
48 communications of the acm | january 2010 | vol. 53 | no. 1

practice

Web applications produce data at colossal rates, and
those rates compound every year as the Web becomes
more central to our lives. Other data sources such
as environmental monitoring and location-based
services are a rapidly expanding part of our day-to-day
experience. Even as throughput is increasing, users
and business owners expect to see their data with ever-
decreasing latency. Advances in computer hardware
(cheaper memory, cheaper disk, and more processing
cores) are helping somewhat, but not enough to keep
pace with the twin demands of rising throughput and
decreasing latency.

The technologies for powering Web applications
must be fairly straightforward for two reasons:
first, because it must be possible to evolve a Web
application rapidly and then to deploy it at scale with
a minimum of hassle; second, because the people
writing Web applications are generalists and are not

doi:10.1145/1629175.1629195

 Article development led by
 queue.acm.org

How streaming SQL technology can help solve
the Web 2.0 data crunch.

by Julian Hyde

Data in
Flight

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 R
y

a
n

 A
l

e
x

a
n

d
e

r

prepared to learn the kind of complex,
hard-to-tune technologies used by sys-
tems programmers.

The streaming query engine is a
new technology that excels in process-
ing rapidly flowing data and producing
results with low latency. It arose out of
the database research community and
therefore shares some of the character-
istics that make relational databases
popular, but it is most definitely not a
database. In a database, the data ar-
rives first and is stored on disk; then us-
ers apply queries to the stored data. In
a streaming query engine, the queries
arrive before the data. The data flows
through a number of continuously ex-
ecuting queries, and the transformed
data flows out to applications. One
might say that a relational database pro-
cesses data at rest, whereas a streaming
query engine processes data in flight.

Tables are the key primitive in a re-
lational database. A table is populated
with records, each of which has the
same record type, defined by a number
of named, strongly typed columns. Re-
cords have no inherent ordering. Que-
ries, generally expressed in SQL, re-
trieve records from one or more tables,
transforming them using a small set of
powerful relational operators.

Streams are the corresponding
primitive in a streaming query en-
gine. A stream has a record type, just
like a table, but records flow through
a stream rather than being stored. Re-
cords in a streaming system are inher-
ently ordered; in fact, each record has a
time stamp that indicates when it was
created. The relational operations sup-
ported by a relational database have
analogues in a streaming system and
are sufficiently similar that SQL can be
used to write streaming queries.

To illustrate how a streaming query
engine can solve problems involving data
in flight, consider the following example.

Streaming Queries for
Click-Stream Processing
Suppose we want to monitor the most
popular pages on a Web site. Each Web
server request generates a line to the

january 2010 | vol. 53 | no. 1 | communications of the acm 49

50 communications of the acm | january 2010 | vol. 53 | no. 1

practice

Web server’s log file describing the
time, the URI of the page, and the IP
address of the requester; and an adapt-
er can continuously parse the log file
and populate a stream with records.
This query computes the number of
requests for each page each minute, as
shown in the accompanying table.

The example here is expressed in
SQLstream’s query language, as are
others in this article. The language is
standard SQL plus streaming exten-
sions.4 Other streaming query engines
have similar capabilities.

SELECT STREAM ROWTIME,
 uri,
 COUNT(*)
FROM PageRequests
GROUP BY
 FLOOR(ROWTIME TO MINUTE),
 uri;

The only SQL extensions used in
this particular query are the STREAM
keyword and the ROWTIME system col-
umn. If you removed the STREAM key-
word and converted PageRequests
to a table with a column called ROW-
TIME, you could execute the query in a
conventional database such as Oracle
or MySQL. That query would analyze
all requests that have ever occurred up
until the current moment. If PageRe-
quests is a stream, however, the
STREAM keyword tells SQLstream to
attach to the PageRequests stream
and to apply the operation to all fu-
ture records. Streaming queries run
forever.

Every minute this query emits a set

of rows, summarizing the traffic for
each page during that minute. The
output rows time-stamped 10:00:00
summarize all requests between 10:00
and 10:01 (including the 10:00 end
point but not including 10:01). Rows in
the PageRequests stream are sorted
by their ROWTIME system column, so
the 10:00:00 output rows are literally
pushed out by the arrival of the first
row time-stamped 10:01:00 or later.
A streaming query engine tends to
process data and deliver results only
when new data arrives, so it is said to
use push-based processing. This is in
contrast to a relational database’s pull-
based approach where the application
must poll repeatedly for new results.

The example in Figure 1 computes
URIs for which the number of requests
is much higher than normal. First, the
PageRequestsWithCount view com-
putes the number of requests per hour
for each URI over the past hour and
averaged over the past 24 hours. Then
a query selects URIs for which the rate
over the past hour was more than three
times the hourly rate over the past 24
hours.

Unlike the previous query that used
a GROUP BY clause to aggregate many
records into one total per time period,
this query uses windowed aggregate
expressions (aggregate-function OVER
window) to add analytic values to each
row. Because each row is annotated
with its trailing hour’s and day’s sta-
tistics, you need not wait for a batch of
rows to be complete. You can use such
a query to continuously populate a
“Most popular pages” list on your Web

site, or an e-commerce site could use
it to detect products selling in higher
than normal volumes.

Comparing Databases and
Streaming Query Engines
A database and a streaming query en-
gine have similar SQL semantics, but if
you use the two systems for problems
involving data in flight, they behave
very differently. Why is a streaming
query engine more efficient for such
problems? To answer that question, it
helps to look at its pedigree.

Some use the term streaming da-
tabase, which misleadingly implies
that the system is storing data. That
said, streaming query engines have
very strong family connections with
databases. Streaming query engines
have roots in database research, in
particular the Stanford STREAMS proj-
ect,1 the Aurora project at MIT/Brown/
Brandeis,2 and the Telegraph project
at Berkeley.3 Streaming query engines
are based on the relational model that
underlies relational databases and, as
we shall see, those underpinnings give
them power, flexibility, and industry
acceptance.

The relational model, first de-
scribed by E.F. Codd in 1970, is a
simple and uniform way of describing
the structure of databases. It consists
of relations (named collections of re-
cords) and a set of simple operators
for combining those relations: select,
project, join, aggregate, and union. A
relational database naturally enforces
data independence, the separation be-
tween the logical structure of data and
the physical representation. Because
the query writer does not know how
data is physically organized, a query
optimizer is an essential component
of a relational database, to choose
among the many possible algorithms
for a query.

SQL was first brought to market in
the late 1970s. Some say it is not theo-
retically pure (and it has since been
extended to encompass nonrelational
concepts such as objects and nested
tables), but SQL nevertheless embod-
ies the key principles of the relational
model. It is declarative, which enables
the query to be optimized, so you (or
the system) can tune an application
without rewriting it. You can therefore
defer tuning a new database schema

Figure 1. Streaming query to find Web pages with higher than normal volume.

CREATE VIEW PageRequestsWithCount AS
SELECT STREAM ROWTIME,
	 uri,
	 COUNT(*) OVER lastHour AS hourlyRate,
	 COUNT(*) OVER lastDay / 24 AS hourlyRateL-
astDay
FROM PageRequests
WINDOW lastHour AS (
		 PARTITION BY uri
		 RANGE INTERVAL ‘1’ HOUR PRECEDING)
	 lastDay AS (
		 PARTITION BY uri
		 RANGE INTERVAL ‘1’ DAY PRECEDING);

SELECT STREAM *
FROM PageRequestsWithCount
WHERE rate > hourlyRateLastDay * 3;

practice

january 2010 | vol. 53 | no. 1 | communications of the acm 51

until the application is mostly written,
and you can safely refactor an existing
database schema. SQL is simple, reli-
able, and forgiving, and many develop-
ers understand it.

Streams introduce a time dimen-
sion into the relational model. You can
still apply the basic operators (select,
project, join, and so forth), but you can
also ask, “If I executed that join query
a second ago, and I execute it again
now, what would be the difference in
the results?”

This allows us to approach prob-
lems in a very different way. As an
analogy, consider how you would mea-
sure the speed of a car traveling along
the freeway. You might look out the
window for a mile marker, write down
the time, and when you reach the next
mile marker, divide the distance be-
tween the mile markers by the elapsed
time. Alternatively, you might use a
speedometer, a device where a needle
is moved based on a generated cur-
rent that is proportional to the angu-
lar velocity of the car’s wheels, which
in turn is proportional to the speed of
the car. The mile-marker method con-
verts position and time into speed,
whereas the speedometer measures
speed directly using a set of quantities
proportional to speed.

Position and speed are connected
quantities; in the language of calcu-
lus, speed is the differential of posi-
tion with respect to time. Similarly,
a stream is the time differential of
a table. Just as the speedometer is
the more appropriate solution to the
problem of measuring a car’s speed, a
streaming query engine is often much
more efficient than a relational data-
base for data-processing applications
involving rapidly arriving time-depen-
dent data.

to batches of many rows when the load
is heavier—to achieve efficiency ben-
efits such as locality-of-reference. One
might think an asynchronous system
has a slower response time, because it
processes the data “when it feels like
it,” but an asynchronous system can
achieve a given throughput at much
lower system load, and therefore have
a better response time than a synchro-
nous system. Not only is a relational da-
tabase synchronous, but it also tends
to force the rest of the application into
a record-at-a-time mode.

It should be clear by now that push-
based processing is more efficient for
data in flight; however, a streaming que-
ry engine is not the only way to achieve it.
Streaming SQL does not make anything
possible that was previously impossi-
ble. For example, you could implement
many problems using a message bus,
messages encoded in XML, and a proce-
dural language to take messages off the
bus, transform them, and put them back
onto the bus. You would, however, en-
counter problems of performance (pars-
ing XML is expensive), scalability (how
to split a problem into sub-problems
that can be handled by separate threads
or machines), algorithms (how to com-
bine two streams efficiently, correlate
two streams on a common key, or aggre-
gate a stream), and configuration (how
to inform all of the components of the
system if one of the rules has changed).
Most modern applications choose to
use a relational database management
system to avoid dealing with data files
directly, and the reasons to use a stream-
ing query system are very similar.

Other Applications of
Streaming Query Systems
Just as relational databases are a hori-
zontal technology, used for everything
from serving Web pages to transac-
tion processing and data warehousing,
streaming SQL systems are being ap-
plied to a variety of problems.

Application areas include com-
plex event processing (CEP), monitor-
ing, population data warehouses, and
middleware. A CEP query looks for se-
quences of events on a single stream
or on multiple streams that, together,
match a pattern and create a “complex
event” of interest to the business. Ap-
plications of CEP include fraud detec-
tion and electronic trading.

Streaming Advantage
Why is a streaming query engine more
efficient than a relational database for
data-in-flight problems?

First, the systems express the prob-
lems in very different ways. A database
stores data and applications fire queries
(and transactions) at the data. A stream-
ing query engine stores queries, and the
outside world fires data at the queries.
There are no transactions as such, just
data flowing through the system.

The database needs to load and in-
dex the data, run the query on the whole
dataset, and subtract previous results. A
streaming query system processes only
new data. It holds only the data that it
needs (for example, the latest minute),
and since that usually fits into memory
easily, no disk I/O is necessary.

A relational database operates un-
der the assumption that all data is
equally important, but in a business
application, what happened a minute
ago is often more important than what
happened yesterday, and much more
important than what happened a year
ago. As the database grows, it needs
to spread the large dataset across disk
and create indexes so that all of the
data can be accessed in constant time.
A streaming query engine’s work-
ing sets are smaller and can be held
in memory; and because the queries
contain window specifications and
are created before the data arrives, the
streaming query engine does not have
to guess which data to store.

A streaming query engine has other
inherent advantages for data in flight:
reduced concurrency control overhead
and efficiencies from processing data
asynchronously. Since a database is
writing to data structures that other ap-
plications can read and write, it needs
mechanisms for concurrency control;
in a streaming query engine there is no
contention for locks, because incom-
ing data from all applications is placed
on a queue and processed when the
streaming query engine is ready for it.

In other words, the streaming query
engine processes data asynchronously.
Asynchronous processing is a feature of
many high-performance server applica-
tions, from transaction processing to
email processing, as well as Web crawl-
ing and indexing. It allows a system to
vary its unit of work—from a record at a
time when the system is lightly loaded

Output from query.

ROWTIME uri COUNT(*)

10:00:00 /index.html 15

10:00:00 /images/logo.png 19

10:00:00 /orders.html 6

10:01:00 /index.html 20

10:01:00 /images/logo.png 18

10:01:00 /sitemap.html 2

...

52 communications of the acm | january 2010 | vol. 53 | no. 1

practice

CEP has been used within the in-
dustry as a blanket term to describe the
entire field of streaming query systems.
This is regrettable because it has re-
sulted in a religious war between SQL-
based and non-SQL-based vendors and,
in overly focusing on financial services
applications, has caused other applica-
tion areas to be neglected.

The click-stream queries here are a
simple example of a monitoring appli-
cation. Such an application looks for
trends in the transactions that represent
the running business and alerts the op-
erations staff if things are not running
smoothly. A monitoring query finds in-
sights by aggregating large numbers of
records and looking for trends, in con-
trast to a CEP query that looks for pat-
terns among individual events. Moni-
toring applications may also populate
real-time dashboards, a business’s
equivalent of your car’s speedometer,
thermometer, and oil pressure gauge.

Because of their common SQL lan-
guage, streaming queries have a natu-
ral synergy with data warehouses. The
data warehouse holds the large amount
of historical data necessary for a “rear-
view mirror” analysis of the business,
while the streaming query system
continuously populates the data ware-
house and provides forward-looking
insight to “steer the company.”

The streaming query system per-
forms the same function as an ETL
(extract, transform, load) tool but op-
erates continuously. A conventional

ETL process is a sequence of steps
invoked as a batch job. The cycle time
of the ETL process limits how current
the data warehouse is, and it is dif-
ficult to get that cycle time below a
few minutes. For example, the most
data-intensive steps are performed
by issuing queries on the data ware-
house: looking up existing values in a
dimension table, such as customers
who have made a previous purchase,
and populating summary tables. A
streaming query system can cache the
information required to perform these
steps, offloading the data warehouse,
whereas the ETL process is too short-
lived to benefit from caching.

Figure 2 shows the architecture of a
real-time business intelligence system.
In addition to performing continuous
ETL, the streaming query system popu-
lates a dashboard of business metrics,
generates alerts if metrics fall outside
acceptable bounds, and proactively
maintains the cache of an OLAP (on-
line analytical processing) server that
is based upon the data warehouse.

Today, much “data in flight” is
transmitted by message-oriented mid-
dleware. Like middleware, streaming
query systems can deliver messages
reliably, and with high throughput
and low latency; further, they can ap-
ply SQL operations to route, combine,
and transform messages in flight. As
streaming query systems mature, we
may see them stepping into the role of
middleware and blurring the bound-

aries between messaging, continuous
ETL, and database technologies by ap-
plying SQL throughout.

Conclusion
Streaming query engines are based on
the same technology as relational data-
bases but are designed to process data
in flight. Streaming query engines can
solve some common problems much
more efficiently than databases be-
cause they match the time-based na-
ture of the problems, they retain only
the working set of data needed to solve
the problem, and they process data
asynchronously and continuously.

Because of their shared SQL lan-
guage, streaming query engines and
relational databases can collaborate to
solve problems in monitoring and real-
time business intelligence. SQL makes
them accessible to a large pool of peo-
ple with SQL expertise.

Just as databases can be applied to a
wide range of problems, from transac-
tion processing to data warehousing,
streaming query systems can support
patterns such as enterprise messaging,
complex event processing, continuous
data integration, and new application
areas that are still being discovered. 	

 Related articles
 on queue.acm.org

A Call to Arms

Jim Gray and Mark Compton
http://queue.acm.org/detail.cfm?id=1059805

Beyond Relational Databases

Margo Seltzer
http://queue.acm.org/detail.cfm?id=1059807

A Conversation with Michael Stonebraker
and Margo Seltzer
http://queue.acm.org/detail.cfm?id=1255430

References
1.	A rasu, A., Babu, S., Widom, J. The CQL Continuous

Query Language: Semantic Foundations and Query
Execution. Technical Report. Stanford University,
Stanford, CA, 2003.

2.	A urora project; http://www.cs.brown.edu/research/aurora.
3.	 Chandrasekaran, S., et al. TelegraphCQ: Continuous

dataflow processing for an uncertain world. In
Proceedings of Conference on Innovative Data
Systems Research (2003).

4.	S QLstream Inc.; http://www.sqlstream.com.

Julian Hyde is chief architect of SQLstream, a streaming
query engine. He is also the lead developer of Mondrian, the
most popular open source relational OLAP engine and a part
of the Pentaho open source BI suite. An expert on relational
technology, including query optimization and streaming
execution, Hyde introduced bitmap indexes into Oracle and
led development of the Broadbase analytic DBMS.

© 2010 ACM 0001-0782/10/0100 $10.00

Figure 2. Continuous ETL using a streaming query system.

End user

OLAP

Data
warehouse

Operational
database

DashboardAlerts

Maintain
OLAP
Cache

Streaming query system

