Acta Informatica 26, 597-614 (1989) @@_
Infofpqtica

© Springer-Verlag 1989

Concurrency and Trie Hashing

W. Litwin', Y. Sagiv? * and K. Vidyasankar* **

! LN.R.I.A,, Rocquencourt, B.P. 105 F-78153 Le Chesncy Cedex, France

* Department of Computer Science, Hebrew University, Givat Ram, IL-91904 Jerusalem, Israel
3 Department of Computer Science, Memorial University of Newfoundland, St. John’s,
Newfoundland, Canada A1C 587

Summary. The Trie Hashing (TH), defined by Litwin!, is one of the fastest
access methods for dynamic and ordered files. The hashing function is defined
in terms of a trie, which is basically a binary tree where a character string
is associated implicitly with each node. This string is compared with a prefix
of the given key in the search process, and depending on the result either
the left or the right child is chosen as the next node to visit. The leaf nodes
point to buckets which contain the records. The buckets are on a disk,
whereas the trie itself is in the core memory. In this paper we consider
concurrent execution of the TH operations. In addition to the usual search,
insertion and deletion operations, we also include range queries among the
concurrent operations, Qur algorithm locks only leaf nodes and at most
two nodes need to be locked simultaneously by any operation regardless
of the number of buckets being accessed. The modification required in the
basic data structure in order to accommodate concurrent operations is very
minor.

1. Introduction

The Tiie Hashing (TH) is one of the fastest access methods for dynamic and
ordered files [7]. The hashing function is defined in terms of a trie, which is
basically a binary tree where a character is associated with each internal node
including the root. (In [4], it is defined as an M-ary tree.) This character enables
the computation of a string, called split string, for each node. The split string
is compared with a prefix of the given key in the search process, and depending
on the result either the left or the right child is chosen as the next node to

* The work of this author was supported in part by grant 2545-2-87 from the Israeli National
Council for Research and Development
** This research was done while visiting LN.R.I.A., and is supported in part by the Natural Sciences
and Engineering Research Council of Canada, Individual Operating Grant A-3182
1 (Proc. SIGMOD81, pp. 19-29)

Offprint requests to: X. Vidyasankar

598 W. Litwin et al.

visit. The leaf nodes point to buckets which contain the records. The buckets
are on a disk, whereas the trie itself is in the core memory.

In this paper we consider concurrent execution of the TH operations. In
addition to the usual search, insertion and deletion operations, we also include
range queries among the concurrent operations. In terms of the number of
nodes that may be locked simultaneously, our algorithm compares favourably
with the concurrency algorithms for other dynamic search structures, in particu-
lar, [6, 10] for B-trees, [5] for binary search trees and [1] for linear hashing.
Only leaf nodes are locked, and at most two nodes need to be locked simulta-
neously by any operation regardless of the number of buckets being accessed.
The above mentioned algorithms use three simultaneous locks. The modification
required in the basic data structure in order to accommodate concurrent opera-
tions is very minor.

In Sect. 2 we describe the properties of TH briefly. Section 3 discusses concur-
rency without range queries, and Sect. 4 with them. We compare our algorithm
with the other algorithms mentioned above in Sect. 5.

2. Trie Hashing
2.1. File Structure

For TH, a file is a set of records identified by primary keys. Keys are character
strings of fixed maximum length with characters, called digits, from a finite
alphabet. The digits are assumed to be lexicographically ordered. Hence the
set of all possible keys is totally ordered. The smallest digit of the alphabet
is space and will be denoted “~”, while the largest digit will be denoted “:™.
The part of the record besides the key is irrelevant to access computation.
Records are stored on a disk in buckets that are units of transfer between the
disk and the core memory. Buckets are assumed to be of fixed capacity. Each
bucket has an address. The addresses are successive integers starting with 0.

A trie can be thought of as a binary tree in which a string, called split
string, is associated implicitly with each internal node (including the root) and
a bucket address or nil value is associated explicitly with each leaf. The search
for (the record of) a key starts at the root. At each internal node, a prefix
of the key is compared with the split string of that node. If the prefix is less
than or equal to the split string the left branch is traversed; otherwise the
right branch is chosen. The traversal stops when a leaf is reached. If the leaf
contains a bucket address, then the corresponding bucket will contain the record
of the key, if the record is in the file. If the leaf has a nil value, the record
is not in the file. Thus a trie defines a (partial) hashing function that maps
keys to bucket addresses. Unlike the usual hashing functions, a trie preserves
the lexicographical order. That is, when the buckets are ordered according to
the inorder traversal of the trie, if b and b’ are the buckets that keys C and
C’ are mapped into, then b<»’ if and only if C<C". Hence range querics can
also be processed efficiently.

As mentioned above, a split string is associated only implicitly, with cach
internal node. Only a digit field, consisting of a pair of attributes called digit
value and digit number, denoted (d,n), is associated explicitly. The digit field

Concurrency and Trie Hashing 599

of the root is fixed as (:,0). The digit field of each other node is determined
at the time of the creation of that node, by the splitting algorithm A2 described
later. Tt remains unchanged until the deletion of that node (in a merge operation).
The split string of the root is “:”, and that of each other node is computed
from the digit fields of that node and of some of its ancestors. This computation
is done as the trie is traversed, from the root node, in each key search operation.
Thus at the expense of recomputing the (same) split string in each traversal,
the storage space for internal nodes is drastically reduced since only one charac-
ter (and a number) is stored irrespective of the size of the split string. This
facilitates storing the entire trie in the core memory. (It is estimated in [8]
that, when 6 bytes are used for each internal node, a trie size of 10k bytes
would suffice for a file growing to about 100000 records, and a 64 k byte trie
would suffice for more than 750000 records. For files whose tries are too large
to store in the core memory, a multilevel trie hashing scheme, where only a
part (the top part) of the trie is kept in the core memory and the other parts
on disk, is devised in [9]. For this paper, we assume that the entire trie is
in the core memory.)

We now discuss the computation of split strings. First we introduce some
terminology. Throughout this paper, internal nodes will be denoted by small
letters a and b. Leaf nodes, also called external nodes, will be denoted by capital
letters A and B. We use x and y to denote nodes which may be internal or
external. A leaf with a nil value will be called a nil leaf or nil node. The bucket
referred to by 4, if any, will be denoted bucket(A4). A string T will denote ty¢, ... ¢,
where each 1; is a digit and m<k, where k+1 is the limit on the key length,
usually imposed by the file management system. We will call ¢, the first digit,
t, the second digit, etc. The prefix t,t,...t; of T will be denoted T; and also
as [T];.

We will associate, again implicitly, another string called maximal string, de-
noted M, with each (internal and external) node. This will be used in computing
the split string which will be denoted S. The string M will be of length less
than or equal to k+1, The maximum length, and § will be of length n+1
where # is the digit number in the digit field (d, ») of that node.

AQ: Computation of M and S.

1. For the root node, M equals “:”.

Let a be an internal node for which M(a) is already defined. Let (d, n) be
its digit field, x its left child and y its right child. Each of x and y may be
an internal or external node. In the following, “-” refers to string concatenation.

2.8(a)isdif nis 0, and [M(a)],_ - d otherwise.

3. M(x)is S(a), and M(y)is M(a) itself. [

Figure 1 shows a TH file of 31 most used English words [4, p.482]. In
Fig. 1(c), M and S values are shown next to the internal nodes, and M values
next to the external ones.

2.2. Key Search

Any search starts at the root node. It then follows a path determined by compari-
son of a prefix of the key with the split string S of the currently visited trie

600 W, Litwin et al.

are, on, or, her, had, at, from, this.

a the, of, and, to, a, in, that, is, i, it, for, as, with, was, his, he, be, not, by, but, have, you, which,

[
b .] or | you her
are this on it by with he
and the of is but which have at from
a that not in be was i had his as for
0 1 2 3 4 5 6 7 8 9 10

(he) (h)

Fig. 1. Examplc file. a Insertions with words causing splits underlined; b Buckets; ¢ Trie with (M, S)
values for internal nodes and (M) values for external nodes

node, computed as per A0. As the result of the comparison, either the left
or the right child is chosen as the next node to visit. The traversal stops when
a leaf is reached. This leaf has the address of the bucket that should contain
the record corresponding to the key, if such record is in the file, or a nil value
in which case the record is not in the file. For the sake of clarity, we omit
the details of the computation of S in the following description.

Al: Key Search. Let C be the searched key.
1. Start the search at the root node.

Concurrency and Trie Hashing 601

Node a Digit number »n C, S{a) Traversal direction
a0 0 h : Left

al 0 h o Left

a2 0 h i Left

a3 1 ha i- Left

a4 0 h a Right

a6 0 h h Left .
a7 0 h f Right

a8 1 ha he Left

Fig. 2. Search for C="hat”

2. While the current node is an internal node a, say with digit field (d, n),
traverse the left child if C,<S(a), and traverse the right child otherwise.

3. If the current node is an external node A, then scarch for the record
in the bucket pointed to, if any, by the node. [

Figure 2 traces the above algorithm for C=“hat” in our example trie. It
leads to A=7. The key “gun” also leads to the same external node, while
“s” leads to A=1.

2.3. Insertion

Let C be the key to be inserted. Execute the key search algorithm A1 to locate
the external node, say A4, corresponding to C. If it is a nil node, a new bucket
containing C is created and the external node modified to contain the address
of this bucket. Otherwise if bucket(A) is not full, the insertion simply adds the
record to the bucket. If it is full, a new external node B is added to the trie
and a new bucket bucket(B) is added to the file. The set of records that were
mapped to bucket(A), and that of the current key C, is then split into two
parts whose sizes are usually almost equal. One part, containing the records
with smaller key values is assigned to bucket(A), and the other part containing
the remaining records to bucket(B). The split is therefore order preserving.

The splitting algorithm is presented below. It inserts, between leaf 4 and
its parent, a new internal node with 4 as the left child and B as the right
child. In some cases, however, it is necessary to insert more than one internal
node. The algorithm then generates some nil leaves also.

A2: Splitting. Let bucket(A) be the overflowed bucket determined through A1.
Let SEQ be the ordered sequence of b+1 keys to be split, that is, all the keys
in bucket(A) and the new key. Let middle key be the key in the [(b+1)/2]
position of SEQ. We choose some key @ as the split key. Normally, the split
key is the middle key, but any key in SEQ, except the last one, is an admissible
choice. Finally, let L be the last key in SEQ. Note that L is not necessarily
the new key C. Let goq,...q; be Q and Iyly ... [, be L. If either string is of

602 W. Litwin et al.

length less than k+1, then sufficiently many spaces are padded at the right
end.

1. Find the smallest i for which Q;<L;, that is, q;<l;.

2.1f i>0, then go to step 4.

3. Replace leaf 4 with a new internal node with digit field (g;, i), g; being
the (i+ I)st digit of Q. Attach leaf A as the left child of this node and a new
external node B as the right child. Add a new bucket to the file as bucket(B)
and move into it all the keys R in SEQ such that R;>Q,. Move the remaining
keys into bucket(A). Return.

4. Let m be the largest value less than i such that 0,.,=[M(A)],; if no
such value exists, let m be —1. If m=i— 1, then go to step 3.

5. For each j=m+1, ...,i—1 do: replace leaf A4 with a node with digit field
(g;,j) and attach leaf 4 as the left child and a nil leaf as the right child of
this node.

6. Gotostep 3. [

The steps 1 to 4 correspond to the case where only one internal node is
created. Step S creates several internal nodes and nil leaves.

In our example trie, let “hat” be a key to be inserted. The search (Fig. 2)
leads to bucket 7 which needs to be split. Here L is “her”. If the middle key
“have” is chosen as the split key 0, step (1) gives i=1. In step (4), since M(A)
is “he”, m=0. Then in step (3), leaf 7 would be replaced with a node with
digit field (a, 1) and children: leaf 7 itself now containing “had”, “have” and
“hat” on the left, and leaf 11 with “he” and “her” on the right. This is illustrated
in Fig. 3a. A case where step 5 is to be used occurs when the initial contents
of leaf 7 are “had”, “ham”, “hate” and “hated”, as illustrated in Fig. 3b. Here
L is “hated” and Q is “hat”. Step (1) gives i cqual to 3. In step (4), M(A4)
is “he” and hence m is 0. Step (5) gives rise to the internal nodes with digit
fields (g,,1)=(a, 1) and (92,2)=(t,2). Then step (3) yields the node with digit
field (g5, 3)=(—, 3).

We now define another string called maximal key, and denoted MX , for
each (internal and external) node as follows: MX is of length equal to k+1
and is obtained by padding sufficiently many largest digits “:” at the end of
M. From algorithms 40, A1 and A2 it can be verified easily that for each
(internal and external) node x, all the keys in the buckets of the leaves of the
subtrie rooted at x will be less than or equal to MX(x). For each internal
node the M and MX values remain unchanged but for external nodes they
may change. We show now that the M X value decreases when the corresponding
bucket is split. Note that Q, is the split string of the internal node created
in step 3 of 42, and hence also the new M value of A. Denoting the new M
and MX values of 4 as M'(4) and MX'(4), we have [MX'(4)];=M'(4)=0,
<L;=[MX(A)];. Thus MX'(A)<MX(A). A merge operation would increase
the MX value.

2.4. Range Queries

We note that when the leaves of a trie are visited according to the inorder
traversal, the successive corresponding M X values are strictly in ascending order.

Concurrency and Trie Hashing

’ e

her

he
have
had

hated
hate
ham

had

Fig. 3. Splits

have her

hat he

had

7 11
hat hated
ham hate
had
7 11

603

In our example trie, the successive MX strings for the buckets are shown
in Fig. 4, assuming k equals 4. Therefore all keys may be examined in ascending
order through only one access of each bucket and hence range queries such
as “find all records whose keys are within some interval [C1, C2], C1<(C2”
can be processed efficiently. They need to access only the buckets pointed to
by the leaf corresponding to C1 and the leaves that follow in inorder, up to
the leaf corresponding to C2. The corresponding sequence of addresses results
also from preorder and postorder traversals, as all these traversals visit the leaves
in the same order.

604 W. Litwin et al.

MX Bucket #
ar 0
ar::: 9

b: : 4

f:: 10

he : 7

h:: 8 -
i- 6

I: 3

0: 2

L: 1

HR M S

Fig. 4. MX strings for the buckets

2.5. Deletion

First the bucket that should contain the record corresponding to the given
key is found using the algorithm A, and the record deleted if it is there. If
on deletion the bucket becomes empty, then it is released and the corresponding
external node in the trie is made a nil node.

If both the children of an internal node a are leaf nodes then, if possible
and if a is not the root, their buckets are merged into a single bucket, namely
that of the left leaf. Tn that case, the M and MX values for the new bucket
will be the same as those of the original right child. The corresponding external
node is then made the child of the parent of a, and a itself is deleted.

3. Concurrency
3.1. Preliminaries

In this section, we consider concurrent execution of all the TH operations,
except the range queries which we will include in Sect. 4. The following points
influence our concurrency algorithm. (i) The operations that modify the trie
do so only “near” the leaves. The upper part of the trie is not affected. (ii)
Once an internal node is created its digit field remains unchanged until the
node is deleted. (iii) The entire trie is in the core memory.

In the concurrent execution, all the operations are executed in the normal
fashion. All of them start accessing the nodes of the trie from the root onwards,
and have a search phase in which the appropriate nodes are located for further
operations. Due to concurrent split and merge operations, the search may be
prolonged. For example, suppose it is found that the left pointer of an internal
node a refers to an external node 4. Before A is accessed (that is, locked),
an insertion operation might split bucket(A) thus creating an internal node in
place of A. Then the traversal of the trie would continue from the new node

Concurrency and Trie Hashing 605

on. On the other hand, if a concurrent merge operation deletes 4, and the
parent a also, then we make the search process to “back up”. By going up
the trie one node (or more in case of further deletions due to other concurrent
merges), the unmodified portion of the trie can be reached and the search contin-
ued from there on. Eventually the relevant external node will be found. We
describe the search procedure after discussing the data structure.

We will assume the following standard representation discussed in [8] for
storing the trie. The external nodes are not stored explicitly. The internal nodes
are stored as an array of cells of fixed size, one cell per node. The array index
will be the node address. Thus the internal node addresses are successive integers
starting with 0. The bucket addresses, which are also successive integers starting
with 0, are taken as the addresses of the corresponding external nodes also.
In a cell, negative pointer values refer to internal nodes, and positive values
to external nodes (and buckets). A typical size of a cell, discussed in [8], is
6 bytes, 2 for each pointer field and 2 for the digit field: 1 for digit value
and 1 for digit number. In the 2 bytes representing a pointer value, the left
most bit is taken as the sign bit. Then negative values —1 to —(32k —1) refer
to internal nodes (the internal node 0 will be the root node which will not
be pointed to by any other node); positive values 0 to 32k — 1 refer to external
nodes; and —0 is taken to mean a nil node. We will reserve one of the values,
say (32k—1) to indicate that the corresponding external node is deleted; this
is a modification in the data structure for concurrent operations.

An external node is deleted in a merge operation, and at that time its parent
internal node is also deleted. For example, let A be the left, and B the right,
child external nodes of internal node 4, and let the parent of a be b. Suppose
that a is the left child of b. When 4 and B are merged, A becomes the left
child of b, and ¢ and B are deleted. We will implement this as follows: the
address of A will be entered in the left pointer field of b as a positive value
and (32k —1) will be entered in both the left and the right pointer fields of
a. Thus if one pointer field of an internal node contains (32k—1), then the
other pointer field will also contain (32k—1), and the entire internal node is
considered to be deleted.

The deleted nodes will have to be garbage-collected later on, after ensuring
that they will not be encountered by any operation. Any of the garbage-collection
methods, like those in [5], can be used. We require only that the array index
of the cell representing an internal node never changes from the time of creation
of that internal node to that of deletion and subsequent garbage-collection.
We note also that only the deleted (internal) nodes will have to be kept for
some time. The deleted buckets can be garbage-collected right away.

We assume that the individual fields of the nodes (digit field and two pointer
fields, each of the same size, namely 2 bytes, in the example above) can be
accessed independently and atomically. Therefore when one process is updating
one pointer field, another process can update the other pointer field of the
same internal node concurrently, without fear of losing the updates. Any opera-
tions in buckets are done in the core memory, that is, the bucket is read into
the core memory, the necessary modifications done and the updated bucket
written back (atomically) on a disk. As in [6], we assume that each process

606 W. Litwin et al.

has its own private workspace, not shared with other processes. A process read-
ing a bucket stores it in its workspace. Hence it is possible that the same bucket
is in more than one private workspace at the same time.

The search procedure is described below. It locks and returns the external
node corresponding to the input-key. We note that the internal nodes are never
accessed completely. Only the relevant fields are accessed individually. The maxi-
mal string of current-node is referred to by M, and that of next-node by M.
We stack M’ also so as not to recompute it, and hence not to access the digit
field again, if we have to backtrack to that node later. Whether next-node is
deleted, and if not, whether it is internal or external, can be found from the
next pointer value. We have to check this value again, after locking the next-node.
This is to ensure that between the time the node was located and the time
it is locked, no concurrent split or merge operation has altered that node:
a split would change the next pointer value to refer to an internal node, and
a merge would change it to refer to a deleted node. Recall that, in our implemen-
tation, the merge “deletes” both the left and the right children.

procedure search-external-node(input-key);

begin

current :=root,
M !._—“ : ”;
childdir="1left”;
M/ ==6S : 33;

next:=current.childdir;
found :=false;
while not (found) do
begin
while next-node is not deleted and is internal do
begin
push(stack, current, childdir, M, M’);
current:=next;
M=M
get current.digitfield and compute childdir and M';
next:=current.childdir
end;
if next-node is not deleted and is external then
begin
lock next-node
next: = current.childdir,
if next-node is not deleted and is external
then found:=true and exit
else unlock next-node
end;
if next-node has been deleted then
begin
pop(stack, current, childdir, M, M’);
next s=current.childdir

Concurrency and Trie Hashing 607

end
end;
end;

3.2. Locking Protocols

We now describe the locking protocols. Only external nodes are locked, and
all the locks are exclusive ones. The buckets are not explicitly locked. But at
any time only the process that has locked A can access bucket(A).

We distinguish the various operations as follows. A key-search would refer
to searching for a key. A simple-insertion is the insertion of a record in an
already existing nonfull bucket. The first-insertion is inserting a record as the
first record of a new bucket and modifying the corresponding external node
from a »il node to one pointing to this bucket. A split-insertion is the insertion
causing splitting of a bucket. Whether the split creates one internal node or
several internal nodes is irrelevant for our discussion. We have distinguished
the three types of insertions only for clarity. The locking sequences are exactly
the same for all of them; only the operations are different. Hence the insertion
process need not know the type of insertion it is going to encounter. Similar
properties hold also for the two deletions which we describe now. A simple-
deletion is the deletion of a record from a bucket resulting in a nonempty bucket.
The last-deletion deletes the last record from a bucket, releases the bucket and
makes the corresponding external node a nil node. A merge merges the left
and the right leaf buckets and deletes the parent internal node. A merge opera-
tion is not part of a deletion operation. Even though it is usually triggered
by a deletion, it is to be performed separately, not necessarily immediately after
the deletion. In this paper we will not be concerned with when and how a
merge operation is initiated. Any two external nodes that are children of the
same internal node which is not the root are candidates for a merge operation.
Scveral merge operations may be executed concurrently.

In protocols (1)-(6) below, only one external node is referred to. It is found
and locked by the search-external-node procedure. That node is denoted A.
Its parent is denoted «. In (7), two external nodes, two children of the same
internal node, are referred to. The left child is denoted A and the right one
B. Their parent is a and the parent of a is b. We do the merge only when
a is not the root. Hence b always exists. As in the search-external-node procedure,
for each of A and B, after locking the nodes we have to make sure that it
is nondeleted external node; if not, (both) the lock(s) are to be released and
the merge operation restarted.

Protocols
1. Key-search.

Lock A; search for the key {(and the record) in bucket(A); unlock A.
2. Simple-insertion.

608 W. Litwin et al.

Lock A; insert record in bucket(A); unlock A.
3. First-insertion.

Lock (the nil node) A; create new bucket and inscrt record in it; let

A point to the new bucket; unlock A.
4. Split-insertion.

Lock A; do the split creating new external and internal nodes; update
the appropriate pointer of a; unlock A.

5. Simple-deletion. -

Lock A4; delete record from bucket(A); unlock A.

6. Last-deletion.

Lock A; delete record from hucket(A) and release the bucket; change

A to a nil node; unlock A.
7. Merge.

Lock (the left child) A first and then lock (the right child) B; with each
node, after locking make sure that it is a nondeleted external node, and
if not (both) the lock(s) are to be released and the merge operation restarted;
{on realizing that the buckets pointed to by 4 and B can be merged) do
the merge (all records are put in bucket(A)); release bucket(B); delete and
unlock B; update the appropriate pointer of b to refer to 4; delete a; unlock
A O

We note that in protocol (1), 4 could be unlocked as soon as the bucket is
brought to the core memory. The search for the key in the bucket can be
done afterwards. That is, as long as the bucket is read into the core memory
atomically, no lock is needed for searching for the key.

We assume that the lock manager refers to a node, that is locked or to
be locked, in terms of the current.childdir pointer location, that is, for example
as “the external node whose address appears in the left pointer field of the
internal node a”. (This method is possible since the array index of an internal
node never changes, as per our assumption.) Therefore whether the address
is a bucket address or it refers to a nil node is irrelevant. This method assures
also unique identification of each nil node, when there are several nil nodes
in the trie.

3.3. Correctness

Ordinary search, insertion and deletion operations involve only one key and
hence only one external node. (The split-insertion also involves only one already
existing node and, of course, some new nodes.) These operations may be initiated
in some (time) order, but may effectively be done or completed in some other
order. For example, “Insert P”, “Insert Q” and “Insert R” may be initiated
in that order. But actual insertions might take place in the order R, Q and
P. Likewise “Insert P” and “Search P” initiated in that order may indeed be
executed in the reverse order giving the result that “P is not found”. We still
accept the executions as correct. As long as the effects of the operations are

Concurrency and Trie Hashing 609

reflected in the search structure in some serial order, we are satisfied with the
concurrent execution.

Several attempts have been made to formalize the above idea of correctness
(for example, [2, 3]). In this paper, we follow the proposal in [3], which is
as follows. We will call the operations on trie, such as “Insert P” and “Search
P, trie-operations. These consist of several node-operations on individual nodes.
Some node-operations are designated as decisive operations, and the others
as nondecisive ones; the latter help to locate the node(s) where the former ones
are to be performed. For example, “Insert P” requires the execution of the
procedure search-external-node, involving several nondecisive “search node”
operations, to locate the external node pointing to the bucket where P must
be inserted, and the decisive operation which actually inserts P. The nondecisive
operations do not alter the search structure and hence their free interleaving
can be allowed.

Definition. The concurrency control mechanism is correct if it allows serializable
executions of the tric-operations assuming that they consist only of the decisive
node-operations. []

Theorem 1. The locking protocols (1)—(7) constitute a correct concurrency control
mechanism,

Proof. We recall that once an internal node is created its digit field will not
change until the deletion of the node, only its pointer values may change. Before
a process tries to modify the left (right) pointer field, it must lock the left (right)
child external node. Since at most one process can do that, there is no danger
of more than one process modifying the same pointer field simultaneously. Fur-
thermore, in merge operations both the left and the right child external nodes
need to be locked before performing the merge and deleting the parent internal
node. Hence mutual exclusion between processes modifying a pointer field of
an internal node and those deleting the same internal node is guaranteed due
to the locking of the respective external nodes themselves. Therefore we do
not lock the internal nodes.

For all operations except merge, only one node has to be locked. For merge,
always the left leaf node is locked before the right one. Hence there is no possibili-
ty of deadlock.

The search-external-node procedure locates the appropriate node, locks it
and then verifies that the locked node is external and has not been deleted.
(The only possible modification in the pointer field, by a concurrent operation,
is to change it to refer to an internal node or to a deleted node.) The nodes
locked for the merge operation are also verified similarly. Thus it is guaranteed
that the correct nodes are locked for the decisive operations.

Ordinary search, insertion and deletion operations have only one decisive
node-operation. Hence the serial order of these decisive operations determines
the equivalent serial order of the respective trie-operations. It is straightforward
to verify that the above locking protocols guarantee the mutual exclusion of
the decisive operations (including the single decisive operation of the merge
which locks two nodes), and assure serializability of all the trie-operations. [

610 W. Litwin et al.
4. Range Queries

In this section we consider concurrent execution of range queries also along
with the other TH operations. The correctness criterion mentioned in the last
section is extended to range queries as follows. The decisive operations of a
range query will consist of the node-operations on the external nodes that lie
within the range of the query; all other operations will be nondecisive ones.
Then, here also, a concurrent execution is correct if the trie-operations are serial-
izable, assuming that they consist only of the decisive node-operations.

Locking Protocol

The range queries first find the leftmost external node whose bucket is in the
range with respect to inorder traversal. From there on, they read one bucket
at a time, from left to right, until the rightmost bucket in the range. To find
each one of them, some backtracking may be required, due to concurrent execu-
tion of the other operations. To achieve serializable order among range queries,
we require the range queries to acquire locks on the external nodes and force
the “conflicting” range queries to acquire locks on the common nodes in the
same order (that is, no overtaking is allowed). Any node can be locked by
at most one process (be it a range query or another operation) simultaneously.
We use “lock-coupling” technique [3] and ensure that any range query has
locks on at most two nodes at any time. These locks also provide mutual exclu-
sion of range queries and other operations.

begin
search and lock the leftmost external node, say, current-node;
compute;
while there exists a relevant next node do
begin
search and lock the next external node (with respect to inorder traversal)
next-node;
unlock current-node;
current-node:=next-node;
compute
end;
unlock current-node
end;

By “compute” we mean “perform the necessary computation with the con-
tents of bucket (current-node), if such a bucket exists”. The search-external-node
procedure described in Sect. 3 is to be used for searching and locking the nodes.
The locks need to be applied whether the external node points to a bucket
or a nil node. The lock on the node current-node has to be kept until next-node
is locked. (This is necessary only to ensure that another range query does not
overtake the current one. This can be accomplished also by (i) degrading the

Concurrency and Tric Hashing 611

lock to, say, no-overtake-lock, and then allowing another range query or some
other operation to acquire a (process) lock on this node and (1i) ensuring that
the no-overtake-locks on each node are released in the same order as they
were acquired. Here several no-overtake-locks may exist simultaneously on a
node along with at most one process lock.) There exists a relevant next node
if current-node is not the rightmost node in the range, which can be determined
from its maximal string M.

Theorem 2. The locking protocols (1)—(7) and the range query locking protocol
constitute a correct concurrency control mechanism.

Proof. Each operation that locks more than one node does so in the left to
right order (with respect to inorder traversal of the trie). Hence there is no
possibility for deadlock.

To show serializability, given a trie T and a concurrent execution involving
a set P of TH operations on 7, we derive a binary tree T’ and a set P’ of
operations on T’ as follows. The tree T’ will contain all the nodes that were
created in T Each node of 7" will have a distinct label. A node of T' with
label x may correspond to an external node A of T at some stage (say stage 1).
If A is split into A4 and B creating internal node a, then x would correspond
to a, and its children, say y and z, would correspond to the new A and B
respectively (stage 2). The nodes y and z are guaranteed to be in T by its
construction. Some time later, A and B may be merged into A. Then x would
correspond to A again (stage 3). If A is split again into, say 4 and B, creating
new internal node «’, then x, y and z would correspond to @', 4 and B’ respective-
ly (stage 4). Thus the same node of T' may correspond to different nodes of
T at different stages. We can see that an upper part of T' corresponds to T
at some stage, with different upper parts at different stages, and the leaves
of that upper part correspond to the external nodes of T at that stage.

Corresponding to each operation p on T, we define an operation p’ on T’
such that p’ would lock the node on T’ that corresponds to the node on T
locked by p at that stage. For example, if p locks A4 in stage 1 above, then
p’ will lock x; if it is stage 2, then p’ will lock y. Likewise, if p locks B in
stage 2 or B'in stage 4, p’ will lock z. Now locking node x of T” can be considered
to be equivalent to locking all the leaves of the subtree of 7" rooted at x simulta-
neously. Then we note that for each operation on T that is considered in this
paper the corresponding operation on T” locks a set of leaves that occur consecu-
tively in the ordering of the leaves according to the inorder traversal. Thus
each operation in P’ can be treated as a range query.

We now construct a directed graph G with vertices corresponding to P’
and edges as follows: there is a directed edge from pj to p; if both these operations
lock some leaf of T” and p; locks it before p;. Suppose two operations p, and
py on T lock a common (external) node A. Let x and y be the corresponding
nodes in T’ locked by p; and p) respectively. Then x must be either the same
as y, or a descendent or ancestor of y. Hence p; and p’, will lock a common
leaf of T, and there will be a directed edge between py and p,. (We note that
even if p; and p, do not lock a common node, p, and p> may lock a common
leaf. One such instance is p, locking 4 in stage ! above and p2 locking B in

612 W, Litwin et al.

stage 2.) Then the acyclicity of G will imply the serializability of the concurrent
execution of P’ on T, and hence the serializability of the concurrent execution
of P on T. The acyclicity of G follows from the fact that the operations P’
tock the leaves of T in the left to right order, that is, if z is to the right of
y, then z is locked at the same time or after, but not before, y. We note that
the locking sequences are very much similar to that of the non-two-phase locking
protocol of [11] for hierarchically structured data items, also called tree protocol
in[12]. O

5. Discussion

In this paper, we have given locking protocols for concurrent execution of the
Trie Hashing operations. In addition to the normal search, insertion and deletion
operations, we have also included range queries among the concurrent opera-
tions. Locks are applied only to external nodes. At most two nodes need to
be locked simultancously by any operation regardless of the number of buckets
it accesses. Thus our algorithm compares favourably with the concurrency algo-
rithms for other dynamic search structures, in particular [10] for B-trees, [5]
for binary search trees and [1] for linear hashing, each requiring upto three
simultaneous locks. (Three nodes are locked in the first two, and the “root”,
consisting of variables level and next, and two buckets are locked in the last
one, where the appropriate hashing function is defined as:

bucket « hy,,.,(key);
if bucket <next then bucket < hy,,.1+1(key).

We note that linear hashing does not allow efficient processing of range queries.

The techniques employed in our algorithm for enhancing concurrency have
been used in the other algorithms also:

(i) The merge operation is decoupled from deletion and *postponed” to
a later time in our algorithm. Splits and merges are postponed in [, 10] and
rotation in [5].

(i) The idea of backtracking from a deleted or a wrong node is used in
[1,5,10] also.

(iii) The lock-coupling technique has been used in [1, 3, 6].

The enhanced concurrency (namely, locking at most two nodes simultaneous-
ly) and the simplicity that we have been able to achieve in our locking protocols
seem to be due to the inherently simpler characteristics of the (sequential) TH
operations compared to those of the others.

(a) In binary search trees a search may terminate in any node. New nodes
are inserted only in the leaf level. But any node may have to be deleted. Hence
the tree is rotated so that the node to be deleted becomes a leaf. Rotation
is done to balance the tree also. In tries, all searches terminate in the leaf nodes.
Node insertions as well as deletions occur only in the leaf level, the affected
internal nodes being parents of external leaf nodes. The trie is not balanced.
(Clearly the cost of processing a few extra nodes residing in the core memory

Concurrency and Trie Hashing 613

is insignificant compared to that of accessing the buckets from the disk.) Hence
rotation procedures, requiring more simultaneous locks (three in [5]), are not
needed. The fact that all the “critical” operations occur in the leaf level enables
not locking the internal nodes of the trie in our protocols.

(b) The simplicity of TH over B-trees is primarily with internal nodes.

(i) In TH, merges can occur only in the leaf level. In B-trees (sibling) internal
nodes in any level can also be merged, and hence need to be locked during
the merge. .

(ii) In TH, only the pointer values of an internal node can keep changing,
Our algorithm is able to make these changes just by locking the appropriate
leaf nodes, and without locking the internal node itself. In B-trees (the bucket
corresponding to) an internal node is treated as a single atomic unit, and hence
is locked to perform any updates.

(iii) The entire trie and hence all the internal nodes are in the core memory.
Hence when a wrong or deleted node is encountered, it is easy to go up the
tric and come down to the current node. The same approach in B-trees would
require additional disk accesses, to bring the higher level nodes from disk to
the core memory. To avoid these accesses, at least in the case where the correct
node is to the right of the present node, a link to the next node (in the same
level) is provided in the data structure in [6, 10]. Such a link is unnecessary
in tries, adding to the simplicity of our protocols.

(¢) In linear hashing, the root values level and next determine the hashing
function. Hence when one process is using the root, no other concurrent process
can change the root. This curtails the concurrency considerably. For example,
a search process has to lock the root until the bucket is located and locked.
Then a merge operation, which again has to lock the root and the two buckets
to be merged, cannot operate concurrently with a search. Also at most one
restructuring operation (split or merge) can be executed at any time. The hashing
function in linear hashing can be thought of as a tree of height one, all the
buckets attached directly to the “root”. Any restructuring operation changes
the root (values level and/or next) and hence the entire tree. In contrast, in
TH, a restructuring operation changes only a part of the tric. Hence several
restructuring operations, each changing different parts of the trie, can be executed
concurrently, along with other operations accessing the unmodified portions
of the trie as well.

We note that we have made almost no change at all in the TH data structure
(of [8]) in order to accommodate concurrent operations. The only significant
change is using a pointer value to denote a deleted node. One other change
is adding the root node with digit field (:, 0). The left child of our root node
is the root node in [8]. This change is not essential and made only for conve-
nience to check easily whether an internal node is a root node (while deciding
on a merge operation). Clearly our changes are very minor compared to those
made in the other algorithms: for example, storing “high value” [6, 10] or
“locallevel” value [1] in buckets, and using deletion bits [6, 10] or color field
[5] to denote deleted nodes.

The advantages of TH over other access methods for dynamic and ordered
files are discussed in {8] for nonconcurrent executions. Our algorithm maintains

614

W, Litwin et al.

this edge in concurrent executions also since the possible overhead in any opera-
tion, due to concurrent execution, is longer search phase(s) involving more
accesses of the trie in the core memory, but no increase in the number of bucket
accesses.

Acknowledgement. It is our pleasure to thank the referees whose various comments improved the
presentation of this paper considerably.

References

[

]

N

o~

10.

11.

. Ellis, C.S.: Concurrency in Linear Hashing. ACM TODS 12, 195-217 (1987)
. Ford, R., Cathoun, J.: Concurrency Control Mcchanisms and the Serializability of Concurrent

Tree Algorithms. Proc. ACM PODS’84, pp. 51-60

. Goodman, N., Shasha, D.: Semantically-based Concurrency Control for Search Structures. Proc.

ACM PODS’S3, pp. 8-19

. Knuth, D.E.: The Art of Computer Programming. Vol. 3: Sorting and Secarching. Reading, Mass.:

Addison-Wesiey 1974

. Kung, H.T., Lehman, P.L.: Concurrent Manipulation of Binary Search Trees. ACM TODS §,

354-382 (1980)

. Lehman, P.L., Yao, S.B.: Efficient Locking for Concurrent Opertions on B-Trees. ACM TODS

6, 650-670 (1981)

. Litwin, W.: Trie Hashing. Proc. ACM SIGMOD’81, pp. 19-29
. Litwin, W.: Trie Hashing: Further Properties and Performance. Foundations of Data Organiza-

tion. New York: Plenum Press 1986

. Litwin, W, Zegour, D., Levy, G.: Multilevel Trie Hashing. Proc. Extending Database Technology

Conferenee, Venice, 1988

Sagiv, Y.: Concurrent Operations on B-Trees with Overtaking. J. Comput. Syst. Sci. 33, 275-296
(1986)

Silberschatz, A., Kadem, Z.: Consistency in Hierarchical Database Systems. J. ACM 27, 72-80
(1980)

. Ullman, J.D.: Principles of Database Systems. Rockville, Md: Computer Science Press 1982

Received October 7, 1987/ March 22, 1989

