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Abstract : 

A Scalable Distributed Data Structure (SDDS) allows to store a large scalable file over a 
distributed RAM. The file scales up transparently for the application  over the nodes of a 
multicomputer, e.g., a local network  of PCs. The prototype system termed SDDS 2000, designed 
by CERIA experiments with this technology for Wintel multicomputers. The application may 
manipulate data much faster than on local disks.   

We present the functions we have added to SDDS-2000 to backup the RAM on each storage 
node onto the local disk. Our goal is to write only the data that has changed since the last backup. 
We experiment for this purpose with the algebraic signatures. We present our architecture and 
design choices. Performance measures validate our implementation. It is now available for the non-
commercial use as part of new version of our prototype termed SDDS-2002.    
1. Introduction 

  A Scalable Distributed Data Structure (SDDS) allows to store a large scalable 
file over a distributed RAM. The file scales up transparently for the application  
over the storage nodes of a multicomputer, e.g., a local network  of PCs and WSs. 
The storage nodes are called the (SDDS) server nodes. The application manipulates 
through the SDDS interface at its node, called the (SDDS) client node.  The client 
node performs the (scalable) address calculus and handles the application requests 
accordingly. Various SDDS schemes have been investigated, [C]. Probably the most 
studied were the linear hash partitioning variants of the LH* scheme, and the range 
partitioning using the RP* schemes.  

The prototype system termed SDDS-2000, designed by CERIA put the SDDS 
technology into practice for Wintel multicomputers. The application manipulates 
data much faster than on local disks. Experiments with the SDDS files over 1.8 
GHz  Dell nodes linked by the 1 Gbs Fast Ethernet at CERIA show the successful 
key search time for the 100-byte record under 30 μs. That is thus about 300 times 
faster than the typical disk search time of 10 ms. 

In SDDS-2000, each server node keeps the SDDS records in the RAM storage 
area termed bucket. It appeared useful to have buckets backed up to the disk.  For 
the efficiency of this process, it was clearly best to copy to the disk only the data 
that has changed in the bucket since its last backup. As usual, it appeared 
potentially best to divide then the bucket into smaller units we called pages and write 
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only the modified pages. The usual way to detect the page modification is to create 
the “dirty” bit table. The bit corresponding to a page is set up when a modification 
occurs. One backs up then only the “dirty” pages, cleaning the dirty bits back to the 
clean status afterwards.   

To add the backup service in this way to SDDS-2000 turned out to be 
impossible in practice. The service was to be added to the existing complex code, 
built over years by different designers. It appeared a daunting task to properly 
identify all the pieces of the code that write at some point to the bucket. These 
should be updated to write the dirty bits as well. An approach not modifying the 
existing code, but only adding a new one was necessary.  

We have chosen to provide each page in RAM and on the disk with a signature. 
We recall that a signature calculus scheme guarantees that  a rapidly computed and 
a few-byte long signature computed for a modified data unit, e.g., our page, differ 
from the original signature of the unit for sure or at least almost surely. We may 
compute then the RAM page signature at the backup only and compare it to that of 
its disk image. We then write the page only if  the signatures differ. We can perform 
the whole backup service by an additional software module. Without any change to 
those already working[V1].   

Many signature schemes are known. The SHA-1 standard is perhaps the most 
used [11]. For our purpose, the algebraic signatures appeared nevertheless more 
practical [LS2], [LS3], [X&al3]. To implement these in practice required various 
design choices, e.g., over the page size and signature length. In what follows, we 
present our implementation and report on our final choices. We justify them 
through the experimental performance analysis. We consider the reader familiar 
with the theory of the algebraic signatures [LS2]. 

Section 2 overview our scheme. Section 3 discusses the experimental 
performance analysis validating our design. Section 4 presents the conclusions and 
directions for  further work.      
2. The SDDS-2002 Backup Scheme 

2.1. System Architecture 

In SDDS-2002, we offer to the application two new commands. These are the 
store command to backup or evict the file and the load command to restore it. 
The store writes to the disk only the data selected as we will describe. The  load 
reads to the RAM from the disk the whole saved bucket.  See [M2] for the 
command syntax.  

The SDDS client sends the store or load command for a given file F using a 
UDP multicast request  to all the servers, Figure 1. Those that carry a bucket of F  
process the commands and acknowledges the execution to the client. The 
acknowledgements include the RP* range of each bucket (we recall that an RP* 
scheme range partitions the file). The client unions all the ranges to find out 
whether all the servers of F that should reply did it (we recall that an SDDS client 
may not be aware of all the existing servers). This is the case only if the union 
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reaches the whole key space of F.  In this case,  the client informs the application 
of the successful termination. Otherwise, messages are resent to the missing servers 
after a timeout and if some still do not reply, a server recovery action may start. 

 
 
 
 
 
 
 
 
 

 

Figure 1 Gross  Architecture for Bucket Disk Backup in SDDS-2002 

Figure 2 shows the internal bucket structure for the RP* file under the SDDS-
2002. The bucket is organized as a kind of RAM B+-tree. The index area is usually 
a few KByte long, a fraction of the data area.  The index is modified whenever a 
tree leaf in the data area splits. Hence, the index gets modified more often than any 
part of its size in the data area[DL1].  

To implement our backup schema, we have divided the data and index area into 
pages. The index is entirely one page. Each page has an algebraic signature. We 
compute all the signatures when the whole bucket is saved for the 1st time. The 
collection termed the (bucket signature) map is saved itself and kept in RAM. Any 
subsequent store leads to the computation of the actual signatures of all the RAM 
pages. We compare each to its copy in the map. We write the pages whose 
signatures differ to the disk.     
 

 
 
 
 
 
 
 
 
 

 
Figure 2 Internal Organization of Bucket in SDDS 
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The size of a disk write is a page at least. The granularity of data pages should 
thus be chosen carefully. Smaller pages possibly decrease the disk write size so the 
time to backup if a few updates only occur. In turn they potentially increase the 
number of writes when many updates occur.   Our present data page size is 16 KB 
and index page size is 256 B.   Reasons for that will be discussed below. 

We have organized the disk storage at each server as follows. For each bucket to 
save, there are two files. One contains the backed up data pages. The other has the 
index pages. At each server, there is also an additional file that stores various 
parameters of each file saved. The load command needs these parameters to 
restore the buckets. These are the bucket file name, page size, number of pages….  

The store command may keep the saved bucket in the RAM. It remains then 
available for access. Alternatively, the backup may free the RAM space, i.e., may 
evict the bucket from the RAM. The storage becomes available for another bucket. 
To manipulate records in the saved bucket, one must then execute the load 
command.   
2.2 Algebraic Signature Calculus 

The algebraic signature is a specific power series in a Galois Field (GF), [LS3]. 
We will now show our calculus of such signatures. We recall that a GF (N) is an 
algebraic structure with N elements, including elements 0 and 1 with usual 
properties with respect to the addition, subtraction, multiplication and division in 
the GF. GF (2f) with f = 8, 16… are especially useful. In this case the addition a + b 
is usually computed as XOR of the bytes or words (symbols) representing the 
elements.  The multiplication a*h, or ab as usual in short, is often implemented as 
the calculus:  
  ab = antilog ((logα a + logα b) mod N)  
where α is a primitive element and a,b ≠ 0 and a,b ≠ 1. We recall that in a GF, every 
a ≠ 0 is α i form some i = 0,1…f -1. The log and antilog values are then tabulated in 
tables. The size of each table can be of N – 1 symbols. To avoid the mod N 
calculus, one can also double the log table to the size of 2N in practice.   These 
calculus methods for the addition and multiplication were or final choice for our 
implementation.  We have also chosen to use GF(216).  

We use the algebraic signatures for our purpose as follows.  Let P be a page. We 
consider P as a vector (1-d array) of symbols p1 , p2, ….pn of the GF used, GF(216) 
in our case. Technically, each p is one byte or a two-byte word (our case) of P. Let  
p’ denote the element of GF used such that p = logα p’.  Let α=(α1, α2,…αn) be the 
vector of different non-zero elements of the GF. We consider here specifically that 
α1 is primitive and for i = 2..n, we have : 

αi = α1
i. 

Let it be for each α ∈α : 
Signα(P) =∑ p’

i α
i
   ; i = 1,2..n 

Then, the (n-symbol) signature of P is the vector denoted Signα : 
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Signα(P) = (Signα1(P), Signα2(P)… Signαn(P)). 
We calculate  Signα(P) using the log/antilog multiplication calculus. The use of p’  

in the formulae is purely formal. In practice, we consider P symbols p directly as 
logarithms. In other words, we do not calculate p’, but, for each αj , j = 1..n, we 
directly add pi to logα α i. This speeds up the calculus, with respect to the direct 
application of the signature definition in [LS3].  

Likewise, a natural approach to Signα(P) calculus is to compute Signα1(P), then 
Signα2(P) etc. In our case, it appeared notably faster to calculate the contribution of 
p1 to α1.. αn, followed by this of p2 to  α1

2.. αn
2 etc. This approach was our final 

choice. The reason is likely the influence of L1 and L2 caches.  
The crucial propriety of the algebraic signature for our application is that the 

probability that two objects differ by only few symbols have the same signature, i.e. 
they collide,  can be made negligible or even zero, [LS3]. Larger n is, smaller is the 
collision probability for the same P1, P2. For a given n, as long as P1, P2 do not differ 
by more than n symbols, then collision probability is zero, provided the page size 
under 2f – 1 symbols for GF (2f ) used. This property is at present unique to 
algebraic signatures. 

For our purpose, the use of 2-symbol (4-byte) signatures sufficed. All things 
considered with respect to the page granularity, we have also set up our system for 
data area pages of 16 Kbytes. For the index, pages of 256 Bytes sufficed. As long as 
the RAM page P1, and its previous disk image P2 differ thus by at most 2 symbols, 
the collision probability is zero. If the application may make them differ arbitrarily, 
this probability is 2-32. In general, that probability is  2-nf. 
3. Experimental Performance Analysis 

3.1. Overall description 

The signature schema in our case makes sense only if it saves time with respect 
to the straight disk write of the entire bucket. The algebraic signatures themselves 
are new & the scheme makes sense only if it is more efficient in our case than a 
known one. Regardless of the signature scheme used, in our case our total time 
results from that (i) to calculate and compare all the signatures and from that (ii) to 
write all the modified pages.  First, this time is interesting by itself. Especially, as 
the function of the number of servers for the file. Logically it should decrease when 
there are more server, the interesting question being how.  

Next, our scheme makes sense if we typically need less time for the file write 
than for the straight bucket(s) write.  Our fastest case is when we only calculate the 
signatures, i.e., it appears that no page was changed. Our worst case is when we 
perform this calculus and write everything. The intermediate case can be, e.g., 
assuming that a small part of the bucket has changed, like 5 % of the file. The 
analytical calculus of such times for various bucket sizes, given CPU and disk 
speeds, the number of servers for the file etc. appears unfeasible in practice. We 
have therefore performed the experimental analysis we present now.   
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Our servers were four 1.8 GHz P4 PCs under Windows 2000 Server. The client 
was on a P3 800MHz machine. There was also a P3 500 MHz PC for the name 
sever used by SDDS-2002. A 1Gbs Ethernet linked all the machines. 

To evaluate the comparative interest for us of the algebraic signatures with 
respect to another signature scheme, we have also experimented with the probably 
best known one which is the SHA-1 scheme, [S5]. We recall that this is the 
cryptographically secure signature schema implemented, in particular in the MS- 
Studio.net architecture. The SHA-1 calculus produces a 20-byte long signature. 
That one is called message digest, Figure 3. The reasons for this terminology is that 
the message digest can be input to the digital signature algorithm (DSA), which 
generates or verifies the signature for the message.  Any change to a message in 
transit will, with very high probability, result in a different message digest. We have 
implemented the SHA-1 calculus for our pages and comparatively analysed the 
message digest as an alternative signature for our backup scheme. 

 
 
 
 
 

 

 

 

 

 

Figure 3 The SHA-1 scheme. 
Data Storage 

Figure 4 shows the time to store a file with our scheme. The file has up to 25000 
records and is generated either entirely at one server, or, using smaller bucket sizes,  
splits on two or three servers. The bucket sizes and the times for one server are 
from Table 1. Logically, the figure confirms that using more servers speeds up the 
process. The speed-up reaches 30 %.      

Table 2 sums up experiments for the scheme for various file sizes on a single 
server. First column shows bucket sizes used. The 3rd  column shows the 
cumulated times to compute the algebraic signatures for all the pages of the bucket. 
As one could expect, the values appear linear with the bucket size.   They are also 
about constant per Mbyte, around 25 ms. Finally, and fortunately, they are only a 
small, about 10 %,  fraction of the time to store the file, shown in next column. 
Thus our calculus is globally efficient for our purpose.  
Notice that these results are for the 16 KB pages. Better results were obtained for 
larger pages of 64 KB, leading to the calculus time of 20 Ms per 1 MB of RAM. It 
is due to less calculus of signatures and probably to  the better use of cache. 
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However, such pages appear globally less efficient for our application at present 
than our choice. This, because of 4-time higher minimal write time.     

The next column shows the time to store when the signatures did not detect any 
change to the file (0 % change to the file). Nothing is written to the disk. These 
times are nevertheless understandably slightly higher than for the signature calculus 
alone. Nonetheless, the total time to perform the backup according to our scheme, 
saves about 90 % of the write time.   

 
 

 
 
 
 
 
 

 

Figure 4 Time to store a file 

Likewise, the next column shows the results for the 5 % change to the file, 
through inserts. The gains are smaller, but still about 90 % in practice. The hidden 
reason for such a good performance is that SDDS-2002 locates the new records at 
the end of the bucket.  Notice, however that if inserts lead to a bucket split, then 
the entire splitting bucket is to write, as well as the new one at the server appended 
to the file. 

Table 1 File storage performance analysis 

3.2. SHA-1 Signatures 

We repeated our experiments using the SHA-1 signature calculus. Results are in 
Table 2 and in Figure 5.   
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Table 2  File storage using SHA-1 signature performance analysis 

 The results confirm that our scheme is substantially more efficient with the 
algebraic signatures. The signature calculus is itself substantially faster, the gain 
being about 30 %. Also, the gain for 5 % change is between 30 % for a small file, 
and 40 ÷ 50 % for larger ones. Besides, we recall that our algebraic signature is 4-
byte long, while SHA-1 uses 20 bytes.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Algebraic / SHA-1 Signature Calculus Time (ms) 

4. Conclusion 
 We have added the SDDS file disk backup storage capability to our prototype 
SDDS-2000 system. Our implementation is now integrated in the SDDS-2002 
prototype. The use of signatures allowed us to add this function without the 
modification of the existing code. That one would be infeasible in practice. We only 
needed to add our new code. It turned out to be a three man-month task.  

The signature calculus that our approach required could be made fast enough to 
remain under 10 % of the disk write time. This is a negligible performance penalty 
in practice. Also the storage for the page signature is a negligible fraction of the 
page size. Besides, the traditional approach of the “dirty” bit table also carries an 
overhead. Even more importantly, it introduces the run-time overhead for the 
update operations, unlike the ours. All together, our approach should be of interest 
also to other applications with similar needs.   
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Our future work addresses the automation of the bucket eviction to the disk and 
of its load, [LSS2]. We also work on other uses of the algebraic signatures for the 
SDDS management. In [LS3], we report on the record update management, also 
now integrated in SDDS-2002, [H3].  We also work on the use of signatures for the 
distributed non-key record search, including the partial (string) search. The 
algebraic properties of the signatures play there to some extent similarly to 
properties of hash schemes in [KR87]. 
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