
 1

Disk Backup Through Algebraic Signatures
 in

Scalable Distributed Data Structures

Witold LITWIN1, Riad MOKADEM1, Thomas SCHWARZ, S.J.2

Abstract :

A Scalable Distributed Data Structure (SDDS) allows to store a large scalable file over a
distributed RAM. The file scales up transparently for the application over the nodes of a
multicomputer, e.g., a local network of PCs. The prototype system termed SDDS 2000, designed
by CERIA experiments with this technology for Wintel multicomputers. The application may
manipulate data much faster than on local disks.

We present the functions we have added to SDDS-2000 to backup the RAM on each storage
node onto the local disk. Our goal is to write only the data that has changed since the last backup.
We experiment for this purpose with the algebraic signatures. We present our architecture and
design choices. Performance measures validate our implementation. It is now available for the non-
commercial use as part of new version of our prototype termed SDDS-2002.
1. Introduction

 A Scalable Distributed Data Structure (SDDS) allows to store a large scalable
file over a distributed RAM. The file scales up transparently for the application
over the storage nodes of a multicomputer, e.g., a local network of PCs and WSs.
The storage nodes are called the (SDDS) server nodes. The application manipulates
through the SDDS interface at its node, called the (SDDS) client node. The client
node performs the (scalable) address calculus and handles the application requests
accordingly. Various SDDS schemes have been investigated, [C]. Probably the most
studied were the linear hash partitioning variants of the LH* scheme, and the range
partitioning using the RP* schemes.

The prototype system termed SDDS-2000, designed by CERIA put the SDDS
technology into practice for Wintel multicomputers. The application manipulates
data much faster than on local disks. Experiments with the SDDS files over 1.8
GHz Dell nodes linked by the 1 Gbs Fast Ethernet at CERIA show the successful
key search time for the 100-byte record under 30 μs. That is thus about 300 times
faster than the typical disk search time of 10 ms.

In SDDS-2000, each server node keeps the SDDS records in the RAM storage
area termed bucket. It appeared useful to have buckets backed up to the disk. For
the efficiency of this process, it was clearly best to copy to the disk only the data
that has changed in the bucket since its last backup. As usual, it appeared
potentially best to divide then the bucket into smaller units we called pages and write

1 University Paris 9 Dauphine, 75016 Paris, France. mailto:Witold.Litwin@dauphine.fr
2 Santa Clara University, Santa Clara, CA. mailto:tjschwarz@scu.edu

DEXA-GLOBE 2006 Keynote

 2

only the modified pages. The usual way to detect the page modification is to create
the “dirty” bit table. The bit corresponding to a page is set up when a modification
occurs. One backs up then only the “dirty” pages, cleaning the dirty bits back to the
clean status afterwards.

To add the backup service in this way to SDDS-2000 turned out to be
impossible in practice. The service was to be added to the existing complex code,
built over years by different designers. It appeared a daunting task to properly
identify all the pieces of the code that write at some point to the bucket. These
should be updated to write the dirty bits as well. An approach not modifying the
existing code, but only adding a new one was necessary.

We have chosen to provide each page in RAM and on the disk with a signature.
We recall that a signature calculus scheme guarantees that a rapidly computed and
a few-byte long signature computed for a modified data unit, e.g., our page, differ
from the original signature of the unit for sure or at least almost surely. We may
compute then the RAM page signature at the backup only and compare it to that of
its disk image. We then write the page only if the signatures differ. We can perform
the whole backup service by an additional software module. Without any change to
those already working[V1].

Many signature schemes are known. The SHA-1 standard is perhaps the most
used [11]. For our purpose, the algebraic signatures appeared nevertheless more
practical [LS2], [LS3], [X&al3]. To implement these in practice required various
design choices, e.g., over the page size and signature length. In what follows, we
present our implementation and report on our final choices. We justify them
through the experimental performance analysis. We consider the reader familiar
with the theory of the algebraic signatures [LS2].

Section 2 overview our scheme. Section 3 discusses the experimental
performance analysis validating our design. Section 4 presents the conclusions and
directions for further work.
2. The SDDS-2002 Backup Scheme

2.1. System Architecture

In SDDS-2002, we offer to the application two new commands. These are the
store command to backup or evict the file and the load command to restore it.
The store writes to the disk only the data selected as we will describe. The load
reads to the RAM from the disk the whole saved bucket. See [M2] for the
command syntax.

The SDDS client sends the store or load command for a given file F using a
UDP multicast request to all the servers, Figure 1. Those that carry a bucket of F
process the commands and acknowledges the execution to the client. The
acknowledgements include the RP* range of each bucket (we recall that an RP*
scheme range partitions the file). The client unions all the ranges to find out
whether all the servers of F that should reply did it (we recall that an SDDS client
may not be aware of all the existing servers). This is the case only if the union

 3

reaches the whole key space of F. In this case, the client informs the application
of the successful termination. Otherwise, messages are resent to the missing servers
after a timeout and if some still do not reply, a server recovery action may start.

Figure 1 Gross Architecture for Bucket Disk Backup in SDDS-2002

Figure 2 shows the internal bucket structure for the RP* file under the SDDS-
2002. The bucket is organized as a kind of RAM B+-tree. The index area is usually
a few KByte long, a fraction of the data area. The index is modified whenever a
tree leaf in the data area splits. Hence, the index gets modified more often than any
part of its size in the data area[DL1].

To implement our backup schema, we have divided the data and index area into
pages. The index is entirely one page. Each page has an algebraic signature. We
compute all the signatures when the whole bucket is saved for the 1st time. The
collection termed the (bucket signature) map is saved itself and kept in RAM. Any
subsequent store leads to the computation of the actual signatures of all the RAM
pages. We compare each to its copy in the map. We write the pages whose
signatures differ to the disk.

Figure 2 Internal Organization of Bucket in SDDS

En-tête

Index SDDS B+-tree

Pages de donnéesData File

header

Resend
Bucket
 ack’s
(unicast)

Command

Client Serv1

Proc. 1

Serv2 Serv N

Proc. 2 Proc. N

Command = Load/Store
Ack = Bucket Interval

 4

The size of a disk write is a page at least. The granularity of data pages should
thus be chosen carefully. Smaller pages possibly decrease the disk write size so the
time to backup if a few updates only occur. In turn they potentially increase the
number of writes when many updates occur. Our present data page size is 16 KB
and index page size is 256 B. Reasons for that will be discussed below.

We have organized the disk storage at each server as follows. For each bucket to
save, there are two files. One contains the backed up data pages. The other has the
index pages. At each server, there is also an additional file that stores various
parameters of each file saved. The load command needs these parameters to
restore the buckets. These are the bucket file name, page size, number of pages….

The store command may keep the saved bucket in the RAM. It remains then
available for access. Alternatively, the backup may free the RAM space, i.e., may
evict the bucket from the RAM. The storage becomes available for another bucket.
To manipulate records in the saved bucket, one must then execute the load
command.
2.2 Algebraic Signature Calculus

The algebraic signature is a specific power series in a Galois Field (GF), [LS3].
We will now show our calculus of such signatures. We recall that a GF (N) is an
algebraic structure with N elements, including elements 0 and 1 with usual
properties with respect to the addition, subtraction, multiplication and division in
the GF. GF (2f) with f = 8, 16… are especially useful. In this case the addition a + b
is usually computed as XOR of the bytes or words (symbols) representing the
elements. The multiplication a*h, or ab as usual in short, is often implemented as
the calculus:
 ab = antilog ((logα a + logα b) mod N)
where α is a primitive element and a,b ≠ 0 and a,b ≠ 1. We recall that in a GF, every
a ≠ 0 is α i form some i = 0,1…f -1. The log and antilog values are then tabulated in
tables. The size of each table can be of N – 1 symbols. To avoid the mod N
calculus, one can also double the log table to the size of 2N in practice. These
calculus methods for the addition and multiplication were or final choice for our
implementation. We have also chosen to use GF(216).

We use the algebraic signatures for our purpose as follows. Let P be a page. We
consider P as a vector (1-d array) of symbols p1 , p2, ….pn of the GF used, GF(216)
in our case. Technically, each p is one byte or a two-byte word (our case) of P. Let
p’ denote the element of GF used such that p = logα p’. Let α=(α1, α2,…αn) be the
vector of different non-zero elements of the GF. We consider here specifically that
α1 is primitive and for i = 2..n, we have :

αi = α1
i.

Let it be for each α ∈α :
Signα(P) =∑ p’

i α
i
 ; i = 1,2..n

Then, the (n-symbol) signature of P is the vector denoted Signα :

 5

Signα(P) = (Signα1(P), Signα2(P)… Signαn(P)).
We calculate Signα(P) using the log/antilog multiplication calculus. The use of p’

in the formulae is purely formal. In practice, we consider P symbols p directly as
logarithms. In other words, we do not calculate p’, but, for each αj , j = 1..n, we
directly add pi to logα α i. This speeds up the calculus, with respect to the direct
application of the signature definition in [LS3].

Likewise, a natural approach to Signα(P) calculus is to compute Signα1(P), then
Signα2(P) etc. In our case, it appeared notably faster to calculate the contribution of
p1 to α1.. αn, followed by this of p2 to α1

2.. αn
2 etc. This approach was our final

choice. The reason is likely the influence of L1 and L2 caches.
The crucial propriety of the algebraic signature for our application is that the

probability that two objects differ by only few symbols have the same signature, i.e.
they collide, can be made negligible or even zero, [LS3]. Larger n is, smaller is the
collision probability for the same P1, P2. For a given n, as long as P1, P2 do not differ
by more than n symbols, then collision probability is zero, provided the page size
under 2f – 1 symbols for GF (2f) used. This property is at present unique to
algebraic signatures.

For our purpose, the use of 2-symbol (4-byte) signatures sufficed. All things
considered with respect to the page granularity, we have also set up our system for
data area pages of 16 Kbytes. For the index, pages of 256 Bytes sufficed. As long as
the RAM page P1, and its previous disk image P2 differ thus by at most 2 symbols,
the collision probability is zero. If the application may make them differ arbitrarily,
this probability is 2-32. In general, that probability is 2-nf.
3. Experimental Performance Analysis

3.1. Overall description

The signature schema in our case makes sense only if it saves time with respect
to the straight disk write of the entire bucket. The algebraic signatures themselves
are new & the scheme makes sense only if it is more efficient in our case than a
known one. Regardless of the signature scheme used, in our case our total time
results from that (i) to calculate and compare all the signatures and from that (ii) to
write all the modified pages. First, this time is interesting by itself. Especially, as
the function of the number of servers for the file. Logically it should decrease when
there are more server, the interesting question being how.

Next, our scheme makes sense if we typically need less time for the file write
than for the straight bucket(s) write. Our fastest case is when we only calculate the
signatures, i.e., it appears that no page was changed. Our worst case is when we
perform this calculus and write everything. The intermediate case can be, e.g.,
assuming that a small part of the bucket has changed, like 5 % of the file. The
analytical calculus of such times for various bucket sizes, given CPU and disk
speeds, the number of servers for the file etc. appears unfeasible in practice. We
have therefore performed the experimental analysis we present now.

 6

Our servers were four 1.8 GHz P4 PCs under Windows 2000 Server. The client
was on a P3 800MHz machine. There was also a P3 500 MHz PC for the name
sever used by SDDS-2002. A 1Gbs Ethernet linked all the machines.

To evaluate the comparative interest for us of the algebraic signatures with
respect to another signature scheme, we have also experimented with the probably
best known one which is the SHA-1 scheme, [S5]. We recall that this is the
cryptographically secure signature schema implemented, in particular in the MS-
Studio.net architecture. The SHA-1 calculus produces a 20-byte long signature.
That one is called message digest, Figure 3. The reasons for this terminology is that
the message digest can be input to the digital signature algorithm (DSA), which
generates or verifies the signature for the message. Any change to a message in
transit will, with very high probability, result in a different message digest. We have
implemented the SHA-1 calculus for our pages and comparatively analysed the
message digest as an alternative signature for our backup scheme.

Figure 3 The SHA-1 scheme.
Data Storage

Figure 4 shows the time to store a file with our scheme. The file has up to 25000
records and is generated either entirely at one server, or, using smaller bucket sizes,
splits on two or three servers. The bucket sizes and the times for one server are
from Table 1. Logically, the figure confirms that using more servers speeds up the
process. The speed-up reaches 30 %.

Table 2 sums up experiments for the scheme for various file sizes on a single
server. First column shows bucket sizes used. The 3rd column shows the
cumulated times to compute the algebraic signatures for all the pages of the bucket.
As one could expect, the values appear linear with the bucket size. They are also
about constant per Mbyte, around 25 ms. Finally, and fortunately, they are only a
small, about 10 %, fraction of the time to store the file, shown in next column.
Thus our calculus is globally efficient for our purpose.
Notice that these results are for the 16 KB pages. Better results were obtained for
larger pages of 64 KB, leading to the calculus time of 20 Ms per 1 MB of RAM. It
is due to less calculus of signatures and probably to the better use of cache.

 7

However, such pages appear globally less efficient for our application at present
than our choice. This, because of 4-time higher minimal write time.

The next column shows the time to store when the signatures did not detect any
change to the file (0 % change to the file). Nothing is written to the disk. These
times are nevertheless understandably slightly higher than for the signature calculus
alone. Nonetheless, the total time to perform the backup according to our scheme,
saves about 90 % of the write time.

Figure 4 Time to store a file

Likewise, the next column shows the results for the 5 % change to the file,
through inserts. The gains are smaller, but still about 90 % in practice. The hidden
reason for such a good performance is that SDDS-2002 locates the new records at
the end of the bucket. Notice, however that if inserts lead to a bucket split, then
the entire splitting bucket is to write, as well as the new one at the server appended
to the file.

Table 1 File storage performance analysis

3.2. SHA-1 Signatures

We repeated our experiments using the SHA-1 signature calculus. Results are in
Table 2 and in Figure 5.

Bucket
size

(MB)

Number
of record

Signature
calculus

(ms)

Signature
Calculus
per/MB

(ms)

Total
store
time
(ms)

Store
time for

0 %
change
(ms)

Gain
(%)

Store
time for

5 %
change

 (ms)

Gain
(%)

1.88 100 46 24.46 562 50 91.1 65 88.43
2.7 150 78 28.8 781 82 89.51 95 87.83
17.6 1000 438 24.88 5078 438 91.38 453 91.07
158 10000 4068 25.74 46406 4071 91.23 4085 91.19
393 25000 11003 27.9 117859 11003 91.33 11018 90.65

0

20000

40000

60000

80000

100000

120000

140000

100 150 1000 10000 25000

One Serv

Tw o Serv

Tree Serv

Number of
Record

Time of
Storage
(Ms)

 8

Table 2 File storage using SHA-1 signature performance analysis

 The results confirm that our scheme is substantially more efficient with the
algebraic signatures. The signature calculus is itself substantially faster, the gain
being about 30 %. Also, the gain for 5 % change is between 30 % for a small file,
and 40 ÷ 50 % for larger ones. Besides, we recall that our algebraic signature is 4-
byte long, while SHA-1 uses 20 bytes.

Figure 5 Algebraic / SHA-1 Signature Calculus Time (ms)

4. Conclusion
 We have added the SDDS file disk backup storage capability to our prototype
SDDS-2000 system. Our implementation is now integrated in the SDDS-2002
prototype. The use of signatures allowed us to add this function without the
modification of the existing code. That one would be infeasible in practice. We only
needed to add our new code. It turned out to be a three man-month task.

The signature calculus that our approach required could be made fast enough to
remain under 10 % of the disk write time. This is a negligible performance penalty
in practice. Also the storage for the page signature is a negligible fraction of the
page size. Besides, the traditional approach of the “dirty” bit table also carries an
overhead. Even more importantly, it introduces the run-time overhead for the
update operations, unlike the ours. All together, our approach should be of interest
also to other applications with similar needs.

Bucket
size
(Mb)

Number
of record

Algebraic
signature
calculus

(ms)

SHA-1
calculus

(ms)

Storage
time using

SHA-1
(ms)

Storage
time
using

alg. sign.
(ms)

SHA-1
Store

time for
5 %

change
 (ms)

Alg. sign
Store

time for
5 %

change
 (ms)

Gain
(%)

1.88 100 46 70 602 562 85 65 30
2.7 150 78 103 799 781 119 95 25
17.6 1000 438 680 5278 5078 697 453 53
158 10000 4068 6088 47906 46406 6102 4085 49
393 25000 11003 15403 119342 117859 15418 11018 40

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 2 4 6

Bucket Size (MB)

Algebraic signature

Cryptographic
signature

 1.88 2.77 17.6 158 393

 9

Our future work addresses the automation of the bucket eviction to the disk and
of its load, [LSS2]. We also work on other uses of the algebraic signatures for the
SDDS management. In [LS3], we report on the record update management, also
now integrated in SDDS-2002, [H3]. We also work on the use of signatures for the
distributed non-key record search, including the partial (string) search. The
algebraic properties of the signatures play there to some extent similarly to
properties of hash schemes in [KR87].
Acknowledgements
We thank Jim Gray and Peter Scheuermann for fruitful discussions. This work was partly supported by the
research grants from Microsoft Research, and from the European Commission project ICONS project no. IST-
2001-32429, as well by the SCU IBM grant 41102-COEN-RSCH-IG-IG09.
References

[C] http://ceria.dauphine.fr/
[DL1] Diène AW, Litwin W Performance measurements of RP*: A Scalable Distributed Data Structure for
Range Partitioning. 2000 Intl Conf on Information Society in the 21st Century: Emerging Tech and New
Challenger. Aizu City, Japan,2000.

[H3] Hamadi, B. Suppressions et Mises à Jour dans le Système SDDS-2000. CERIA Res. Report, 2003-04-4.

[KR87] Karp,R.M.,Rabin,M.O.1987.Efficientrandomizedpattern-matchingalgorithms.IBMJ.Res.Dev. 31(2):249–
260.

[LS2] Litwin, W, Schwartz, Th. Signatures for Scalable Distributed Data Structures. CERIA Technical Report,
2002-30-8.

[LSS02] Litwin, W., Scheuermann, P., Schwarz Th. Evicting SDDS-2000 Buckets in RAM to the Disk. CERIA
Res. Rep. 2002-07-24, U. Paris 9, 2002.

[LS3] Litwin, W, Schwartz, Th. Algebraic Signatures for Scalable Distributed Data Structures. WDAS 2003,
(June 2003), Thessaloniki.

[M2] Mokadem, R. Storage of data in Scalable and Distributed Data structures (SDDS). CERIA Res. Report,
2002-19-2 [S6] [Sinha A.K] Network Programming in Windows NT. Addison- Wersley Publishing Company
1996.

[M2a] Mokadem R Stockage de données en utilisant les signatures algébriques dans les SDDS. Mémoire DEA.
Université Paris Dauphine Septembre 2002.

[V&al1] Vingralek & al Scalable Storage on Network of workstation with balanced load. July 2001.
http ://www.bell-labs.com/user/rvingral/publication.html

[S5] Secure Hash Standard Processing Standards publication FIPS PUB 180-1, (April, 1995).

[X&al3] Xin, Q., Miller, E., Schwarz, Th., Long, D., Brandt, S., Litwin, W. Reliability Mechanisms for Very Large Storage
Systems. 20th IEEE-NASA Symp. Mass Storage Systs. & Techn. MSST03, "Global Access to Distributed Storage", San
Diego USA, 2003.

