Bulletin of the Technical Committee on

Data
Engineering

March 2009 Vol. 32 No. 1 @ IEEE Computer Society
®
Letters
Letter from the Editor-in-Chief. David Lomet 1
Letter from the Guest Editors. Beng Chin Ooi and Srinivasan Parthasarathy 2

Special Issue on Data Management on Cloud Computing Platfons

Data Management in the Cloud: Limitations and Opportugitie Daniel J. Abadi 3
Deploying Database Appliances inthe Cloud. i e e e e e
Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar Eavtinhas, Peter Kokosielis and Sunil Kamati3
Privacy-preserving Digital Identity Management for ClaQdmputing.
................................... Elisa Bertino, Federica Paci, Rodolfo Ferrini and Ning Skgan21
Towards a Scalable Enterprise Content Analytics Platfarm. i i
.............. Kevin Beyer, Vuk Ercegovac, Rajasekar Krishnamurthya8riRaghavan, Jun Rao, Fred-
erick Reiss, Eugene J. Shekita, David Simmen, SandeepSFat@kumar Vaithyanathan and Huaiyu Zhu28

Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Sitheystitkarsh Srivastava and Raymie State86
On the Varieties of Clouds for Data Intensive Computing.Robert L. Grossman and Yunhong Gd4
Optimizing Utility in Cloud Computing through Autonomic Wdoad Execution.

..... Norman W. Paton, Marcelo A. T. de Agg Kevin Lee, Alvaro A. A. Fernandes and Rizos Sakellaribl

Implementation Issues of A Cloud Computing Platform. Bo Peng, Bin Cui and Xiaoming Li59
Dataflow Processing and Optimization on Grid and Cloud biftectures. M. Tsangaris,

G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris, P. Ribdyas, E. Sitaridi, V. Stoumpos and Y. loannidi§7
An Indexing Framework for Efficient Retrieval onthe Cloud..... Sai Wu and Kun-Lung Wu75

Conference and Journal Notices
ICDE 2009 CONfEIENCE it ot e e e e e e e e e e e back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
lomet@microsoft.com

Associate Editors
Sihem Amer-Yahia
Yahoo! Research
111 40th St, 17th floor
New York, NY 10018

Beng Chin Ooi

Department of Computer Science
National University of Singapore
Computing 1, Law Link, Singapore 117590

Jianwen Su

Department of Computer Science
University of California - Santa Barbara
Santa Barbara, CA 93106

Vassilis J. Tsotras

Dept. of Computer Science and Engr.
University of California - Riverside
Riverside, CA 92521

The TC on Data Engineering

Membership in the TC on Data Engineering is open
to all current members of the IEEE Computer Society
who are interested in database systems. The TC on
Data Engineering web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin

The Bulletin of the Technical Committee on Data
Engineering is published quarterly and is distributed
to all TC members. Its scope includes the design,
implementation, modelling, theory and application of
database systems and their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are
solicited by and should be sent to the Associate Editor
responsible for the issue.

Opinions expressed in contributions are those of the
authors and do not necessarily reflect the positions of
the TC on Data Engineering, the IEEE Computer So-
ciety, or the authors’ organizations.

The Data Engineering Bulletin web site is at
http://tab.computer.org/tcde/bull_about.html.

TC Executive Committee

Chair
Paul Larson
Microsoft Research
One Microsoft Way
Redmond WA 98052, USA
palarson@microsoft.com

Vice-Chair
Calton Pu
Georgia Tech
266 Ferst Drive
Atlanta, GA 30332, USA

Secretary/Treasurer
Thomas Risse
L3S Research Center
Appelstrasse 9a
D-30167 Hannover, Germany

Past Chair
Erich Neuhold
University of Vienna
Liebiggasse 4
A 1080 Vienna, Austria

Chair, DEW: Self-Managing Database Sys.

Anastassia Ailamaki

Ecole Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland

Geographic Coordinators
Karl Aberer (Europe)

Ecole Polytechnique Fédérale de Lausanne

Batiment BC, Station 14
CH-1015 Lausanne, Switzerland

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
Tokyo 106, Japan

SIGMOD Liason
Yannis Toannidis
Department of Informatics
University Of Athens
157 84 Ilissia, Athens, Greece

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

Letter from the Editor-in-Chief

International Conference on Data Engineering

ICDE (the International Conference on Data Engineeringhésflagship database conference of the IEEE. The
2009 ICDE will be held in Shanghai, China at the end of Marclwould encourage readers to check the "Call
for Participation” on the back inside cover of this issuetw Bulletin for more details. ICDE has become not
only one of the best database conferences, but one of thestaag well. | attend this conference every year and
always find my time well spent. Not only is the research progfiast-rate, but there is an industrial program,
demos, and workshops as well.

The Current Issue

This issue revisits “cloud” based data management. AnezaBlilletin issue (December, 2006) gave a prelimi-
nary look at this general area, outlining some of the prorarsopportunity, but largely before there was much
in the way of real data management in the cloud. That is nodotite case. The past few years have seen an
explosion of interest and work in this area. But while we n@vdisome experience and insight as well, this is
an area that will continue to be a challenge and opportunitafong time.

Why a long time? This is a combination of: (1) the cloud is dfptan that will be of increasing importance
over a very long period, as our industry makes a phase chaogeiri-house data management to cloud-hosted
data management; (2) the problems associated with dealthgcloud data are formidable, from performance
issues to security and privacy, from metadata managemengtoavailability. These aspects to issues make
them great research areas— importance and challengediPgsgblutions will help to enable the dream not only
of "information at your fingertips”, but also "available wiezer you happen to be”.

Beng Chin Ooi and Srinivasan Parthasarathy have assembliedige that contains a very interesting cross
section of the work that is going on right now, both at academstitutions and in industry. There are consortia
that have emerged that make it possible for researcheerdiegs of where they are, to join in the “cloud” effort.
So | hope these papers provide a way to entice some of you &dl enthis effort. Beng Chin and Srinivasan
have done a fine job assembling this issue, very succesafutiyving both academia and industry. | am sure
you will find it of great interest.

David Lomet
Microsoft Corporation

Letter from the Guest Editors

This special issue brings to bear recent advances in thedfettbud computing that are applicable to data
management, data retrieval, data intensive applicatindslata analysis applications.

Cloud computing represents an important step towardszieglMcCarthy’s dream that all aspects of com-
putation may some day be organized as a public utility servit embraces concepts suchsadtware as a
serviceandplatform as a servigewhich incorporate services for workflow facilities for digption design and
development, deployment and hosting services, data atiegr and network-based access to and management
of software. Customers of clouds, much like customers tifjuiompanies, can subscribe to different services
at different service levels to guarantee the desired guafliservice.

Search and electronic commerce companies such as Googlmddit, Amazon and Yahoo have adopted
cloud computing technology in a major way as have Fortuneco@@panies such as IBM, General Electric and
Procter and Gamble. Academic units and government ageangesalso key players, and several joint efforts
among them are at the forefront of cloud computing technolog

In this special issue, we hope to offer readers a brief glempw this exciting new technology, specifically
from the perspective of data management and data intengplieations. The articles in this issue cover a wide
array of issues on topics that range from specific instaotiatof cloud computing technology to the broader
perspective of the opportunities and possibilities thattédthnology open up.

Abadi reviews and discusses the limitations of the cloudmaing paradigm, and offers a perspective on
the potential opportunities for data management and aisadgplications within the paradigm.

Aboulnagaet al. discuss the challenges in deploying database appliancésfrastructure as a Service
clouds, as well as the tools and techniques for addressiigghes.

Bertinoet al. highlight the important issue of privacy preservation iout computing systems and describe
an approach to privacy preservation in such systems whileeasame time enhancing interoperability across
domains and simplifying existing identity verification jmiés.

Beyeret al. describe the key features of an enterprise content angati®rm being developed at IBM
Almaden which targets the analysis of semi-structurederunt

Cooperet al. highlight the significant challenges with building a compiak cloud computing system at
Yahoo that emphasizes data storage, processing and queppabilities.

Grossman and Gu provide a nice overview of cloud computirtyvelmat differentiates it from past work.
They also distinguish among different types of cloud tedbapin existence today, and conclude with a discus-
sion on open research problems in the arena.

Patonet al. describe an autonomic utility-based approach to adaptodload execution (scheduling), and
illustrate the benefits of their approach on workloads casimgy workflows and queries.

Peng, Cui and Li discuss lessons learned from constructiclguad computing platform in an academic
environment, and discuss potential improvements to fatélimassive data processing and enhanced system
throughput in the context of a specific web and text miningiagpon domain.

Tsangariset al. describe an ongoing system project called Athena DisgibiRrocessing (ADP), its key
components and its challenges within the context of supmpriser defined operators and enabling efficient
dataflow processing and optimization on grid and cloud stftactures.

Wu and Wu propose a new indexing framework for cloud compugiystems based on the Peer-to-Peer struc-
tured overlay network concept that supports efficient dyinamtwork expansion and shrinkage, and demon-
strate its viability on the Amazon EC2 cloud.

We would like to thank Shirish Tatikonda and Sai Wu for thedighin assembling this issue. We hope you
enjoy reading it.

Beng Chin Ooi and Srinivasan Parthasarathy
National University of Singapore and Ohio State University

Data Management in the Cloud: Limitations and Opportunities

Daniel J. Abadi
Yale University
New Haven, CT, USA
dna@cs.yale.edu

Abstract

Recently the cloud computing paradigm has been receivigfgiant excitement and attention in the
media and blogosphere. To some, cloud computing seems ittldoenbre than a marketing umbrella,
encompassing topics such as distributed computing, gndpeding, utility computing, and software-
as-a-service, that have already received significant neseféocus and commercial implementation.
Nonetheless, there exist an increasing number of large eomp that are offering cloud computing
infrastructure products and services that do not entirelgamble the visions of these individual compo-
nent topics.

In this article we discuss the limitations and opportursitief deploying data management issues on
these emerging cloud computing platforms (e.g., AmazonS&ebces). We speculate that large scale
data analysis tasks, decision support systems, and apiplicapecific data marts are more likely to
take advantage of cloud computing platforms than operatidmansactional database systems (at least
initially). We present a list of features that a DBMS destjfer large scale data analysis tasks running
on an Amazon-style offering should contain. We then dissais® currently available open source and
commercial database options that can be used to performaunalysis tasks, and conclude that none of
these options, as presently architected, match the raguisatures. We thus express the need for a new
DBMS, designed specifically for cloud computing envirortsien

1 Introduction

Though not everyone agrees on the exact definition of cloutbabing [32], most agree the vision encompasses
a general shift of computer processing, storage, and sadtdelivery away from the desktop and local servers,
across the network, and into next generation data centestedhdoy large infrastructure companies such as
Amazon, Google, Yahoo, Microsoft, or Sun. Just as the etegtid revolutionized access to electricity one
hundred years ago, freeing corporations from having torgea¢heir own power, and enabling them to focus on
their business differentiators, cloud computing is ha#ledevolutionizing IT, freeing corporations from large IT
capital investments, and enabling them to plug into extigmpewerful computing resources over the network.
Data management applications are potential candidatesefdoyment in the cloud. This is because an on-
premises enterprise database system typically comes vdtige, sometimes prohibitive up-front cost, both in

Copyright 2009 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

hardware and in software. For many companies (especiallstdot-ups and medium-sized businesses), the pay-
as-you-go cloud computing model, along with having somesise worrying about maintaining the hardware,
is very attractive. In this way, cloud computing is remimst of the application service provider (ASP) and
database-as-a-service (DaaS) paradigms. In practiag] clumputing platforms, like those offered by Amazon
Web Services, AT&T’s Synaptic Hosting, AppNexus, GoGridcRspace Cloud Hosting, and to an extent, the
HP/Yahoo!/Intel Cloud Computing Testbed, and the IBM/Geaoglbud initiative, work differently than ASPs
and DaasS. Instead of owning, installing, and maintainirgdéitabase software for you (often in a multi-tenancy
architecture), cloud computing vendors typically maintittle more than the hardware, and give customers a
set of virtual machines in which to install their own soft@arResource availability is typically elastic, with
a seemingly infinite amount compute power and storage &kilzn demand, in a pay-only-for-what-you-use
pricing model.

This article explores the advantages and disadvantagesptdying database systems in the cloud. We look
at how the typical properties of commercially availableuclacomputing platforms affect the choice of data
management applications to deploy in the cloud. Due to tkeeieecreasing need for more analysis over more
data in today’s corporate world, along with an architedtaratch in currently available deployment options, we
conclude that read-mostly analytical data managemenicapiphs are better suited for deployment in the cloud
than transactional data management applications. We tliliseoa research agenda for large scale data analysis
in the cloud, showing why currently available systems atadwally-suited for cloud deployment, and arguing
that there is a need for a newly designed DBMS, architectedifspally for cloud computing platforms.

2 Data Management in the Cloud

Before discussing in Section 3 the features a databasersystest implement for it to run well in the cloud, in
this section we attempt to narrow the scope of potentialbdata applications to consider for cloud deployment.
Our goal in this section is to decide which data managemaeplicagions are best suited for deployment on top
of cloud computing infrastructure. In order to do this, wetfitiscuss three characteristics of a cloud computing
environment that are most pertinent to the ensuing disoussi

2.1 Cloud Characteristics

Compute power is elastic, but only if workload is parallelizable. One of the oft-cited advantages of cloud
computing is its elasticity in the face of changing condiioFor example, during seasonal or unexpected spikes
in demand for a product retailed by an e-commerce comparmyrang an exponential growth phase for a social
networking Website, additional computational resourcas loe allocated on the fly to handle the increased
demand in mere minutes (instead of the many days it can takeoture the space and capital equipment
needed to expand the computational resources in-housejlay, in this environment, one only pays for what
one needs, so increased resources can be obtained to hgikdiein load and then released once the spike has
subsided. However, getting additional computational weses is not as simple as a magic upgrade to a bigger,
more powerful machine on the fly (with commensurate increas€PUs, memory, and local storage); rather,
the additional resources are typically obtained by aliogaadditional server instances to a task. For example,
Amazon'’s Elastic Compute Cloud (EC2) apportions computasgpurces in small, large, and extra large virtual
private server instances, the largest of which contains ox@niman four cores. If an application is unable to take
advantage of the additional server instances by offloadingesof its required work to the new instances which
run in parallel with the old instances, then having the adldl server instances available will not be much help.
In general, applications designed to run on top of a shaothing architecture (where a set of independent
machines accomplish a task with minimal resource overla@ell suited for such an environment. Some
cloud computing products, such as Google’s App Engine,igeowot only a cloud computing infrastructure, but

also a complete software stack with a restricted API so tbiivare developers are forced to write programs
that can run in a shared-nothing environment and thus ti@elelastic scaling.

Data is stored at an untrusted host.Although it may not seem to make business sense for a clougutimgy
host company to violate the privacy of its customers andsscdata without permission, such a possibility nev-
ertheless makes some potential customers nervous. Inajemaving data off premises increases the number
of potential security risks, and appropriate precautionstrbe made. Furthermore, although the name “cloud
computing” gives the impression that the computing andagi@resources are being delivered from a celestial
location, the fact is, of course, that the data is physidalbated in a particular country and is subject to local
rules and regulations. For example, in the United States\Uth Patriot Act allows the government to demand
access to the data stored on any computer; if the data is bestgd by a third party, the data is to be handed
over without the knowledge or permission of the company os@e using the hosting service [1]. Since most
cloud computing vendors give the customer little contrarovhere data is stored (e.g., Amazon S3 only allows
a customer to choose between US and EU data storage optloms)stomer has little choice but to assume the
worst and that unless the data is encrypted using a key natddat the host, the data may be accessed by a
third party without the customer’s knowledge.

Data is replicated, often across large geographic distansd®ata availability and durability is paramount for
cloud storage providers, as data loss or unavailabilityteadamaging both to the bottom line (by failing to hit
targets set in service level agreements [2]) and to busiegagation (outages often make the news [3]). Data
availability and durability are typically achieved thrdugnder-the-covers replication (i.e., data is automayical
replicated without customer interference or requestsjgé.aloud computing providers with data centers spread
throughout the world have the ability to provide high levetdault tolerance by replicating data across large
geographic distances. Amazon’s S3 cloud storage servpiEates data across “regions” and “availability
zones” so that data and applications can persist even irateedf failures of an entire location. The customer
should be careful to understand the details of the reptinascheme however; for example, Amazon’'s EBS
(elastic block store) will only replicate data within thexeavailability zone and is thus more prone to failures.

2.2 Data management applications in the cloud

The above described cloud characteristics have clear goesees on the choice of what data management ap-
plications to move into the cloud. In this section we desetlie suitability of moving the two largest components
of the data management market into the cloud: transactaatalmanagement and analytical data management.

2.2.1 Transactional data management

By “transactional data management”, we refer to the bremibaitter of the database industry, databases that
back banking, airline reservation, online e-commerce,sanply chain management applications. These appli-
cations typically rely on the ACID guarantees that databgsevide, and tend to be fairly write-intensive. We
speculate that transactional data management applisai@not likely to be deployed in the cloud, at least in
the near future, for the following reasons:

Transactional data management systems do not typically use shared-nothing architecture. The transac-
tional database market is dominated by Oracle, IBM DB2, bioft SQL Server, and Sybase [29]. Of these
four products, neither Microsoft SQL Server nor Sybase @ddployed using a shared-nothing architecture.
IBM released a shared-nothing implementation of DB2 in the©990s which is now available as a “Database
Partitioning Feature” (DPF) add-on to their flagship praddd, but is designed to help scale analytical ap-
plications running on data warehouses, not transactiogial thanagement [5]. Oracle had no shared-nothing
implementation until very recently (September 2008 with thlease of the Oracle Database Machine that uses

a shared-nothing architecture at the storage layer), laihathis implementation is designed only to be used for
data warehouses [6].

Implementing a transactional database system using adshatking architecture is non-trivial, since data
is partitioned across sites and, in general, transactiansiot be restricted to accessing data from a single site.
This results in complex distributed locking and commit poatls, and in data being shipped over the network
leading to increased latency and potential network banttwidttlenecks. Furthermore the main benefit of a
shared-nothing architecture is its scalability [24]; hoesethis advantage is less relevant for transactional data
processing for which the overwhelming majority of deployrseare less than 1 TB in size [33].

It is hard to maintain ACID guarantees in the face of data replcation over large geographic distances.
The CAP theorem [19] shows that a shared-data system carchabse at most two out of three properties:
consistency, availability, and tolerance to partitionshefv data is replicated over a wide area, this essentially
leaves just consistency and availability for a system tmskdetween. Thus, the 'C’ (consistency) part of ACID
is typically compromised to yield reasonable system aldity.

In order to get a sense of the inherent issues in building kcedpd database over a wide area network,
it is interesting to note the design approaches of some regstems. Amazon’s SimpleDB [11] and Yahoo's
PNUTS [15] both implement shared-nothing databases ovétearea network, but overcome the difficulties of
distributed replication by relaxing the ACID guaranteethefsystem. In particular, they weaken the consistency
model by implementing various forms of eventual/timelimasistency so that all replicas do not have to agree
on the current value of a stored value (avoiding distributechmit protocols). Similarly, the research done by
Brantner et. al. found that they needed to relax consistandyisolation guarantees in the database they built on
top of Amazon’s S3 storage layer [12]. Google’s Bigtableiffplements a replicated shared-nothing database,
but does not offer a complete relational API and weakensAh@tomicity) guarantee from ACID. In particular,
it is a simple read/write store; general purpose transastaye not implemented (the only atomic actions are
read-modify-write sequences on data stored under a siogi&ey). SimpleDB and Microsoft SQL Server Data
Services work similarly. The H-Store project [33] aims taldwide-area shared-nothing transactional database
that adheres to strict ACID guarantees by using carefubdat design to minimize the number of transactions
that access data from multiple partitions; however, thgeptademains in the vision stage, and the feasibility of
the approach on a real-world dataset and query workloadétas Ype demonstrated.

There are enormous risks in storing transactional data on anuntrusted host. Transactional databases
typically contain the complete set of operational data edegd power mission-critical business processes. This
data includes detail at the lowest granularity, and oftefuthes sensitive information such as customer data or
credit card numbers. Any increase in potential securitadines or privacy violations is typically unacceptable.

We thus conclude that transactional data management apptis are not well suited for cloud deployment.

Despite this, there are a couple of companies that will sellgtransactional database that can run in Amazon'’s
cloud: EnterpriseDB’s Postgres Plus Advanced Server aagdl@rHowever, there has yet to be any published
case studies of customers successfully implementing aonisstical transactional database using these cloud
products and, at least in Oracle’s case, the cloud versiemséo be mainly intended for database backup [27].

2.2.2 Analytical data management

By “analytical data management”, we refer to applicatidmet fjuery a data store for use in business planning,
problem solving, and decision support. Historical datanglavith data from multiple operational databases
are all typically involved in the analysis. Consequenthe scale of analytical data management systems is
generally larger than transactional systems (whereas §T&de for transactional systems, analytical systems
are increasingly crossing the petabyte barrier [25, 7]xtHeumore, analytical systems tend to be read-mostly
(or read-only), with occasional batch inserts. Analytidata management consists of $3.98 billion [35] of the
$14.6 billion database market [29] (27%) and is growing ata of 10.3% annually [35]. We speculate that

6

analytical data management systems are well-suited tonrarcloud environment, and will be among the first
data management applications to be deployed in the clouthddollowing reasons:

Shared-nothing architecture is a good match for analyticaldata management. Teradata, Netezza, Green-
plum, DATAllegro (recently acquired by Microsoft), Veréicand Aster Data all use a shared-nothing architecture
(at least in the storage layer) in their analytical DBMS pratd, with IBM DB2 and recently Oracle also adding
shared-nothing analytical products. The ever increasimguat of data involved in data analysis workloads is the
primary driver behind the choice of a shared-nothing aechitre, as the architecture is widely believed to scale
the best [24]. Furthermore, data analysis workloads termdngist of many large scan scans, multidimensional
aggregations, and star schema joins, all of which are faalyy to parallelize across nodes in a shared-nothing
network. Finally, the infrequent writes in the workloadneilnates the need for complex distributed locking and
commit protocols.

ACID guarantees are typically not needed. The infrequent writes in analytical database workloadsngl
with the fact that it is usually sufficient to perform the ars$ on a recent snapshot of the data (rather than on
up-to-the-second most recent data) makes the 'A, 'C’, dh¢htomicity, consistency, and isolation) of ACID
easy to obtain. Hence the consistency tradeoffs that neleel imade as a result of the distributed replication of
data in transactional databases are not problematic ftytarah databases.

Particularly sensitive data can often be left out of the analsis. In many cases, it is possible to identify
the data that would be most damaging should it be accessedttiydgparty, and either leave it out of the
analytical data store, include it only after applying anamoization function, or include it only after encrypting
it. Furthermore, less granular versions of the data can dlyzed instead of the lowest level, most detailed data.

We conclude that the characteristics of the data and wailklod typical analytical data management applica-

tions are well-suited for cloud deployment. The elastic pate and storage resource availability of the cloud

is easily leveraged by a shared-nothing architecture,enthié security risks can be somewhat alleviated. In
particular, we expect the cloud to be a preferred deployraptibn for data warehouses for medium-sized busi-

nesses (especially those that do not currently have datgheases due to the large up-front capital expenditures
needed to get a data warehouse project off the ground), flstesuor short-term business intelligence projects

that arise due to rapidly changing business conditions, (a.getail store analyzing purchasing patterns in the
aftermath of a hurricane), and for customer-facing datatsrthat contain a window of data warehouse data
intended to be viewed by the public (for which data secustgat an issue).

3 Data Analysis in the Cloud

Now that we have settled on analytic database systems adyaddgment of the DBMS market to move into the
cloud, we explore various currently available softwaraigsohs to perform the data analysis. We focus on two
classes of software solutions: MapReduce-like softwane, @mmercially available shared-nothing parallel
databases. Before looking at these classes of solutioretaii,dve first list some desired properties and features
that these solutions should ideally have.

3.1 Cloud DBMS Wish List

Efficiency. Given that cloud computing pricing is structured in a way Isat tyou pay for only what you use,
the price increases linearly with the requisite storagéyork bandwidth, and compute power. Hence, if data
analysis software product A requires an order of magnitudeencompute units than data analysis software
product B to perform the same task, then product A will coppfaximately) an order of magnitude more than
B. Efficient software has a direct effect on the bottom line.

Fault Tolerance. Fault tolerance in the context of analytical data worklosdsieasured differently than fault
tolerance in the context of transactional workloads. Fangactional workloads, a fault tolerant DBMS can
recover from a failure without losing any data or updatesnfn@ecently committed transactions, and in the
context of distributed databases, can successfully cotnamisactions and make progress on a workload even
in the face of worker node failure. For read-only queriesnalgtical workloads, there are no write transactions
to commit, nor updates to lose upon node failure. Hence, & falerant analytical DBMS is simply one
that does not have to restart a query if one of the nodes iedalv query processing fails. Given the large of
amount of data that needs to be accessed for deep analyier@s, combined with the relatively weak compute
capacity of a typical cloud compute server instance (e.default compute unit on Amazon’'s EC2 service is
the equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeongasmr), complex queries can involve hundreds
(even thousands) of server instances and can take hoursniglete. Furthermore, clouds are typically built
on top of cheap, commodity hardware, for which failure is motommon. Consequently, the probability of
a failure occurring during a long-running data analysi& iagelatively high; Google, for example, reports an
average of 1.2 failures per analysis job [7]. If a query mastart each time a node fails, then long, complex
gueries are difficult to complete.

Ability to run in a heterogeneous environment. The performance of cloud compute nodes is often not consis-
tent, with some nodes attaining orders of magnitude wordenpeance than other nodes. There are a variety of
reasons why this could occur, ranging from hardware faitaesing degraded performance on a node [31], to
an instance being unable to access the second core on acdeatiachine [8], to contention for non-virtualized
resources. If the amount of work needed to execute a quequallg divided amongst the cloud compute nodes,
then there is a danger that the time to complete the quenbwiipproximately equal to time for the slowest
compute node to complete its assigned task. A node obseateigiaded performance would thus have a dispro-
portionate affect on total query latency. A system desigioedin in a heterogeneous environment would take
appropriate measures to prevent this from occurring.

Ability to operate on encrypted data. As mentioned in Section 2.2.2, sensitive data may be erexlyipéfore
being uploaded to the cloud. In order to prevent unauthdrimeess to the sensitive data, any application running
in the cloud should not have the ability to directly decryp tlata before accessing it. However, shipping entire
tables or columns out of the cloud for decryption is bandiwidtensive. Hence, the ability of the data analysis
system to operate directly on encrypted data (such as in2[1,018, 23, 28]) so that a smaller amount of data
needs to ultimately be shipped elsewhere to be decryptdd sinificantly improve performance.

Ability to interface with business intelligence products. There are a variety of customer-facing business
intelligence tools that work with database software andmithe visualization, query generation, result dash-
boarding, and advanced data analysis. These tools are amtémppart of the analytical data management
picture since business analysts are often not technicdlgreced and do not feel comfortable interfacing with
the database software directly. These tools typicallyriate with the database using ODBC or JDBC, so
database software that want to work these products mugpa8€EH. queries over these connections.

Using these desired properties of our cloud data analy$iwa®, we now examine how close two currently
available solutions come to attaining these propertiespRéaluce-like software, and commercially available
shared-nothing parallel databases.

3.2 MapReduce-like software

MapReduce [7] and related software such as the open soudmop$9], useful extensions [30], and Microsoft’'s
Dryad/SCOPE stack [13] are all designed to automate thélgaration of large scale data analysis workloads.
Although DeWitt and Stonebraker took a lot of criticism faneparing MapReduce to database systems in their
recent controversial blog posting [17] (many believe th@athsa comparison is apples-to-oranges), a comparison

is warranted since MapReduce (and its derivatives) is indaeseful tool for performing data analysis in the
cloud [9]. The MapReduce programming model and framewo{émentation satisfies many of the previously
stated desired properties:

Fault Tolerance. MapReduce is designed with fault tolerance as a high pyiofitdata analysis job is divided
into many small tasks and upon a failure, tasks assigned &ileal fmachine are transparently reassigned to
another machine. Care is taken to make sure that partiaflgueed tasks are not doubly accounted for in the
final query result. In a set of experiments in the original Reduce paper, it was shown that explicitly killing
200 out of 1746 worker processes involved in a MapReducegsblted in only a 5% degradation in query
performance [7].

Ability to run in a heterogeneous environment. MapReduce is also carefully designed to run in a hetero-
geneous environment. Towards the end of a MapReduce jdts that are still in progress get redundantly
executed on other machines, and a task is marked as compkesabn as either the primary or the backup ex-
ecution has completed. This limits the effect that “straggimachines can have on total query time, as backup
executions of the tasks assigned to these machines will lebenfirst. In a set of experiments in the original
MapReduce paper, it was shown that backup task executioruag query performance by 44% by alleviating
the adverse affect caused by slower machines.

Ability to operate on encrypted data. Neither MapReduce, nor its derivatives, come with a nathiétya to
operate on encrypted data. Such an ability would have todédded using user-defined code.

Ability to interface with business intelligence products. Since MapReduce is not intended to be a database
system, it is not SQL compliant and thus it does not easibriate with existing business intelligence products.

Efficiency. The efficiency and raw performance of MapReduce is a matteleb&te. A close inspection of
the experimental results presented in the MapReduce p@pemould seem to indicate that there is room for
performance improvement. Figure 2 of the paper shows tHerpesince of a simple grep query where a rare
string is searched for inside a 1TB dataset. In this quer dfl[data is read off of the 3600 disks in the cluster
(in parallel) and a very simple pattern search is perfornbask should clearly be the bottleneck resource since
the string is rare, so query results do not need to be shippardtioe network, and the query is computationally
trivial. Despite these observations, the entire grep gtegs 150 seconds to complete. If one divides the 1TB
of data by the 3600 disks and 150 seconds to run the queryyvérage throughput with which data is being
read is less than 2 MB/s/disk. At peak performance, MapReduas reading data at 32GB/s which is less
than 10MB/s/disk. Given the long start-up time to get to peakormance, and the fact that peak performance
is four to six times slower than how fast disks in the clustauld actually be read, there indeed is room for
improvement. Other benchmarks [36] (albeit not performedauthe standards of publishable academic rigor)
have also shown MapReduce to be about an order of magnitodersthan alternative systems.

Much of the performance issues of MapReduce and its deré/atistems can be attributed to the fact that
they were not initially designed to be used as complete,tereid data analysis systems over structured data.
Their target use cases include scanning through a largef sktcaments produced from a web crawler and
producing a web index over them [7]. In these applicatioms,itput data is often unstructured and a brute force
scan strategy over all of the data is usually optimal. MapkRedhen helps automate the parallelization of the
data scanning and application of user defined functionseaddta is being scanned.

For more traditional data analysis workloads of the typewssed in Section 2.2.2 that work with data
produced from business operational data stores, the dé&arnsore structured. Furthermore, the queries tend
to access only a subset of this data (e.g., breakdown thaspodfstoredocated in the Northeakt Using data
structures that help accelerate access to needed engtiels &s indexes) and dimensions (such as column-
stores), and data structures that precalculate commomstxj(such as materialized views) often outperform a
brute-force scan execution strategy.

Many argue that the lack of these “helper” data structuréddapReduce is a feature, not a limitation. These

additional structures generally require the data to beddadto to data analysis system before it can be used.
This means that someone needs to spend time thinking abaitsafrema to use for the data, define the schema
and load the data into it, and decide what helper data stegto create (of course self-managing/self-tuning
systems can somewhat alleviate this burden). In contragpRédduce can immediately read data off of the file
system and answer queries on-the-fly without any kind ofilaadtage.

Nonetheless, at the complexity cost of adding a loadingestaglexes, columns, and materialized views
unquestionably can improve performance of many types ofiggle If these data structures are utilized to
improve the performance of multiple queries, then the ame-tost of their creation is easily outweighed by
the benefit each time they are used.

The absence of a loading phase into MapReduce has additierfatmance implications beyond precluding
the use of helper data structures. During data load, datbe@ompressed on disk. This can improve perfor-
mance, even for brute-force scans, by reducing the 1/0 tonesidbsequent data accesses. Furthermore, since
data is not loaded in advance, MapReduce needs to perfoarpdeding at runtime (using user-defined code)
each time the data is accessed, instead of parsing the datanjee at load time.

The bottom line is that the performance of MapReduce is digreron the applications that it is used for. For
complex analysis of unstructured data (which MapReduceniigally designed for) where brute-force scans is
the right execution strategy, MapReduce is likely a goodBiit for the multi-billion dollar business-oriented
data analysis market, MapReduce can be wildly inefficient.

3.3 Shared-Nothing Parallel Databases

A more obvious fit for data analysis in the cloud are the conecially available shared-nothing parallel databases,
such as Teradata, Netezza, IBM DB2, Greenplum, DATAlleYestica, and Aster Data, that already hold a rea-
sonable market share for on-premises large scale datasenfd$]. DB2, Greenplum, Vertica, and Aster Data
are perhaps the most natural fit since they sell softwarg-prdducts that could theoretically run in the data
centers hosted by cloud computing providers. Vertica direaarkets a version of its product designed to run
in Amazon’s cloud [34].

Parallel databases implement a largely complimentaryfggbperties from our wish list relative to MapReduce-
like software:

Ability to interface with business intelligence products. Given that the business intelligence products are
designed to work on top of databases, this property esigrittanes for free. More mature databases, such as
DB2, tend to have carefully optimized and certified integgwvith a multitude of Bl products.

Efficiency At the cost of the additional complexity in the loading phakscussed in Section 3.2, parallel
databases implement indexes, materialized views, andressipn to improve query performance.

Fault Tolerance. Most parallel database systems restart a query upon adailthiis is because they are gen-
erally designed for environments where queries take no thame a few hours and run on no more than a few
hundred machines. Failures are relatively rare in such amogment, so an occasional query restart is not
problematic. In contrast, in a cloud computing environmeritere machines tend to be cheaper, less reliable,
less powerful, and more numerous, failures are more comrilmt.all parallel databases, however, restart a
guery upon a failure; Aster Data reportedly has a demo shpaiquery continuing to make progress as worker
nodes involved in the query are killed [26].

Ability to run in a heterogeneous environment. Parallel databases are generally designed to run on homo-
geneous equipment and are susceptible to significanthadedrperformance if a small subset of nodes in the
parallel cluster are performing particularly poorly.

Ability to operate on encrypted data. Commercially available parallel databases have not caughd (and
do not implement) the recent research results on operaiiagtly on encrypted data. In some cases simple op-

10

erations (such as moving or copying encrypted data) areostgu but advanced operations, such as performing
aggregations on encrypted data, is not directly supportedhould be noted, however, that it is possible to
hand-code encryption support using user defined functions.

3.4 A Call For A Hybrid Solution

It is now clear that neither MapReduce-like software, noafpal databases are ideal solutions for data analysis
in the cloud. While neither option satisfactorily meetsfaié of our desired properties, each property (except
the primitive ability to operate on encrypted data) is metabyeast one of the two options. Hence, a hybrid
solution that combines the fault tolerance, heterogenelusser, and ease of use out-of-the-box capabilities of
MapReduce with the efficiency, performance, and tool plilgatof shared-nothing parallel database systems
could have a significant impact on the cloud database market.

There has been some recent work on bringing together ideas flapReduce and database systems,
however, this work focuses mainly on language and interfssges. The Pig project at Yahoo [30] and the
SCOPE project at Microsoft [13] aim to integrate declagtiiuery constructs from the database community
into MapReduce-like software to allow greater data indelpece, code reusability, and automatic query op-
timization. Greenplum and Aster Data have added the ahdityrite MapReduce functions (instead of, or in
addition to, SQL) over data stored in their parallel datel@®ducts [22]. Although these four projects are with-
out question an important step in the direction of a hybridttan, there remains a need for a hybrid solution at
the systems level in addition to at the language level.

One interesting research question that would stem from augfbrid integration project would be how to
combine the ease-of-use out-of-the-box advantages of Edipte-like software with the efficiency and shared-
work advantages that come with loading data and creatirnfgnpeance enhancing data structures. Incremental
algorithms are called for, where data can initially be remeatly off of the file system out-of-the-box, but each
time data is accessed, progress is made towards the manyiestsurrounding a DBMS load (compression,
index and materialized view creation, etc.).

Another interesting research question is how to balancer#ueoffs between fault tolerance and perfor-
mance. Maximizing fault tolerance typically means catgfoheckpointing intermediate results, but this usu-
ally comes at a performance cost (e.g., the rate which datdeaead off disk in the sort benchmark from the
original MapReduce paper is half of full capacity since tame disks are being used to write out intermediate
Map output). A system that can adjust its levels of faultriamhee on the fly given an observed failure rate could
be one way to handle the tradeoff.

The bottom line is that there is both interesting researcheaigineering work to be done in creating a hybrid
MapReduce/parallel database system.

4 Acknowledgments

We thank Andy Pavlo and Samuel Madden for their feedback isratticle. The author is funded by the NSF
under grants 11S-0845643 and 11S-0844480.

References

[1] http:// news. bbc. co. uk/ 1/ hi/technol ogy/ 7421099. st m

[2] http://aws. amazon. com s3-sl a/.

[3] http://w ki.cloudcomunity. org/w ki/C oudConputing: | nci dents_Dat abase.

[4] http://en.w ki pedi a. org/w ki /| BM DB2.

[5] http://ww. i bm com devel operwor ks/ db2/1ibrary/techarticl e/ dm 0608nti ner ney/
i ndex. htm .

11

[6] http://wwv. oracl e.conl sol utions/business_intelligence/exadata.htn.
[7] http://ww. sybase. com det ai | ?i d=1054047.
[8] http://devel oper.anmazonwebservi ces. conf connect/t hread. j spa?t hreadl D=16912.
[9] http://ww. | exenet ech. com 2008/ 08/ el asti c- hadoop- cl ust ers-w t h-anmazons. htni .
[10] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order mesng encryption for numeric data. Proc. of SIGMOD
pages 563-574, 2004.
[11] Amazon Web Services. SimpleDB. Web Pabet p: / / aws. amazon. com si npl edb/ .
[12] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and Taska. Building a Database on S3.Rroc. of SIGMOD
pages 251-264, 2008.
[13] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. 8haR. Weaver, and J. Zhou. Scope: Easy and efficient
parallel processing of massive data setsPioc. of VLDB 2008.
[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WallatBurrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: a distributed storage system for structured.dat®roceedings of OSDR006.
[15] B. Cooper, R. Ramakrishnan, U. Srivastava, A. SilleénstP. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. Pnuts: Yahoo!s hosted data serving platfornPréceedings of VLDB2008.
[16] J. Dean and S. Ghemawat. Mapreduce: Simplified dataegsireg on large clusters. pages 137-150, December 2004.

[17] D. DeWitt and M. Stonebraker. MapReduce: A major stepkipards. DatabaseColumn Blodnt t p: / / vwww.
dat abasecol um. com 2008/ 01/ mapr educe- a- ngj or - st ep- back. htm .

[18] T. Ge and S. Zdonik. Answering aggregation queries ir@ige system model. IRroc. of VLDB pages 519-530,
2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and thesfbiity of consistent, available, partition-tolerant lwe
services.SIGACT News33(2):51-59, 2002.

[20] H. Hacigimis, B. lyer, C. Li, and S. Mehrotra. Exdngtsql over encrypted data in the database-service-peovid
model. InProc. of SIGMOD pages 216—227, 2002.

[21] Hadoop Project. Welcome to Hadoop! Web Pduget p: / / hadoop. apache. or g/ core/ .

[22] J. N. Hoover. Start-Ups Bring Google’s Parallel Prateg To Data Warehousing. InformationWeek, August 29th,
2008.

[23] M. Kantarcoglu and C. Clifton. Security issues in quegyencrypted data. 1@9th Annual IFIP WG 11.3 Working
Conference on Data and Applications Secyra904.

[24] S. Madden, D. DeWitt, and M. Stonebraker. Databasdletisan choices greatly impact scalability. Database@Guiu
Blog. htt p: / / ww. dat abasecol unm. conif 2007/ 10/ dat abase- paral | el i sm choi ces. htnl .

[25] C. Monash. The 1-petabyte barrier is crumblifgt t p: / / www. net wor kwor | d. com’ conmruni t y/ node/
31439.

[26] C. Monash. Introduction to Aster Data and nCluster. D&MBlog.ht t p: / / www. dbns2. com 2008/ 09/ 02/
i ntroducti on-to-aster-data-and-ncluster/.

[27] C. Monash. Oracle Announces an Amazon Cloud OfferingM32 Blog. ht t p: / / www. dbns2. coml 2008/
09/ 22/ or acl e- announces- an- anmazon- cl oud- of fering/.

[28] E. Mykletun and G. Tsudik. Aggregation queries in théati@se-as-a-service model.IFiP WG 11.3 on Data and
Application Security2006.

[29] C. Olofson. Worldwide RDBMS 2005 vendor shares. TecAhReport 201692, IDC, May 2006.

[30] C.Olston, B. Reed, U. Srivastava, R. Kumar, and A. TamakPig latin: a not-so-foreign language for data processin
In SIGMOD Conferencgpages 1099-1110, 2008.

[31] RightScale. Top reasons amazon ec2 instances disagpeap: / / bl og. ri ght scal e. conml 2008/ 02/ 02/
t op- reasons- amazon- ec2- i nst ances- di sappear/ .

[32] Slashdot. Multiple Experts Try Defining Cloud Computinhtt p: // t ech. sl ashdot.org/article.pl ?
si d=08/07/ 17/ 2117221.

[33] M. Stonebraker, S. R. Madden, D. J. Abadi, S. HarizopsuN. Hachem, and P. Helland. The end of an architectural
era (it's time for a complete rewrite). MLDB, Vienna, Austria, 2007.

[34] Vertica. Performance On-Demand with Vertica Analyliatabase for the Cloudht t p: / / www. verti ca. conl
cl oud.

[35] D. Vesset. Worldwide data warehousing tools 2005 vestiares. Technical Report 203229, IDC, August 2006.

[36] E. Yoon. Hadoop Map/Reduce Data Processing Benchmatksloop Wiki. htt p: //wi ki . apache. or g/
hadoop/ Dat aPr ocessi ngBenchmar ks.

12

Deploying Database Appliances in the Cloud

Ashraf Aboulnaga Kenneth Salem Ahmed A. Soror Umar Farooq Minhas
Peter Kokosielis Sunil Kamath

*University of Waterloo
fIBM Toronto Lab

Abstract

Cloud computing is an increasingly popular paradigm for @esing computing resources. A popular
class of computing clouds is Infrastructure as a Servica$leclouds, exemplified by Amazon’s Elastic
Computing Cloud (EC2). In these clouds, users are givensactevirtual machines on which they can
install and run arbitrary software, including database ®ras. Users can also deploy database appli-
ances on these clouds, which are virtual machines with psealled pre-configured database systems.
Deploying database appliances on laaS clouds and perfocenuming and optimization in this environ-
ment introduce some interesting research challenges.igrptiper, we present some of these challenges,
and we outline the tools and techniques required to addiessit We present an end-to-end solution to
one tuning problem in this environment, namely partitignthe CPU capacity of a physical machine
among multiple database appliances running on this machivie also outline possible future research
directions in this area.

1 Introduction

Cloud computing has emerged as a powerful and cost-eféepiiradigm for provisioning computing power
to users. In the cloud computing paradigm, users use amett the Internet to access a shared computing
cloud that consists of a large number (thousands or tenak#nds) of interconnected machines organized as
one or more clusters. This provides significant benefits bmtbroviders of computing power and to users of
this computing power. For providers of computing power,gheh to cloud computing is driven by economies
of scale. By operating massive clusters in specially desicand carefully located data centers, providers can
reduce administrative and operating costs, such as the obgtower and cooling [15, 16]. In addition, the
per-unit costs of hardware, software and networking becsigraficantly cheaper at this scale [4]. For users,
cloud computing offers simple and flexible resource pravisig without up-front equipment and set up costs
and on-going administrative and maintenance burdens.sdser run software in the cloud, and they can grow
and shrink the computing power available to this softwanegponse to growing and shrinking load [4].

There are different flavors of cloud computing, dependingp@m much flexibility the user has to customize
the software running in the cloud. In this paper, we focus emputing clouds where the user sees a bare-
bones machine with just an operating system and gets fulbflix in installing and configuring software on
this machine. These clouds are knownragastructure as a Service (laag)ouds. A very prominent example

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

13

of this type of cloud is Amazon’s Elastic Computing Cloud (2], which enables users to rent computing
power from Amazon to run their software. Other providershig style of cloud computing include GoGrid [13]
and AppNexus [3]. Additionally, many organizations areldinig laaS clouds for their internal use [6, 22].

In laaS clouds, users are typically given accesdrtoal machines (VMs[5, 23] on which they can install
and run software. These virtual machines are created andgedrby avirtual machine monitor (VMMyvhich
is a layer of software between the operating system and tysqath machine. The VMM controls the resources
of the physical machine, and can create multiple VMs thatestizese physical machine resources. The VMs
have independent operating systems running independphitajons, and are isolated from each other by the
VMM. The VMM controls the allocation of physical machine oesces to the different VMs. The VMM also
provides functionality such as saving and restoring thegienaf a running VM, or migrating VMs between
physical machines.

A common model for deploying software in virtual machine ieowments is thevirtual appliancemodel.
A virtual appliance is a VM image with a pre-installed preafigured application. Deploying the application
simply requires copying this VM image to a physical machsteyting the VM, and performing any required
configuration tasks. The cost of installing and configurimg dpplication on the VM is incurred once, when the
appliance is created, and does not need to be incurred agaigelbs of the appliance. Aatabase appliance
is a virtual appliance where the installed application isatalase system. With the increasing popularity of
virtualization and cloud computing, we can expect that armom way of providing database services in the
future will be throughdatabase appliances deployed in laaS cloudés an example of this deployment mode,
Amazon offers MySQL, Oracle, and Microsoft SQL Server \aitappliances for deployment in its EC2 cloud.

An important question to ask is how to get the best databagersyperformance in this environment. Cloud
providers are interested in two related performance olgsct maximizing the utilization of cloud resources
and minimizing the resources required to satisfy user dem&isers are interested in minimizing application
response time or maximizing application throughput. Dgiplg database appliances in the cloud and tuning the
database and virtualization parameters to optimize padace introduces some interesting research challenges.
In this paper, we outline some of these challenges (Secjicem@ we present the different tools and techniques
required to address them (Section 3). We present our workaotitipning CPU capacity among database
appliances as an example end-to-end tuning solution faratized environments (Section 4). We conclude by
outlining some possible future research directions indhés (Section 5).

2 Deployment and Tuning Challenges

Our focus is on deploying and tuning virtual machines rugrdatabase systems (i.e., database appliances) on
large clusters of physical machines (i.e., computing cpudhis raises deployment and computing challenges,
which we describe next.

2.1 Deployment Challenges

Creating a database appliance that can easily be deplogerland, and obtaining an accessible, usable database
instance from this appliance require addressing many sseelated to deployment. These issues are not the
research focus of our work, but we present them here sinse teemingly simple and mundane tasks can be
very tricky and time consuming. These issues include:

Localization:

When we start a VM from a copy of a database appliance, we oagdd this new VM and the database system
running on it a distinct “identity.” We refer to this proceaslocalization For example, we need to give the
VM a MAC address, an IP address, and a host name. We also neddjib (or localize) the database instance
running on this VM to the VM’s new identity. For example, soul&tabase systems require every database

14

instance to have a unique name, which is sometimes base@ ¢tr$h name or IP address. The VMM and the
underlying operating system and networking infrastrietmiay help with issues such as assigning IP addresses,
but there is typically little support for localizing the datse instance. The specific localization required varies
from database system to database system, which increasefidtt required for creating database appliances.

Routing:

In addition to giving every VM and database instance a disiidentity, we must be able to route application
requests to the VM and database instance. This include$tievél routing of packets to the VM, but it also
includes making sure that database requests are routed tottect port and not blocked by any firewall, that
the display is routed back to the client console if neededt, It requests are routed to the correct virtual storage
device if the “compute” machines of the laaS cloud are diffeéfrom the storage machines, and so on.

Authentication:
The VM must be aware of the credentials of all clients thatrteeconnect to it, independent of where it is run
in the cloud.

2.2 Tuning Challenges

Next, we turn our attention to the challenges related tonitine parameters of the virtualization environment
and the database appliance to achieve the desired perfoenadfectives. These are the primary focus of our
research work, and they include:

Placement:

Virtualization allows the cloud provider to run a user’s VM any available physical machine. The mapping
of virtual machines to physical machines can have a signifizapact on performance. One simple problem
is to decide how many virtual machines to run on each physiwathine. The cloud provider would like to
minimize the number of physical machines used, but runningenvMs on a physical machine degrades the
performance of these VMs. It is important to balance thesdlicing objectives: minimizing the number of
physical machines used while maintaining acceptable paence for users.

A more sophisticated mapping of virtual machines to physiwchines could consider not only the number
of VMs per physical machine, but also the resource requingsnef these VMs. The placement algorithm
could, for example, avoid mapping multiple I/O intensive ¥ltb the same physical machine to minimize 1/0
interference between these VMs. This type of mapping reguinderstanding the resource usage characteristics
of the application running in the VM, which may be easier tofdlodatabase systems than for other types of
applications since database systems have a highly stydizéaften predictable resource usage pattern.

Resource Partitioning:

Another tuning challenge is to decide how to partition treorteces of each physical machine among the virtual
machines that are running on it. Most VMMs provide tools orls\Roxr controlling the way that physical
resources are allocated. For example VMM scheduling passiean be used to apportion the total physical
CPU capacity among the VMs, or to control how virtual CPUs raapped to physical CPUs. Other VMM
parameters can be used to control the amount of physical nyelimat is available to each VM. To obtain the
best performance, it is useful to take into account the dbariagtics of the application running in the VM so that
we can allocate resources where they will provide the mamirbanefit. Database systems can benefit from this
application-informed resource partitioning, as we wilbshin Section 4.

Service Level Objectives:

To optimize the performance of a database appliance in a@onironment, it is helpful to be able to ex-
press differenservice level objectivesThe high-level tuning goal is to minimize the cloud res@srcequired
while maintaining adequate performance for the databagkaape. Expressing this notion of “adequate per-
formance” is not a trivial task. A database system is typigadrt of a multi-layer software stack that is used to

15

serve application requests. Service level agreementypically expressed in terms of end-to-end application
performance, with no indication of how much of this perfonoa budget is available to the database system vs.
how much is available to other layers of the software staak ,(&he application server and the web server). De-
riving the performance budget that is available to the dealsystem for a given application request is not easy,
since an application request can result in a varying numb@atabase requests, and these database requests can
vary greatly in complexity depending on the SQL statemertadgrexecuted. Tuning in a cloud environment
therefore requires developing practical and intuitive svalyexpressing database service level objectives. Differ-
ent workloads can have different service level objectiagsl the tuning algorithms need to take these different
service level objectives into account.

Dynamically Varying Workloads:

Tuning the performance of a database appliance (e.g.,pkEmeand resource partitioning) requires knowledge
of the appliance’s workload. The workload can simply be thksiet of SQL statements that execute at the appli-
ance. However, it is an interesting question whether thanebe a more succinct but still useful representation
of the workload. Another interesting question is whethensauning decisions can be made without knowledge
of the SQL statements (e.g., if this is a new database insfattds also important to detect when the nature of
the workload has changed, possibly by classifying the veartk[11] and detecting when the workload class has
changed. The tuning algorithms need to be able to deal withmycally changing workloads that have different
service level objectives.

3 Tools and Techniques

Next, we turn our attention to the tools and techniques tteahaeded to address the tuning challenges outlined
above. These include:

Performance Models:

Predicting the effect of different tuning actions on thefpenance of a database appliance is an essential com-
ponent of any tuning solution. This requires developingieaie and efficient performance models for database
systems in virtualized environments. There are two ger®aaises of models: white box models, which are
based on internal knowledge of the database system, arkdlimaanodels, which are typically statistical mod-
els based on external, empirical observations of the dsgtadgstem’s performance.

White box modeling is especially attractive for databasstesys for two reasons. First, database systems
have a stylized and constrained interface for user requélseéy accept and execute SQL statements. This
simplifies defining the inputs to the performance model. 8dcand more importantly, database systems already
have highly refined internal models of performance. One wealuild a white box model is to expose these
internal models to the tuning algorithm and adapt them tottiming task at hand. For example, the query
optimizer cost model, which has been used extensively asa&ivbost model for automatic physical database
design [7], can be used to quantify the effect of allocatiiffeent shares of physical resources to a database
appliance (see the next section for more details). Selfagiaig database systems have other internal models that
can be exposed for use in performance tuning in a cloud enwviemt. These include the memory consumption
model used by a self-tuning memory manager [8, 21] or the ngisl for automatic diagnosis of performance
problems [10].

The disadvantage of white box modeling is that the requirrfbopmance models do not always exist in the
database system, and developing white box models fromchcimdifficult and time consuming. Even when
internal models do exist in the database system, these matelsometimes not calibrated to accurately pro-
vide the required performance metric, and they sometimée sianplifying assumptions that ignore important
aspects of the problem. For example, the query optimizerrooslel is designed primarily to compare query
execution plans, not to accurately estimate resource ogotson. This cost model focuses on one query at a

16

time, ignoring the sometimes significant effect of concutlserunning interacting queries [1]. Because of these
shortcomings of white box modeling, it is sometimes desirdb build black box models of performance by
fitting statistical models to the observed results of penfmce experiments [1]. When building these models
it is important to carefully decide which performance expents to conduct to collect samples for the model,
since these experiments can be costly and they have a caatdelémpact on model accuracy [18]. However,
the illusion of infinite computing resources provided bySadouds can actually simplify black box experimen-
tal modeling of database systems, since we can now easi¥ysfn as many machines as we need to run the
performance experiments required for building an accuraidel.

An interesting research question is whether it is posstb@mbine the best features of black box and white
box modeling, by using the internal models of the databastesyas a starting point, but then refining these
models based on experimental observations [12].

Optimization and Control Algorithms:

Solving the performance tuning problems of a cloud envirentmequires developing combinatorial optimiza-
tion or automatic control algorithms that use the perforogamodels described above to decide on the best
tuning action. These algorithms can be static algorithrasdssume a fixed workload, or they can be dynamic
algorithms that adapt to changing workloads. The algorstihan simply have as a goal the best-effort maximiza-
tion of performance [20], or they can aim to satisfy diffdreervice level objectives for different workloads [17].

Tools for System Administrators:

In addition to the models and algorithms described abov&gesy administrators need tools for deploying and
tuning database appliances. These tools should expos@&lydhe performance characteristics of the VM, but
also the performance characteristics of the databasensysteiing on this VM. For example, it would be useful
to expose the what-if performance models of the databasersye system administrators so that they can make
informed tuning decisions, diagnose performance prohlemsfine the recommendations of automatic tuning
algorithms.

Co-tuning and Hint Passing:

The focus of the previous discussion has been on tuningaviniachine parameters. It is also important to tune
the parameters of the database system running on this Ivin@ehine. For example, if we decide to decrease
the memory available to a VM running a database system, wettnagecrease the sizes of the different memory
pools of this database system. Thb-tuningof VM and database system parameters is important to ensure
that the tuning actions at one layer are coordinated withtuhang action at the other layer. Another way to
coordinate VM tuning with database system tuning is to pa#sthat can be used for tuning from the database
system to the virtualization layer. These hints would cionitaformation that is easy to obtain for the database
system and useful for tuning at the virtualization layerr Example, these hints could be used to ensure that
VM disks storing database objects (i.e., tables or indetked)are accessed together are not mapped to the same
physical disk. Information about which objects are acags$sgether is easily available to the database system
and very useful to the virtualization layer.

4 Virtual Machine Configuration

In this section, we consider the following tuning problemivéa N virtual machines that share one physical
machine, with each VM running an independent databasersyist#ance, how can we optimally partition the
available CPU capacity of the physical machine among thealimachines? Recall that the VMM provides
mechanisms for deciding how much CPU capacity is allocatedth VM. We outline a solution to this resource
partitioning problem below. Full details of our solutiomdae found in [19, 20].

We decide the partitioning of the available CPU capacityhaf physical machine among thé virtual
machines with the goal of maximizing the aggregate througbpthe N workloads (or minimizing their total

17

completion time). This is a best-effort performance goat titoes not consider explicit service level objectives
for the different workloads.

The benefit that each database system will obtain from aeaserin CPU allocation depends on that sys-
tem’s workload. We assume that we are given the set of SQkmstaits that make up the workload of each
of the N database systems. These workloads represent the SQL atdseexecuted by the different database
systems in the same time interval, so the number of statenreatworkload corresponds to its intensity (i.e., the
rate of arrival of SQL statements). We assume that the waddare fixed, and we do not deal with dynamically
varying workloads.

To determine the best CPU partitioning, we need a model op#rormance of a database workload as
a function of the CPU capacity allocated to the VM runnings thvorkload. In our solution, we use the cost
model of the database system’s query optimizer as a whatdletrto predict performance under different CPU
allocations. This requires the query optimizer cost modddd aware of the effect of changing CPU capacity
on performance. The cost model relies on one or more modekmgmeters to describe CPU capacity and
estimate the CPU cost of a query. We use different valuesesetlCPU modeling parameters for different CPU
allocations, thereby adding awareness of CPU allocatidghei@uery optimizer cost model. We call such a cost
modelvirtualization aware The calibration procedure required to determine the wabighe CPU modeling
parameters to use for each CPU allocation is performed ombe dor every database system and physical
machine configuration, and can be used for any workload timet on this database system.

We use the virtualization aware cost models of Malatabase systems on theVMs in a greedy search
algorithm to determine the best partitioning of CPU capaainong the VMs. We also provide heuristics for
refining the cost models based on comparing estimated peafure to actual observed performance. We apply
these refinement heuristics periodically, and we obtainnapatitioning of CPU capacity after each refinement
of the cost model.

To illustrate the effectiveness of our approach, considerfollowing example (Figure 1). Using the Xen
VMM [5] we created two virtual machines, each running ananse of PostgreSQL. We ran both VMs on the
same physical machine, a Sun server with two 2.2GHz dual AMB Opteron Model 275 x64 processors
and 8GB memory, running SUSE Linux 10.1. For this exampleussd a TPC-H database with scale factor
1. On one PostgreSQL instance we ran a workload consistitigreé instances of TPC-H que@4. On the
other instance, we ran a workload consisting of nine ingsraf TPC-H queryp13. First, we allocated 50%
of the available CPU capacity to each of the two virtual maekj ran the two workloads, and measured the
total execution time of each workload. The results aretilaied by the bars on the left for each of the two
workloads in Figure 1. Next, we repeated the experimentthisttime we allocated CPU capacity according
to the recommendations of our CPU partitioning algorithrmhe BRlgorithm recommended giving 25% of the
available CPU capacity to the first PostgreSQL instance KW&fad 1) and the remaining 75% to the second
instance (Workload 2). The execution times of the two wak® under this CPU allocation are shown in
Figure 1 by the bars on the right for each of the two workloadlkis change in CPU allocation reduces the
execution time of the second workload by approximately 3@%ile having little impact on the first workload.
Thus, we can see the importance of correctly partitioning C&pacity and the effectiveness of our approach to
solving this problem.

5 Future Directions

The previous section illustrates a simple performancentuproblem in a cloud computing environment and its
solution. Extending the research outlined in the previaeiagn opens up many possibilities for future work,
which we are exploring in our ongoing research activitiestéad of partitioning the resources of one physical
machine among the VMs, we can considaultiple physical machines and partition their resources among the
VMs, that is, decide which physical machine to use for eachafd what share of this machine’s resources are

18

25

B Equal CPU Shares
B Recommended Configuration

20

15

10

Execution Time {minutes)

Workload 1 Workload 2

Figure 1: Effect of varying CPU allocation on workload penfance.

allocated to the VM. We can also extend the work to deal withaahyically varying workloads, possibly with
different explicit service level objectives. Another irgsting research direction is improving the way we refine
the query-optimizer-based cost model in response to obdgrerformance.

Another interesting research direction is optimizing thecation of 1/O resources to different VMs. Some
VMMs, such as VMWare ESX server [23], provide mechanismsémtrolling how much of the 1/0 bandwidth
of a physical machine is allocated to each VM running on th&hine. Another mechanism to control the
allocation of 1/0 resources to VMs is controlling the magpof VM disks to physical disks. Using these two
mechanisms to optimize the performance of database app8as an interesting research direction, especially
since many database workloads are 1/0 bound.

It would also be interesting to explore whether we can expasenal database system models other than
the query optimizer cost model and use these models forgwivi parameters or co-tuning VM and database
system parameters. For example, the memory manager parioenmodel can be used to control memory
allocation.

The cloud environment also offers new opportunities, beyibie challenges of tuning database appliances.
For example, since we can provision VMs on-demand, it woalthteresting to explore the possibility of scaling
out a database system to handle spikes in the workload lingtaew replicas of this database system on newly
provisioned VMs. This requires ensuring consistent acteshe database during and after the replication
process, coordinating request routing to the old and new \avid developing policies for when to provision
and de-provision new replicas.

Finally, this idea of application-informed tuning of thetuialized environment is not restricted to database
systems. This idea can be used for other types of applicatiwat run in a cloud environment, such as large
scale data analysis programs running on Map-Reduce sst®phs [7, 9].

6 Conclusion

As cloud computing becomes more popular as a resource owig paradigm, we will increasingly see
database systems being deployed as virtual appliancesfiastincture as a Service (laaS) clouds such as
Amazon’'s EC2. In this paper, we outlined some of the chalsrgssociated with deploying these appliances
and tuning their performance, and we discussed the toolsemdiiques required to address these challenges.
We presented an end-to-end solution to one tuning problamety partitioning the CPU capacity of a physical
machine among the database appliances running on this meackiVe also described some future directions
for this research area. It is our belief that the style of @gjibn-informed tuning described in this paper can
provide significant benefits to both providers and usersafatkcomputing.

19

References

[1] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kslmdunagala. Modeling and exploiting query interac-
tions in database systems.Pmoc. ACM Int. Conf. on Information and Knowledge Managen(€tKM), 2008.

[2] Amazon EC2. http://aws.amazon.com/ec2/.
[3] AppNexus. http://www.appnexus.com/.

[4] Michael Armbrust, Armando Fox, Rean Giriffith, Anthony Doseph, Randy H. Katz, Andrew Konwinski, Gunho
Lee, David A. Patterson, Ariel Rabkin, lon Stoica, and M&@&haria. Above the clouds: A Berkeley view of cloud
computing. Technical report, EECS Department, Univewit@alifornia, Berkeley, Feb 2009.

[5] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hanochothy L. Harris, Alex Ho, Rolf Neugebauer, lan Pratt,
and Andrew Warfield. Xen and the art of virtualization. Pmoc. ACM Symp. on Operating Systems Principles
(SOSP)2003.

[6] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Welauigh for a planet: The Google cluster architectlifE=E
Micro, Jan/Feb 2003.

[7] Surajit Chaudhuri and Vivek R. Narasayya. An efficienstdriven index selection tool for Microsoft SQL Server.
In Proc. Int. Conf. on Very Large Data Bases (VLDBY97.

[8] Benoit Dageville and Mohamed Zait. SQL memory managgeiin Oracle9i. IrProc. Int. Conf. on Very Large Data
Bases (VLDB)2002.

[9] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplifate processing on large clusters. Froc. Symp. on
Operating System Design and Implementation (OSZID4.

[10] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwarank&aramani, and Graham Wood. Automatic performance
diagnosis and tuning in Oracle. Rroc. Conf. on Innovative Data Systems Research (CIR&)5.

[11] Said Elnaffar, Patrick Martin, and Randy Horman. Auttdivally classifying database workloads.Rroc. ACM Int.
Conf. on Information and Knowledge Management (CIKR002.

[12] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Ja¥iener, Armando Fox, Michael Jordan, and David Pat-
terson. Predicting multiple metrics for queries: Bettecidi®ns enabled by machine learning. Rroc. IEEE Int.
Conf. on Data Engineering (ICDER009.

[13] GoGrid. http://lwww.gogrid.com/.
[14] Hadoop. http://hadoop.apache.org/.

[15] James R. Hamilton. Cost of power in large-scale data tezen Nov 2008.
http://perspectives.mvdirona.com/2008/11/28/Cost@fTInLargeScaleDataCenters.aspx.

[16] Randy H. Katz. Tech titans building boorEEE SpectrumFeb 2009.

[17] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa IJy&akui Wang, Sharad Singhal, Arif Merchant, and
Kenneth Salem. Adaptive control of virtualized resourgesitility computing environments. IRroc. European
Conf. on Computer Systems (Euro$S2€)07.

[18] Piyush Shivam, Varun Marupadi, Jeffrey S. Chase, Hpiémn Subramaniam, and Shivnath Babu. Cutting corners:
Workbench automation for server benchmarkingPtoc. USENIX Annual Technical Conferen2608.

[19] Ahmed A. Soror, Ashraf Aboulnaga, and Kenneth Salemabase virtualization: A new frontier for database tuning
and physical design. IRroc. Workshop on Self-Managing Database Systems (SMIDBY.

[20] Ahmed A. Soror, Umar Farooq Minhas, Ashraf AboulnaganKeth Salem, Peter Kokosielis, and Sunil Kamath.
Automatic virtual machine configuration for database woakls. InProc. ACM SIGMOD Int. Conf. on Management
of Data, 2008.

[21] Adam J. Storm, Christian Garcia-Arellano, Sam Ligbite, Yixin Diao, and Maheswaran Surendra. Adaptive self-
tuning memory in DB2. IrProc. Int. Conf. on Very Large Data Bases (VLDB)O06.

[22] Virtual Computing Lab. http://vcl.ncsu.edul.
[23] VMware. http://www.vmware.com/.

20

Privacy-preserving Digital Identity Management for Cloud

Computing
Elisa Bertino Federica Paci Rodolfo Ferrini
CS Department CS Department CS Department
Purdue University Purdue University Purdue University
West Lafayette, Indiana West Lafayette, Indiana West Lafayette, Indiana
bertino@cs.purdue.edu paci@cs.purdue.edu rferrini@purdue.edu
Ning Shang

CS Department
Purdue University
West Lafayette, Indiana
nshang@cs.purdue.edu

Abstract

Digital identity management services are crucial in cloumhmputing infrastructures to authenticate
users and to support flexible access control to servicessas user identity properties (also called
attributes) and past interaction histories. Such servefesuld preserve the privacy of users, while at the
same time enhancing interoperability across multiple domand simplifying management of identity
verification. In this paper we propose an approach addressinch requirements, based on the use of
high-level identity verification policies expressed innterof identity attributes, zero-knolwedge proof
protocols, and semantic matching techniques. The papearides the basic techniques we adopt and
the architeture of a system developed based on these teesnignd reports performance experimental
results.

1 Introduction

Internet is not any longer only a communication medium betause of the reliable, afforbable, and ubiquitous
broadband access, is becoming a powerful computing phatfdRather than running software and managing
data on a desktop computer or server, users are able to exaaplications and access data on demand from the
“cloud” (the Internet) anywhere in the world. This new cortipg paradigm is referred to asoud computing
Examples of cloud computing applications are Amazon'’s &rforage Service (S3), Elastic Computing Cloud
(EC2) for storing photos on Smugmug an on line photo serand,Google Apps for word-processing.

Cloud services make easier for users to access their péiatoranation from databases and make it avail-
able to services distributed across Internet. The avéithabf such information in the cloud is crucial to provide

Copyright 2009 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

21

better services to users and to authenticate users in casevages sensitive with respect to privacy and secu-
rity. Users have typically to establish their identity edithe they use a new cloud service, usually by filling
out an online form and providing sensitive personal infdioma(e.g., name, home address, credit card number,
phone number, etc.). This leaves a trail of personal inftionahat, if not properly protected, may be misused.
Therefore, the development of digital identity managengit¥l for short) systems suitable for cloud comput-
ing is crucial. An important requirement is that users olud®ervices must have control on which personal
information is disclosed and how this information is useditder to minimize the risk of identity theft and
fraud.

Another major issue concerning IdM in cloud platforms ignoperability. Interoperability issues range from
the use of different identity tokens, such those encoded®@Xcertificates and SAML assertions, and different
identity negotiation protocols, such as the client-cenpriotocols and the identity-provider centric protocats, t
the use of different names for identity attributes. Wlentity attributeencodes a specific identity information
about an individual, such as the social-security-numhegnsists of an attribute name, also called identity tag,
and a value. The use of different names for identity attebuthat we refer to asaming heterogeneityypically
occurs whenever users and cloud service providers useeatiffgocabularies for identity attribute names. In
this case, whenever a cloud service provider requests frasera set of identity attributes to verify the user
identity, the user may not understand which identity aftéls he/she has to provide.

To address the problem of privacy-preserving managemedtgthl identity attributes in domains with
heterogeneous name spaces, we propose a privacy-preseniti-factor identity attribute verification protocol
supporting a matching technique based on look-up tabletipdaries, and ontology mapping techniques to
match cloud service providers and clients vocabularieg grbtocol uses an aggregate zero knowledge proofs
of knowledge (AgZKPK) cryptographic protocol to allow ali&s to prove with a single interactive proof the
knowledge of multiple identity attributes without the ndegrovide them in clear.

The rest of the paper is organized as follows. Section 2dites the notions on which our multi-factor
identity attribute verification protocol is based. Sectbpresents the multi-factor identity attribute verifica-
tion protocol. Section 4 presents the system architectndedéscuss implementation while Section 5 reports
experimental results. Finally, Section 6 concludes theepapd outlines some future work.

2 Preliminary concepts

Our approach, as many other approaches, assumes an IdvMhskatenclude several entities: Identity Providers
(IdPs), Cloud Service Providers (CSPs), Registars, anc.useSPs provide access to data and software that
reside on the Internet. IdPs issue certified identity atteb to users and control the sharing of such information.
Registrars are additional components that store and manégenation related to identity attributes used in
our multi-factor identity attribute verification approadkote that, unlike the IdPs, the information stored at the
Registrars does not include the values of the identitylaitteis in clear. Instead, such information only contains
the cryptographic semantically secure commitmeéatshe identity attributes which are then used by the clients
to construct zero knowledge proofs of knowledge (ZKPB#fthose attributes. The Registrar stores for each user
an Identity Record (IdR) containing an identity tuple foclkeaiser’s identity attributen. Each identity tuple
consists of dag, that is, an attribute name, the Pedersen commitment [&],afenoted by\/;, the signature of
the registrar on\/, denoted by;, two types of assurance, nameiglidity assurancendownership assurange
and a set of nyms (also called weak identifie[rﬁ)’ij}3. M; is computed ag”h", wherem is the value of the

1A commitment scheme or a bit commitment scheme is a methaalibas a user to commit to a value while keeping it hidden and
preserving the user’s ability to reveal the committed vader.

%A zero-knowledge proof or zero-knowledge protocol is amrattive method for one party to prove to another that a {lysua
mathematical) statement is true, without revealing amgttither than the veracity of the statement.

3Nyms are used to link together different identity tupleshef same individual for multi-factor authentication. Nynusrebt need to
be protected.

22

identity attribute,r is a random number i, and only known to the client, angland » are generators of a
groupG of prime ordermp. G, g, h andp are public parameters of the Registrar. Validity assuraoceesponds

to the confidence about the validity of the identity attréobiased on the verification performed at the identity
attribute original issuer. Ownership assurance corredpomthe confidence about the claim that the principal
presenting an identity attribute is its true owner. The tdgriuples of each registered client can be retrieved
from the Registrar by CSPsrfline mode) or the Registrar can release to the client a certifmatéaining its
identity record 6ffline mode).

3 Interoperable Multi-Factor Authentication

Our multi-factor authentication protocol takes place kaw a client and a CSP and consists of two phases.
In the first phase, the CSP matches the identity attributekarclients vocabulary with its own attributes to
help the client understand its identity verification paolicyn identity verification policyconsists of the set of
identity attributes that the user must prove to know; if th&ues of these identity attributes are only needed for
verification purposes but not for the execution of the serviequired by the client, the CSP has no reason to
have to see these values in clear. In the second phase,@heelecutes the AgZKPK protocol to prove the CSP
the knowledge of the matched identity attributes. The ughisfprotocol allows the client to convince the CSP
that the client knows the values of the identity attributetheout having to reveal to the CSP the values in clear.

3.1 The protocol for identity attribute matching

Our attribute name matching technique uses a combinatidmo&fup tables, dictionaries, and ontology map-
ping in order to address the different variations in idgnéttribute names.Syntactic variationgefer to the
use of different character combinations to denote the same. tAn example is the use of “CreditCard” and
“Credit_Card”. Terminological variationgefer to the use of different terms to denote the same concdept
example of terminological variation is the use of the symosy'Credit Card” and “Charge Card"Semantic
variations are related to the use of two different concepts in diffeferdwledge domains to denote the same
term. Syntactic variations can be identified by using lookalges. A look up table enumerates the possible
ways in which the same term can be written by using differésatracter combinations. Terminological varia-
tions can be determined by the use of dictionaries or thasauch as WordNet [6]. Finally, semantic variations
can be solved by ontology matching techniques. An ontolsgy fiormal representation of a domain in terms
of concepts and properties relating those concepts. Qunieda@an be used to specify a domain of interest and
reason about its concepts and properties. Ontology majgpthg process whereby the concepts of an ontology
- the source ontology - are mapped onto the concepts of anotiielogy - the target ontology - according to
those semantic relations [4].

An important issue related to the identity matching protegaevhich party has to execute the matching. In
our approach the matching is performed by the CSP, in th&tpeing the matching at the client has the obvious
drawback that the client may lie and asserts that an idegttitypute referred to in the CSP policy matches one of
its attribute, whereas this is not the case. The use of ZKPkopols (see next section) preserves the privacy of
the user identity attributes by assuring that the CSP dogaohlthe values of these attributes; thus the CSP has
no incentive to lie about the mapping. A second issue is ha&ke advantage of previous interactions that the
client has performed with other CSPs. Addressing such isstrecial in order to make the interactions between
clients and CSPs fast and convenient for the users. To addueh issue, the matching protocol relies on the
use ofproof-of-identity certificatesthese certificates encode the mapping between (some ofjsdradentity
attributes and the identity attributes referred in theged of CSPs with which the user has successfully carried
out past interactions.

Let AttrProof be the set of identity attributes that a CSP asks to a clieotder to verify the identity of the

23

user on behalf of which the client is running. Suppose thatesattributes irAttrProof do not match any of the
attributes inAttrSet, the set of clients’ identity attributes. We refer to the @etomponent service’s identity
attributes that do not match a client attribute name tN@dlatchingAttr The matching process consists of two
main phases. The first phase matches the identity attrilhdave syntactical and terminological variations.
During this phase, the CSP sends to the client, for eachiigeitribute a; in the NoMatchingAttrset, the set
Synset containing a set of alternative character combinationsagdt of synonyms. The client verifies that
for each identity attribute;, there is an intersection betwe8gnsetandAttrSet If this is the case attribute;

is removed fromNoMatchingAttr Otherwise, ifNoMatchingAttris not empty, the second phase is performed.
During the second phase the client se@@stSet the set of its proof-of-identity certificates to the CSPugh

in the second phase of the matching process the CSP triestth th@ concepts corresponding to the identity
attributes the client is not able to provide with conceptsrfithe ontologies of the CSPs which have issued the
proof-of-identity certificates to the client. Only matchbat have a confidence scaorgreater than a predefined
threshold, set by the CSP, are selected. The greater trehtide the greater is the similarity between the two
concepts and thus higher is the probability that the matchorisect. If the CSP is able to find mappings for its
concepts, it then verifies by using the information in theopaf-identity certificates that each matching concept
matches a client’s attributéttr. If this check fails, the CSP terminates the interactiorhwhie client.

3.2 Multi-factor authentication

Once the client receivaédatch the set of matched identity attributes from the CSP, iteretss from the Registrar

or from itsRegCerjthat is a certificate repository local to the client, the cutments)M,; satisfying the matches
and the corresponding signatures The client aggregates the commitments by computifg= []"_, M; =
gmitmatdmipritrat4i gnd the signatures inte = [, 0, Whereo; is the Registrar 's signature on
the committed valué/Z; = g™ h". According to the ZPK protocol, the client randomly pickss in [1, ..q],
computes? = gYh* (modp), and sendg, o, M, M; , 1 < i < t, to the CSP. The CSP sends back a random
challengee € [1, .., ¢] to the client. Then the client computes= y+ em (modq) andv = s+ er (modg) where
m=mi+ ... mgandr =ry + ... r, and sends andv to the CSP. The CSP accepts the aggregated zero
knowledge proof ifg“h” = dc®. If this is the case, the CSP then checks that [[;", o;. If also the aggregate
signature verification succeeds, the CSP releases a pradésdity certificate to the client. The certificate states
that client’s identity attributes in thHdlatchset are mapped onto concepts of the CSP ontology and thdtehe ¢
has successfully proved the knowledge of those attrib(tes.CSP sends the proof-of-identity certificate to the
client and stores a copy of the certificate in its local refpogiCertRep The proof-of-identity certificate can be
can be provided to another CSP to allow the client to provekttmsvledge of an attribute without performing
the aggregate ZKP protocol. The CSP that receives the cattifhas just to verify the validity of the certificate.

Example 1. Assume that a user Alice submits a request toHhespital Web portato access her test results.
TheHospital Web portatetrieves the test results through tteboratory service ThelLaboratory servicéhas to
verify the identity of Alice in order to provide her test rdétsu The identity verification policy of theaboratory
servicerequires Alice to providéMedical AssuranceSocial Security NumbemndPatient IDidentity attributes.
Alice provides the aggregated proof of the required idgiitributes to thédospital Web portalvhich forwards
them to theLaboratory service TheLaboratory servicehen verifies by carrying out an aggregate ZPK protocol
with Alice that she owns the required attributes and releaseroof-of-identity certificate. Such certificate
asserts Alice is the owner of thdedical AssuranceSocial Security Numbeand PatientID identity attributes
she has presented. The next time Alice would like to accesgeberesults throughlospital Web portaportal
she will present the proof-of-identity certificate to tHespital Web portaivhich will forward the certificate to
the Laboratory service ThelLaboratory servicewill verify the validity of Alice’s certificate and return thtest
results to theHospital Web portaivhich will display the results to Alice.

24

User

Cloud Service Provider

=S == - ;
T - ZKP Verifier e o~
X IdR onll g 2y =
o : oA =] ntology
(0] Repository g v 8 “B Certificate Issuer | 4 Mapping
o S 5 o 2
= 5 o 3 s | Repository
g g e
5 % = 2 E, Policy
2 Certificate =l Repository
= Repository =
= -
A -
T 5 L —
| o S e ————
/ P
(
: 4
I i
| = e Cloud Service Provider
o g
| E S »
g 2|3 : e ——
| 8 = 7 ZKP Verifier
| é QEJ WordNet & a anloli?y
\ £ s = Repository
: e
! % Palicy
\ — Repository
\ LS Repository
\ Request Manager

Registrar

% === = ==
i IdRs
Storage

Cloud Service Provider

=
Ontology
Mapping
Repository

ZKP Verifier

Certificate Issuer

Palicy
Repository
LS Repositary

il

i

Request Manager

Figure 1: System architecture

4 System architecture and Implementation

In this section we discuss the system architecture thatostgopur multi-factor identity attributes authentication
for cloud services. The architecture consists of four mampgonents: the Registrar, the Service Provider,
the User, and the Heterogeneity Management Service. ThistRegcomponent manages the client’s identity
records and provide functions for retrieving the publicgmaeters required by the AgZKPK protocol. The User
component consists of three main modules: the ZKP Commiti@enerator, the ZKP Proof Calculator, and
the Vocabulary Conflicts Handler. The ZKP Commitment Getoerprovides the functions for computing the
Pedersen commitments of identity attributes; the ZKP P@ai€ulator generates the AgZKPK to be provided to
CSPs, the Vocabulary Conflicts Handler module checks ikthee client identity attributes names that matches
the Synsets sent by the Service Provider component and esutiag) proof-of-identity certificates stored in a
local repository. The Service Provider is composed of foodutes the Request Manager, the Mapping Path
Manager, the Certificate Issuer and the ZKP Verifier, ancethepositories, one to store the mappings with other
service provider ontologies, one to store the sets of symogySynsets, and one to store identity verification
policies. The Request Manager component handles clierggisests and asks clients the identity attributes
necessary for identity verification. The ZKP Verifier perfar the AgZKPK verification. The Heterogeneity
Management Services provides several functions sharetl B$Rs. It consists of two modules: Synset SetUp
and Ontology Manager. Synset SetUp returns the set of sym®oy a given term by querying a local thesaurus

25

—Web Implementation Create Proof —SP Verification

0.1
0.09
0.08
0.07
0.06

—

Time (sec

coooo
ooooo
g N R I

o

NEAD DR AP R A A DD PP

Num of Identity Attributes in AgZKP

Figure 2: AgZKPK Verification versus Creation

while Ontology Manager provides the functionalities tofpen the mapping between two ontologies.

The Service Provider application has been developed in JAviinplements the identity attribute name
matching protocol using the Falcon-AO vO0.7 [2, 3] ontologgpping APl and WordNet 2.1 English Lexical
database [6]. The User application has been implemente8Rnwhile the Registrar has been implemented as
a JAVA servlet. Finally, we have used Oracle 10g DBMS to stbients’ identity records, ontology mappings,
set of synonyms, session data, and mapping certificates.

5 Experimental Evaluation

We have performed several experiments to evaluate the AgZptBtocol that characterizes our approach to
multi-factor identity verification and the identity atttite names matching process. We have carried out the
following experimental evaluations:

e we have measured the time taken by the Client to generatgytiregate ZKP by varying the number of
identity attributes being aggregated from 1 to 50;

e we have measured the time taken by the cloud service for gaigreZKP verification execution time
varying the number of identity attributes being aggregétech 1 to 50 (see Figure 2).

The execution time has been measured in CPU time (millissjorMoreover, for each test case we have
executed twenty trials, and the average over all the triatetion times has been computed. Figure 2 reports
the times to create an AgZKP and to verify it for varying valuie the number of identity attributes being
aggregated. The execution time to generate the AgZKP @epted by the blue line in the graph) is almost
constant for increasing values in the number of identityitattes. The reason is that the creation of AgZKP
only requires a constant number of exponentiations. Byrasttthe time that the component Web service takes
to perform identity attributes verification linearly inages with the number of identity attributes to be verified.
The reason is that during the verification the component Welice is required to multiply all the commitments
to verify the resulting aggregate signature.

6 Concluding Remarks

In this paper we have proposed an approach to the verificafiahgital identity for cloud platforms. Our
approach uses efficient cryptographic protocols and magdieichniques to address heterogeneous naming. We

26

plan to extend this work in several directions. The first cimn is to investigate the delegation of identity
attributes from clients to CSPs. Delegation would allow @?C%lled the source CSP, to invoke the services of
another CSP, called the receiving CSP, by passing to it thditgl attributes of the client. However the receiving
CSP must be able to verify such identity attributes in cadeét not trust the source CSP. One possibility would
be to allow the receiving CSP to directly interact with thiewt; however the source CSP may not be willing to
allow the client to know the CSPs it uses for offering its s. Therefore protocols are needed able to address
three requirements: confidentiality of business relatmm®ng the various CSPs, user privacy, and strenght of
identity verification. The second direction is the inveatign of unlinkability techniques. Our approach does not
require that the values of the identity attributes only useddentity verification be disclosed to the CSPs; also
our approach allows the user to use pseudonyms when inteyacith the CSPs, if the CSP policies allow the
use of pseudonyms and the user is interested in presengfttehianonymity. However, if multiple transactions
are carried out by the same user with the same CSP, this CSéetamrmine that they are from the same user,
even if the CSP does not know who this user is nor the identitjbates of the user. Different CSPs may
also collude and determine a profile of the transactiongethout by the same user. Such information when
combined with other available information about the usey tead to disclosing the actual user identity or the
values of some of his/her identity attributes, thus leadongrivacy breaches. We plan to address this problem
by investigating techniques that maintain unlinkabilitpg@g multiple transactions carried out by the same user
with the same or different CSPs.

7 Acknowledgments

This material is based in part upon work supported by theddatiScience Foundation under the ITR Grant No.
0428554 “The Design and Use of Digital Identities”, upon kveupported by AFOSR grant A9550-08-1-0260,
and upon work supported by the U.S. Department of Homelaodrig under Grant Award Number 2006-CS-
001-000001, under the auspices of the Institute for Inféiondnfrastructure Protection (I3P) research program.
The I13P is managed by Dartmouth College. The views and ceiacia contained in this document are those
of the authors and should not be interpreted as necessepitggenting the official policies, either expressed or
implied, of the U.S. Department of Homeland Security, the & Dartmouth College.

References

[1] Bhargav-Spantzel, A., Squicciarini, A.C, Bertino, Establishing and Protecting Digital Identity in Feder-
ation Systems. Journal of Computer Security, IOSPres8),1di. 269-300, (2006)

[2] Choi, N., Song, I. Y., Han, H.: A survey on ontology mappirsIGMOD Record 35, (3), pp. 34-41.
[3] Falcon, http://iws.seu.edu.cn/projects/matching/

[4] Y. Kalfoglou, and M. Schorlemmer. "Ontology mappingethtate of the art.” The Knowledge Engineering
Review, 18(1), pp. 1-31, (2003).

[5] Pedersen, T.P.: Non-Interactive and Information-Te&o Secure Verifiable Secret Sharing. Advances in
Cryptology, Proc. CRYPTO '91, pp. 129-140, (1991).

[6] WordNet, http://wordnet.princeton.edu/

27

Towards a Scalable Enterprise Content Analytics Platform

Kevin Beyer Vuk Ercegovac Rajasekar Krishnamurthy Sriraaglavan Jun Rao Frederick Reiss
Eugene J. Shekita David Simmen
Sandeep Tata Shivakumar Vaithyanathan Huaiyu Zhu

{kbeyer, vercego, rajase, rsriram, junrao, frreiss, sheksimmen, stata, vaithyan, hual@us.ibm.com

IBM Almaden Research Center
650 Harry Road, San Jose
California, 95120, USA

Abstract

With the tremendous growth in the volume of semi-structarebunstructured content within enterprises
(e.g., email archives, customer support databases, éteje is increasing interest in harnessing this
content to power search and business intelligence apjpbicat Traditional enterprise infrastruture
or analytics is geared towards analytics on structured d@tasupport of OLAP-driven reporting and
analysis) and is not designed to meet the demands of lage-sompute-intensive analytics over semi-
structured content. At the IBM Almaden Research Center, ived@veloping an “enterprise content
analytics platform” that leverages the Hadoop map-redueaiework to support this emerging class of
analytic workloads. Two core components of this platfore @ystemT, a high-performance rule-based
information extraction engine, and Jagl, a declarativedange for expressing transformations over
semi-structured data. In this paper, we present our ovefigibn of the platform, describe how SystemT
and Jaq| fit into this vision, and briefly describe some of tteepcomponents that are under active
development.

1 Introduction

As the volume of semi-structured and unstructured cont&himenterprises continues to grow, there is increas-
ing interest and commercial value in harnessing this camtegmower the next generation of search and business
intelligence applications. Some examples of enterpripesiories with valuable unstructured content include
emalil archives, call center transcripts, customer fedddatabases, enterprise intranets, and collaboration and
document-management systems.

The use of content from such repositories for enterpriséicgtions is predicated on the ability to perform
analytics. For example, transcripts of customer calls éald yaluable business insights in areas such as product
perception, customer sentiment, and customer suppodtiefaess. However, analytics is essential to extract
the appropriate information from the raw text of the tramsrand transform this information into a form

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

28

that can be consumed by Bl analysis and reporting applitaticAs another example, increased legislation
around corporate data governance is requiring enterptisas/est in applications for regulatory compliance
and legal discovery [5]. Such applications require advdrcglytics (such as automatic recognition of persons,
organizations, addresses, etc.) to support search anevattover enormous email archives. Finally, as we
describe in Section 3, sophisticated analytics on intrélvedh pages is critical to effective search over complex
enterprise intranets.

Notice that in each of these applications, the common uyiderkheme is the need to perform analytics on
large amounts of unstructured content. For instance, eratiives can range in size from a few tens to several
hundreds of terabytes, depending on the size of the compahtha applicable regulations. Similarly, we know
of close to 100M distinct URLs within the IBM intranet, whidhanslates to approx. 3TB of plain HTML
content. Factoring in non-HTML content as well as the dateest in numerous enterprise content management
systems will result in a couple of orders of magnitude insesia size.

Traditional enterprise infrastructure for analytics (Edhgines, warehouses and marts, data cubes, etc.) is
geared towards OLAP-driven reporting over structured dathis not designed to meet the demands of large-
scale analytics over unstructured content. To this endhealBM Almaden Research Center, we are developing
anenterprise content analytics platfortm support muti-stage analytic workflows over large volumiasnstruc-
tured and semi-structured content. In building this platfowe are leveraging the tremendous innovation in the
industry around scale-out based data processing paradigmgarticular, the open source Hadoop implemen-
tation of the Map/Reduce framework pioneered by Google.

The design goals for our platform are motivated by the follmyxtwo observations:

1. Compute intensive information extractioA:common aspect of analytics over unstructured contentis th
need forinformation extraction- to identify and extract structured data (“annotationstni text. For
example, in the ES2 intranet search application describ&ction 3, several hundred patterns involving
regular expressions and dictionary matches are appliedeotities, URLS, and other features of intranet
Web pages to extract high quality annotations for a seamxinin general, information extraction is a
compute intensive process involving several complex atardevel operations such as tokenization and
pattern matching. The ability to support scalable infoioragextraction over large content repositories is
a key design goal for our platform.

2. Dynamic and evolving workflow®ue to the inherent heterogeneous nature of text collestianalytic
workflows will need to continuously evolve over time to adapthanges in the incoming content. For
instance, when documents in newer formats or languagesldesldo a content source, appropriate mod-
ifications to the analytic workflow will be needed to incorgt@ new parsers, introduce language-specific
tokenizers, and appropriately modify information exti@ctrule patterns. As a sample data point, the an-
alytic workflow that powers the ES2 intranet search appbeoafcf. Section 3) has gone through hundreds
of changes to its processing workflow over the past year,spaese to changes in the type and nature of
content being published to the IBM intranet.

In this paper, we present a high-level architecture of oatf@tm and describe some of the components that
are currently under active development.

2 Overview of the Platform

The enterprise content analytics platform is designed diitiete the specification and evaluation of complex
analytic data flows over massive volumes (terabytes to petgpof content from enterprise repositories. We
are developing new data processing tools for this purpogste® T [9] to extract information from content
and Jag|l [8] to flexibly specify analysis workflows. Both ®e@lre used declaratively to insulate the user from
optimization decisions needed for efficient and scalabbegssing.

29

Development and Administrative Hub

Document-centric Analysis Abstraction Layer

Data Manipulation Language Information Extraction
JAQL System T
Ingest> Hadoop Map-Reduce Layer Export

____________________________________ -
1

Distributed Storage !

DliifloLiae Distributed File System Dlstrlbgted
Database Indexing

Figure 1: Architecture

In addition to SystemT and Jag|l, the content analytics @latfincludes the additional tools shown in Fig-
ure 1. Prior to analysis, content is ingested and writterididuted storage services. For example, the semantic
search application described in Section 3 uses Nutch [liktaldited crawler based on Hadoop, to ingest data.
In addition, we plan to ingest data in enterprise contentagament systems like FileNet, Documentum, and
OpenText into the platform using special load APIs.

For scalable storage and processing, we have bootstrappedntent analytics platform using the Apache
Hadoop [9] project’s HDFS, a distributed file system, and frexuce, a parallel programming framework pop-
ularized by Google [4]. Files provide the platform with sd@ased access and map-reduce is used to implement
parallel aggregations and joins by re-partitioning dat@ss a cluster. In Section 4, we describe our active
research and development efforts to extend the availabtags services with a distributed database and index
as well as extend map-reduce to incorporate query procetsthniques from the database literature.

Following analysis, the results are transformed and egpoaiccording to application requirements. For
example, a search application requires inverted indexée touilt. For those search applications that further
expose structured information discovered during exwactexporting to a relational database is appropriate.
For such cases, we plan to support customizable exporttmalscommodate varying application requirements.

While SystemT and Jagl are the core tools used for analysks,tave envision higher-level abstractions
and tooling to assist users in developing analytic workflower content analytics, documents the unit of
analysis and therefore we are designing many of the opsrétay., SystemT) to be document-centric. With
regard to tooling, we plan to build a set of services and GlHgsist with analytics development, evaluation,
and administration.

The current focus at the Almaden Research Center is on SystachJaqgl. We now describe these in more
detail.

30

Input Record

Output Record

{

}

label: “http://iwww.ibm ...",
text: “<html>\n<head> ...”

label: “http://vww.ibm ...",
text: “<html>\n<head> ...”
Person:

{ firstName: [10, 15],
lastName: [16, 25] },

{"f.irstName: [1042, 1045],
lastName: [1046, 1050] }

I
Hyperlink:

{ anchorText: [25, 33] },
{n:':lnchorText: [990, 997] }

I
H1: ...

Figure 2: SystemT invoked from Jag|l

2.1 Information Extraction using SystemT

SystemT is a system for rule-based information extracti@ has been under development at IBM Almaden
Research Center since 2006. SystemT is used to extractusgddnformation from unstructured text, finding,
for example, project home pages in corporate intranet wgbgar person-phone number relationships in email
messages. At the core of SystemT is a declarative rule IgegueQL, for building extractors, and an optimizer
that compiles these extractors for an algebra-based espa@rigine.

SystemT scales to massive document corpora by extractioigriation from multiple documents in parallel.
The current version of the system supports two approachpartdlel scaleout: Direct embedding in a map-
reduce job, and parallel execution as part of a Jagl query.

The direct embedding scaleout approach encapsulates #ienSly engine in a single “map” stage of a
Hadoop map-reduce flow. The input to each mapper is a streatocoiments, and the output of the mapper
augments these documents with the structured informati@system extracts from them. SystemT provides a
layer of input/output adapters that support variety of irgnd output formats.

SystemT can also use Jagl’'s automatic parallelization &blenscalable information extraction (see Fig-
ure 2). SystemT’s Jagl integration code encapsulates themation extraction runtime as a Jagl function.
This function maps a record containing a document to an anggdeecord containing the document plus ex-
tracted structure. Jagl handles the mapping of the Systemcidn call into a map-reduce framework, possibly
executing a SystemT annotator and several other operati@single map job.

2.2 Data Processing using Jag|l

For flexibility during the ingestion, analysis, transfotina, and exporting of data, we require a lightweight
description language that supports semi-structured datasaeasy to extend with new operators as well as
sources and sinks of data. For this purpose, we are desidaijiga general purpose data-flow language that
manipulates semi-structured information in the form oftestzs JSON values.

JSON consists of atomic values like numbers and strings \@ocdcontainer types: arrays and records of
name-value pairs (sometimes called maps or hashes). Tiresvial a container are arbitrary JSON values; for
example, arrays can have different types in each elemerdraatément could itself be another array. The JSON

31

filter $.score > 0.8
->transform systemt($aogpath, $, [‘people’])._.__.ff

into {person: $p, total: count($))} "
->write(hdfs(personMentions’)); i

Input: ‘docCollection’ Output: ‘personMentions’

[{id: 1, score: 0.75,
text: ™... An example from Joe was ..."},
{id: 2, score: 0.93,
text: “Henry claimed that Joe ..."},
{id: 3, score: 0.82,
text: “Joe called in and ..."},

=

[{person: “Joe”, total: 2},
{person: “Henry”, total: 1},

Map-Reduce Cluster

Figure 3: Jagl query compiled to map-reduce

model provides easy migration of data to and from most pemdepting languages like Javascript, Python,

Perl, and Ruby because these languages all directly sugpoamic arrays and records; other programming
languages also have support for these constructs in tlagidatd libraries. Therefore, Jagl is easily extended
with operators written in most programming languages bsea@®ON has a much lower impedance mismatch
than say XML, yet much richer than relational tables.

Jagl provides a framework for reading and writing data int@msformats that is used while ingesting
and exporting. We do not expect large volumes of JSON date &idred on disk, but most data, like comma-
separated files (CSVs), relational tables, or XML have arahinterpretation as JSON values. Unlike traditional
database systems, Jagl processes data in its originaltfdimaauser is not required to load it into some internal
form before manipulating it.

Jagl provides support for common input/output formats &Vs, as well as many common operators in-
cluding: filtering, transforming, sorting, grouping, aggating, joining, merging, distincting, expanding nested
data, and top-k. By composing these simple operators plisstoacustom operators into a rich data flow, the
user expresses complex analyses and transforms the datadtecp the exported data. Jagl compiles an entire
flow of these operators into a graph of Map/Reduce jobs forodpdo process.

Figure 3 shows an example Jaqgl query which computes the nuofltienes each person is mentioned in
a given document collection. Using SystemT to detect mastif a person’s name, Jagl computes this count
using the standard operator palette and produces the antawtSON array.

3 Example Application: Semantic Search

One of the driving applications of the analytics platformB# is ES2, a semantic search engine for the en-
terprise. ES2 leverages the content analytics platformuaed sophisticated analytics along with an intelligent
index-building strategy to provide high-precision restitir navigational queries [10]. ES2 uses Nutch [1] as its
ingest mechanism to crawl the pages on the IBM intranet. Hgep crawled by Nutch are stored in HDFS and

32

are available for processing using System T and Jagl. Irs#ugon, we briefly describe how System T and Jag|
form critical building blocks for the analytics in a systeiel ES2.

Analytics The analysis in ES2 consists of two distinct types: localyaismwhich processes a single document
at a time and global analysis which operates over the datactetl from the entire collection. The information
obtained from these analyses is used as an input in the mgipkiase. Together, local and global analyses allow
us to reason about the document collection better and baweg bignificantly more precise results [10] than
would be possible using traditional IR strategies sucti-af andPageRani3].

In Local analysis each page is individually analyzed toaettclues that help decide whether that page is a
candidate navigational page. In ES2, four different localgsis algorithms namelyitleHomePaggePersonal-
HomePageURLHomePageAnchorHomendNavLinkare used to extract certain features from the pages. These
algorithms use rules based on regular expression patidiotgnaries, and information extraction tools [9] to
identify candidate navigational pages. For instance,guairegular expression like "A\ W*(.+)\s<Home>"
(Java regular expression syntax), fersonalHomePagalgorithm can detect that a page with a title “G. J.
Chaitin’'s Home” indicates that this is the home page of G.hhith. The algorithm outputs the name of a
feature (“Personal Home Page”) and associates a valuehistfeiature (“G. J. Chaitin”). Readers interested in
more details about local analysis algorithms may refer @.[These analysis tasks are expressed using AQL
and are optimized and executed using SystemT.

Note that multiple pages in the collection may produce timeesaxtracted feature during local analysis. Con-
sider the case where homepage authors use the same titlafgrahtheir webpages. Continuing the example
from the previous paragraph, “GJ Chaitin home page” is theftir many of the pages on GJ Chaitin’s website.
Local analysis for personal homepages considers all sughsp@a be candidates. ES2 uses global analysis to
determine an appropriate subset of pages as navigatiodahdexes them appropriately. [10] describes two
algorithms: site root analysisandanchor text analysisin ES2, we express these algorithms using Jagl which
automatically compiles into map-reduce jobs that execuée the entire cluster.

Smart Indexing ES2 employs a collection of algorithms to intelligently gestte variants of terms extracted
during local analysis and global analysis before insetttimgdocument in the index. Consider an example where
ES2 identifies a page as the home page of a person named “GtihChsing local and global analysis. During
variant generation, a special set of rules is applied to geckon names to enumerate other syntactic variants
(e.g., skipping middle initials, merging multiple init&lonly listing the last name, etc.). By inserting such
variants into the index, ES2 can match the search term “Gii€haith the given page, despite the lack of
space between “G” and “J”. Note that generating variantsKigping white space, when applied to arbitrary
pieces of text, is likely to yield noisy search results. We/@pply this approach to pages produced through a
specific analysis workflow — in this case one that uses refsaitsPersonalHomePagdecal analysis andite root
global analysis. Indexing is done in a distributed fashigridveraging map-reduce. Jagl is used to transform
the outputs of different analytic tasks and produce appatgisearch indexes over the extracted values. The
output from this workflow is typically a set of navigationadiexes that are then copied over to a separate set of
machines to serve queries.

4 Future Challenges
While SystemT and Jagl constitute a majority of our currdfure we are also investigating other components

of the platform including the distributed runtime, distribd storage layer, and the user-interaction hub. We
broadly outline the challenges in these areas.

33

4.1 Enhancing Map-reduce Runtime

The map-reduce paradigm was popularized by the distribsystem community. Compared with a database
system, map-reduce based data processing platforms hége sagport for fault-tolerance, elasticity, and load
balancing. However, many computations in the two systemgaite similar. We are investigating techniques
that bridge the gap between the two systems, by applying thbatatabase community has learned over the last
three decades to map-reduce. One of our areas of focus igptovmjoin processing in map-reduce.

Although map-reduce was originally designed to procesaglesicollection of data, many analytic applica-
tions require joining multiple data sources together. Heiestraightforward way of mapping a join operation
into map-reduce: the map function iterates over the redoots both input sources. For each record, it extracts
the join key as the output key, tags each record with the ratgig source, and saves it as the output value.
Records from both sources for a given join key are eventualyged together and fed to a reduce task. The
reduce function first separates the input records into t® aecording to the tag, and then performs a cross-
product between records in those sets. This implementéisimilar to a repartitioned sort-merge join in a
database system. This algorithm incurs a significant oaersence all input records have to be sorted and most
of them have to be sent across the network.

For a long time, the database community has been exploitish-based joins to avoid sorting and broad-
casting joins to avoid the communication overhead. Levagathose ideas, an alternative approach is to do the
join in a map-only job. At the beginning of each map task, wazlithe smaller input source into a hash table.
The map function then iterates through records from thetargout source, and for each record, probes the hash
table to do the join. This approach avoids sorting and mouattg from the larger input source. Our experimen-
tal results show that it can reduce the time taken by thegsttfmirward approach by up to 70%. As the smaller
input source gets larger, the map-only job becomes lessegifisince more data has to be broadcasted to every
node. For certain applications, we find that semi-join tépines can be used to improve the performance further.
We are preparing a research paper to summarize those riesdgéiail. We are also investigating techniques to
extend Jagl compiler to automatically select the best joategy among the many available.

4.2 Distributed Content Database

Different phases of an analytics workflow tend to have différdatabase requirements. For example, during
ingestion, new documents are incrementally inserted imtodatabase. Then during analysis, documents are
often processed in batch mode as part of one or more mapedgdhs. Finally, in applications like search,
users often want to interactively look at documents reiiiog search queries. A key question is whether one
content-oriented database is sufficient to satisfy alldhlreguirements. With relational databases, it is common
to maintain at least two databases, one for warehouse apipiis and another for interactive applications. We
suspect that much the same will happen here. This is becansent analytics tend to be very resource heavy,
making it difficult to support interactive applications dretsame database without running into performance
problems.

Assuming separate content databases are maintained fgti@mand interactive applications, then we think
it will be interesting to explore different database aretitires. One architecture would be tuned for batch ana-
Iytics, while the other would be tuned for interactive apgtions. Generally speaking, interactive applications
present a bigger design challenge in a distributed enviemnespecially if support for transactions are included.
This is because of the well known tension between avaitgtild consistency [2]. In contrast, analytics appli-
cations tend to work on a stable collection of documents,revisensistency and availability tradeoffs are not
an issue. Content-oriented databases without supportgbrgerformance transactions like HBase [7] leverage
the underlying distributed filesystem.

34

4.3 Development and Administrative Hub

We plan to build a development and administrative hub thatifates the formation of user communities and
management of resources on the platform. The hub would geaservices for managing users (user services);
for launching, monitoring, and diagnosing content anesyjobs (job services); for uploading and cataloging
assets such as content analytic flows, data sources, di$a samdboxes, annotators, and user functions (direc-
tory services); and for performing miscellaneous taské siscsandbox creation, load/unload of data to/from the
cluster, and collection of data distribution statisticedito optimize analytic flows (utility services).

Providing a design interface that allows workflows to be wé@ateratively, and interactively, in the context
of a "sandbox” is one of the challenges being tackled. A sardbcludes representative cluster configuration
information, as well as representative samples from rekedata sources. We are also examining tools that
would assist in the collaborative development of analytimponents.

5 Summary

With increasing interest from enterprises to harness theevia their structured and semi-structured content,
we believe that there is a rapidly emerging need for an ergergontent analytics platform. We identify two
key features that are needed from such a platform: 1) thé&yatol perform compute intensive information
extraction, and 2) build and maintain evolving workflowsttheocess large amounts of data. We describe the
efforts underway at IBM’s Almaden Research Center to addtiesse requirements by way of SystemT and
Jaqgl. In addition, we also laid out the broad challenges lthathead in building a dynamic, scalable, high-
performance, and usable content analytics platform farerises.

References

[1] Apache Foundation. Nutch. http://lucene.apachenuigh/.
[2] Eric Brewer. Keynote speech: Towards robust distriduggstems. 1iPODC, 2000.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-bgpertextual web search engir@omputer
Networks and ISDN Systen80(1-7):107 — 117, 1998. Proceedings of the Seventh latiemal \World
Wide Web Conference.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpldad processing on large clusteSommun.
ACM, 51(1):107-113, 2008.

[5] Electronic Discovery. Electronic discovery. http:¥imv.discoveryresources.org/.
[6] Apache Foundation. Hadoop. http://hadoop.apach&ore/.

[7] Apache Foundation. Hbase. hadoop.apache.org/hbase.

[8] JAQL. Jagl. http://code.google.com/p/jaql/.

[9] Frederick Reiss, Sriram Raghavan, Rajasekar KrishimdaywHuaiyu Zhu, and Shivakumar Vaithyanathan.
An algebraic approach to rule-based information extractla ICDE, pages 933—-942, 2008.

[10] Huaiyu Zhu, Sriram Raghavan, Shivakumar Vaithyanattzed Alexander Loser. Navigating the intranet
with high precision. InWWW pages 491-500, 2007.

35

Building a Cloud for Yahoo!

Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonsecae3aimKistler, P.P.S. Narayan,
Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan, AdabeSilein,
Utkarsh Srivastava, and Raymie Stata

Yahoo! Inc.

Abstract

Yahoo! is building a set of scalable, highly-available datarage and processing services, and de-
ploying them in a cloud model to make application develogrard ongoing maintenance significantly
easier. In this paper we discuss the vision and requiremastsvell as the components that will go into
the cloud. We highlight the challenges and research questibat arise from trying to build a com-
prehensive web-scale cloud infrastructure, emphasizatg dtorage and processing capabilities. (The
Yahoo! cloud infrastructure also includes components fovigioning, virtualization, and edge content
delivery, but these aspects are only briefly touched on.)

1 Introduction

Every month, over half a billion different people check theinail, post photos, chat with their friends, and
do a myriad other things on Yahoo! sites. We are constantipuating by evolving these sites and building
new web sites, and even sites that start small may quicklprbecvery popular. In addition to the websites
themselves, Yahoo! has built services (such as platformsdoial networking) that cut across applications.
Sites have typically solved problems such as scaling, datdtipning and replication, data consistency, and
hardware provisioning individually.

In the cloud services model, all Yahoo! offerings should bitton top of cloud services, and only those
who build and run cloud services deal directly with machinesmoving to a cloud services model, we are
optimizing for human productivity (across developmentlidy assurance, and operations): it should take but a
few people to build and rapidly evolve a Web-scale applicadn top of the suite of horizontal cloud services. In
the end-state, the bulk of our effort should be on rapidlyettgying application logic; the heavy-lifting of scaling
and high-availability should be done in the cloud servieg®l, rather than at the application layer, as is done
today. Observe that while there are some parallels with #iresgo be had by building and re-using common
software platforms, the cloud services approach goes aartan step further: developers are insulated from
the details of provisioning servers, replicating datapwvecing from failure, adding servers to support more load,
securing data, and all the other details of making a neat pglication into a web-scale service that millions of
people can rely on.

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

36

In this paper, we describe the requirements, how the pieicéke a@loud fit together, and the research chal-
lenges, especially in the areas of data storage and proge&8e note that while Yahoo!’s cloud can be used to
support externally-facing cloud services, our first go&bigrovide a common, managed, powerful infrastructure
for Yahoo! sites and services, i.e., to support internaetimers. It is also our goal to open source as many com-
ponents of the cloud as possible. Some components (suchdm®plaare already in open source. This would
allow others outside of Yahoo! to build their own cloud seed, while contributing fixes and enhancements that
make the cloud more useful to Yahoo!

2 Requirements

Yahoo! has been providing several centrally managed dateagement services for years, and while these
services are not properly “cloud services” they have manghefcharacteristics. For example, our database
of user profiles is run as a central service. Accessing thedesabase requires only the proper permissions
and a client library, avoiding the need to set up and managparate user information repository for every

application. Experience with these “proto-cloud” sergi¢gave helped inform the set of requirements we laid
out for our cloud:

Multitenancy We must be able to support many applications (tenants) osdhee hardware and software
infrastructure. These tenants must be able to share infanmbut have their performance isolated from one
another, so that a big day for Yahoo! Mail does not result ipikesin response time for Yahoo! Messenger
users. Moreover, adding a new tenant should require littlecoeffort beyond ensuring that enough system
capacity has been provisioned for the new load.

Elasticity The cloud infrastructure is sized based on the estimatesnaint requirements, but these require-
ments are likely to change frequently. We must be able toktyuiand gracefully respond to requests from
tenants for additional capacity, e.g., a growing site askadditional storage and throughput.

Scalability We must be able to support very large databases, with velyremguest rates, at very low latency.
The system should be able to scale to take on new tenants dietgmowing tenants without much effort beyond
adding more hardware. In particular, the system must betalgletomatically redistribute data to take advantage
of the new hardware.

Load and Tenant Balancing We must be able to move load between servers so that hardeganerces do not
become overloaded. In particular, in a multi-tenant emrinent, we must be able to allocate one application’s
unused or underused resources to another to provide even &usorption of load spikes. For example, if a
major event is doubling or quadrupling the load on one of ggtesns (as the 2008 Olympics did for Yahoo!
Sports and News), we must be able to quickly utilize sparadépto support that extra load.

Availability The cloud must always be on. If a major component of the clopeences an outage, it will not
just be a single application that suffers but likely all oétf. Although there may be server or network failures,
and even a whole datacenter may go offline, the cloud serwicess continue to be available. In particular, the
cloud will be built out of commodity hardware, and we must b&do tolerate high failure rates.

Security A security breach of the cloud will impact all of the applicais running on it; security is therefore
critical.

Operability The systems in the cloud must be easy to operate, so thatraldeaim can manage them at scale.
Moreover, the interconnections between cloud systems atsstbe easy to operate.

37

Batch processing Operational Storage Provisioning

% % % "a ? T QR JRTTT
% % % .H il TS QT T

Figure 1: Components of the Yahoo! data and processing cloud

ta | m | o B
m|l=|=fn

wlrm| =

Metering We must be able to monitor the cloud usage of individual &pfibns. This information is important
to make provisioning decisions. Moreover, the cloud willgaed for by those applications that use it, so usage
data is required to properly apportion cost.

Global Yahoo! has users all over the world, and providing a good esperience means locating services in
datacenters near our users. This means that cloud serviggsspan continents, and deal with network delays,
partitions and bottlenecks as they replicate data andceevo far flung users.

Simple APIs We must expose simple interfaces to ease the developmenofcasing the cloud, and avoid
exposing too many parameters that must be tuned in ordegriant applications to get good performance.

3 Overall architecture

Yahoo!'s cloud focuses on “horizontal services,” which eoenmon platforms shared across a variety of appli-
cations. Those applications may themselves be “verticaicas,” which are task-specific applications shared
by a variety of end users. For example, we view Yahoo! Mail asréical service, while a blob store (such as
our MODbStor system) is a horizontal service that can stdeelatnents from Mail, photos from Flickr, movie
trailers from Yahoo! Movies, and so on.

Figure 1 shows a block diagram of the main services in ourcclds the figure shows, there are three tiers
of services: core services; messaging; and edge servichge We bottom tier provides the heavy lifting for
server-side data management, the edge services help redielcey and improve delivery to end users. These
edge services include edge caching of content as well asauge routing of requests to the nearest server and
around failures. The messaging tier helps tie disparatécesrtogether. For example, updates to an operational
store may result in a cache invalidation, and the messagingdrries the invalidation message to the cache.

The bottom tier of core services in Figure 1 is further sulndig into three groups of systems. Batch
processing systems manage CPU cycles on behalf of largikebgoias. Specifically, we have deployed Hadoop,
an open source version of MapReduce [3], and its HDFS filesysOperational storage systems manage the
storage and querying of data on behalf of applications. &ppbns typically have two kinds of operational
data: structured records and unstructured blobs. In owastriicture, structured data is managed by Sherpa

38

(also known as PNUTS [2]), while blobs are stored in MObSEmovisioning systems manage the allocation
of servers for all of the other service components. One waydwision servers is to deploy them as virtual
machines, and our provisioning framework includes thatsilit deploy either to a VM or to a “bare” machine.

The horizontal services in our cloud provide platforms toet process and effectively deliver data to users.
A typical vertical application will likely combine multigl horizontal services to satisfy all of its data needs. For
example, Flickr might store photos in MObStor and photo tagdherpa, and use Hadoop to do offline analysis
to rank photos in order of popularity or “interestingnes3.he computed ranks may then be stored back in
Sherpa to be used when responding to user requests. A kateatalte question as we move forward deploying
the cloud is how much of this “glue” logic combining diffetterioud services should be a part of the cloud as
well.

In the rest of this article, we focus on the operational gferand batch computation components, and
examine these components in more detalil.

4 Pieces of the cloud

4.1 Hadoop

Hadoop [1] is an open source implementation of the MapRegacallel processing framework [3]. Hadoop
hides the details of parallel processing, including disiing data to processing nodes, restarting subtasks after
a failure, and collecting the results of the computationisTframework allows developers to write relatively
simple programs that focus on their computation problertinerathan on the nuts and bolts of parallelization.
Hadoop data is stored in the Hadoop File System (HDFS), an sperce implementation of the Google File
System (GFS) [4].

In Hadoop, developers write their MapReduce program in,Javd divide the logic between two compu-
tation phases. In the Map phase, an input file is fed to a takiGhaproduces a set of key-value pairs. For
example, we might want to count the frequency of words in a eralwl; the map phase will parse the HTML
documents and output a recdrtler m 1) for each occurrence of a term. In the Reduce phase, all reeatd
the same key are collected and fed to the same reduce predesk,produces a final set of data values. In the
term frequency example, all of the occurrences of a givem f@ay, “cloud”) will be fed to the same reduce
task, which can count them as they arrive to produce the foattc

The Hadoop framework is optimized to run on lots of commodityvers. Both the MapReduce task pro-
cesses and the HDFS servers are horizontally scalablengddore servers adds more compute and storage
capacity. Any of these servers may fail at any time. If a MaReduce task fails, it can be restarted on another
live server. If an HDFS server fails, data is recovered freplicas on other HDFS servers. Because of the high
volume of inter-server data transfer necessary for MapBehbs, basic commodity networking is insufficient,
and extra switching resources must be provisioned to géategformance.

Although the programming paradigm of Hadoop is simple, &#as many complex programs to be written.
Hadoop jobs are used for data analysis (such as analyzisgtdofind system problems), data transformation
(such as augmenting shopping listings with geographidalrimation), detecting malicious activity (such as
detecting click fraud in streams of ad clicks) and a wideetstrof other activities.

In fact, for many applications, the data transformatiok tasufficiently complicated that the simple frame-
work of MapReduce can become a limitation. For these agiits, the Pig language [5] can be a better frame-
work. Pig provides relational-style operators for progegslata. Pig programs are compiled down to Hadoop
MapReduce jobs, and thus can take advantage of the sdglanitl fault tolerance of the Hadoop framework.

39

4.1.1 Hadoop in the cloud

Hadoop runs on a large cluster of centrally managed seméh&iYahoo! cloud. Although users can download
and run their own Hadoop instance (and often do for developrmparposes) it is significantly easier to run
Hadoop jobs on the centrally managed processing clustefactnthe convenience of storing and processing
data in the cloud means that much of the data in our clusteadoblp from birth to death: the data is stored
in HDFS at collection time, processed using MapReduce, afideded to consumers without being stored in
another filesystem or database. Other applications find iiereffective to transfer their data between Hadoop
and another cloud service. For example, a shopping applicatight receive a feed of items for sale and store
them in Sherpa. Then, the application can transfer largakshof listings to Hadoop for processing (such as
geocoding or categorization), before being stored in Shagain to be served for web pages.

Hadoop is being used across Yahoo by multiple groups foeptejsuch as response prediction for advertis-
ing, machine learned relevance for search, content o@imoiz, spam reduction and others. The Yahoo! Search
Webmap is a Hadoop application that runs on a more than 1@@®@0Linux cluster and produces data that is
now used in every Yahoo! Web search query. This is the latgadbop application in production, processing
over a trillion page links, with over 300 TB of compressedadathe results obtained were 33 percent faster
than the pre-Hadoop process on a similar cluster. This andrder of other production system deployments
in Yahoo! and other organizations demonstrate how Hadoopheadle truly Internet scale applications in a
cost-effective mannér

4.2 MODbStor

Almost every Yahoo! application uses mass storage to séwge| unstructured data files. Examples include
Mail attachments, Flickr photos, restaurant reviews fono@ Local, clips in Yahoo! Video, and so on. The
sheer number of files that must be stored means they are tobetsome to store and organize on existing
storage systems; for example, while a SAN can provide enstayhge, the simple filesystem interface layered
on top of a SAN is not expressive enough to manage so manyMiesover, to provide a good user experience,
files should be stored near the users that will access them.

The goal of MObStor is to provide a scalable mass storageisoluThe system is designed to be scalable
both in terms of total data stored, as well as the number ofegtlg per second for that data. At its core, MObStor
is a middleware layer which virtualizes mass storage, @tigwhe underlying physical storage to be SAN, NAS,
shared nothing cluster filesystems, or some combinatiohasfe. MObStore also manages the replication of
data between storage clusters in geographically diseibdatacenters. The application can specify fine-grained
replication policies, and the MObStor layer will replicatata according to the policies.

Applications create collections of files, and each file ismtdeed with a URL. This URL can be embedded
directly in a web page, enabling the user’'s browser to nedrides from the MObStore system directly, even if
the web page itself is generated by a separate HTTP or afipficserver. URLs are also virtualized, so that
moving or recovering data on the back end filesystem doesreaklihe URL. MObStor also provides services
for managing files, such as expiring old data or changing émmijssions on a file.

4.2.1 MObStor in the cloud

As with the other cloud systems, MObStor is a centrally madaggrvice. Storage capacity is pre-provisioned,

and new applications can quickly create new collectionskawin storing and serving data. Mobstor uses a flat
domain based access model. Applications are given a uniguaid and can organize their data in any format

they choose. A separate metadata store provides filesysesemantics: users can create, list and delete files
through the REST interface.

1Thanks to Ajay Anand from the Hadoop team for these stasistic

40

Mobstor is optimized for serving data to internet users &od scale. A key component of the architecture
is a caching layer that also supports streaming. This esdb&esystem to offload hot objects to the caching
infrastructure, allowing the 1/0 subsystem to scale. Likieeo cloud services, Mobstor strives to locate data
close to users to reduce latency. However due to the costafitierlying storage and the fact that users are less
sensitive to latency with large files, Mobstor does not haveuipport the same level of replication as the other
cloud services.

There are many Yahoo! applications currently using MOhSEsamples include:

Display ads for the APT platform
Tile images for Yahoo! Maps
Files shared between Yahoo! Mail users

Configuration files for some parts of the Yahoo! homepage
e Social network invites for the Yahoo! Open platform

Each of these use cases benefits from the ability to scal&dily and replicate a large number of unstructured
objects and to serve them with low latency and high throughpu

4.3 Sherpa

The Sherpa system, also called PNUTS in previous publicatf@, 6], presents a simplified relational data
model to the user. Data is organized into tables of recordls atiributes. In addition to typical data types,
“blob” is a valid data type, allowing arbitrary structureside a record, but not necessarily large binary objects
like images or audio; MObStor is a more appropriate storestdich data. We observe that blob fields, which are
manipulated entirely in application logic, are used exteaxtg in practice. Schemas are flexible: new attributes
can be added at any time without halting query or updateiggtand records are not required to have values for
all attributes. Sherpa allows applications to declareetald be hashed or ordered, supporting both workloads
efficently.

The query language of Sherpa supports selection and dorjdodm a single table. We designed our query
model to avoid operations (such as joins) which are simplyeaxpensive in a massive scale system. While
restrictive compared to relational systems, our queridadhprovide very flexible access that covers most of
the web workloads we encounter. The system is designed piyniar online serving workloads that consist
mostly of queries that read and write single records or sgrallips of records. Thus, we expect most scans to
be of just a few tens or hundreds of records, and optimizerdowgy. Scans can specify predicates which are
evaluated at the server. Similarly, we provide a “multiggberation which supports retrieving multiple records
(from one or more tables) in parallel by specifying a set @fnjary keys and an optional predicate, but again
expect that the number of records retrieved will be a few $hod at most.

While selections can be by primary key or specify a rangeategsdand deletes must specify the primary key.
Consider a social networking application: A user may updiieown record, resulting in access by primary
key. Another user may scan a set of friends in order by narsaltiieg in range access.

Data in Sherpa is replicated to globally distributed datéees. This replication is done asynchronously:
updates are allowed to a given replica, and success is eetimthe user before the update is propagated to
other replicas. To ensure the update is not lost, it is writtemultiple disks on separate servers in the local
datacenter.

Asynchronously replicated data adds complexity for thesttgyer. Sherpa provides a consistency model to
simplify the details of reading and writing possibly stakgal and to hide the details of which replica is being
accessed from the applciation.

41

4.3.1 Sherpain the cloud

Sherpa is a hosted service, and the software and serversaasgad by a central group. Applications that wish
to use Sherpa can develop against a single-server staedalstance. However, all production data is served
from cloud servers. This allows application developersotus on their application logic, and leave the details
of designing, deploying and managing a data architectusesmecialized group. In order to support this hosted
model, the Sherpa operations group must provision enouggcis to support all the applications that will use
it. Currently, we work with customers to estimate their cafyaneeds and then pre-provision servers for their
use. We are moving to a model with extra servers in a “free,paotl if an application’s load on Sherpa begins
to increase, we can automatically move servers from thepioekinto active use for that application.

Sherpa is designed to work well with the other cloud servidesr example, Hadoop can use Sherpa as
a data store instead of the native HDFS, allowing us to runRéalice jobs over Sherpa data. We also have
implemented a bulk loader for Sherpa which runs in Hadodpwatg us to transfer data from HDFS into a
Sherpa table. Similarly, Sherpa can be used as a recordfstarther cloud services. As an example, MObStor
is investigating using Sherpa to store metadata about files.

5 Open questions

Many research questions have arisen as we build the clotldabthe level of individual components and across
components. In this section, we discuss some key queshahspan cloud components. Although many of our
cloud components are in production or nearing completimesa questions will have to be resolved in order for
the cloud to reach its full potential.

Interacting with the cloud How do users interact with the cloud? One possibility is #eth application
chooses individual cloud systems, and manages their atiena at the application level. For example, suppose
a user has a record-oriented data set and an OLTP workloadthdfefore loads it into a Sherpa database.
Periodically, he does extensive OLAP work. At these times|dads the data set from Sherpa to HDFS, and
runs Hadoop jobs.

However, one of the advantages of using the cloud is thahijpcavide seamless integration between mul-
tiple services. The job of the developer is easier if he dagshave to explicitly manage data storage. For
applications that will use multiple services, a nicer aodion may be that data is placed “in the cloud” and is
accessible to any service the application needs. In thecabrample, the data may be stored in Sherpa, but
when an OLAP job is submitted, the cloud software decidestivdreto move the data to HDFS or to run a
MapReduce job directly over Sherpa. This approach makesltluel more complex, as it is an optimization
problem which must take into account the query workload dbagenformation about the current capabilities
and load on each of the services; the profile of future qudriea the same application; the load from other
services; and so on.

Another way we can make it easier for developers to use clendces is to provide a common API for
the various services. For example, we may develop a quegudage which spans multiple services (e.g.,
some combination of Pig, SQL, and the simple Sherpa and M®8tess languages) which then compiles to
operations on individual services as well as actions to niata between them. If we hide many of the data
placement and service selection decisions behind a déetaguery language, we may not always make the
best decisions without at least some input from the develde will likely need a mechanism for profiling the
performance of the system, so that developers can readityify which components are becoming a bottleneck.
Such a mechanism will need to monitor an entire applicat®it mteracts across multiple cloude services. In
addition, a hint mechanism will be needed which allows thaliegtion to guide data placement and allocation
decisions based on observations of the bottlenecks.

42

Quiality of service A key question for any shared infrastructure is how we cafaisahe performance of
different applications. Applications will place variablead on the cloud, and a spike in one application’s
workload will affect other applications sharing the samedieare. One approach to this problem is to place
guotas on applications’ resource usage. This approaclo isfiexible, since spare resources cannot be used to
absorb load spike beyond an application’s quota. We coslal ade some version of weighted fair sharing (like
that used in networking systems), which allows spare ressuio be allocated to needy applications. However,
the infrastructure needed to monitor and dynamically aleaesources is complex. A third approach is to
have a small number (e.g. two) of application classes. “Gajgblications can use as many resources as they
like, while “bronze” applications are served by the rem@gnresources in a best effort manner. This moves
resource allocation decisions into the hands of the busipesple, who must carefully choose just a few gold
applications. Whatever approach we use will have to effelstienforce QoS for an application, even as it
crosses over between Sherpa, Hadoop and MObStor, and otheooents of the cloud.

Other open issues There are several other issues which we are investigating:

e Automating operations Our central operations group will be managing many serveeny different
services, and many applications. Tools and processes wahbitcimate things like failover and resource
allocation will make their jobs significantly easier.

e Growth- Applications which start small can grow to become quitgearAlthough our cloud services are
designed to scale elastically, we must investigate howthel tolerate growth of one, two or more orders
of magnitude.

e Privacy- Each system in the cloud has its own data model and thus itsno@del of enforcing privacy
for that data. When data starts moving between systems, vgé engure that the change to a different
data model does not cause a privacy breach. Moreover, weansigte that multi-tenant applications can
only see each other’s data if doing so does not violate thesysgvacy.

e Capacity managementlt is difficult to know how much hardware to dedicate to theud to meet the
anticipated load. Even if one resource (e.g. CPU) is plantifnother resource (e.g. in-memory cache
space) may be scarce. Similarly, a shift in the load, such s\ from sequential to random record
access, can create a new bottleneck in a previously plerg$ource. We need to develop effective and
comprehensive models for planning the capacity needs afltugl.

6 Conclusion

We believe that the Yahoo! cloud will be a key to both lowertscsnd increased innovation. The Cloud
Computing and Data Infrastructure division has the chaotelevelop cloud services such as Hadoop, MObStor
and Sherpa, make them elastic, robust and reliable, argratéethem into a comprehensive cloud infrastructure.
Many cloud components are already adopted widely, and wsesiag further rapid growth on the horizon.

References

[1] Hadoop. hadoop.apache.org.
[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silteéns P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!s hosted data sgplatform. InProc. VLDB 2008.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data gsoweon large clusters. @MSDI, 2004.
[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google Bistem. InProc. SOSP2003.

[5] C. Olston et al. Pig Latin: A not-so-foreign language fata processing. IRroc. SIGMOD 2008.
[6] A. Silberstein et al. Efficient bulk insertion into a dibiuted ordered table. IRroc. SIGMOD 2008.

43

On the Varieties of Clouds for Data Intensive Computing

Robert L. Grossman Yunhong Gu
University of lllinois at Chicago University of lllinois at Chicago
and Open Data Group

Abstract

By acloud we mean an infrastructure that provides resources or sesviover a network, often the
Internet, usually at the scale and with the reliability of ata center. We distinguish between clouds
that provide on-demand computing instances (such as Arisag@? service) and clouds that provide
on-demand computing capacity (such as provided by Hada&p)give a quick overview of clouds and
then describe some open source clouds that provide on-deo@nputing capacity. We conclude with
some research questions.

1 Introduction

1.1 Types of Clouds

There is not yet a standard definition for cloud computind,ebgood working definition is to say thatouds
provide on demand resources or services over a networlky tfeeInternet, usually at the scale and with the
reliability of a data center.

There are quite a few different types of clouds and agairetieno standard way of characterizing the
different types of clouds. One way to distinguish differgtes of clouds is to categorize the architecture model,
computing model, management model and payment model. Wesdi®ach of these below. See Table 1.

1.2 Architectural Model

We begin with the architecture model. There are at least tifferent, but related, architectures for clouds:
the first architecture is designed to provide computimganceson demand, while the second architecture is
designed to provide computirggpacityon demand.

Amazon’s EC2 services [1] provides computing instancesamahd and is an example of the first archi-
tectural model. A small EC2 computing instance costs $0etthpur and provides the approximate computing
power of 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processoh Wit GB memory, 160 GB of available disk
space and moderate 1/O performance [1].

Google’s MapReduce provides computing capacity on demaddsean example of the second architectural
model for clouds. MapReduce was introduced by Google in #ygep[8]. This paper describes a sorting
application that was run on a cluster containing approxétgai800 machines. Each machine had two 2 GHz
Intel Xeon processors, 4 GB memory, and two 160 GB IDE diskse TeraSort benchmark [10] was coded

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

44

Model Variants

Architecture Model clouds that provide on-demand computing In-
stances; clouds that provide on-demand comput-
ing capacity

Programming Model Using queues to pass message; MapReduce |over

storage clouds; UDFs over storage clouds; mes-
sage passing

Management Model private vs shared; internal vs hosted
Payment Model pay as you go; subscribe for a specified period of
time; buy

Table 1: Some different types of clouds.

using MapReduce, a parallel programming model which isrilesdt in more detail below. The goal of the
TeraSort benchmark is to sar0'® 100-byte records, which is about 1 TB of data. The applicatequired
about 891 seconds to complete [8] on this cluster.

The Eucalyptus system [19] is an open source cloud thatgesven demand computing instances and shares
the same APIs as Amazon’s EC2 cloud. The Hadoop system iseansmurce cloud that implements a version
of MapReduce [16].

Notice that both types of clouds consist of loosely couplechimodity computers, but that the first archi-
tecture is designed to scale out by providing additional mating instances, while the second architecture is
designed to support data or compute intensive applicaligissaling computing capacity. By scaling computing
capacity, we mean the ability to aggregate a large numbevasiely coupled computers so that the aggregate
infrastructure can manage very large datasets, sustajttarge aggregate input/output, and perform a very large
aggregate number of computing tasks.

1.3 Programming Model

Clouds that provide on-demand computing instances carosug@py computing model compatible with loosely
coupled clusters. For example, instances in an Amazon EG€Za@amunicate using web services [3], using
gueues [2], or using message passing. It is important tothotggh that the performance using message passing
on loosely coupled systems is much slower than messagengasdsightly coupled clusters.

Clouds that provide on-demand computing capacity can algpat any computing model compatible with
loosely coupled clusters. Programming using web serviodsreessage passing can be complicated though and
beginning with [8], a programming model called MapReduce bacome the dominant programming model
used in clouds that provide on-demand computing capacigpRéduce assume that many common program-
ming applications can be coded as processes that manipatgeedatasets consisting akey, value- pairs.
Map is a process that maps eackey, value- pair in the dataset into a new pair akey, valué>. Reduce is
a process that merges values with the same key. Althouglistaiseemingly simple model, it has been used to
support a large number of data intensive applications,csbeapplications that must manipulate web related
data. MapReduce is described in more detail in Section 2divbe

Stream-based parallel programming models in which a Uséné&sk Function (UDF) is applied to all the
data managed by the cloud have also proved to be quite uddful [

45

1.4 Payment Model

Amazon popularized a cloud that provides on-demand comgutistances with a “pay as you go” economic
model. By simply setting up a Amazon Web Services accouritlities to a credit card, one can set up a
computing instance, with attached storage and networkemivity and pay about 10 cents an hour for just
those hours that you actually use the resources.

Of course, you can also buy, set up, and run your own clouckridtiely, you can make arrangements with
a third party to pay for the exclusive use of cloud resouroes fspecified period of time.

1.5 Management Model

The hardware for clouds can be by provided internally by ayamization (internal clouds) or externally by a
third party (hosted clouds). A cloud may be restricted tanglei organization or group (private clouds) or shared
by multiple groups or organizations (shared clouds). Athbinations of these management options arise.

1.6 What's New?

Local and remote loosely coupled clusters have been alailabquite some time and there is a large amount
of middleware available for such clusters. Because of thisjmportant to ask what is new with clouds.

The first thing that is new is the scale. Google and Yahoo heperted computing on clouds that contain
1000, 2000 and up to 10,000 loosely coupled computers. Wittioldp, datasets that are tens to hundreds of
terabytes can be managed easily, something that requigiicant effort with a database.

The second thing that is new is the simplicity that cloudsvigl®e. For example, with just a credit card
and a browser connected to the Internet, you can use Amag@?®s S3, and SQS to bring up 100 computing
instances, perform a computation, and return the resuttewt any capital investment, without hiring a system
administrator, and without installing and mastering anyiptex middleware. Useful machine images containing
precisely the pre-installed software required can be ieddky simply referencing an Amazon Machine Image
identifier, such as ami-3c47a355.

As another example, with MapReduce, a new software engoaebe analyzing a 10 TB dataset of web
data on 100 nodes with less than a day of instruction by usingle, small MapReduce programs.

It is interesting to note that this style of cloud computirggne from industry’s need for a simple to use, yet
powerful platform for high performance computing, not frasademic research in high performance computing.

2 Clouds That Provide On-Demand Computing Capacity

2.1 Google’s Storage, Compute and Table Cloud Services

The basic architecture for clouds that provide on-demandpeiing capacity was articulated in a series of
Google technical reports. See Figure 1. A cloud storageceepalled the Google File System (GFS) was
described in [9]. GFS was designed to scale to clusters ioimjathousands of nodes and was optimized for
appending and for reading data.

For computing with data managed by GFS, a parallel programgrfnamework for loosely coupled systems
called MapReduce was described in [8]. A good way to desdvibBpReduce is through an example: Assume
that node in a cloud stores web pages:, p; 2, pi s, - - -, Pin- ASsume also that web pagecontains wordsvy,
wg, wi;, A basic structure important in information retrieval isiaverted index, which is a data structure
consisting of a word followed by a list of web pages

(Wi5P1,1,P2,1,P3.25 - - -)

46

app | app | app | app | app | app

cloud compute services (MapReduce

app | app & generalizations)

table-based data services
relational data services app | app

cloud storage services

Figure 1: Clouds that provide on-demand computing capatign layer services as shown in the diagram.

(w2;p1,1,P1,2,P3.15---)
(w3;P1,37p2,2,p3,3> .- -)

with the properties:
1. The inverted index is sorted by the ward,
2. If awordw; occurs in a web pagge;, then the web pagg; is on the list associated with the woug.

A mapping function processes each web page independentitg local storage node, providing data paral-
lelism. The mapping function emits multiptekey, value- pairs (keyword, pagdad>> in this example) as the
outputs. This is called the Map Phase.

A partition functionm(w), which given a wordw, assigns a machine labeled with(w), is then used to
send the outputs to multiple common locations for furthercpssing. This second step is usually called the
Shuffle Phase.

In the third step, the processet(w;) sorts all the<key, value> pairs according to the key. (Note that
there may be multiple keys sent to the same node,m@u;) = m(w;).) Pairs with same key (keyword in this
example) are then merged together to generate a portiore afiterted index<w;: p, ,, ...)>. This is called
the Reduce Phase.

To use MapReduce, a programmer simply defines the (inputpriddReader (for parsing), Map, Partition,
Sort (or Comparison), and Reduce functions and the infrestre takes care of the rest.

Since many applications need access to rows and columngafmiat just bytes of data provided by the
GFS), a GFS-application called BigTable [5] that providesadservices that scale to thousands of nodes was
developed. BigTable is optimized for appending data andefading data. Instead of the ACID requirements of
traditional databases, BigTable choose an eventual ¢densismodel.

2.2 Open Source Clouds That Provide On-Demand Computing Cagxity

The Google’s GFS, MapReduce and BigTable are proprietadynan generally available. Hadoop [16] is an
Apache open source cloud that provides on-demand compcdipgcity and that generally follows the design
described in the technical reports [9] and [8]. There is alsmpen source application called HBase that runs
over Hadoop and generally follows the BigTable design desdrin [8].

Sector is another open source system that provides on-dkomanputing capacity [18]. Sector was not
developed following the design described in the Googlerteet reports, but instead was designed to manage
and distribute large scientific datasets, especially oudearea high performance networks. One of the first

a7

Design Decision Google’'s GFS, MapRe-| Hadoop Sector
duce, BigTable

data management block-based file system| block-based file system| data partitioned intg
files; native file system
used

communication TCP TCP UDP-Based Data Trans-
port (UDT) and SSL

programming model MapReduce MapReduce User defined functions,
MapReduce

replication strategy at the time of writing at the time of writing periodically

security not mentioned yes yes (HIPAA capable)

language C++ Java C++

Table 2: Some of the similarities and differences betweeoglas GFS and MapReduce, Hadoop and Sector.

Sector applications was the distribution of the 10+ TB Slbégital Sky Survey [15]. Sector is based upon a
network protocol called UDT that is designed to be fair aneinily to other flows (including TCP flows), but
to use all the otherwise available bandwidth in wide are& pigrformance network [13].

The Hadoop Distributed File System (HDFS), like Google’'sSGinplements a block-based distributed file
system, which is a fairly complex undertaking. HDFS splissfio into large data blocks (usually 64MB each)
and replicates each block on several nodes (the defaultuseddhree replicas). In contrast, Sector assumes
that the user has split a dataset into several files, withiteeasid number of files depending upon the number
of nodes available, the size of the dataset, and the arttcigccess patterns. Although this imposes a small
burden on the user, the result is a much simpler design casdzkfar the underlying system.

On top of the Sector Distributed File System is a parallelgpgoming framework that can invoke user
defined functions (UDFs) over the data managed by SectoreeTl$pecific, but very important UDFs, are the
Map, Shuffle and Reduce UDFs described above, which areabi@iin Sector.

Table 2 contains a summary of some of these similarities dfedehces.

2.3 Experimental Studies

In this section, we describe some experimental studies admpthe performance of Sector and Hadoop. The
experiments were performed on the Open Cloud Testbed, lzetestanaged by the Open Cloud Consortium
[17]. The Open Cloud Testbed consists of four geograplyiahifitributed racks located in Chicago (two loca-
tions), San Diego and Baltimore and connected by 10 Gb/sank$w Each contains 30 Dell 1435 computers
with 4GB memory, 1TB disk, 2.0GHz dual-core AMD Opteron 224#h 1 Gb/s network interface cards. Since
the tests were done, the current equipment in the Open Clesithdd has been upgraded and and additional sites
have been added.

Table 3 contains some experimental studies comparing SastbHadoop using the Terasort benchmark
[10]. The tests placed 10GB of data on each node. The testsrweron a single rack, two racks connected by
a Metropolitan Area Network in Chicago, three racks conedty a Wide Area Network, and four racks con-
nected by a Wide Area Network. In all cases, the networksigeav10 Gb/s of bandwidth. Notice that although
there is a penality incurred for the computing across geadnigally distributed racks, it is not prohibitive. It is
about 20% when using Sector and about 64% when using Haddmm wide area high performance networks
are available.

Table 4 contains some experimental studies that were dang GseditStone [4], which is a benchmark
that can be used for testing clouds that provide on-demanmgbating capacity. CreditStone provides code that
generates synthetic events that are roughly modeled ot ceed transactions and flags some of the transactions.

48

Number of| Sector Hadoop
nodes
WAN-2 (UIC, SL, UCSD, JHU) | 118 3702 sec 1526 sec
WAN-1 (UIC, SL, UCSD) 88 3069 sec 1430 sec
MAN (UIC, SL) 58 2617 sec 1301 sec
LAN (UIC) 29 2252 sec 1265 sec

Table 3: The table shows the time required to complete thasber benchmark. The tests were run on the Open
Cloud Testbed. The time required to generate the data is@d! The test used 10 GB of data per node. The
four racks on the testbed were connected by a 10 Gb/s network.

Locations Sector Hadoop # Events

1 location, 30 nodes, 36 min 126 min 15 billion
LAN

4 locations, 117 nodes,71 min 189 min 58.5 billion
WAN

Table 4: Some experimental studies using the CreditStonehneark comparing Hadoop and Sector run on the
Open Cloud Testbed. Hadoop was configured to use one replitdse experiments.

The benchmark requires that certain ratios of unflagged ggdld transactions be computed, a computation that
is quite straightforward to do using MapReduce, UDFs, oilamprogramming models.

3 Research Questions
In this section, we discuss several research questions.

1. In Section 2, we discussed two parallel programming nsofielclouds that provide on-demand comput-
ing capacity (MapReduce and invoking UDFs on dataset segnmeanaged by a storage cloud), both of
which are more limited than parallel programming using ragespassing but which most programmers
find easier to use. A research question is to investigate ptrallel programming models for these types
of clouds that cover a different class of applications bataso quite easy to use.

2. Most clouds today are designed to do the computation nvibhie data center. A interesting research
question is to develop appropriate network protocols, isgctures and middleware for wide area clouds
that span multiple data centers.

3. Another research question is to investigate how diffeckuds can interoperate; that is, how two different
clouds, perhaps managed by two different organizatiomssbare information.

4. A practical question is to develop standards and stasdeased architectures for cloud services for clouds
that provide on-demand computing capacity so, for exangiiernate storage, compute, or table services
could be used in a cloud application.

References

[1] Amazon. Amazon Elastic Compute Cloud (amazon ec2). amazon.com/ec2, 2008.

49

2]
[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

Amazon. Amazon Seb Services Queue Service. Retriewe ffittp://aws.amazon.com/sqgs, 2008.
Amazon. Amazon Web Services Developer Connection. i®etd from http://aws.amazon.com, 2008.

Collin Bennett, Robert L Grossman, Jonathan Seidmad,Steve Vejcik. Creditstone: A benchmark for
clouds that provide on-demand capacity. to appear, 2008.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.iH&eborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: &idiged storage system for structured data.
In OSDI'06: Seventh Symposium on Operating System Desigmauidrhentation2006.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, @aBradski, Andrew Y. Ng, and Kunle
Olukotun. Map-reduce for machine learning on multicoreNIRS volume 19, 2007.

Data Mining Group. Predictive Model Markup Language (pty version 3.2. http://www.dmg.org, 2008.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplifeed processing on large clustersQ8DI'04:
Sixth Symposium on Operating System Design and Implerizent2004.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leunge gbogle file system. I8OSP '03: Pro-
ceedings of the nineteenth ACM symposium on Operatingsystenciples pages 29-43, New York, NY,
USA, 2003. ACM.

Jim Gray. Sort benchmark home page. http://reseaiiciosoft.com/barc/SortBenchmark/, 2008.

Robert L Grossman and Yunhong Gu. Data mining using pigifiormance clouds: Experimental studies
using sector and sphere. Rroceedings of The 14th ACM SIGKDD International Confeeean Knowl-
edge Discovery and Data Mining (KDD 200&CM, 2008.

Robert L Grossman, Mark Hornick, and Gregor Mayer. Dataing standards initiative€Communications
of the ACM 45(8):59-61, 2002.

Yunhong Gu and Robert L Grossman. UDT: UDP-based datester for high-speed wide area networks.
Computer Networks1(7):1777—1799, 2007.

Yunhong Gu and Robert L Grossman. Sector and sphereartisasimplified storage and processing of
large scale distributed dataPhilosophical Transactions of the Royal Society A, alsdvad809.1181
20009.

Yunhong Gu, Robert L Grossman, Alex Szalay, and Ani Eraloistributing the sloan digital sky survey
using udt and sector. IRroceedings of e-Science 20@®06.

Hadoop. Welcome to Hadoop! hadoop.apache.org/c2e€3.
Open Cloud Consortium. http://www.opencloudconsmntorg, 2009.
Sector. http://sector.sourceforge.net, 2008.

Rich Wolski, Chris Grzegorczyk, and Dan Nurmi et. al. cBlyptus. retrieved from
http://eucalyptus.cs.ucsb.edu/, 2008.

50

Optimizing Utility in Cloud Computing through Autonomic
Workload Execution

Norman W. Paton, Marcelo A. T. de Aragao, Kevin Lee, Alvaro®d Fernandes, Rizos Sakellariou
School of Computer Science, University of Manchester, U.K.
(norm,maragao,klee,rizos,alvaro)@cs.man.ac.uk

Abstract

Cloud computing provides services to potentially numereaosote users with diverse requirements. Al-
though predictable performance can be obtained throughptbgision of carefully delimited services,
it is straightforward to identify applications in which actld might usefully host services that support
the composition of more primitive analysis services or treweation of complex data analysis requests.
In such settings, a service provider must manage complexuapcedictable workloads. This paper
describes how utility functions can be used to make expifieidesirability of different workload evalu-
ation strategies, and how optimization can be used to sekeigteen such alternatives. The approach is
illustrated for workloads consisting of workflows or quetie

1 Introduction

Cloud computing essentially provides services; sharedpatational resources execute potentially diverse re-
guests on behalf of users who may have widely differing etgimns. In such a setting, someplace in the
architecture, decisions have to be made as to which reqtrestswhich users are to be executed on which
computational resources, and when. From the perspective afervice provider, such decision making may be
eased through the provision of restrictive interfaces dodlservices, as discussed for cloud data services in the
Claremont Report on Database Research [1]:

Early cloud data services offer an API that is much moreictstt than that of traditional database
systems, with a minimalist query language and limited ®iescy guarantees. This pushes more
programming burden on developers, but allows cloud praositie build more predictable services,
and to offer service level agreements that would be harddwige for a full-function SQL data
service. More work and experience will be needed on sevevatd to explore the continuum
between today’s early cloud data services and more fulitffaned but probably less predictable
alternatives.

This paper explores part of this space, by describing ancapprto workload execution that is applicable
to different types of workload and that takes account ofth@ properties of the workload; (ii) the nature of the
service level agreement associated with user tasks; anddinpetition for the use of finite, shared resources.

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

51

N
feedback on progress \

| Execution

\ 4 i
tasks Site

requests
[Autonomic
| Workload

Mapper

tasks

4 Execution |

Site

- | feedback on progress

/
pd

Figure 1: High level architecture.

In so doing, we explore functionalities that in future maysog@ported within a cloud, rather than by layering
rich application functionality over lean cloud interfacas in Brantneet al. [4].

Wherever services are provided, service users have expestaService Level Agreements (SLAs) make
explicit what expectations users can realistically placeaservice provider [16], and may be associated with a
charging model that determines the remuneration assdorté certain Qualities of Service (QoS). Whether
or not formal agreements are in place, decisions must nelesth be made that influence the behaviors users
experience, and service providers must put in place mestmaihat make such decisions.

In this paper, we assume the abstract architecture ilkestia Figure 1, where aautonomic workload map-
per provides workload evaluation services implemented withitloud. For the moment, we are non-specific
about the nature of these services, but in due course defililse provided about support for workloads con-
sisting of collections of queries or workflows. Thatonomic workload mappedaptively assigns tasks in the
workload to execution sites. Given some objective, suclo asihimize total execution times or, more gener-
ally, to optimize for some QoS target (whether these ohjestare imposed by an SLA or not), the autonomic
workload mapper must determine which tasks to assign to eftie available execution sites, revising the as-
signment during workload execution on the basis of feedloacthe overall progress of the submitted requests.

In this paper, we investigate the useubility functions[9] to make explicit the desirability of the state of a
system at a point in time. In essence, a utility function megush possible state of a system to a common scale;
the scale may represent response times, numbers of QoSrgeglsncome based on some charging model
for the requests, etc. In this setting, it is the goal of alionomic workload mappeo explore the space of
alternative mappings with a view to maximizing utility as asared by the utility function. We propose that
utility functions, combined with optimization algorithnikat seek to maximize utility for a workload given
certain resources, may provide an effective paradigm faragismg workload execution in cloud computing.

The remainder of this paper is structured as follows. Seia@escribes a methodology for developing
utility based autonomic workload execution. Sections 3 4ntkscribe the application of the methodology to
workloads consisting of sets of workflows and queries, retdgay. Section 5 presents some conclusions.

2 Utility Driven Workload Execution

When a utility-based approach is adopted, the followingstre followed by designers; instantiations of each
of these steps are detailed for workloads consisting of fAais and queries in Sections 3 and 4, respectively.

Utility Property Selection: Identify the property that it would be desirable to maximizeseful utility mea-

52

sures may be cast in terms of response time, number of Qo8dargt, profit, etc.

Utility Function Definition: Define a functionUtility(w, a) that computes the utility of an assignmenof
tasks to execution sites for a workloadexpressed in terms of the chosen property — for workload map-
ping, such a function can be expected to include expressiogisvariables). that describe the environ-
ment and the assignmednthat characterizes the mapping for the components fobm abstract requests
to tasks executing on specific execution sites.

Cost Model Development: Develop a cost model that predicts the performance of th&lead given the in-
formation about the environment and assignment, taking into account the costs associated with adap-
tations.

Representation Design:Design a representation for the assignmermtf workload components to computa-
tional resources, where adaptations to the assignmentecaadh as modifications to this representation.
For example, if a workload consists of a collection of tasken an assignmentof tasks to sites may be
represented as a vectowhere each element represents task and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: Select an optimization algorithm that, given values #gy searches the
space of possible assignmentwith a view to maximizing the utility function; one benefit thfe utility-
based approach is that standard optimization algorithmsbeaused to explore the space of alternative
mappings. Note that one benefit of the methodology is thaedbdples the problem of meeting certain
objectives under certain constraints into a modeling @wob(i.e., to come up with a utility function) and
an optimization problem (where standard mathematicahigcies can be used).

Control Loop Implementation: Implement an autonomic controller [8] thatnonitorsthe progress of the
workload and/or properties of the environment of relevaindbe utility function;analyseghe monitored
information to identify possible problems or opportursti®r adaptationplansan alternative workload
execution strategy, by seeking to maximiZeility(w, a) in the context of the monitored values fay;
andupdateghe workload execution strategy where planning has idedtdin assignment that is predicted
to increase utility.

Several researchers have reported the use of utility fometin autonomic computing, typically to support
systems management tasks (e.g. [19, 3]); to the best of aerstanding this is the first attempt to provide a
methodology for the use of utility functions for adaptivenkload execution.

3 Autonomic Workflow Execution

A cloud may host computational services in a specific domfmngxample, the CARMEN e-Science cloud
provides a collection of data and analysis services for asmience, and applications are constructed using
workflow enactment engines hosted within the cloud [20]. unohsa setting, autonomic workflow execution
must determine how best to map workflows to the resourcesdaad\by the cloud.

3.1 Problem Statement

A workloadw consists of a set of workflow instancgseach of which consists of a collection of tasksgsks,
and is evaluated through an allocation of tasks to a set afutim sites. The role of the autonomic workload
mapper is to adaptively assign the tasks to specific sites.

53

3.2 Methodology Application

The methodology from Section 2 can be applied in this exampl®llows.

Utility Property Selection: Two utility properties are considered here, namgponse timend profit. In
practice, a single utility function is used by an autonommrkioad mapper, but alternatives are shown
here to illustrate how the approach can be applied to addiieeent system goals.

Utility Function Definition: A utility function is defined for each of the properties undensideration. For
response timae have:

Utility," (w,a) = 1/(SiewPRTy (i, a;))

where,w is the set of workflowsg is a set of assignments for the workflows instancasw, «a; is the
assignment for workflow instan@geand P RT,, estimates the predicted response time of the workflow for
the given assignment.

For profit we have:

Utilitygmﬁt(w, a) = Yiew(Income(i,a;) — EvaluationCost(i, a;))

where Income estimates the income that will be received as a result oliatialy: using allocatior;,
and FvaluationCost(w, a) estimates the financial cost of the resources used to egaluatthis utility
function, we assume that income is generated by evaluatorgflews within a response time target, but
that anFvaluationCost is incurred for the use of the resources to evaluate the vawvkfl As the income
depends on the number of QoS targets met, which in turn dependeponse time, the definition of
Income is defined in terms oP RT,,. In cloud computing, the evaluation cost could reflect tiot flaat

at times of low demand all requests can be evaluated usiag@nsive) resources within the cloud, but
that at times of high demand it may be necessary to purchaper(sive) cycles from another cloud in
order to meet QoS targets.

Cost Model Development: The cost model must impleme®RT,,(i,a;); the predicted response time of a
workflow depends on the predicted execution times of eachenfdsks on their assigned execution site,
the time taken to move data between execution sites, the aisggnments of workflows iw, etc. The
description of a complete cost model is beyond the scopei®fotiper, but cost models for workflows
have been widely studied (e.g. [12, 18, 21]).

Representation Design:For each workflow instance € w, the assignment of the tasksasks can be rep-
resented by a vectar where each element; represents task and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: The optimization algorithm seeks to maximiZeility(w, a) by exploring
the space of alternative assignmemtsAs the assignments are represented as collections ofocaisg
variables, each representing the assignment of a task exdisgxecution site, an optimization algorithm
must be chosen for searching such discrete spaces (e.g. [2])

Control Loop Implementation: In autonomic workflow management [13], there is a requirdnterinalt an
existing workflow, record information on the results proeddo date, deploy the revised workflow in
such a way that it can make use of results produced to datescemichue with the evaluation.

54

In practice, the utility functions described above priagtdifferent behaviors, and effective optimization
can be expected to yield results that reflect those prisritieor examplel/tility® (w, a) will always seek
the fastest available solution, even if this involves the 0§ costly computational resources. As a result,
Utilityl,"*"" (w, a) will typically yield response times that are slower thansiobtained by/tility (w, a),
as it will only use expensive resources when these are peeldio give net benefits when considered together
with the income they make possible. A detailed descriptibntidity-based workflow execution in computa-
tional grids, including an experimental comparison of g exhibited by different utility functions, is given

by Leeet al. [12].

4 Autonomic Query Workload Execution

Early cloud data services are typically associated withyfaestrictive data access models with a view to en-
abling predictable behaviors, and do not provide full guevgluation [1]. However, more comprehensive data
access services could provide access either to arbitrany gwaluation capabilities or to parameterized queries,
thus giving rise to a requirement for query workload managimwhere collections of query evaluation re-
guests can be managed by [11]: (i) admission controller which seeks to identify and disallow access to
potentially problematic requests; (ii)qaery schedulemwhich determines when jobs are released from a queue
for execution; and (iii) amxecution controllerwhich determines the level of resource allocated to gsevigle
they are executing. In this paper we discuss how utility fioms can be used to direct the behavior ofexn
ecution controller In comparison with recent work on workload management,ileytdriven approach can
provide relatively fine-grained control over queries; faample, Krompassgt al. [10] describe an execution
controller in which the actions carried out at query runtiane job-level (i.e., reprioritize, kill and resubmit),
whereas here the optimization makes global decisionsn@gakito account all the queries in the workload) that
adaptively determine the resource allocations of indi@idyueries on the basis of (fine-grained, collected per
query) progress and load data.

4.1 Problem Statement

A workload w consists of a set of queriese w, each of which are evaluated on a collection of executi@ssit
potentially exploiting both partitioned and pipelined @léglism. Each query is associated with a distribution
policy dp(q), of the form[vy, vz, ..., v|g], whered < v; <1 and(ELi‘le—) € {0, 1} where|S] is the number of
available execution sites. If the sumfyields 1 then eachy; represents the fraction of the workload that is to
be evaluated on thi¢h site using partitioned parallelism, and if the surfi this represents the suspension of the
plan. Wherey; is 0 for somei this represents the fact that execution sitenot being used fay. The role of the
autonomic workload mapper in Figure 1 is to adaptively complistribution policies for each of the queries in
the workload.

4.2 Methodology Application
The methodology from Section 2 can be applied in this exampl®llows.

Utility Property Selection: Two utility properties are considered here, namegponse timand number of
QoS targets metn the second case, we assume that each query is assocititedrasponse time target.

Utility Function Definition: A utility function is defined for each of the properties undensideration. For
response timge have:

Utility[(w, dp) = (1/SqewPRTy(q, dp(q)))

55

0 20 40 60 80 100 120
Predicted Response Time

Figure 2:QoS Estimate for a target response time 56.

where,w is the set of queriesip is a distribution policy for the querieg € w, and PRT;, estimates the
predicted response time of the query for the given distidbupolicy.

For quality of servicenve have:
Utility?os(w, a) = Xgew@QoSEstimate(q, dp(q))

whereQoS Estimate(q, dp(q)) estimates the likelihood that the query will meet its Qo§eausing the
given distribution policy from its predicted response tifi&T,. In practice,QoS Estimate(q, dp(q))
can be modeled using a curve such as that illustrated in &iguwhich gives a score near tdfor all
gueries estimated to be significantly within the target oesp time, and a score neartdor all queries
estimated to take significantly longer than their targepoese time [3].

Cost Model Development: The cost model must implemefRT,(q, dp(q)) for queries during their evalua-
tion, and can build on results on query progress monitogs (B, 7]).

Representation Design:For each query € w, the distribution policy can be represented by a vectathere
each element; represents the fraction of the work fgthat is to be assigned to execution gite

Optimization Algorithm Selection: The optimization algorithm seeks to maximize the utilitpétion by ex-
ploring the space of distribution policie. As the assignments are represented as fractions, eaeh repr
senting the portion of the work to be assigned to a specificudian site, an optimization technique must
be chosen for searching such spaces (e.g., sequentiabtjogaogramming [6]).

Control Loop Implementation: The implementation of the control loop must be able to susperevaluating
query, relocate operator state to reflect changes to thebdisbn policy, and continue evaluation using
the updated plan. A full description of such a protocol isvated in the paper on Flux [17].

As an example of the behaviors exhibited by workflow executimnagement techniques, we have experi-
mentally evaluated several such techniques using a siondét parallel query evaluation engine [15]. Figure
3 shows results for five different strategiddo Adapt in which no runtime adaptation takes plaéelapt 1in
which workloads are managed using action based contraegies (i.e.if-thenrules based on Flux [17]) that
seek to minimize response times by adapting whenever loadlance is detectedddapt 2in which utility
functions are used to minimize response times, aét'ﬂm'tyfT; Adapt 3in which Adapt 2is applied only when
it is predicted that response time targets will be missed;Aahapt 4in which which utility functions are used
to maximize the number of response time targets met, ﬁEtz'h'ty(?OS. In this experiment, four queries each
containing a single join are submitted at the same time taistel containingl2 execution sites, where one

56

Number of QoS goals met

' o Adapt
I Adapt 1 (Action)
[Adapt 2 (ActionQos)
[Adapt 3 (Utily)
I Adapt 4 (UtilityQoS)

ieries meeting QoS goal
»
o

Number of qu

Figure 3: Numbers of Quality of Service Targets met by adegechniques [15].

of the sites is subject to periodic interference from otladsjbroadly half of the time. In the experiment, the
gueries are associated with varying QoS targets (showneohdtizontal axis, with the more stringent targets to
the left), and the number of queries meeting their repomse targets is illustrated on the vertical axis.

The following can be observed: (i) Where no runtime workleadcution adaptation takes place, no queries
meet their QoS targets expressed in terms of response timeQueries managed bf[ftility?os continue
to meet (some) stringent QoS targets where the other mefhdds this is because optimization selectively
discriminates against some queries where this is necessaryable others to meet their targets. (iii) Queries
managed b)Utz‘lz‘tyfT meet more QoS targets than the action based strategiessbdbt@&uoptimizer considers
the combined costs or benefits of collections of adaptaiimasway that is not considered by the action-based
approaches. A broader and more detailed description ofghmaches and associated experiments is provided
by Patoret al. [15]. For the purposes of this paper, we note that optinopatiased on a utility function that aims
to maximize the number of QoS targets met has been shown {oeoiarm action-based strategies and ultility
based strategies that target different goals, thus idtisgg how utility based technigues can target application
requirements.

5 Conclusion

This paper presents a utility-based approach for adaptirklead execution, and has illustrated its application
to workloads consisting of workflows or queries. Recent aede that explicitly focuses on data intensive
cloud computing has addressed issues such as evaluatioitiy@s (e.g. [14]) or the development of layered
architectures (e.g. [4]). However, results from many défe parts of the database community may usefully be
revisited in the context of clouds; this paper considersklead management [11], and in particular the use of
utility functions for coordinating workload execution. ihis setting, a utility-based approach has been shown
to be applicable to different types of workload, and utiligsed techniques can be applied both to coordinate
adaptations at different granularities and to addressegbispecific optimization goals. These context-specific
goals allow utility functions to direct system behavior imay that reflects the requirements of the contracts or
SLAs that are likely to be prominent in cloud computing.

References

[1] R. Agrawal et al. The claremont report on database rese&CM SIGMOD Record37(3):9-19, 2008.

[2] C. Audet and J. E. Dennis. Mesh adaptive direct searobritttgns for constrained optimizatiorsIAM J.
on Optimization17(1):188-217, 2006.

57

[3] M.N. Bennani and D.A. Menasce. Resource allocation fdoaomic data centres using analytic perfor-
mance models. IRroc. 2nd ICAC pages 229-240. IEEE Press, 2005.

[4] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and Tagka. Building a database on s3SiGMOD
Conferencepages 251-264, 2008.

[5] S. Chaudhuri, V.R. Narasayya, and R. Ramamurthy. Esingdrogress of Long Running SQL Queries.
In Proc. SIGMOD pages 803—-814, 2004.

[6] R. Fletcher.Practical Methods of OptimizationJohn Wiley&Sons, 1987.

[7] A. Gounaris, N.W. Paton, A.A.A. Fernandes, and R. Sakigl. Self-monitoring query execution for
adaptive query processin@ata Knowl. Eng.51(3):325-348, 2004.

[8] J.0. Kephart and D.M. Chess. The Vision of Autonomic Caoniy. IEEE Computer36(1):41-50, 2003.

[9] J.O. Kephart and R. Das. Achieving self-management tiliyufunctions. |IEEE Internet Computing
11(1):40-48, 2007.

[10] S. Krompass, U. Dayal, H. A. Kuno, and A. Kemper. Dynamarkload management for very large data
warehouses: Juggling feathers and bowling balls/UDB, pages 1105-1115, 2007.

[11] S. Krompass, A. Scholz, M.-Cezara Albutiu, H. A. KunolLJWiener, U. Dayal, and A. Kemper. Quality
of service-enabled management of database workld&f#<€ Data Eng. Bull. 31(1):20-27, 2008.

[12] K. Lee, N.W. Paton, R. Sakellariou, and A.A.A. Fernasd¥tility Driven Adaptive Workflow Execution.
In Proc. 9th CCGrid IEEE Press, 2009.

[13] K. Lee, R. Sakellariou, N.W. Paton, and A.A.A. Fernand@/orkflow Adaptation as an Autonomic Com-
puting Problem. IrProc. 2nd Workshop on Workflows in Support of Large-Scalensei (WORKS 07),
Proc. of HPDC & Co-Located Workshopsages 29-34. ACM Press, 2007.

[14] H. Liu and D. Orban. Gridbatch: Cloud computing for lergcale data-intensive batch applications. In
CCGRID, pages 295-305. IEEE Computer Society, 2008.

[15] N.W. Paton, Marcelo A. T. de Aragao, and A.A.A. Fernasd Utility-driven adaptive query workload
execution. InSubmitted for Publication?2009.

[16] R. Sakellariou and V. Yarmolenko. Job scheduling on ghiel: Towards sla-based scheduling. In
L. Grandinetti, editorHigh Performance Computing and Grids in Actjggages 207-222. 10S, 2008.

[17] M.A. Shah, J.M. Hellerstein, S.Chandrasekaran, antl Ftanklin. Flux: An adaptive partitioning operator
for continuous query systems. Rroc. ICDE pages 353—-364. IEEE Press, 2003.

[18] P.Shivam, S. Babu, and J. S. Chase. Active and acceteledrning of cost models for optimizing scientific
applications. InVLDB, pages 535-546, 2006.

[19] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das. Mfilihctions in autonomic systems. Rroc. ICAG
pages 70-77. IEEE Press, 2004.

[20] P. Watson, P. Lord, F. Gibson, P. Periorellis, and Gsilst Cloud Computing for e-Science with CAR-
MEN. In 2nd Iberian Grid Infrastructure Conference Proceedingages 3—14, 2008.

[21] M. Wieczorek, A. Hoheisel, and P. Prodan. Towards a ggmeodel of the multi-criteria workflow schedul-
ing on the grid.Future Generation Computer Syster§(3):237-256, 2009.

58

Implementation Issues of A Cloud Computing Platform

Bo Peng, BinCui and Xiaoming Li
Department of Computer Science and Technology, Pekingadsity
{pb,bin.cui,Ixm @pku.edu.cn

Abstract

Cloud computing is Internet based system development chvdrige scalable computing resources
are provided “as a service” over the Internet to users. Theaaapt of cloud computing incorporates
web infrastructure, software as a service (SaaS), Web 2d0aéiner emerging technologies, and has
attracted more and more attention from industry and resea@mmunity. In this paper, we describe our
experience and lessons learnt in construction of a cloudpedimg platform. Specifically, we design a
GFS compatible file system with variable chunk size to fatélimassive data processing, and introduce
some implementation enhancement on MapReduce to impmewsyskem throughput. We also discuss
some practical issues for system implementation. In aggogiof the China web archive (Web InfoMall)
which we have been accumulating since 2001 (now it contaies three billion Chinese web pages),
this paper presents our attempt to implement a platform fdomain specific cloud computing service,
with large scale web text mining as targeted applicationd Aopefully researchers besides our selves
will benefit from the cloud when it is ready.

1 Introduction

As more facets of work and personal life move online and theriret becomes a platform for virtual human
society, a new paradigm of large-scale distributed compultias emerged. Web-based companies, such as
Google and Amazon, have built web infrastructure to deah ¥ internet-scale data storage and computation.
If we consider such infrastructure as a “virtual computé&iemonstrates a possibility of new computing model,
i.e., centralize the data and computation on the “super ctenpwith unprecedented storage and computing
capability, which can be viewed as a simplest form of cloushpuoting.

More generally, the concept of cloud computing can incaf®rarious computer technologies, including
web infrastructure, Web 2.0 and many other emerging tedgmed. People may have different perspectives from
different views. For example, from the view of end-user, ¢tleud computing service moves the application
software and operation system from desktops to the clowg] silich makes users be able to plug-in anytime
from anywhere and utilize large scale storage and computisgurces. On the other hand, the cloud computing
service provider may focus on how to distribute and schethdeeomputer resources. Nevertheless, the storage
and computing on massive data are the key technologies foud computing infrastructure.

Google has developed its infrastructure technologieslémrdccomputing in recent years, including Google
File System (GFS) [8], MapReduce [7] and Bigtable [6]. GFSiscalable distributed file system, which

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

59

emphasizes fault tolerance since it is designed to run onaseizally scalable but inevitably unreliable (due
to its sheer scale) commodity hardware, and delivers higfogeance service to a large number of clients.
Bigtable is a distributed storage system based on GFS foctated data management. It provides a huge
three-dimensional mapping abstraction to applicationsl l@as been successfully deployed in many Google
products. MapReduce is a programming model with associatptémentation for massive data processing.
MapReduce provides an abstraction by defining a “mapper’admdducer”. The “mapper” is applied to every
input key/value pair to generate an arbitrary number ofrmegliate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate keynergée output key/value pairs. MapReduce is an
easy-to-use programming model, and has sufficient expressapability to support many real world algorithms
and tasks. The MapReduce system can partition the input stettedule the execution of program across a set
of machines, handle machine failures, and manage therimdaehine communication.

More recently, many similar systems have been developedsmiisFS [3] is an open source GFS-Like
system, which supports strict POSIX interface. Hadoop $2am active Java open source project. With the
support from Yahoo, Hadoop has achieved great progresege ttwo years. It has been deployed in a large
system with 4,000 nodes and used in many large scale dategsing tasks.

In Oct 2007, Google and IBM launched “cloud computing ititi@” programs for universities to promote
the related teaching and research work on increasinglylapfarge-scale computing. Later in July 2008, HP,
Intel and Yahoo launched a similar initiative to promote degtelop cloud computing research and education.
Such cloud computing projects can not only improve the pErabmputing education, but also promote the
research work such as Internet-scale data managemengspiog and scientific computation. Inspired by this
trend and motivated by a need to upgrade our existing worlhave implemented a practical web infrastructure
as cloud computing platform, which can be used to store laogée web data and provide high performance
processing capability. In the last decade, our researclsystdm development focus is on Web search and Web
Mining, and we have developed and maintained two public wstems, i.e.TianwangSearch Engine [4] and
Web Archive systenwWeb infomall[1] as shown in Figure 1.

D W AR KRN B EESIE — Microsoft In.. [|[C|3K| il 3¥eb InfoMall — Microsoft Internet Explorer =
TR GERGE) EHEW WG TR BB T | o sme 20 WEe TRO #BE i
Q-0 HNRG Pmfimx @ 2-2E-Laa@ | |82 © o mitme oL@ UEd®

L (D) @ bt tp s owen, infomall. en/ ~ B e @

"

B3 B @-

1| @@ mesratis
@ }\ @ ﬁ é’: - wWeb InfoMall

FERENFEMR SR EATREER RS, BN DARPENLNRYy SO InfdlallT

ERPITL HUPSEROTRE SRR . (et

_ pemFeit BEE: TEVeb Infollall
B | RIS

[wttpess | ® 18 8RS HF

NDS:Web InfoMallf

Mk (D) @ hetp: /e, pleu. sdu. on/

(EER RS b
EEARET

— ¥ob Infolall {2885

BFEMT TWEF » FIAURL, REAARTERFEMAT, REEMFAREN AR
‘FFEIWebNﬁasﬁmu » WHEEEME, EEHELE. RS HRRXRSE
ERpEEArHE | > SEEADESM, BEESRIHER, BN 1001 FRERTRE
RETPRHE S » PEFRE HREBER. SEESHANETHE e |
&w SEWM20085T ‘Iw;' ‘W‘}ZMFM&%UIH&% © Veb InfoMallB—WR&iteMATFL [X TR
new SEWMZ0085 KW 1B, AR 195 S0 o (CERFEMT BRATEL, BFFTEEREEFEY Ffﬁﬂ'ﬂh (AR E
AFFAE — Ves Fafolisil RIEE eb Infoll=l1E
IR E 4 = SEBYE FEEERE RPN SEERE (o) 2]
REES | EEEE| REEYE| EARERE| RMlbkze] ———— EER L
& @ Intemnet & B Intemnet
(@) Tianwang (b) Web infomall

Figure 1: Search engine and Chines web archive developdavaisgroup of PKU

During this period, we have accumulated more than 50 TB wed, dailt a PC cluster consisting of 100+
PCs, and designed various web application softwares sualelagsage text analysis and processing. With the
increase of data size and computation workload in the systarfound the cloud computing technology is a
promising approach to improve the scalability and proditgtiof the system for web services. Since 2007, we

60

started to design and develop our web infrastructure systamed “Tplatform”, including GFS-like file system
“TFS” [10] and MapReduce computing environment. We belieue practice of cloud computing platform
implementation could be a good reference for researchessgineers who are interested in this area.

2 TPlatform: A Cloud Computing Platform

In this section, we briefly introduce the implementation aodnponents of our cloud computing platform,
named “Tplatform”. We first present the overview of the sgstéollowed by the detailed system implementation
and some practical issues.

Data Processing Applications

|
I MapReduce: Distributed programming framework

Infrastructure /

BigTable: Structured data storage

— |

TFS: Storage with high reliability and scalability

Figure 2: The System Framework of Tplatform

Fig 2 shows the overall system framework of the “Tplatformhich consists of three layers, i.e., PC cluster,
infrastructure for cloud computing platform, and data pissing application layer. The PC cluster layer provides
the hardware and storage devices for large scale data pneged he application layer provides the services to
users, where users can develop their own applications, asiblleb data analysis, language processing, cluster
and classification, etc. The second layer is the main focosiioivork, consisting of file system TFS, distributed
data storage mechanism BigTable, and MapReduce progragnmialel. The implementation of BigTable is
similar to the approach presented in [6], and hence we ortaildd discussion here.

2.1 Implementation of File System

The file system is the key component of the system to suppossineadata storage and management. The
designed TFS is a scalable, distributed file system, and Bastcluster consists of a single master and multiple
chunk servers and can be accessed by multiple client.

61

2.1.1 TFS Architecture

In TES, files are divided into variable-size chunks. Each&his identified by an immutable and globally unique
64 bit chunk handle assigned by the master at the time of chredtion. Chunk servers store the chunks on
the local disks and read/write chunk data specified by a clhanklle and byte range. For the data reliability,
each chunk is replicated on multiple chunk servers. By defae maintain three replicas in the system, though
users can designate different replication levels for ckifi files.

The master maintains the metadata of file system, whichdeslthe namespace, access control information,
the mapping from files to chunks, and the current locationshoinks. It also controls system-wide activities
such as garbage collection of orphaned chunks, and chuniatioig between chunk servers. Each chunk server
periodically communicates with the master in HeartBeatsagss to report its state and retrieve the instructions.

TFS client module is associated with each application Bgrating the file system API, which can commu-
nicate with the master and chunkservers to read or writeaatzehalf of the application. Clients interact with
the master for metadata operations, but all data-bearingremication goes directly to the chunkservers.

The system is designed to minimize the master’s involvenmdiiie accessing operations. We do not provide
the POSIX API. Besides providing the ordinary read and woperations, like GFS, we have also provided
an atomic record appending operation so that multiple iean append concurrently to a file without extra
synchronization among them. In the system implementati@observe that the record appending operation is
the key operation for system performance. We design our gates interaction mechanism which is different
from GFS and yields better record appending performance.

2.1.2 Variable Chunk Size

In GFS, afile is divided into fixed-size chunks (e.g., 64 MBhé&M a client uses record appending operation to
append data, the system checks whether appending the tecih@ last chunk of a certain file may make the
chunk overflowed, i.e., exceed the maximum size. If so, is@lthe replica of the chunk to the maximum size,
and informs the client that the operation should be contrarethe new chunk. (Record appending is restricted
to be at most one-fourth of the chunk size to keep worst caggrfentation at an acceptable level.) In case of
write failure, this approach may lead to duplicated recents$ incomplete records.

In our TFS design, the chunks of a file are allowed to have bhriaizes. With the proposed system in-
teraction mechanism, this strategy makes the record apmeogeration more efficient. Padding data, record
fragments and record duplications are not necessary inysters. Although this approach brings some extra
cost, e.g., every data structure of chunk needs a chunk gidgute, the overall performance is significantly
improved, as the read and record appending operations er@othinating operations in our system and can
benefit from this design choice.

2.1.3 File Operations

We have designed different file operations for TFS, such ad, reecord append and write. Since we allow
variable chunk size in TFS, the operation strategy is difiefrom that of GFS. Here we present the detailed
implementation of read operation to show the differenceunfapproach.

To read a file, the client exchanges messages with the mgsterthe locations of chunks it wants to read
from, and then communicates with the chunk servers to vettiee data. Since GFS uses the fixed chunk size,
the client just needs to translate the file name and bytetdffse a chunk index within the file, and sends the
master a request containing the file name and chunk index.mEster replies with the corresponding chunk
handle and locations of the replicas. The client then semnelgugest to one of the replicas, most likely the closest
one. The request specifies the chunk handle and a byte ratige thiat chunk. Further reads of the same chunk
do not require any more client-master interaction unlesstithed information expires or the file is reopened.

62

In our TFS system, the story is different due to the variablenk size strategy. The client can not translate
the byte offset into a chunk index directly. It has to knowtla#l sizes of chunks in the file before deciding which
chunk should be read. Our solution is quite straightforwarden a client opens a file using read mode, it gets
all the chunks’ information from the master, including ckurandle, chunk size and locations, and use these
information to get the proper chunk. Although this stratégygetermined by the fact of variable chunk size,
its advantage is that the client only needs to communicatte tivée master once to read the whole file, which is
much efficient than GFS’ original design. The disadvantaghat when a client has opened a file for reading,
later appended data by other clients is invisible to thisntli But we believe this problem is negligible, as the
majority of the files in web applications are typically cre@dtand appended once, and read by data processing
applications many times without modifications. If in anyaiion this problem becomes critical, it can be easily
overcome by set an expired timestamp for the chunks’ inftionand refresh it when invalid.

The TFS demonstrates our effort to build an infrastructareldrge scale data processing. Although our
system has the similar assumptions and architectures astEH&Yy difference is that the chunk size is variable,
which makes our system able to adopt different system ictierss for record appending operation. Our record
appending operation is based on chunk level, thus the aagreégcord appending performance is no longer
restricted by the network bandwidth of the chunk serversdtme the last chunk of the file. Our experimental
evaluation shows that our approach significantly improvesdoncurrent record appending performance for
single file by 25%. More results on TFS have been reportedQh [W/e believe the design can apply to other
similar data processing infrastructures.

2.2 Implementation of MapReduce

MapReduce system is another major component of the cloughatimg platform, and has attracted more and
more attentions recently [9, 7, 11]. The architecture ofimyslementation is similar to Hadoop [2], which is
a typical master-worker structure. There are three rolésarsystem: Master, Worker and User. Master is the
central controller of the system, which is in charge of datdifioning, task scheduling, load balancing and fault
tolerance processing. Worker runs the concrete tasks afftacessing and computation. There exist many
workers in the system, which fetch the tasks from Mastercebesthe tasks and communicate with each other
for data transfer. User is the client of the system, implesiéme Map and Reduce functions for computation
task, and controls the flow of computation.

2.2.1 Implementation Enhancement

We make three enhancements to improve the MapReduce parfoenn our system. First, we treat intermediate
data transfer as an independent task. Every computati&rnnasides map and reduce subtasks. In a typical
implementation such as Hadoop, reduce task starts theneatkate data transfer, which fetches the data from
all the machines conducting map tasks. This is an uncoabiellall-to-all communication, which may incur
network congestion, and hence degrade the system perfoembmour design, we split the transfer task from the
reduce task, and propose a “Data transfer module” to executeschedule the data transfer task independently.
With appropriate scheduling algorithm, this method camicedhe probability of network congestion. Although
this approach may aggravate the workload of Master whenuhw#ber of transfer tasks is large, this problem can
be alleviated by adjusting the granularity of transfer t@sét integrating data transfer tasks with the same source
and target addresses. In practice, our new approach cdficgsigtly improve the data transfer performance.
Second, task scheduling is another concern on MapRedutarsy®hich helps to commit resources be-
tween a variety of tasks and schedule the order of task @recuto optimize the system resource utility, we
adopt multi-level feedback queue scheduling algorithmunaesign. Multiple queues are used to allocate the
concurrent tasks, and each of them is assigned with a cemtiairity, which may vary for different tasks with
respect to the resources requested. Our algorithm can dgalimadjust the priority of running task, which

63

balances the system workload and improves the overall gijmut.

The third improvement is on data serialization. In MapRediramework, a computation task consists of
four steps: map, partition, group and reduce. The data tsireay map operation, intermediate data is gener-
ated and transferred in the system, and finally the resudtexgorted by reduce operation. There exist frequent
data exchanges between memory and disk which are genecatiynplished by data serialization. In our imple-
mentation of MapReduce system, we observed that the sinailerdata type is frequently used in many data
processing applications. Since memory buffer is widelyduseost of the data already reside in the memory
before they are de-serialized into a new data object. Irratleds, we should avoid expensive de-serialization
operations which consume large volume of memory space agidie the system performance. To alleviate
this problem, we define the data type for key and value as vpaifter. If we want to de-serialize the data
with native data type, a simple pointer assignment operatan replace the de-serialization operation, which
is much more efficient. With this optimization, we can alsd $loe data directly in the memory without data
de-serialization. This mechanism can significantly imerthe MapReduce performance, although it introduces
some cost overhead for buffer management.

2.2.2 Performance Evaluation on MapReduce

Due to the lack of benchmark which can represent the typjgali@tions, performance evaluation on MapRe-
duce system is not a trivial task. We first use PennySort asithple benchmark. The result shows that the
performance of intermediate data transfer in the shuffle@hsthe bottle neck of the system, which actually
motivated us to optimize the data transfer module in MapRed&urthermore, we also explore a real applica-
tion for text mining, which gathers statistics of Chineseavisequency in webpages. We run the program on a
200GB Chinese Web collection. Map function analyzes theesarof web page, and produces every individual
Chinese word as the key value. Reduce function sums up akggtpd values and exports the frequencies. In
our testbed with 18 nodes, the job was split into 3385 maysi&kreduce tasks and 101550 data transfer tasks,
the whole job was successfully completed in about 10 houng;twis very efficient.

2.3 Practical Issues for System Implementation

The data storage and computation capability are the magborta of the cloud computing platform, which
determine how well the infrastructure can provide servioemnd users. We met some engineering and technical
problems during the system implementation. Here we dissoisge practical issues in our work.

2.3.1 System Design Criteria

In the system design, our purpose is to develop a system wghstalable, robust, high-performance and easy to
be maintained. However, some system design issues may bBeteoh which places us in a dilemma in many
cases. Generally, we take three major criteria into conaii® for system design: 1) For a certain solution,
what is bottleneck of the procedure which may degeneratgystem performance? 2) Which solution has better
scalability and flexibility for future change? 3) Since netlw bandwidth is the scarce resource of the system,
how to fully utilize the network resource in the implemeia® In the following, we present an example to
show our considerations in the implementation.

In the MapReduce system, fault tolerance can be conducteithigr master or workers. Master takes the
role of global controller, maintains the information of twlole system and can easily decide whether a failed
task should be rerun, and when/where to be rerun. Workesskadp local information, and take charge of
reporting the status of running tasks to Master. Our designhbines the advantages of these two factors. The
workers can rerun a failed task for a certain number of tirard,are even allowed to skip some bad data records
which cause the failure. This distributed strategy is motmist and scalable than centralized mechanism, i.e.,
only re-schedule failed tasks in the Master side.

64

2.3.2 Implementation of Inter-machine Communication

Since the implementation of cloud computing platform isdshen the PC cluster, how to design the inter-
machine communication protocol is the key issue of programgnm the distributed environment. The Remote
Procedure Call (RPC) middle ware is a popular paradigm fptementing the client-server model of distributed
computing, which is an inter-process communication tetdgythat allows a computer program to cause a
subroutine or procedure to execute on another computer i@ aldster without the programmer explicitly
coding the details for this remote interaction. In our systall the services and heart-beat protocols are RPC
calls. We exploit Internet Communications Engine (ICE)jakhis an object-oriented middleware that provides
object-oriented RPC, to implement the RPC framework. Our@gch performs very well under our system
scale and can support asynchronous communication model.n@fwvork communication performance of our
system with ICE is comparable to that of special asynchrsrotocols with socket programming, which is
much more complicated for implementation.

2.3.3 System Debug and Diagnosis

Debug and Diagnosis in distributed environment is a biglehgke for researchers and engineers. The overall
system consists of various processes distributed in nktveord these processes communicate each other to
execute a complex task. Because of the concurrent comntiamsan such system, many faults are generally
not easy to be located, and hence can hardly be debuggedefditeerwe record complete system log in our
system. In All the server and client sides, important soféA@undaries such as APl and RPC interfaces are all
logged. For example, log for RPC messages can be used toiciegiality of protocol, log for data transfer can
be used to validate the correctness of transfer. In additi@record performance log for performance tuning.
In our MapReduce system, log in client side records the ldetéidata read-in time, write-out time of all tasks,
time cost of sorting operation in reduce task, which arertgifiactors of our system design.

In our work, the recorded log not only helps us diagnose tloblpms in the programs, but also helps
find the performance bottleneck of the system, and hence waraove system implementation accordingly.
However, distributed debug and diagnosis are still low igffitand labor consuming. We expect better tools and
approaches to improve the effectiveness and efficiencymigiand diagnosis in large scale distributed system
implementation.

3 Conclusion

Based on our experience with Tplatform, we have discusseeraepractical issues in the implementation
of a cloud computing platform following Google maodel. It ibserved that while GFS/MapReduce/BigTable
provides a great conceptual framework for the software obeecloud and Hadoop stands for the most popular
open source implementation, there are still many intergstnplementation issues worth to explore. Three are
identified in this paper.

e The chunksize of a file in GFS can be variable instead of fixeith @areful implementation, this design
decision delivers better performance for read and appeacabpns.

e The data transfer among participatory nodes in reduce s@gde made "schedulable” instead of "un-
controlled”. The new mechanism provides opportunity fooiding network congestions that degrade
performance.

e Data with native types can also be effectively serializedifda access in map and reduce functions, which
presumably improves performance in some cases.

65

While Tplatform as a whole is still in progress, namely theglementation of BigTable is on going, the
finished parts (TFS and MapReduce) are already useful. &espplications have shown the feasibility and
advantages of our new implementation approaches. Theesoade of Tplatform is available from [5].

Acknowledgment

This work was Supported by 973 Project No. 2007CB310902, IBMI8 SUR Grant for PKU, and National
Natural Science foundation of China under Grant No.60683¥ 60873063.

References

[1] China Web InfoMall http://www.infomall.cn, 2008.

[2] The Hadoop Projecthttp://hadoop.apache.org/, 2008.

[3] The KosmosFS Projechttp://kosmosfs.sourceforge.net/, 2008.

[4] Tianwang Searchhttp://e.pku.edu.cn, 2008.

[5] Source Code of Tplatform Implementatidritp:/net.pku.edu.cn/~ webg/tplatform, 2009.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WallktBurrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for stmectulata. InOSDI '06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Impletoenpages 15-15, 2006.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data psotgon large clusters. DSDI '04: Proceed-
ings of the 5th USENIX Symposium on Operating Systems Dasijimplementationpages 137-150,
2004.

[8] G. Sanjay, G. Howard, and L. Shun-Tak. The google fileaystinProceedings of the 17th ACM Sympo-
sium on Operating Systems Principlesiges 29-43, 2003.

[9] H. Yang, A. Dasdan, R. Hsiao, and D. S. Parker. Map-redueege: simplified relational data processing
on large clusters. I$IGMOD '07: Proceedings of the 2007 ACM SIGMOD internatiotranference on
Management of dafgpages 1029-1040, 2007.

[10] Z. Yang, Q. Tu, K. Fan, L. Zhu, R. Chen, and B. Peng. Penfoice gain with variable chunk size in
gfs-like file systems. Idournal of Computational Information Systerpages 1077-1084, 2008.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and lofga. Improving mapreduce performance in
heterogeneous environments. @EDI '07: Proceedings of the 8th USENIX Symposium on Opeyati
Systems Design and Implementatipages 29-42, 2007.

66

Dataflow Processing and Optimization on Grid and Cloud
Infrastructures *

M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F.tads,
P. Polydoras, E. Sitaridi, V. Stoumpos, Y. loannidis
Dept. of Informatics & Telecom, Ma@lK Lab, University of Athens, Hellas (Greece)
{mmt,gkakas,herald,g.papanikos,frank,p.polydoras,st@mpos,yannjgdi.uoa.gr
http://madgik.di.uoa.gr/

Abstract

Complex on-demand data retrieval and processing is a charetic of several applications and com-
bines the notions of querying & search, information filtgrifa retrieval, data transformation & analysis,
and other data manipulations. Such rich tasks are typicafyresented by data processing graphs, hav-
ing arbitrary data operators as nodes and their producensamer interactions as edges. Optimizing
and executing such graphs on top of distributed architexsuis critical for the success of the corre-
sponding applications and presents several algorithmid systemic challenges. This paper describes
a system under development that offers such functionalityp of Ad-hoc Clusters, Grids, or Clouds.
Operators may be user defined, so their algebraic and othgpgaties as well as those of the data they
produce are specified in associated profiles. Optimizasdmased on these profiles, must satisfy a vari-
ety of objectives and constraints, and takes into accownptiticular characteristics of the underlying
architecture, mapping high-level dataflow semantics taldlexuntime structures. The paper highlights
the key components of the system and outlines the majotidite®f its development.

1 Introduction

Imagine you have developed an innovative web-based searcites that you would like to offer to the world.
Cloud Computing enables you to host this service remotetly deal with scale variability: as your business
grows or shrinks, you can acquire or release Cloud resowasiyy and relatively inexpensively. On the other
hand, implementation and maintenance of data servicesitbacalable and adaptable to such dynamic condi-
tions becomes a challenge. This is especially the case farsgavices that are compositions of other, possibly
third-party services (e.g., Google Search or Yahoo ImagacBg where the former become data processing
graphs that use the latter as building blocks (nodes) arukéthem during their execution. Running services
under various quality-of-service (Qo0S) constraints th#ieient customers may desire adds further complica-
tions. Handcrafting data processing graphs that implersech services correctly, make optimal use of the

Copyright 2009 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Partially supported by the European Commission under actsttNFRA-2007-212488, FP6-1ST-027749, and FP6-1ST2604for
the D4Science, Health-e-Child, and DILIGENT projectspesgively.

67

resources available, and satisfy all QoS and other consdra a daunting task. Automatic dataflow optimiza-
tion and execution are critical for data services to be dbaland adaptable to the Cloud environment.

This is in analogy to query optimization and execution irditianal databases but with the following dif-
ferences: component services may represent arbitranatipes on data with unknown semantics, algebraic
properties, and performance characteristics, and arestriated to come from a well-known fixed set of opera-
tors (e.g., those of relational algebra); optimality maygbkject to QoS or other constraints and may be based on
multiple diverse relevant criteria, e.g., monetary costesburces, staleness of data, etc., and not just solely on
performance; the resources available for the executiondata processing graph are flexible and reservable on
demand and are not fixed a-priori. These differences maledlolatoptimization essentially a new challenging
problem; they also generate the need for run-time mechartisat are not usually available.

This paper presen®&DP (Athena Distributed Processing), a distributed datafloscessing system that at-
tempts to address the above challenges on top of Ad-HoceZsugthysical computer nodes connected with a
fast local or wide-area network), Grids [5], and Clouds E¢ch time adapting itself to the particular character-
istics or constraints of the corresponding architectureest architectures do not represent arbitrary unrelated
choices, but can be considered as distinct points in an goary path. While an Ad-Hoc cluster simply pro-
vides raw compute power, the Grid additionally provides Inag@tsms for managing computational, storage, and
other resources in a synergistic way. When evolving frond&tod Clouds, additional resources are made avalil-
able for lease, offering opportunities for more complexteysc scenarios, but also making service scalability,
and performance, and composability even more challenging.

The paper begins with the internal representations of AD&igsl. It continues with the runtime system of
ADP, the stand-alone representations of operator pr@serdind the key features of its query optimization. It
concludes with the implementation status of ADP, a comparisith related work, and some future directions.

2 ADP Query Language Abstractions

User requests to ADP take the form of queries in some higdl-ldeclarative or visual language, not described
here. Internally, they are represented by equivalent gsémiprocedural languages at various abstraction levels:
Operator Graphs: These are the queries ADFL (Athena Data Flow Language), the main internal ADP
language. Their nodes are datperators and their (directed) edges are operator interactions irfdime of
producing and consumingdataflows (or simply flows). Operators encapsulate data processing algorithms and
may be custom-made by end users. Flows originate from apsradre transformed by operators, and are
delivered as results by the root operator of a query. A flowfisite sequencef records. ADP treats records as
abstract data containers during processing. Their priegdie.g., type name, type compatibility, keys, size) are
stored inrecord profiles and play an important role when establishing operatopfe(ator or end-user) flows.

authorsearch y @ PP imagesearch y, @

Figure 1: The Query Operator Graph

Example Suppose a user wants to search the Web for images of auth&®&® and ACM papers. Figure 1
shows an ADFL query that corresponds to this need. The gqe@gsentially a chain (composition) of operators:
First, there is a custom operator, AUTHORSEARCH, commuirigawith some particular external digital-
library service to retrieve author names, filtered to setedy authors of IEEE and ACM papers. Then, the
standard operator UNIQUE eliminates duplicate author mariNext, the resulting flow of author names is sent
to another custom operator, IMAGESEARCH, which uses theasato identify corresponding images in an

68

external database. Finally, a face detection operatorHFACTER, is used to identify images that contain only
faces and forced to output only the best match (topk="1")ekt form, the query in Figure 1 is expressed as

FACEFILTER{topk="1"} ON IMAGESEARCH ON UNIQUE ON AUTHORSEARCKpub="IEEE” or "ACM" } []

Concrete Operator Graphs: These are similar to operator graphs but their nodes@merete operators
i.e., software components that implement operators in icp&ar way and carry all necessary details for their
execution. The UNIQUE operator, for example, has to stdreeabrds (or record keys) seen so far; it may be
realized as two alternative Java implementations, onedoasenain memory (fast but limited by memory size)
and one based on external storage (slower but limited onlgligly size). Choosing among them becomes an
optimization decision, based for example, on expectedtifipw sizes.

Subject to its initialization, as part of its execution, aciete operator may be contacting external services
to retrieve data from them. In that case, it must deal wittphilsical, security, and semantic issues related to
such external communication. This is transparent, howewgethe operator that consumes the flow resulting
from such external services: all sources of flows appeardiresindependent of any external interactions.

Execution Plans These are similar to concrete operator graphs, but thelesare concrete operators that
have been allocated resources for execution and have @lirttialization parameters set.

3 ADP Runtime Environment

Concrete operator graph queries are eventually evalugtéitelART (ADP Run Time) subsystem, which has
two main software partsContainers are responsible for supervising concrete operators anddimg the nec-
essary execution context for them (memory resources, isecvedentials, communication mechanisms, etc.).
ResultSetsare point-to-point links to transport polymorphic recob#gween concrete operators and implement
the query flows. While different manifestations of data anggorted, e.g., native objects, byte-streams, or XML
content, ResultSets are type agnostic.

Containers are the units of resource allocation between AR the processing nodes of the underlying
distributed infrastructure. Based on the optimizer’s siecis, ART dynamically creates or destroys containers
to reflect changes in the system load. Thus, a complex queybmaalistributed across multiple containers
running on different computer systems, each containeglreisponsible for one or more of the query’s concrete
operators and ResultSets. Likewise, based on the optisidecisions, ResultSets control the mode of record
transportation, ranging from pipelining (totally synchowus producer/consumer operation) to store & forward
(full buffering of entire flow before making it available tbg consumer).

Containers feature the same set of tools to support ADFLygevaluation but are implemented differently
depending on the characteristics of the underlying disteith infrastructure architecture, hiding all lower-level
architectural details and the corresponding technologgrdity. Containers on Ad-Hoc clusters or Clouds, for
example, may simply be just processes, while on Grid, they lbeaWeb Service containers. ResultSets may
utilize WebService transport (SOAP) on Grids, or simply T&fkets on Ad-Hoc Clusters or Clouds. The
optimizer may try to minimize Cloud resource lease cost yttstg down some or not using several containers,
while this is not an issue in other architectures.

The runtime mechanisms provided for query execution havej@mimpact on application development
in that they liberate implementers from dealing with exemufplatform or data communication details. Note
that there is a particularly good match between Cloud achites and certain characteristics of ADP: Cus-
tom operators within ADFL queries are an easy and attractisig to use ad hoc third-party services (e.g.,
AUTHORSEARCH or FACEFILTER), which is an important featw&Clouds. More importantly, dynamic
acquisition and release of resources (containers andlirtachines) by ADP as a systemic response to load or
QoS requirements fits very well with the canonical Cloud beiss model; the presence of Service Level Agree-
ments (SLAs) that must be met requires such flexible resallgeation, which in turn, calls for sophisticated
optimization of the kind ADP is designed to offer. The neadddvanced optimization strategies is less marked

69

in other architectures, e.g., in Grid, where simple maighluhoperations to resources usually suffices.

4 Operator Profiles

Given the ad hoc nature of most ADP operators, no pertindotnration about them is hardwired into the
system; instead it is all provided by users and storeapierator profiles. Typically, for each level of internal
language abstraction, there is relevant information in@erator’'s profile. Accordingly, ADP uses the profile
contents recursively to drive the corresponding stagesiefygoptimization and execution. Below, we indicate
some fundamental properties that may be found in (or deffired) an operator’s profile for each abstraction
level, emphasizing primarily those that generate equitaéiernatives that the optimizer must examine when
a query with that operator is considered. We avoid des@ibiie precise structure/schema of the profile or the
language used to express some of its contents; instead,engesiglized pseudo-language for easy exposition.

Operator Graphs: At this level, in addition to its signature (input/outputvils with specific record profiles),
of great importance are algebraic equivalences that agsraatisfy. These include typicalgebraic transfor-
mations, e.g., associativity, commutativity, or distributivige)compositionsi.e., operators being abstractions
of whole operator graphs that involve compositions, agafiegs, and other interactions of more specific opera-
tors, andpartitions, i.e., operators being amenable to replication and pamibeessing by each replica of part
of the original input, in conjunction with some pre- and ppgicessing operators.

Example Consider the following information being known about theemtors of Figure 1.

e Algebraic transformation - Filtered on multiple publisheAUTHORSEARCH is equivalent to merging
the results of itself filtered on each one of them separately:
operator AUTHORSEARCKpub=x or y} is MERGE on AUTHORSEARCHKpub=x} and AUTHORSEARCHpub=y};

e Operator decomposition - Filtered on IEEE or ACM, AUTHORS®E®2H is equivalent to another operator
that searches directly the IEEE or ACM Digital Librariesspectively:
operator AUTHORSEARCKpub="IEEE"} is IEEESEARCH;
operator AUTHORSEARCKpub="ACM"} is ACMSEARCH;

e Operator partition - FACEFILTER is trivially parallelizibon its input, with operators SPLIT and MERGE
performing the necessary flow pre- and post-processingrdahd after the parallel execution of an arbi-
trary (unspecified) number of FACEFILTER instances:
operator FACEFILTER is splitable withpre-process = SPLIT ; post-process = MERGE]

Concrete Operator Graphs At this level, capturing an operator’s available implernagion(s) is the critical
information. In general, there may be multiple concreterapes implementing an operator, e.g., a low-memory
but expensive version and a high-memory but fast one; a #thmtteded version and a single-threaded one; or
two totally different but logically equivalent implemetitans of the same operator. For example, there may be a
standard UNIQUE implementation determining record edyuiased on the entire record, while an alternative
custom implementation may only look at a specific key rectribate. Also, IMAGESEARCH may have just
a multi-threaded implementation associated with it, bUCEAILTER may have both a single-threaded and a
multi-threaded one. All these concrete operators shoulgt@ded in the corresponding operator’s profile.

Execution Plarnt At this level, the profile of a concrete operator storesrimfation about its multiple poten-
tial instantiations in a container, its initialization pameter values, and any constraints on resources it may use,
e.g., number of threads, size of memory, software licenspat/output rates, communication channels, etc. It
also stores information about how the optimizer may evalaaparticular instantiation of the concrete opera-
tor. For example, the multi-threaded concrete operatartMAGESEARCH and FACEFILTER have several
additional degrees of freedom at the execution plan legahey can use multiple local CPUs and cores.

70

5 Query Optimization

Evaluation Parameters: Evaluation of query execution plans is at the heart of qu@tinozation, regarding
both the objective function being optimized and any (QoStlee) constraints being satisfied. Depending on the
application, such evaluation may be based on a variety ahpeters, e.g., monetary cost of resources or fresh-
ness of data, and not just solely as is traditional on perdmecea metrics. Given the ad hoc nature of operators,
their profiles store mathematical formulas to describe quarameters and any properties of their inputs and
outputs that are deemed relevant, e.g., image resolutilRAGEFILTER cpu cost, or image database age for
IMAGESEARCH freshness. Consequently, for any parametdrttay be important to the operators’ evalution,
statistics should be either maintained or obtained, formgte, on the fly through some sampling. Similarly,
the mathematical formulas associated with the evaluati@m @perator may be either explictly inserted into its
profile by some user or predicted based on some sample orgecutions of the operator. ADP is designed to
offer generic functionality for synthesizing appropri&éemulas and propagating parameter values through the
operators of an execution plan to obtain its final evaluation

Space of Alternatives Transformation of an ADFL query to an execution plan that ganerate the re-
guested results goes through several stages, corresgdodime levels of internal language abstractions, where
every alternative in one level has multiple alternative piags to the next lower level according to the proper-
ties in the profiles of the operators involved. There arers¢\aperator graphs that are algebraicly equivalent to
the original query, each one mapping to several concretatgegraphs (based on the corresponding mappings
of its operators), each one mapping to several executiams g instantiating containers and ResultSets and
assigning the instantiated concrete operators and flowsafdncrete operator graph to them.

Example The algebraic properties in the profiles of AUTHORSEARCH &ACEFILTER (assuming 3-
way parallelism for the latter) generate the operator gliaditated in Figure 2 as an alternative to Figure 1.
Instantiating an execution plan for that graph requireoshiy concrete operators and then: container instantia-
tion - the set of containers available to the query are chdkesugh dynamic release or acquisition of containers
and (virtual) hosts, or reuse of existing ones; concreteatpeinstantiation - all concrete operators are initial-
ized (e.g., the number of threads for the multi-threadedémpntations of IMAGESEARCH and FACEFILTER
is set) and assigned to containers; flow instantiation - eoct@d as inputs and outputs of concrete operators, the
endpoints of each flow are instantiated via technologyifipeandpoint implementations of the ResultSet, fine-
tuned for the flow’s and connected operators’ needs. Fiduegsl 3 indicate particular alternatives with respect
to these choices, at the level of the operator graph and #®uggn plan, respectively.]

Container 3

facefilter

Container 1 Container 2

Container 4
I @ S @ @

facefilter

ieeesearch

Container 5

Figure 2: Query Operator Graph after all operator transédions and assignments to containers

Optimization Stages In principle, optimization could proceed in one giant stepamining all execution
plans that could answer the original query and choosing tigetloat is optimal and satisfies the required con-
straints. Alternatively, given the size of the alternativepace, optimization could proceed in multiple smaller
steps, each one operating at some level and making assasatimut the levels below. ADP optimization
currently proceeds in three distinct steps, corresponeagtly to the three language abstraction levels of ADP.

71

Container

Result Set

Operator with

©® Concrete operator
—>
@ multiple threads

Cloud

Figure 3: Query Execution Plan with explicit mapping of aers to containers on Cloud (virtual) hosts

The techniques developed for the first two steps are notskscuhere due to space limitations.

Execution Plan Instantiation: Assignment of concrete operators to containers is cuyremdeled and im-
plemented in ADP as a constraint satisfaction problem (@S®R)llows: ConsideN containerd.q, Lo, ..., Ly,
each with a current resource capabiltyAP(L;),1 < i < N, and a hostH(L;) where it resides. Let
NETCAP(L;,Lj), 1 < i,j < N be the network capacity (bandwidth) betweBrL;) and H(L;). Let
Py, Py, ..., Py be the set of concrete operators present in the respectaratop graph and EM AN D(F;),
1<i < M, be the resources that operaf@rrequires. The CSP solved is to assign each concrete opé&vaor
container ¢'(F;) = L) so that a user-defined cost function (), ; ;< NETCOST(F;, P;), network cost
between operators) is optimized subject to the constraints

e container resource capability is not exhausted:), DEMAND(F;) < CAP(L),
e internode bandwidth is not exhausted,c p,_;, ¢ (p,)—rs NETCOST(P;, P;) < NETCAP(L,L').

The above problem can naturally be expanded to model morelearsituations, e.g., taking into account oper-
ator gravity (preference for operators to be assigned tsdh@ container), or different optimization objectives.

In high-load conditions, we deploy an admission controbethm to ensure optimal balancing of workload.
Before entering the CSP solution process, the optimizeadwasts information on the concrete operator graph
and “asks” containers to declare which operators they cstantiate (if asked to do so). Containers monitor
these requests as well as the actual optimizer decisiongsanthis information to restrict the number and type
of concrete operators they are willing to instantiate. Eamitainer makes potentially a different decision, which
are all then used to restrict the space of possible CSP @ofutlf the existing containers’ decisions do not allow
all concreted operators of a query to be instantiated scaii@&xecution plan may be obtained, then the query
is automatically resubmitted after a short time expectireptgr container availability. If this is not the case,
additional containers are requested based on the numbey@adf concrete operators that are unassigned.

The algorithm used by containers to restrict the amount yoel of operators they are willing to instantiate
follows the lines of [7]. In critical load situations, it efttivelly diverts resources used by concrete operatots tha
are rarely requested to the ones that are frequently useslisTéchieved using the following microeconomics-
inspired mechanism: Assuming thdtis the number of concrete operators, containers interallgt a private
vectorp € RE of virtual concrete operator prices. These prices are ndigetosed; they only provide to the
admission control algorithm the means to measure the boititvh of a concrete operator to the performance
of the whole distributed system. As demand for a concreteabpeincreases/decreases, its respective prices
increase/decrease as well. Each container uses its fyivedlel prices to periodically (every units of time)
select a vectoF € N of operators to admit. This vector is different for each eamr, represents the type and
number of operators admitted, and is the one that maximieesittual price § - p) of the admitted operators
under the resource constraints of each container. Thatds, eontainer solvesiaxz s - p so thats' is feasible,
i.e., the container has enough resources to instantiateraléate operators iwithin ¢ units of time.

72

6 Implementation Status

An initial implementation of ADP is in operation for a yeanmand is used by data mining and digital library
search applications. The ADFL language enables ad-hoatmpsrto be introduced, without the need to change
its parser. Operator profiles contain information such asjdkia classes implementing operators. ART uses
Axis-on-Tomcat Web Service containers, each one runningroAd-Hoc cluster node or on the Grid. The
optimizer performs simple rewriting driven by operator files, changes the number of containers dynamically
based on current “load”, and decides how to assign concpeeators to containers, as described above. A
simulated annealing optimization engine is used to geadhat execution plan, based on the concrete operator
graph. ResultSets have been implemented, attached to ddaqing operator, and communicating via TCP
sockets or SOAP messages to the consuming operators. d3Retmrds model relational database table rows,
whereas XML Records provide additional structure. Finatlyaddition to the default execution engine, there is
a second implementation based on BPEL (Business Processtiexelanguage), as well as a proof-of-concept
“standalone ADP” implementation, which is a single javaerable including an ADFL parser, ART, a single
container, a library of operator implementations, and aiR8st implementation.

7 Related Work

ADP provides both a testbed for validating research ideadisimnbuted data processing and a core platform
for supporting several data-intensive distributed irtftactures. It has been influenced by lessons learned from
on-going work on data services in the areas of Digital Lilesre-Health, Earth Sciences, etc., which all need a
scalable software layer that can perform compute-intendata tasks easily, reliably, and with low application
complexity. The ADP concepts have been validated in theesordf the DILIGENT [12], Health-e-Child
[14], and D4Science [13] projects, and form the heart of tGeilge system’s information retrieval facilities
[15]. Although several core ADP concepts can be found elsesvhs well, integrating them in one system and
handling the resulting increased complexity does not app@amon. ADP incorporates ideas from databases,
streams, distributed processing, and service compogiiaadress the relevant challenges and offer a flexible
system that can hide the complexities of its underlying is&ctural environment.

Typically, some middleware is used to execute user-defioeé i distributed environments. In the Grid,
OGSA-DAI [2] formalizes access to and exchange of data.eBaip with OGSA-DQP [1], it also addresses
guery optimisation and scheduling. The Condor / DAGMan fisset is a representative technology of the High
Performance Computing area. Its capacities for schedutmmgnitoring and failure resilience render it a robust
and easily scalable mechanism for exploiting vast scieritifrastructures of (mostly) computational resources.
Furthermore, Pegasus [4] supports a higher lever of altisingor both data and operations, and therefore offers
true optimization features, as opposed to simple matcHhilngerators to a fixed set of containers.

ADP builds on top of these technologies and introduces ADd-tdscribe user-defined code in a seman-
tically, technologically and operationally domain agmoshanner. The definition of an Operator, and most
importantly the Operator Profile, is by itself a new challengince traditional database operations like query
re-writing, cost-estimation, completion times, selatgjvco-location capacities/requirements, etc., are Aot a
priori defined or not known at all. Distributed databases wjupsrt custom operations on data via functions or
(extended) stored procedures and handle data exchangdlgines) via efficient proprietary mechanisms, but
optimization is based on established assumptions of iflised) relational databases.

The notion of processing multiple dataflows in ADFL is alsantoon in the literature. In its more recent
form, Mashups (such as Yahoo! Pipes [16], Google MashupEfi0] and Microsoft Popfly [11]) carry out
content processing over well known sources (RSS, ATOM, HTTRe visual languages in these systems serve
as a starting point for ADFL, which in addition, deals witleahative representations for Operator Profiles. In
(e-)Business integration, workflow languages such as WELBde used to express complex queries that call

73

for systems that support multiple execution granularifggnning, execution, and monitoring mechanisms, etc.
Compared to these systems, ADP is designed to offer a ricty gewriting alternatives in the query optimizer.
Finally, SawZall[8] and PigLatin [6] use a higher-lever quéanguage that is executed on MapReduce [3]
systems that support massive parallelization and ach&\ed resilience. However, the language model of the
MapReduce framework is somewhat restricted and restragisrtunities for optimization.

8 Conclusions and On-Going Work

We have given a high-level description of ADP, a distributiedaflow processing system under development,
which is designed to run on top of Ad-Hoc Clusters, Grids, @halds, in an adaptive manner. It deals with
dataflow queries that involve user-defined operators, stibie operators’ properties in profiles, and uses those
to optimize queries at several levels. Optimization may &s&eld on diverse optimality criteria and constraints
but currently focuses on the conventional cpu work pararaete

Work on ADP moves in several directions. These include esgive declarative languages on top of ADFL,
mechanisms to deal with operators that preserve state, m@d@fade security. On the optimization side, the
focus is on Cloud-related architectures, on refining dyeamsource acquisition and release, and on dealing
with complex constraints on these resources. Addition#iky role of execution risk in ADP operators is being
ivestigated, in scenarios where different plans are exptsalifferent execution risk profiles and users have
different attitudes towards risk (e.g., risk aversion).

References

[1] M. N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A. Fernandes, A. Gounaris, and J. Smith,
“Service-based Distributed Querying on the Grid,IE50C 2003, pp. 467-482.

[2] M. Atkinson et al., "A new Architecture for OGSA-DAI,” irProceedings of the UK e-Science All Hands
Meeting 2005September 2005.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified Datadasing on Large ClustersCommun. ACM
vol. 51, no. 1, pp. 107-113, 2008.

[4] E. Deelman et al., “Pegasus: Mapping Large Scale WorldlmDistributed Resources in Workflows in
e-Science,'Springer 2006.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy efGid: Enabling Scalable Virtual Organiza-
tions,” International J. Supercomputer Application®l. 15, no. 3, 2001.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. TorakifiPig Latin: a Not-so-Foreign Language
for Data Processing,” ifroc. 2008 ACM SIGMOD Conference on Management of [2088, pp. 1099—
1110.

[7] F. Pentaris and Y. loannidis, “Autonomic Query AllocatiBased on Microeconomics Principles,Hroc.
23rd Int'l Conf. on Data Engineering (ICDER007, pp. 266—-275.

[8] R.Pike, S. Dorward, R. Griesemer, and S. Quinlan, “lntteting the Data: Parallel Analysis with Sawzall,”
Sci. Program,.vol. 13, no. 4, pp. 277-298, 2005.

[9] L. Vaguero and et al., “A Break in the Clouds: Towards aw@ldefinition,” ACM SIGCOMM Computer
Communication Reviewol. 39, no. 1, 1 2009.

[10] “Google Mashup Editor,” code.google.com/gme/.
[11] “Microsoft Popfly,” www.popfly.com.

[12] “Project DILIGENT,” 2004, www.diligentproject.org.
[13] “Project D4Science,” 2007, www.d4science.eu.
[14] “Project Health-e-Child,” www.health-e-child.org.
[15] “The gCube System,” www.gcube-system.org.

[16] “Yahoo! Pipes,” pipes.yahoo.com/pipes/.

74

An Indexing Framework for Efficient Retrieval on the Cloud *

Sai Wu Kun-Lung Wu
National University of Singapore IBM T. J. Watson Research Center
wusai@comp.nus.edu.sg kiwu@us.ibm.com
Abstract

The emergence of the Cloud system has simplified the deplowifiarge-scale distributed systems
for software vendors. The Cloud system provides a simpleaifieéd interface between vendor and user,
allowing vendors to focus more on the software itself rattman the underlying framework. EXxisting
Cloud systems seek to improve performance by increasingll@lism. In this paper, we explore an
alternative solution, proposing an indexing framework foe Cloud system based on the structured
overlay. Our indexing framework reduces the amount of datasferred inside the Cloud and facilitates
the deployment of database back-end applications.

1 Introduction

The emergence of the Cloud system has simplified the deplulyofdarge-scale distributed systems for soft-
ware vendors. The Cloud system provides a simple and unifiledface between vendor and user, allowing
vendors to focus more on the software itself rather than titetlying framework. Applications on the Cloud
include Software as a Service system [1] and Multi-tenatalmeses [2]. The Cloud system dynamically allo-
cates computational resources in response to customsmine reservation requests and in accordance with
customers’ predesigned quality of service.

The Cloud system is changing the software industry, witktrdaching impact. According to an estimation
from Merrill Lynch [3], by 2011, the Cloud computing markétasild reach $160 billion, including $95 billion
in business and $65 billion in online advertising. Due to toenmercial potential of the Cloud system, IT
companies are increasing their investments in Cloud rele&ixisting Cloud infrastructures include Amazon’s
Elastic Computing Cloud (EC2) [4], IBM's Blue Cloud [5] andbGgle’s MapReduce [6].

As a new computing infrastructure, the Cloud system requivether work for its functionalities to be
enhanced. An area that draws most attention is data storapee&rieval. Current Cloud systems rely on
underlying Distributed File Systems (DFS) to manage dakaniples include Google’s GFS [8] and Hadoop’s
HDFS [9]. Given a query, the corresponding data are retti¢i@m the DFS and sent to a set of processing
nodes for parallel scanning. Through parallel processheyCloud system can handle data intensive application
efficiently. The challenges here lie in how to partition dataong nodes and how to have nodes collaborate for
a specific job. To simplify implementation, current prodesamploy a simple query processing strategy, e.g.,

Copyright 2009 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Partially supported by Singapore Ministry of Education @Fant) for UTab project

75

User Interface and Libraries

| Global Index Layer |
Global Index Global Index J'

r—

Local Index Local Index
Data Chunks Data Chunks

ﬁ Node ﬁ Node

| Structured Overlay Supporting Range Queries |

Figure 1: Indexing Framework of the Cloud

parallel scanning the whole data set. Given enough praagssides, even the simple strategy can provide good
performance. However, such an approach may only work in é&ated system built for a specific purpose
of a single organization. For example, Google employs itpREduce [6] to compute the pagerank of web
pages. In the system, nodes are dedicated to serving oneizatjan. In contrast, in an open service Cloud
system, such as Amazon’s EC2, different clients deploy then software products in the same Cloud system.
Processing nodes are shared among the clients. Data mas@igbatomes more complicated. Therefore,
instead of scanning, a more efficient data access serviegusred.

Following this direction, Aguilera et al.[7] proposed alfatolerant and scalable distributed B-tree for the
Cloud system. In their approach, nodes are classified inémtsl and servers. The client lazily replicates
all inner B™-tree nodes, and the servers synchronously maintairi-&ré® version table for validation. This
scheme incurs high memory overhead for the client machineplcating the inner nodes across the clients.
Moreover, it is not scalable when the updates follow skewettidution, invoking more splitting and merging
on the inner nodes. In this paper, we examine the requirenienthe Cloud systems and propose an indexing
framework based on our earlier work outlined in [10]. Fysthis indexing framework supports all existing
index structures. Two commonly used indexes, hash indexBanttee index, are employed as examples to
demonstrate the effectiveness of the framework. Secopdbgessing nodes are organized in a structured P2P
(Peer-to-Peer) network. A portion of the local index is s&dd from each node and published based on the
overlay protocols. Consequently, we maintain a globabiridger above the structured overlay. It effectively
reduces the index maintenance cost as well as the netwdfik &rmong processing nodes, resulting in dramatic
query performance improvement.

The rest of the paper is organized as follows: We presentrmaxing framework in the next section and
discuss the details of our indexing approach in Section 3Sdation 4, we focus on the adaptive indexing
approach. And some other implementation and researchsissaentroduced in section 5. Finally, we present
our preliminary experimental results in Section 6 and catelthe paper in Section 7.

2 System Architecture

Figure 1 illustrates our proposed indexing framework fer @oud system. There are three layers in our design.
In the middle layer, thousands of processing nodes are anagtt in the Cloud system to provide their compu-
tational resources to users. Users’ data are partitiortedsome data chunks and these chunks are disseminated
to different nodes based on DFS protocols. Each node builae docal index for its data. Besides the local
index, each node shares parts of its storage for maintathinglobal index. The global index is a set of index
entries, selected from the local index and disseminatederciuster. The middle layer needs to implement the
following interfaces:

Map(v)/Map(r) Map a value or data range into a remote node
GetLI(v)/GetLI(r) | Given a value or data range, return the corresponding ladai
GetGl(v)/GetGlI(r)| Given a value or data range, return the corresponding glodeak

InsertGI(l) Insert an index entry into the global index

76

All the methods excepBetLI rely on theMap function. Given a value (hash based index) or a ranget{Be
based index)\Viap defines how to locate a processing node responsible for the garange. Its implementation
depends on the lower layer’s interface.

To provide an elegant interface for users, we apply the &ired overlay to organize nodes and manage the
global index. In the lower layer, processing nodes are lgasmnected in a structured overlay. After a new node
joins the Cloud, the node performs the join protocol of theray. Specifically, the node will accept a few other
nodes as its routing neighbors and notify others aboutiitgng. This process is similar to the construction of a
P2P network. However, our system differs significantly fribvia P2P network. In the Cloud system, services are
administrated by the service provider, and nodes are addedhe system to provide computational resources.
Onjoining the network, nodes must remain online unless énévirare fails. In contrast, in the P2P network, peer
nodes are fully autonomous and unstable. A peer joins thene#ork for its own purpose (e.g., to download
files or watch videos) and leaves the network on finishingaig&.t In our system, the P2P overlay is adopted
only for routing purposes. The interfaces exposed for theeufayers are:

lookup(v)/lookup(r)| Given a value or a range, locate the responsible node
join Join the overlay network
leave Leave the overlay network

In principle, any structured overlays are applicable. Hmveto support B-tree based index, range search is
required. Therefore, we adopt structured overlays thai@tipange queries, such as CAN[11] and BATON[12].

In the upper layer, we provide a data access interface toghesiapplications based on the global index.
The user can select different data access methods forafiffgueries. Scanning is suitable for the analysis of
large data sets while index-based access is more prefenredlifne queries.

3 Indexing Framework

In this section, we shall discuss the implementation issfi¢lse middle layer in the framework. Algorithm 1
shows the general idea of the indexing scheme. First, wey @pphdaptive method to select some index values
(the adaptive approach will be discussed in the next sectleor a specific index valug we retrieve its index
entry through theGetLlI method. The index entry is a value record in the hash basexk inda tree node in
the B"-tree based index. Then, we apply tMe@p function to locate a processing node and forward the index
entry to the node, where it will be added to the global indelgofithm 2 shows the query processing algorithm
via the global index. The query is forwarded to the nodesrmet by theMap function, where the query is
processed through the global index in parallel. As the #lyois show, theMap function plays an important
role in the index construction and retrieval. In this sattiwe discuss how to define a propéap function for
different types of indexes.

Algorithm 1 EstablishGloballndex(node n)
1: ValueSet S=getindexValue()
2: for Vv € S do
3 I=GetLI(v)
4: publish | to Map(v)
5: end for

3.1 Hash Based Indexing

The hash index is used to support exact key-match queriggadSa we use the hash functiapto build the
local hash index. For an index valugwe can simply define thilap function as:

Map(v)=lookup, (V)

77

Algorithm 2 SearchGloballndex(range r)

1: NodeSet N=Map(r)

2: for Vn € N do

3 I=n.GetGlI(r)

4: process queries based on |
5

. end for

whereh, is a global hash function for the Cloud system dadkupis the basic interface of the structured
overlay. In the structured overlay, for routing purposesheaode is responsible for a key space. For the hash
index, all nodes appl¥i, to generate a kelyfor an index value. Given a kelpokupreturns the node responsible
for the key. Note that, does not need to be equivalent to the hash functioas each node may build their
local hash index based on different hash functions.

3.2 Bf-tree Based Indexing

The B-tree based index is built for supporting range search. Imander B -tree, all the internal nodes,
except the root node, may hadechildren, wheren < d < 2m. The leaf nodes keep the pointers to the disk
blocks of the stored keys. To define thkap function for the B -tree index, a range is generated for each tree
node. Basically, B-tree nodes can inherit a range from their parents. In Figun®ded is nodea’s third child.

So its range is from the second key to the upper bound aoamely (35,45). The range afis from the lower
bound of the domain to the first key of its parent. Thais,range is (0,45). Specifically, the range of the root
node is set to be the domain range.

1 (0, 100) Em.

oo [2T1 T (1] T

~

‘5‘8‘12‘ ‘ ‘22‘26‘30‘35‘ ‘35‘40‘45‘ ‘

b (0,12) ¢ (12,35) d (35,45)

Figure 2: Node Range in Btree
After generating the range for aBtree noden, we define théMlap function as:

Map(n)=lookup(range(n))

To support the above mapping relation, the underlying ayemiust provide théookupinterface for a specific
range. In this case, only the structured overlays that stippoge search are applicable, such as BATON [12],
CAN [11] and P-Ring [13].

3.3 Multi-dimensional Indexing

A multi-dimensional index, such as the R-tree [14], is ukBfuspatial and multi-dimensional applications. In
the R-tree, each node is associated with a Minimal BoundatdRgle (MBR), which is similar to the range
defined for the B-tree node. Given an R-tree node, we need to defil@@function to locate the processing
node. Depending on the characteristics of the underlyirglays, we have two solutions:

If the underlying overlay, such as CAN [11], supports mditaensional routing, we can directly use its
lookupinterface. For an R-tree node theMap function is defined as:

Map(n)=lookup(getMBR(n))

However, most structured overlays have not been desigmesuiporting multi-dimensional data indexing. In
this case, the alternative solution is to map the multi-disi@nal rectangle into a set of single dimensional

78

ranges. The space filling curve [15] is commonly used for tagk. Given a rectangl®&, we can define a
function f based on the space filling curve, which map$o a range sef. Finally, theMap function returns
the corresponding node set:

Map(n)={lookup(r)vr € S}

4 Index Tuning

The local index size is proportional to the data size. Thmeefwe cannot publish all the local indexes into the
global index. In this section, we discuss the index tunirgpf@m in the framework.

Algorithm 3 IndexTuning(node n)
1: IndexSet I=n.getAllindexEntry()
2: for Ve € I do
3: if needSplit(efhen

4: IndexSet I'=getLowerLevellndexEntry(e)

5: remove e and insert I’ into global index

6: else

7 if needMerge(edhen

8: IndexEntry e’=getUpperLevellndexEntry(e)

9: remove e and its siblings; insert e’ into global index
10: end if
11: endif
12: end for

Algorithm 3 shows the general strategy of index tuning. lfraatex entry needs to be split due to the high
benefit for query processing, we replace the index entry igtlower level index entries. In contrast, if it needs
to be merged with its siblings, we remove all the correspapdidex entries and insert their upper layer entry.
In this way, we dynamically expand and collapse the locatinith the global index. In the above process, we
manage the local index in a hierarchical manner. Existimgxnstructures can be easily extended to support
such operations. Again, we use hash index aneti@e index as the examples in our discussion.

4.1 Multi-level Hash Indexing

[
level 2
h(x)=x mod 4 n(x)=xmod §

Figure 3: Hierarchical Hash Functions

Linear hashing and extendible hashing can be considerediltislenel hash functions. As shown in Fig-
ure 3, the hash function at leviek defined asi(x)=x mod2‘. Given two data items; anduvs, if h;(v1) = h;(v2),
v1 andv, are mapped to the same bucket in leveAs a matter of fact, the index data are only stored in the
buckets of the last level (e.g., level 3 in Figure 3). The otheel buckets store a Bloom Filter [16] to verify
membership and are maintained virtually. We generate aniBdch bucket based on its ancestors’ hash values.
For example, the bucke®; = {3,9} in level 2 has an ID “00” and the buckét; = {8} in level 3 has an ID
“110". Instead of using the hash value as the key to publisidéta, we use the bucket ID as the key. Initially,
only level 1 buckets (e.g., bucket “0” and “1”) are insertatbithe global index. If bucket O has a high query

79

load, it will be split into two buckets in level 2. Then, theegqy load is shared between the two buckets. The
index lookup is performed in a similar way. We generate ackekey based on the hash function. For example,
to perform search for 9 and 6, we generate keys “000” and “1@3pectively. Query for “000” will be sent to
the bucket “00”, whose id is the prefix of the query.

4.2 Dynamic Expansion of the B -tree based Indexes

b
LT O
d e f g h [

local tree global expansion tree

Figure 4: Adaptive Expansion of Btree

In the index tuning process, thetBree based global index can be considered a result of thanaign
expansion of the local B-trees. Figure 4 illustrates the idea. Due to network codtstorage cost, we cannot
publish all the leaf nodes into the global index. Therefdres, more feasible and efficient to select and publish
some tree nodes based on the cost model. Based on Algorittiva ®ining process is similar to tree expansion
or collapse. When a new processing node joins the clustiesdtts the root node of its local'Btree into the
global index. Then, it adjusts its index by expanding the tlgnamically. Figure 4 shows a snapshot of an
expanding tree.

4.3 Cost Modeling

In our indexing framework, a cost model is essential to etalihe cost and benefit of maintaining the global
index. In As different system configurations will lead tofelient cost models, we describe a general approach to
estimate the cost. Basically, maintenance costs can bafdsnto two types, query processing cost and index
maintenance cost. Algorithm 2 indicates that query praogssost includes the routing cost incurred ap
and the index lookup cost incurred BetGl Based on the protocol of structured overlays, the cosfiap is
O(logN) network /0O, whereV is the number of nodes in the Cloud. The cosGettGlis the local I/0 cost of
processing the query via the global index, and it depends@sttucture of current global index. For example,
in an L-level B*-tree index, if oné:-level tree node; is inserted into the global index, query processingnia
requires additional. — h 1/0O cost. Thus, the cost @éetGl must be estimated on the fly. Once the local index
is modified, we need to update the corresponding global indetypical update operation trigger3(logNV)
network I/Os and some local I/Os. The total index mainteeac@st is a function of the update pattern. We
employ the random walk model and the bayesian network mogwekdict update activities in the'Btree index
and the multi-level hash index, respectively. Finally, dost of a specific index entry is computed as the sum
of its query cost and maintenance cost. And to limit the gf@reost, we set a threshold for the size of global
index. Then, the optimal indexing scheme is transformea artnapsack problem. And a greedy algorithm can
be used to solve the problem.

5 Other Implementation Issues

5.1 Concurrent Access

In an open service Cloud system, registered users are altwvdeploy their own softwares. If some users’
instances access the global index concurrently, we neeadbi@gtee the correctness of their behaviors. Suppose
an index entry receives an update request and read requesgtasieous from different instances. We need to

80

generate a correct serialized order for the operations.s&ipte solution is to group the relative operations in a
transaction and apply the distributed 2-phase lockingogmt However, 2-phase locking protocol reduces the
performance significantly. If consistency is not the majmmazrn, more efficient solutions may be possible [17].

5.2 Routing Performance

As discussed in the cost modBlapincursO(logN) network 1/O, wheréV is the number of nodes in the Cloud.
Although nodes in the Cloud are connected via a high bantwidiN, the network cost is still dominating the
index lookup cost. Some systems [18] apply the routing bufieeduce the network cost. Generally, after a
success lookup operation, the node keeps the destinatizetadata in its local routing buffer. In the future
processing, if a new lookup request hits the buffer, we caiewe the corresponding data within 1 network 1/0.
However, the application of routing buffer incurs new resbaroblems such as how to keep the routing buffer
up to date and how to customize the routing algorithm.

5.3 Failure Recovery

In the Cloud system, as the processing nodes are low-cokstations, there may be node failures at any time.
In this case, a master node is used to monitor the status esnd@hd each node will record its running status
into a log file occasionally. If a node fails, it will be rebedtby the master node and automatically resume its
status from the log file. To keep the high availability of tHelmal index, we write the global index into the log
file as well. Moreover, we exploit the replication protocéltiee overlay network to create multiple copies of
the global index. Therefore, a single node’s failure wilt affect the availability of the global index. One of the
replicas is considered as the master copy, while the otleeslave copies. The updates are sent to the master
copy and then broadcasted to the slave copies. Once a mapiefails, one of the slave copies is promoted to
be the master one. And after a node recovers its global inidethe log file, it will become a slave copy and ask
the master one for the missing updates.

6 A Performance Evaluation

Query Scalability Update Scalability
35000 T T T T T 3000

u‘pdate A
30000 - 2500 |
25000
2000 ~
20000 ~

1500 |
15000 -

10000 - 1000

Query Throughput (per sec)

5000 500 |

Update Throughput (x1000 per sec)

32 64 96 128 192 256 16 32 64 96 128 192 256
Number of Nodes Elapsed Time (sec)

(a) Query Throughput (b) Update Throughput
Figure 5: Experiment Result

To illustrate the effectiveness of the framework, we havple@mented our indexing framework on BATON
[12] for the Cloud system (see [10] for more details). In olou@ system, each node builds a locat-Bee
index for its data chunks. The global index is composed by rtigmoof local B*-tree indexes. We deploy
our system on Amazon’s EC2 [4] platform. In our system, eamtterhosts 500k data in its local database. A
simulator is employed to issue queries. From the start oEperiment, the node will continuously obtain a
new query from the simulator after it finishes its current.o@e major metrics in the experiment are query
throughput and update throughput. To test the scalabilibupapproach, Cloud systems with different numbers

81

of processing nodes are created. In Figure 5(a), we gendiffgeent query sets by varying the selectivity of
the search. When = 0, the query is exact search query. Where= 0.01, one percent of the data space is
searched in the query. Query throughput increases almnmesirly as the number of processing nodes increases.
Figure 5(b) shows the update throughput. We generate thdiims request for each local'Btree uniformly. In

our system, the updates can be processed by different nogesallel.

7 Conclusions

In this paper, we study and present a general indexing framefar the Cloud system. In the indexing frame-
work, processing nodes are organized in a structured gveetvork, and each processing node builds its local
index to speed up data access. A global index is built by 8eteand publishing a portion of the local in-
dex in the overlay network. The global index is distributagtothe network, and each node is responsible
for maintaining a subset of the global index. Due to storags and other maintenance issues, an adaptive
indexing approach is used to tune the global index basedeondst model. Two experiments on a real Cloud
environment, Amazon’s EC2, illustrate the effectivenass potential of the framework.

References

[1] Steve Fisher. Service Computing: The AppExchange &fatf SCG 2006.

[2] M. Huiand D. W. Jiang and G. L. Li and Y. Zhou. SupportingtBlaase Applications as a Servi¢d€DE, 2009.

[3] Merrill Lynch. The Cloud Wars: $100+ billion at stake.

[4] Merrill Lynch. Amazon Elastic Compute Cloud (Amazon EC®tp://aws.amazon.com/ec2/.

[5] IBM. IBM Introduces Ready-to-Use Cloud Computing, httpww—03.ibm.com/press/us/en/pressrelease/22613.wss.
[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplifia processing on large clustetammun. ACM2008.

[7] Marcos Aguilera and Wojciech Golab and Mehul Shah. A BcatScalable Distributed B-Tre&/LDB, 2008.

[8] Sanjay Ghemawat and Howard Gobioff and Shun-Tak Leurhg Google file systemSOSR 2003.

[9] http://hadoop.apache.org

[10] Sai Wu and Dawei Jiang and Beng Chin Ooi and Kun-Lung W@G-i@dex: A Scalable Indexing Scheme for Cloud
Data Management Systenikechnique Report (http://www.comp.nus.edu.sg/ wugaifted9_01.pdf) 2009.

[11] Sylvia Ratnasamy and Paul Francis and Mark Handley dodaRd Karp and Scott Schenker. A scalable content-
addressable networl§SIGCOMM 2001.

[12] H. V. Jagadish and Beng Chin Ooi and Quang Hieu Vu. BAT@NBalanced Tree Structure for Peer-to-Peer Net-
works. VLDB, 2005.

[13] Adina Crainiceanu and Prakash Linga and Ashwin Mactajjteala and Johannes Gehrke and Jayavel Shanmuga-
sundaram. P-ring: an efficient and robust P2P range indegtate. SIGMOD, 2007.

[14] Antonin Guttman. R-trees: a dynamic index structuresfoatial searchingSIGMOD, 1984.

[15] J. K. Lawder and P. J. H. King. Querying multi-dimensabata indexed using the Hilbert space-filling curve.
SIGMOD Record30(1), 2001.

[16] AndreiBroder and Michael Mitzenmacher. Network Aggliions of Bloom Filters: A Surveynternet Mathematics
2002.

[17] Seth Gilbert and Nancy Lynch. Brewer’s conjecture dralfeasibility of consistent, available, partition-t@at web
services. SIGACT News33(2), 51-59, 2002.

[18] Giuseppe DeCandia and Deniz Hastorun and Madan JarmapdrGunavardhan Kakulapati and Avinash Lakshman
and Alex Pilchin and Swaminathan Sivasubramanian and Regsshall and Werner Vogels. Dynamo: Amazon’s
highly available key-value stor&IGOP$2007.

82

25™ IEEE International Conference on Data Engineering (ICDE 2009)
29 March — 4 April, 2009 Shanghai, China

IEEE
)computer
soclety

& IEEE

Data Engineering refers to the use of engineering techniques and methodologies in the design, development and assess-
ment of information systems for different computing platforms and application environments. The 25th International
Conference on Data Engineering provides a premier forum for sharing and exchanging research and engineering results
to problems encountered in today’s information society. The conference programme will include research papers on all

topics related to data engineering, including but not limited to:

Approximation and uncertainty in databases
Probabilistic databases

Data integration

Metadata management and semantic interoperability
Data mining and knowledge discovery

Data privacy and security

Data streams and sensor networks

Data warehousing, OLAP and data grids

Database user interfaces and information visualization
Personalized databases

Accepted contributions at ICDE 2009 will make efforts (1)

Social information management, annotation and data curation
Query processing and query optimization

Database tuning, and autonomic databases

Scientific, biomedical and other advanced applications
Spatial, temporal and multimedia databases

Transaction and workflow management

Ubiquitous, mobile, distributed, and peer-to-peer databases
‘Web data management

XML data management

Database architectures

to expose practitioners to the most recent research results,

tools, and practices that can contribute to their everyday practical problems and to provide them with an early opportunity
to evaluate them; (2) to raise awareness in the research community of the difficult data & information engineering
problems that arise in practice; (3) to promote the exchange of data & information engineering technologies and
experiences among researchers and practitioners; and (4) to identify new issues and directions for future research and

development in data & information engineering.

AWARDS

An award will be given to the best paper submitted to
the conference. A separate award will be given to the
best student paper. Papers eligible for this award must
have a (graduate or undergraduate) student listed as the
first and contact author, and the majority of the authors
must be students.

INDUSTRIAL PROGRAM

ICDE 2009 will include an industrial track covering
innovative commercial implementations or applications
of database or information management technology,
and experience in applying recent research advances to
practical situations. Papers will describe innovative
implementations, new approaches to fundamental
challenges (such as very large scale or semantic
complexity), novel features in information management
products, or major technical improvements to the state-
of-the-practice.

PANELS

Conference panels will address new, exciting, and
controversial issues, being provocative, informative,
and entertaining.

DEMONSTRATIONS

Presented research prototype demonstrations will focus
on developments in the area of data and knowledge
engineering, showing new technological advances in
applying database systems or innovative data
management/processing techniques.

TUTORIALS

ICDE 2009 will host tutorials, relevant to the
conference topics. Tutorials can be single-session (1.5
hour) or for double-session (3 hour).

WORKSHOPS
The following workshops will be hosted by ICDE 2009:

e DBRank: Third International Workshop on Ranking
in Databases

First IEEE Workshop on Information & Software as
Services (WISS'09)

Fourth International Workshop on Self-Managing
Database Systems (SMDB 2009)

Management and Mining of UNcertain Data
(MOUND)

Modeling, Managing, and Mining of Evolving Social
Networks (M3SN)

Second International Workshop on Data and Services
Managementin Mobile Environments (DS2ME 2009)

For more information, visit http://i.cs.hku.hk/icde2009/

Non-profit Org.

U.S. Postage
_ PAID
IEEE Computer Society Silver Spring, MD
1730 Massachusetts Ave, NW Permit 13é8

Washington, D.C. 20036-1903

