REQUIREMENTS ELICITATION PROCESS:

AN ITERATIVE APPROACH BASED ON THE SPIRAL MODEL

Claudine Toffolon (*) (**) Salem Dakhli (**)

(*) Littoral University, LIL, France

(**) Paris-Dauphine University, CERIA, France

Abstract

The value obtained from organizations vast investment in information technology is often less than expected, due in large measure to the software crisis. The software crisis has two main ramifications: social and economic. Social ramification of the software crisis is characterized by users resistance, stress and productivity loss. Economic ramification of the software crisis is characterized by software development costs and schedule slippages and maintenance burden. In particular, many software projects are two or three times over their schedule and budget. By another way, delivered systems often fail to meet users needs and are difficult and expensive to change. Many authors stress the fact that requirements deficiencies are among the most important contributors to the software crisis. They point out that approaches and techniques provided by existing software development methods to carry out requirements elicitation and management process are often insufficient. Too often, software systems don’t adequately meet all the stakeholders true requirements. This paper provides an iterative approach based on software prototyping to improve the software requirements elicitation process. This approach is based on a framework which models the stakeholders points of view and interactions.

Keywords: project actor, project space, requirements engineering, software dimensions, software model, spiral model
1. Introduction

The role of software systems in organizations is always increasing and constantly evolving; it consists in providing business and decision support services. Nevertheless, the value obtained from organizations vast investment in information technology is often less than expected, due in large measure to the software crisis caused by high maintenance costs and an increasing number of projects failures. In addition to the seemingly intractable problems encountered by software professionals during development and maintenance software life cycles, software crisis has two main ramifications: social and economic. Social ramification of the software crisis is characterized by users resistance, stress and productivity loss [8] [9]. Economic ramification of the software crisis is characterized by software development costs and schedule slippages and maintenance burden. In particular, many software projects are two or three times over their schedule and budget. By another way, delivered systems often fail to meet users needs and are difficult and expensive to change. Many authors stress the fact that requirements deficiencies are among the most important contributors to the software crisis. Browne [5] stated that software systems misuse and disuse can often be traced to an inadequate requirements determination. As pointed out by Lee [11], approaches and techniques provided by existing software development methods to carry out requirements elicitation and management process are often insufficient, all too often software systems don’t adequately meet all the stakeholders true requirements. It is obvious today that these methods are not adequate to take into account the increasing complexity of software systems resulting from integration of continuous changes, stakeholders conflicting needs and points of view and groupware. In particular, the early approaches based on the waterfall model [14] contend that requirements should be completely specified before implementation. However, Swartout and Balzer [16] proved that requirements specification and software implementation activities are intertwining and conclude that a single development approach interleaving these activities will improve the software development process. This paper provides an iterative approach based on software prototyping to improve the software requirements engineering elicitation process. This approach rests on the global software model proposed by the authors [7] [20]. The remainder of this paper is organized as follows. In section 2, we describe the state of software requirements engineering in particular research work related to our approach. Section 3 presents synthetically the global software model used to define the requirements engineering approach presented in section 4. In section 5, we conclude this paper by describing lessons learned from the validation of our approach and listing some research directions.

2. Related work

Although requirements engineering is a relatively recent practice, it received a lot of attention in literature. For example, Browne [5] proposed a task behavior oriented approach to the determination of information requirements for the development of decision support systems. This approach is a shift from the data-driven requirements determination approaches used to develop business information systems, in particular transaction processing applications. Other proposals assume that the multi-stakeholders consideration is a critical issue in requirement engineering. For example, IBIS (Issue-Based Information System) [6], addresses multi-stakeholders considerations by supporting relations among system objectives. This approach is based on "issues" which can be viewed as requirements that impact on design decisions. Although IBIS enables analysis of requirements interactions, it has two main disadvantages. Firstly, it doesn't provide tools for analyzing trade-offs. Secondly, it doesn't support negotiation activities needed to reconcile stakeholders points of view. The NATURE (Novel Approaches to Theories Underlying Requirements Engineering) approach apply artificial intelligence techniques to requirements engineering. According to Pohl [12], NATURE addresses three important dimensions of requirements engineering: the specification dimension, the representation dimension and the agreement dimension. The NATURE agreement dimension corresponds to the multi-stakeholders consideration. We think that the approaches based on the Win Win spiral model [3] [4] [11] are closest to our approach. These approaches take into account individual stakeholders requirements (win conditions) and help produce reconciled stakeholders requirements by capturing conflicting requirements and using options to solve them. The Win Win spiral model supporting these approaches permits accommodating requirements change. Nevertheless, our approach presents two main differences with the approaches cited above. On the one hand, it views stakeholders as project actors carrying out contracts related to the software system to be developed. On the other hand, it provides an instrument to describe stakeholders conflicting interests and points of view, and take into account all the aspects of software engineering.

3. The global software model

The global software model proposed by the authors [7] [20] is a framework which uses the economic agency theory [21] to identify the stakeholders involved in software systems development and operation, and describe the relationships between them. Applying agency theory in analyzing information technology role in modern organizations demonstrates that software engineering is governed by a set of contracts among actors concerned with the software system to be developed or maintained. At a given time, each project actor plays the role of consumer (principal) or producer (agent) under the contracts which link him to the other project actors. So, a software development or maintenance project is a nexus of contracts among different actors with conflicting interests and points of view. The discrepancies between the project actors objectives are partly the source of software engineering inconsistencies and related agency costs. A preliminary condition to cope with these inconsistencies is to identify the different actors concerned with the software project as well as their objectives (e.g. what they expect from the project) [20].

By another way, the global software model refers to the software dimensions theory [18] to represent all the aspects of software in particular economic, organizational and human aspects. Toffolon [18] has identified ten major aspects of software or dimensions. These dimensions has been determined on the base of a deep analysis of the effects of the software crisis and organizations, that mean interrelations between all organizational components (structural, tasks, individual, technical), environment and information technology. Those ten dimensions concern altogether the software process and the artifacts produced by this process. The process’ dimensions (cost dimension, delay dimension, technical dimension, communication dimension and organizational dimension) and the product’s dimensions (functional dimension, human dimension, economic dimension, organizational dimension and temporal dimension) demonstrate that a same software may reflect many different realities which depend on the organizational, social and economic contexts of its use and exploitation.

The software dimensions theory explains the software crisis and provide an a priori decision oriented analysis tool which permits a classification of dimensions on the basis of the nature of the software and the characteristics of its use and operation contexts. This theory provides also an a posteriori analysis and evaluation tool based on the software components evaluation in relation to dimensions, which permits setting off an iterative improvement process of software artifacts and preliminary choices.

To build the global software model, [20] notice that software development methodologies in use make a confusion between four businesses: the customer’s business, the end user’s business, the developer’s business and the architect’s business. Elimination of this confusion leads to identify four different spaces representing respectively these four businesses:

· The problem space where are defined the customer/end user’s problem and its organizational solution. This space represents the customer’s business.

· The solution or architectural space where are defined computer solutions of the customer/end user’s problems. This space represents the architect’s business.

· The construction space where these solutions are implemented. This space represents the developer’s business.

· The operation space where are evaluated the software’s usability from the end user’s perspective as well as its contribution to the organization’s competitiveness. This space represents the end user’s business.

Besides, each software project is represented in the four spaces by a static part, a dynamic part and actors. In each space, project’s dynamic part relates to the software engineering process, project’s static part is composed of software artifacts issued from this process, while project’s actors are human resources concerned with this project. Each actor may have two categories of roles: producer (agent) or consumer (principal) of software artifacts. A role played by a project’s actor in one of the four spaces is either principal or secondary. In each space, it is possible that a project has many actors assuming secondary roles, but there can be only one project actor involved in a principal role. Moreover, an actor can play a secondary role in many spaces, but a principal role only in one (every actor play the principal role in some space).

To be complete and efficient, any software development process must take into account all the aspects of the software as well as all the conflicting interests and points of view of the project’s actors. So, each project space is associated with a subset of the ten software dimensions [20].

Consequently, the economic agency theory and the software dimensions theory play complementary roles in modeling software engineering. Indeed, the agency theory underlines the conflicting interests and points of view of the organization’s actors concerned with the software system, and provides an instrument to model software engineering in terms of contracts between the consumers (or principals) and the producers (or agents); while the software dimensions theory permits identifying all the software engineering aspects and facilitates the expression of the organization’s priorities and constraints according to the Simon’s Bounded Rationality Principle [15]. In addition to the project’s actors and businesses identification, the four software project’s spaces provide tools to analyze deeply and describe the various contracts between the software project’s actors, and the inconsistencies inherent in software engineering.

4. The requirements elicitation approach

The requirements engineering approach we propose in this paper rests on the software engineering model presented above. It is composed of two levels: the intra-space level and the inter-spaces level. The intra-space level permits taking into account the stakeholders interests and points of view while the inter-space level supports trade-offs and reconciliation of stakeholders points of view. To be compliant with the software engineering model, we define requirements as information set needed by a stakeholder to carry out contracts linking him to the other stakeholders which have an interest in the software system under development. This definition integrates end users functional and non-functional requirements, as well as constraints resulting from the organizational and technical contexts. It is compliant with the IEEE definition which states that a requirement is:

1. A condition or capacity needed by a user to solve a problem or achieve an objective;

2. A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document;

3. A document representation of a condition or capability as in 1 or 2.

To take into account the stakeholders conflicting interests and points of view, the requirements engineering process must be cooperative. On the other hand, it must be iterative to cope with the weaknesses of the approaches based on the waterfall model in which requirements are positioned before design and implementation. In particular, the requirements engineering process is composed of activities intertwining with implementation activities.

4.1 The iterative nature of requirements engineering

The iterative nature of the requirements elicitation process may be proved using two paradigms: the Simon's Bounded Rationality Principle and the Popper's "knowledge growth theory".

The Bounded Rationality Principle

[15] advocates that for a given problem, there is no optimal solution suited for all organizations or people which have an interest in solving this problem. Indeed, given the uncertainty inherent in real world situations, and the dramatic changes in technology and organizational context, perfect rationality doesn't apply. In turn, it is not possible to determine the best solution. Instead of doing the best, agent do the best they can. Simon proves that to cope with a problem, an agent (human, organization) looks for a satisficing solution which is the best for now, since it has a bounded rationality instead of perfect rationality. This solution will likely no longer be the best in a few months. Arthur [1] analysis of the rationality in economics provides more explanations about the Bounded Rationality Principle. According to this author, the perfect (deductive) rationality is extremely useful in solving theoretical problems. Nevertheless, human behavior needed by perfect rationality is much more than humans can usually deliver. Indeed, there are two reasons for perfect rationality to break down under complication. Firstly, beyond a certain complication threshold, the human logical reasoning means fail to cope, so our rationality is bounded. Secondly, in interactive situations of complication, agents guess the behavior of the other agents they are dealing with since they can't rely on them to behave under perfect rationality. Relationships between agents are characterized by subjective beliefs resulting in subjective behavior. Therefore, neither objective assumptions nor perfect reasoning based on well-defined processes can apply to predict the behavior of interacting agents. In turn, interactive situations of complication correspond to ill-defined problems. To deal with such problems, Arthur suggests the use of psychology which states that instead of perfect rationality, human agents simplify the complicated problems encountered by constructing temporary internal working models based on patterns. So, each agent has a private collection of internal belief models which result in learning-oriented behavior system. Indeed, agents learn which of their internal working models is suited to cope with a given ill-defined complicated situation, and may improve these models by generating new hypothesis to replace the poorly performing ones. According to Kaplan [10], Simon's Bounded Rationality theory results in conservative incrementalism consisting in cautious, feed-back sensitive attitude on the part of the agents concerned with complicated problems.

Consequently, since software systems play a key role in supporting ill-structured organizational problems, the Bounded Rationality Principle may apply to cope with the complication inherent in the software system under development. Indeed, agents improve in an iterative way their knowledge and in turn the requirements needed to carry out the contracts linking them to the other agents concerned with this system.

The knowledge growth model

Popper [13] suggested that human knowledge growth results from problem solving and is governed by a never-ending evolution process. Indeed, every solution to a problem generates new problems not intentionally created by humans. These problems emerge “autonomously from the field of new relationships which we cannot help bringing into existence with every action, however little we intend to do so”. The knowledge growth process continues ad infinitum since solving the newly created problems requires new knowledge i.e. new theories and tools.

The Popper’s knowledge growth model applies to the software development process. Indeed, each software solution to an organizational problem creates new technical and organizational problems by disturbing established relationships governing the organizational context. In principle, it is not possible to predict the precise manner in which manner a new software system will disturb the organizational context. On the one hand, this context is complex because of the very high number of interactions between its components. On the other hand, this context is continuously changing. Therefore the stakeholders concerned with a software system modify their requirements firstly, to solve the new problems created by this system and secondly, by discovering new ways to use this system. Therefore, the stakeholders requirements cannot be described completely before implementation. They evolve in an iterative manner as the software system is used.

Consequently, either Simon's Bounded Rationality Principle or Popper's knowledge growth model prove that the stakeholders requirements can't be made once and for all. The requirements engineering process must provide for the periodic review of the stakeholders requirements according to the knowledge learned while using the software system and the changes of the organizational context.

4.2 The description of the requirements elicitation process

To integrate the iterative nature of the stakeholders requirements determination, the intra-space and the inter-spaces levels of the approach we propose in this paper are based on Boehm's spiral model [2]. To describe these two levels, we view requirements as inputs needed by a stakeholder to perform tasks related to the contracts linking him to the other stakeholders involved in the software project. Stakeholders requirements result from their functional and non-functional needs, and from constraints related to the organisational context. The meta-model (Figure 1) synthesizes this view of stakeholders requirements. So, the proposed requirement engineering process may be considered task behavior oriented. So, methods and techniques used in task behavior oriented requirements (task analysis, workflow analysis, decision process analysis) apply when implementing our approach. Nevertheless, these methods and techniques should be combined with methods and techniques specific to data oriented requirements determination (structured interviews, questionnaires, JAD technique, …) to obtain more information about, for example, data, critical success factors and stakeholders goals. In the remainder of this section, the processes supporting the intra-space and the inter-spaces levels of our approach are presented.

[image: image1.wmf]Stakeholder

Contract

Project

Requirement

carries out

composed of

describes

interested

in

meets

End-user

Customer

Architect

Developer

is-a

linked

linked

linked

linked

Role

plays

Secondary

role

Principal role

generates

is-a

Non

functional

Functional

Constraint

composed of

Figure 1 : Stakeholders requirements metamodel
The intra-space level. The intra-space level of our approach is supported by four processes based on the Boehm's spiral model which permit determining respectively the end-user requirements, the customer requirements, the architect requirements and the developer requirements. Each process takes place in the space in which the stakeholder plays the principal role and is embedded in the spiral model represented in the set of dimensions associated with this space. The intra-space level requirements engineering processes are called as following:

· The end-user requirements spiral corresponds to the operation space. It is represented in the space generated by the organizational, human and functional software product dimensions.

· The customer requirements spiral corresponds to the problem space. It is represented in the space generated by the economic, temporal, organizational and functional software product dimensions.

· The architect requirements spiral corresponds to the solution space. It is represented in the space generated on the one hand, by the organizational and functional software product dimensions and on the other hand, by the cost, delay and technical software process dimensions.

· The developer requirements spiral corresponds to the construction space. It is represented in the space generated on the one hand, by the human and functional software product dimensions and on the other hand, by the cost, delay, organizational and communication software process dimensions.

Each spiral is implemented according to the meta-lifecycle (IDEA) [17] composed of four phases:

1. Identification (I);

2. Development (D);

3. Evaluation (E);

4. Amelioration (A).

Each phase splits up into many tasks which number, input and output depend on the methods used to carry it out and the process to which it belongs. Regrouping these tasks shows that the lifecycle of each phase is consistent with the meta-lifecycle (IDEA).

The Identification phase consists in describing the stakeholders’ problem i.e. the list of functional and non-functional needs, and constraints required to carry out their contracts. The Development phase aims to describe the needs and constraints resulting from the previous phase by dividing them into many categories associated with the software dimensions corresponding to the space. So, all the aspects of software engineering are taken into account while describing the stakeholders requirements. The Evaluation phase consists on the one hand in identifying the uncertain requirements and on the other hand, in evaluating the impact of each requirement on the software system under development and in turn classifying these requirements according to the stakeholder's priorities and constraints. Requirements classification is based on the Simon's Bounded Rationality Principle consisting to look for the "best for now" requirements instead of the optimal requirements. The Amelioration phase aims to reduce uncertainty inherent in the requirements according to the Evaluation phase results. The software informative prototyping is among the most popular and efficient approaches used to reduce requirements uncertainties. Software prototyping is a development approach which permits building executable models intended either to learn more about a problem or a solution to a problem, or to implement confirmed requirements of organizational actors. The models built are called informative prototypes in the first case, and operational prototypes in the second case [7]. Operational prototypes are software versions built in a quality manner. Informative prototyping permits stakeholders to improve their knowledge accuracy by obtaining information about things they don't know well. Another advantage of software informative prototyping is related to its compliance with the iterative nature of the intra-space requirements engineering processes. Nevertheless, since each category of requirements corresponds to one software dimension, there are many types of uncertainties related to the software dimensions associated with each software space. So, to cope efficiently with uncertainties inherent in stakeholders requirements, a classification of software informative prototypes is needed. Among the prototyping classifications proposed in literature, the classification proposed in [7] seems to be the most suitable to our approach since it is based on the software dimensions theory. Each intra-space requirements spiral takes place in many iterations. In each space, the optimal number of iterations is determined by two rules:

1. All requirements considered as important by the stakeholder playing the principal role in this space are well known;

2. The value of information brought by software informative prototyping is positive.

The informative prototyping evaluation method proposed in [19] may be used to determine the optimal number of iterations characterizing each intra-space requirements spiral. In a given project space, the intra-space requirements spiral provides the best version for now of requirements of the stakeholder playing the principal role in this space.

The intra-space requirements spirals are at the same time participative and collaborative processes. Firstly, since each project space is associated with a requirements spiral, all the stakeholders concerned with the software system under development participate to the development or maintenance process by expressing their requirements. In our approach, each category of stakeholders having an interest in the software system is represented and play a principal role in one project space and secondary roles in the other spaces. Secondly, in each project space, the stakeholders which are consumer (vs. producer) of software artifacts elaborated (vs. used) in this space contribute to the implementation of the requirements spiral associated with this space. For example, in the operation space, the end-user plays the principal role while the developer and the customer play secondary roles. The developer behaves as a producer of software artifacts used in the operation space while the customer behaves as consumer of software artifacts issued from this space. So, the developer and the customer collaborate with the end-user in determining its requirements. In particular, the contribution of stakeholders who plays secondary roles to a given requirements spiral include technical and evaluation tasks. Table 1 provides a typology of the different stakeholders requirements resulting from the intra-space requirements spirals implementation.

The inter-spaces level. The inter-spaces level which supports the stakeholders interests and points of view reconciliation is based on evaluation and coordination activities. To express the iterative nature of such activities, the process supporting the inter-spaces level of the requirements elicitation process is embedded in a spiral model called the requirements coordination spiral (Figure 2). The requirements coordination spiral permits inter-spaces « navigation », provides evaluation and coordination tools, and supports trade-offs and negotiation between stakeholders. It also describes intra-space and inter-spaces roles distribution and communication rules. This spiral is represented in the space generated by the ten software dimensions and takes place in compliance with the « Problem-Architecture-Construction-Operation » (PACO) loop [20].

The requirements coordination process, based on the requirements coordination spiral, is composed of two sub-processes: a communication sub-process and a meta-process. The communication sub-process describes the coordination tasks, the actors communication rules and the roles distribution among stakeholders. The meta-process, is based on a client/buyer schema, describes negotiation rules and evaluation tasks, and defines the inter-spaces quality and acceptation criteria for products issued from the intra-level requirements spirals. The coordination process uses two categories of resources contained in a common repository to all stakeholders:

1. The first resources type relates to the evaluation methods, approaches, technologies and tools in use within the organization. Cost/benefit methods, quality control techniques, tool selection methods are examples of such resources.

2. The second type of resources relates to the organizational rules and models governing the contracts and relationships among the stakeholders. They include in particular evaluation and acceptation criteria and thresholds used during meta-process implementation.

The requirements elicitation processes supporting the intra-space level are interdependent. The requirements coordination spiral permits managing the interdependencies between the four intra-space requirements spirals. So, the requirements coordination spiral links two categories of stakeholders behaviors: a micro-behavior consisting, for each stakeholder, in expressing its requirements and a macro-behavior which reconciles non-convergent stakeholders interests and points of view. Each cycle of the requirements coordination spiral results in a version of the software system which is the best for now. This version is based on the stakeholders requirements versions issued from the intra-spaces requirements spiral and revised according to negotiation principles embedded in the requirements coordination process. The best for now version of the software system issued from the requirements coordination cycle k is called version k. It is a formal model (a set of interrelated artifacts) of the stakeholders requirements (version k) generated by problems and new needs resulting from the use of the version k-1 of the software system and federated by the requirements coordination spiral.

Stakeholder
Project space
Software product dimensions
Software process dimensions
Requirements types

Customer
Problem space
· Economic

· Temporal

· Organizational

· Functional

Cost constraints, Delay constraints, Market constraints, Efficiency constraints, Tactical/strategic constraints, Organizational constraints and priorities, Functional needs, Quality of Service needs, …

Architect
Solution space
· Organizational

· Functional
· Cost

· Delay

· Technical
Organizational context constraints, Functional constraints, Cost constraints, Delay constraints, Architecture constraints, Reuse constraints, Methods constraints, Performance constraints, …

Developer
Construction space
· Human

· Functional
· Cost

· Delay

· Organizational

· Communication
Functional constraints, Non functional constraints, Project’s organization constraints, Teams communication needs, Cost constraints, Delay constraints, …

End-user
Operation space
· Organizational

· Human

· Functional

Functional needs, Non functional needs, Organizational context constraints, …

Table 1 : The stakeholders requirements types

[image: image2.wmf]Operation space

Problem space

Solution space

Construction space

End-user

requirements

spiral

Customer

requirements

spiral

Architect

requirements

spiral

Developer requirements spiral

Requirements

coordination

spiral

Figure 2: The requirement engineering approach-

In fact, according to the consumer/producer schema linking stakeholders, each stakeholder, excepted the end-user, adds its version k of its requirements to the version k of another stakeholder requirements to build a formal model consumed by another stakeholder. The end-user initiates the requirements engineering process by identifying operational problems encountered and describing its functional and non-functional needs. So (Figure 3),

· The customer integrates the version k of its requirements in the version k of the end-user requirements, and produces a formal model (the organizational problem) consumed by the architect;

· The architect integrates the version k of its requirements in the version k of the customer requirements, and produces a formal model (the software architecture) consumed by the developer;

· The developer integrates the version k of its requirements in the version k of the end-user requirements, and produces a formal model (the software system) consumed by the end-user;

· The end-user identifies the operational problems he encounters when using the software system and describes its functional and non functional needs. He produces a conceptual model consumed by the customer.

[image: image3.wmf]Customer

End-user

requirements

(Version k)

Customer

requirements

(Version k)

Organizational

problem description

(Version k)

consumes

describes

produces

integrates

Architect

Revised

organizational

problem

(Version k)

Architect

requirements

(Version k)

Architecture

description

(Version k)

consumes

describes

produces

integrates

Developer

Revised

architecture

description

(Version k)

Developer

requirements

(Version k)

Software system

(Version k)

consumes

describes

produces

integrates

End-user

Revised

Software system

(Version k)

End-user

requirements

(Version k)

consumes

produces

coordination

coordination

coordination

Figure 3: The interdependencies between the intra-space and the inter-spaces levels

5. Conclusion

In this paper, we present a software requirements elicitation approach composed of two levels: the intra-space level and the inter-spaces level. The intra-space level permits taking into account the stakeholders interests and points of view while the inter-spaces level supports trade-offs and reconciliation of stakeholders points of view. The description of the intra-space and the inter-space levels confirms that the requirements specification activities and the implementation activities are intertwining and can't be separated.

To validate the approach presented in this paper, we apply it to two large projects and a small project in a French insurance company. The first large project consists in computerizing the company’s litigation department. The objective of the second large project is to develop a software system for managing the company’s contractors. The small project is based partly on end-user computing and partly on a software package which automates the accountancy procedures. Let us note that the software engineering department of this insurance company is organized according to the global software engineering model described above. Many lessons are learned from this experience:

· This approach is not applicable when stakeholders requirements are well known and stable.

· In the same way, it seems not very useful in the case of projects based on end-user computing.

· The requirements elicitation approach presented in this paper seems to be well adapted with software projects in which stakeholders requirements are uncertain and volatile.

· Since it is task behavior oriented, our approach is suited to describe requirements related to Decision Supported Systems. In addition, it permits, through the use of the task analysis techniques, taking into account the cognitive process of each project stakeholder.

· It permits taking into account all the aspects of software engineering as well as all the project stakeholders conflicting interests and points of view representing to the businesses exerted by these stakeholders.

· It provides instruments to cope with uncertainty inherent in software engineering.

· Since it considers that a software project is a nexus of contracts among stakeholders which may behave either as producer or consumer of software artifacts, our approach applies to the development of distributed software systems where the stakeholders may play many roles simultaneously.

· This is an open approach since all the well established methods and techniques provided by traditional requirements engineering approaches may be used with this approach.

· It is compliant which many important academic research work in the requirements engineering discipline [11] [3] [4].

Nevertheless, the approach presented above is a framework which need to be completed. On the one hand, the requirements coordination process must be formalized. In particular, a decision process must be added to the requirements coordination spiral to solve the problems resulting from persistent conflicts between stakeholders. On the other hand, the evaluation tasks needed when carrying out intra-space and inter-spaces spirals are difficult because of the lack of efficient and easy to learn evaluation methods.

References

[1] Arthur W.B. : « Inductive Reasoning and Bounded Rationality », American Economic Association Annual Meetings, 1994.

[2] Boehm B.W. : « A Spiral Model of Software Development and Enhancement », IEEE Computer, 21(5), pp. 61-72, May 1988.

[3] Boehm B.W., Bose P., Horowitz E., Lee M.J : « Software Requirements As Negotiated Win Conditions », In Proceedings of the First Int. Conf. on requirements Engineering, pp. 74-83, IEEE Computer Society Press, April 1994.

[4] Boehm B.W., Bose P., Horowitz E., Lee M.J.: « Software Requirements Negotiation and Renegotiation Aids: A Theory-W Based Spiral Approach », In Proceedings of the 17th Int. Conf. on Software Engineering, ACM Press, April 1995, pp. 243-253.

[5] Browne G.J. : »Information Requirements for Decision Support Systems : A Task Behavior Orientation », Conference AIS, 1995.

[6] Conklin E.J., Yakemovic K. : « A Process-Oriented Approach to Design Rationale », Human-Computer Interaction, 6, pp. 357-391, 1991.

[7] Dakhli S: « Prototyping », PhD. Thesis, Paris IX-Dauphine University, Paris, 1998.

[8] Guynes J.L.: « Impact of System Response Time On State Anxiety », CACM., Vol. 31, N°3, March 1988, pp. 342-347.

[9] Hirschheim R., Newman M.: « Information Systems And User Resistance: Theory And Practice », The Computer Journal, Vol. 31, N°5, May 1988, pp. 398-407.

[10] Kaplan S., Kaplan R. : « Cognition and Environment : Functioning in an Uncertain World », Praeger, 1982.

[11] Lee M.J. : « Foundations of the Win-Win Requirements Negotiation System », PhD. Thesis, Faculty of the Graduate School, University of South California, August 1996.

[12] Pohl K. : « The Three Dimensions of Requirements Engineering », In the 5th International Conference on Advanced Systems Engineering, June, 1993.

[13] Popper K.R. : « Objective Knowledge, An Evolutionary Approach »,Oxford University Press, 1972.

[14] Royce W.W. : « Managing the Development of Large Software Systems Concepts and Techniques », In IEEE WESCON, 1970.

[15] Simon H.A.: « Models of Bounded Rationality », (2 volumes), MIT Press, Cambridge, 1983

[16] Swartout W., Balzer R. : « On the Inevitable Intertwining of Specification and Implementation », Communications of the ACM, July 1982, pp. 438-440.

[17] Toffolon C.: « Prototyping Incidence in Software Engineering Development Methodologies », PhD. thesis, Paris IX-Dauphine University, Paris, 1996.

[18] Toffolon C.: “The Software Dimensions Theory”, in the Proceedings of the ICEIS'99 Conference, Setubal, Portugal, March 27-30, 1999.

[19] Toffolon C., Dakhli S. : «Software Rapid Prototyping Evaluation », UKSMA Conference : « Software Measurement in Practice », October 29-30, 1998, London UK.

[20] Toffolon C., Dakhli S.: « A Framework for Software Engineering Inconsistencies Analysis and Reduction », In Proceedings 22nd Annual International Computer Software & Applications Conference (COMPSAC 98), August 19-21, 1998, Vienna, Austria, IEEE Computer Society Press, pp. 270- 277.

[21] Williamson O.E. (1989): « Transaction Cost Economics », in « R. Schmalensee and R. Willig (Eds): Handbook of industrial organization », North-Holland, 1989.

_988925199

