable and independent of
various eventual local tools for this purpose. Mermaid uses a simulated Enig-
ma machine. This tool has the advantage of several tunable parameters, so
that even though the general algorithm is well known, the implementation
particulars keep the passwords tolerably secure.

5.3 Datadefinition

If the databases are managed by more than cne system, some conventions are
needed for the exchange of data and of manipulation statements. Autonomous
systems may in particular use different data formats, enceding or precisions
of similar data. To make the relational operztions such as a join feasible, data
must nevertheless be dynamically converted to a common representation.
Similar needs exist with respect to the query execution, since the query ex-
pression may be considered as defining the data type the user wishes, (to be
bound therefore transparently to or from the actual schemas, regardless of dif-
ferences in naming, structures and value types). The brutal approach such as a
list of ail possible conversions is excluded, as in a large open system, their
number may be very large. The usual binding of names by exact and explicit
designation is also too limited in the present systems and would require

184 W Litwin

global schemas with an endless number of gencralizations, aggregations eic,
A better approach seems to be as follows;

* the participating databases are self-describing [24]. This means that they
provide enough information about both data and their formats to allow
them to be interpreted or converted with only some elementary
knowledge. The cooperating systems have the corresponding components,
detailed in [24]. For name binding, the systems share auxiliary knowledge
like a general purpose thesaurus and a sophisticated linguistic processing,
allowing the name matching to be inferred dynamically and implicidy.
The current systems are not usually self-describing and do not use such
tools. In particular, as far as we know, no relational DBS provides the
units or the precision of column values.

* the manipulations are standardized into some protocols common to all
participating DBSs and fitting the Open System Architecture. The LINDA
(Loosely INtegrated DAtabases) project at the Technical Research Center
(Finland} investigates the corresponding issues [1]. The protocols are im-
plemented over the TCP transport services, including Remote Database
Access Protocol. The prototype is intended for heterogeneous databases
on heterogeneous DBSs, but only the relational systems Empress V1 and
Informix are addressed at the current stage. For data manipulation, one
uses SQL extended with some multidatabase manipulation functions. The
hardware environment are MicroVAx and Sun 3 stations.

34 Update dependencies management

The manipulation dependencies usually forward updates. Limited languages
for the corresponding definitions were proposed for MRDSM and the Sybase
system, presented above. However, a more general proposal was needed. The
work in [25] addresses this problem, Update dependencies are described
using a predicative language which is easy to implement using Prolog. ~
Several examples show the application of the proposed concepts, especially
to a transaction processing. It is also shown that the concept is useful for clas-
sical problems like view update and update anomalies in non normalized
databases. Furthermore, it is shown that the system using the proposed ap-
proach should be capable of combining independently defined dependencies,
though details of this interesting issue remain to be investigated.

355 Updates of transformed values

In the multidatabase environment, heterogeneous data values must frequently
be converted or combined 1o a value type defined by the user. In order 1o do
this MRDSM provides the concept of a dynamic attribute, letitbe D; D = F

Database Systems to Multidatabase Systems 185

(A) ; where F is a transform of values of some actual attributes A, Usuaily F
is an arithmetical formula, like a value expression in SQL. Dynamic attributes
are dynamically defined by the user in queries. Virwal attributes are intended
for the same purpose in view definitions. While the concept of a virtual at-
tribute has been known for sometime, MRDSM is the only system to provide
dynamic attributes.

The transform F is defined for retrievals. However, one may also need to
update D, As far as we know, updates of virtual attributes were considered
impossible and no DBS had the corresponding capability. MRDSM provides
a solution for dynamic attributes that naturally applies to view update as well.
Its principle is as follows [22);

* the formula F has to be defined by a computable function that is trans-
formed to an equation whose roots are new values of A, The system pas-
ses F to MACSYMA which is a large symbolic calculus system. If MAC-
SYMA finds the symbolic solution, it passes it back to MRDSM. If
several solutions exist, MRDSM chooses that maiching the values of D
and of A before the update.

= Otherwise MACSYMA sends factorized formulas back to MRDSM.
MRDSM then applies a numerical method (the Bairstow method).

For F that is not a computable function, MRDSM in general requires the user
to provide the transform F: D - A.

Note that the above cooperation between MRDSM and MACSYM-. is an
example of interoperability between information systems of different types
that as far as we know, had not been previously integrated together. Note also
that although MACSYMA is a mainframe system, the proposed approach ap-
plies 1o systems entirely on workstations as well. Equation solvers are indeed
becoming available on workstations and are now cheap (TK!, Eureka etc.).
Their possibilities are more limited, but are sufficient for many applications
and are extending rapidly with new releases.

3.6 Queryprocessing efficiency
Multidatabase languages introduced new capabilities whose optimization is
an open research area. One may cite for example the following problems:

 Traditional work on the distributed query decomposition considered that
the the necessary capabilities are available within each participating sys-
tem. The multidatabase query processing may however need sophisticated
services like a-thesaurus, an equation solver, rule processing, outer-joins
etc. It is unreasonabie to consider that these services are available univer-
sally. There is therefore a need for the se!f-description of a database sys-

186 W Litwin

tern not only with respect to data schemas, but also with respect to opera-
tional capabilities. The object oriented approach seems useful for this pur-
pose, The guery decomposer has to take into account the availability of
capabilities as additignal constraints,

» Different types of formulas F for value conversion lead to different more
efficient algorithms. Furthermore, the most efficient algorithm for a few
tuples, may be not the optimal one for many tuples. For instance, for F in
a polynomial form, the Horner algorithm is the optimal one for a few
tuples, but Motzkin and Knuth algorithms are faster for many tuples.

* The multiple queries are at present evaluated in MRDSM as sets of
queries resulting from the substitutions of the unique identifiers to the
multiple ones and to semantic vaniables. The resulting queries may have
commen subexpressions. Factorization of these subexpressions may be
useful, as duplication of retrievals or some intersite transfers may be
avoided.

» Similar problems may occur for interdatabase queries, where data selected
from some source database should be dispatched to several databases.
Basically, such an interdatabase query is a set of subgqueries each one per-
forming a szlection from the source database(s) and some kind of inser-
tion into one target database, Target tables may in particular differ to
some extent. The factorization may avoid replicated selections between
subqueries and may speed up other selections. It may indeed use as the
source, a small temporary relation produced by the selection expression of
another subquery, instead of large base relations.

6. Conclusion

The multidatabase approach was intended as a new methodology for the
design of database systems, in particular the distributed ones. The general
idea was that such systems should be able to manage collections of
autonomous databases without a global schema and control. The methodol-
ogy proposed new basic concepts, a general architecture and several new
capabilities for relational languages. The proposed principles progressively
gave rise to developments at research level. They were recently further ap-
plied 1o industrial prototypes, within major new commercial systems and w0
new domains for database systems [23].

The existence of major commercial systems shows that the proposed prin-
ciples were an appropriate framework. The perspectives of worldwide usage
of these systems show that multidatabase (federated, interoperable,..) systems
will be among popular software t00ls. Most probably, database systems will
therefore systematically become multidatabase systems as was postulated.
The utopian notion of a database being a single, possibly “very large”, data
recipient is being abandoned.

Database Systems 10 Multidatabase Systems - 187

The functions for the multidatabase manipulations already present in the
commercial systems are nevertheless only a rather limited subset of those in-
vestigated at research level. It seems most likely that the new assumptions
about the lack of global knowledge of all data and about user autonemy will
influence the design of future systems much more deeply. New principles will
emerge at all levels, starting from logical data definition and manipulation
functions and going down to concurrency and transaction management prin-
ciples, as well as to the physical implementation and distributed execution.
They will apply further to new types of information bases, in particular
knowledge bases. Finally, they will provide interoperability with respect to
other types of information management systems, broadly named services in
the present terminology. They promise interesting perspectives for both users
and researchers running after exciting issues.

Acknowledgement
The author is grateful to Mr. Richard JAMES for help with ediung.

References

1. R. Alonso, H. Garcia-Molina, X, Salem, Concurrency Control and Recovery for Global
Procedures in Federated Database Systems. IEEE Data Engineering, (Sep. 1987), 10, 3,
5-11.

2 Belleastro, E & all. DQS-Distributed Query System. (Sept. 1987), CRAL, lraly, 21. To
appear also in Proc. of Int, Conf. on Extending Database Technology, Springer Verlag,
1988.

3. Y. Breitbart, A, Silberscharz, G. Thompson, An Update Mechanism for Multidatabase
Systems. IEEE Data Engineering, (Sep. 1987), 10,3, 12-18.

4. S. Cer, B. Pemici, G. Wiederhold, Distributed Database Design Methodologies.
Proceedings of the [EEE, {(May 1987), 533- 546,

s. B. Czejdo, M. Rusinkiewicz, D. Embley, A Unified Approach 1o Schema Integration
and Query Formulation in Federated Databases. Res. Rep. Univessity of Houston, 1987,
25,

6. C. 1. Date, A Critique of the SQL Database Language. SIGMOD Record, 1984 , 8-54.

7. Special Issue on Distributed Database Systems. Proceedings of the [EEE, (May 1987},
532-735.

8. M. 8. Deen, R_R. Amin, M. C. Taylor, Data Integration in Distributed Databases. IEEE
Trans. on Seft. Eng., 13, 7, (July 1987), 860-864.

9, F. Eliassen, J. Veijalainen, Language Support of Multi- database Transactions in a

Cooperative, Autonomous Environment. IEEE Region 10 Cenf., Secul, (Aug. 1987).

10. Special Issue on Federated Database Systems. IEEE Dauwa Engineering, (Sep. 1987, 10,
3,64,

11 A. Elmagamid, Y. Lev, An Optimistic Concurrency Control Algorithm for
Heterogeneous Distributed Database Systems. JEEE Data Enginesring, (Sep. 1987), 10,
3,26-32.

12. B. Gash, U. Kelter, H. Kopfer, H. Weber, Reference Model for the Integration of Taols

in the “EUREKA Saftware Factory™, ACM-IEEE Fall Joint Comp. Conf. {Oct. 1987),
183-190.

188

13,
14.
15.
16.

17.
18.

is.
20.
21
22,
23.
24,
25.
26.
27,

28,
29.

30.
3L

32

W Litwin

M. Hammer, D. McLeod, On database management system architeciure, MIT Lab. for
Comp. Sc. MIT/LCS/TM-141, (Oct 1979), 35.

D. Heimbigner, D. Mcleod, A Federated Architecture for Information Management.
ACM Trans. on Office Information Systems. (July 1985), 3, 3, 253-278.

D, Heimbigner, A Federated System for Software Management. IEEE Data Engineering,
(Sep.1987), 10, 3, 39-45,

C. Hewitt, P. De Jong, Open Systems. in On Conceptual Modeling. Springer Verlag,
19853, 147-164.

Interoperable Database System. 1st Intemational Symposium. INTAP, (May 1987), 167.
E. Kuhs, Th. Ludwig. VIP-MDBS: A logic multidatabase System. Eurcp. Teleinf. Conf.
EUTECO - 88, Wien, {April 88).

W. Litwin et al. SIRIUS Systems for Distributed Data Management. Ed. H. J. Schneider.
North-Holland, 1982, 311-366.

W, Litwin, A. Abdellatif, Multidatabase Interoperability. IEEE Computer, (Dec. 1986),
19,12, 10-18.

W. Litwin, et al. M5QL: a Multidatabase Language. INRIA Res. Rep. 695, (June 1987),
41. To appear in Inf. Science - An Intemational Journal, Special Issue on Databases.

W. Litwin, Ph. Vigier, New Functions for Dynamic Auributes in the Multidatabase Sys-
tem MRDSM, HLSUA Forum XLV, New Orleans, (Oct. 1987), 467-475.

W. Litwin, A. Zeroual. Advances in Muitidalabase Systems. European Conference on
Teleinformatics EUTECO-88, Wien. North Holland {publ.).

L. Mark, N. Rousscpoulos, Information Interchange between Self-Describing Databases.
IEEE Dala Engineering, {(Sep. 1987), 10, 3, 46-52.

L Mark, N. Roussopoulos, Operational Specifications of Update Dependencies. SRC
Res. Rep., Univ. of Maryland, (Feb. 1987), 44

A. Motro, Seperviews: Virual Integration of Multiple Databases. IEEE Trans. on Soft.
Eng., 13,7, (July 1987), 785- 798.

C. Pu, Superdatabases: Transactions Across Database Boundaries. IEEE Data Engineer-
ing, (Sep. 1987}, 10,3, 19-25

Remote Database Access Protocol. 2-nd Working Draft. ISO/TC 97/SC 21/WG 3, 1987.
M. Templeton, E. Lund, P. Ward, Pragmatics of Access Contral in Mermaid. TEEE Data
Engineering, (Sep. 1987), 10, 3, 33-38.

M. Templeton, et al. Memaid: A Front-End to Distributed-Heterogeneous Databases.
Proceedings of the IEEE, (May 1987), 695-708.

G. Wiederhold, Q., XiaoLei, Modeling Asynchrony in Distributed Databases. 3rd IEEE
Conf, on Data Enginesring, Los Angeles, (March 1987), 246-250.

A. Wolski, LINDA: Overview, Techn. Rep. Techn. Res. Centre of Finland, (May 1987),
19.

