

Key Recovery Using Noised Secret Sharing with Discounts
Over Large Clouds

Sushil Jajodia

George Mason University
Fairfax, VA, USA

{jajodia@gmu.edu}

Witold Litwin
Lamsade, Université Paris Dauphine

Paris, France
{witold.litwin@dauphine.fr}

Abstract—Encryption key loss problem is Achilles’s heel
of cryptography. Key escrow helps, but favors
disclosures. Schemes for recoverable encryption keys
through noised secret sharing alleviate the dilemma.
Key owner escrows a specifically encrypted backup. The
recovery needs a large cloud. Cloud cost, money trail…
should rarefy illegal attempts. We now propose noised
secret sharing schemes supporting discounts. The
recovery request with discount code lowers the recovery
complexity, easily by orders of magnitude. A smaller
cloud may suffice for the same recovery timing.
Alternatively, same cloud may provide faster recovery
etc. Our schemes appear useful for users attracted to
Big Data, but afraid of possibly humongous
consequences of the key loss or data disclosure.

Keywords-clouds; big data; privacy; key recovery.

I. INTRODUCTION

Key recovery is a classical goal. Key escrow, i.e.,
entrusting a key copy with some (escrow) agent, was
proposed as a basic solution. The idea did not catch.
Key owners seem fearing the key disclosure, as
source of irresistible temptations for some. More
complex key escrow schemes, e.g., with recovery
rights verification or through secondary encryption of
the copy with the key entrusted to another party, are
almost no noticeable in practice. See the related work
section in [3]. Not having key escrow, on the other
hand, exposes the data to the key loss, especially if
the owner disappears with. Modern encryption
schemes, e.g., AES, make data unrecoverable then.

The fear of key loss particularly concerns many
users attracted to Big Data idea. It is the common
knowledge that safety and efficiency of related
manipulations require the data outsourcing to some
cloud. However, one knows well that most users are
reluctant to outsource data in clear, [1]. Many can’t
do it simply by law. Many pro may accept therefore
the idea only if they may encrypt the outsourcing.
A homomorphic code allows in particular for the

Thomas Schwarz,
Universidad Católica del Uruguay

Montevideo, Uruguay
{tschwarz@ucu.edu.uy}

arithmetic calculations over the encrypted data
(directly) in the cloud, [6]. This is a strong need,
as many Big Data queries use value expressions,
distributed in addition for efficient evaluation using
Map-Reduce, [5]. Even with all these tools, many or
most of these users remain deterred up to now. Big
Data may render indeed key loss consequences
accordingly huge. It could worth years of work of
many people. Vice versa, a misuse of an escrowed
key copy may result in the cloud content disclosure.
This may lead to consequences of scale equally
calamitous.

Schemes for recoverable encryption through
noised secret sharing, RENS schemes in short,
appeared as a new solution to the dilemma, [2] and
[3]. The key owner escrows a specifically encrypted
backup. The brute-force key recovery, from the
backup alone, is always feasible although
intentionally hard. Its complexity, as measured by the
number of instructions the recovery may need, is
arbitrarily fixed by the owner, depending on the trust
in the escrow agent. As the result, the recovery
timing on the escrow’s site (node) alone, should
become impractical, e.g., should last dozens of days
at least. This timing results from some key-owner
defined integer M, called backup (encryption)
hardness, providing O (M) worst-case complexity.
Nevertheless, the actual maximal recovery time
desired by the recovery requestor remains practical.
The recovery uses a sufficiently large N-node cloud,
providing about linear O (M / N) recovery speed-up.
Practical timing, e.g., in minutes, is expected to imply
N in thousands. The escrow is not expected to
maintain such a large cloud on premises. Hiring it
from some external provider is then is a necessity.
That one should be usually somehow costly and
easily noticeable through numerous logs, money
trail…. One may expect illegal disclosure attempts,
e.g., by an escrow side insider, to rarefy. They may be

expected much less tempting than from a simple key
copy.

We now extend known RENS schemes with the
concept of discount. As the name suggests, a discount
results from a code that lowers the recovery cost with
respect to the brute-force one. The reduction is easily
by orders of magnitude as it will appear. We speak
then about the discounted recovery. We furthermore
rather designate the brute-force one from now on as
the full-cost one. Technically, the code lowers the
recovery complexity for both the worst and the
average cases.

The code is an m-bit string; m = 0,1…. The m = 0
tacitly means the no-discount request, i.e., the full-
cost one. Otherwise, we expect m = 8 or m = 16 at
most, in practice. With respect to the full-cost
recovery, such codes lower both complexities,
respectively 256 for m = 8 and 64K times for m = 16.
The minimal actual discount is for m = 1 and is 50%.
Accordingly, the discount may greatly reduce
recovery timing and/or the cloud size and au finale
the cloud cost for the requestor.

The code may appear to the key owner in some
convenient form. The minimal discount requires only
retaining that the code is even or odd. Otherwise, one
choice may be a single 16b Unicode digit. Or, it can
be one or two (extended) 8b ASCII digits.
Alternatively, one may choose 2 ÷ 4 hex digits, etc.
One expects such codes easy to retain, e.g., on a
smartphone, or simply in memory. Especially, it
should be very easy for the minimal discount. Recall
that Europeans are routinely trained to keep in mind
their 4-digit credit card codes. They are strongly
advised not to store them anywhere, (especially on the
credit cards themselves).

The requestor sends the discount code to the
escrow within the (discounted) recovery request. The
code amends the processing of the otherwise always
feasible full-cost recovery. For any given key, only
specific codes lead to a discounted recovery. Any
discount provided triggers nevertheless a recovery
attempt with the associated cost. An unsuccessful
attempt also respects the requestor’s timeline. It
doubles however the average cost of the successful
one. Finally, every code is granted successful only for
one key. For any other one, it basically acts as
(purely) random guess of what should be the actual
one. With costly consequences, we just discussed.
All together tampering with a discount code should be
infrequent.

Globally, we show below that for all these reasons
discounts appear a highly useful capability for an
RENS scheme. The existing 2-share schemes
generalize easily. The key remains “never-lost”, with
(illegal) disclosure cumbersome at will for the
attacker. Yet, the legal recovery by the discount
possessor remains cheap and thus practical. This
combination is unique up to now for a key recovery

scheme. Especially, it can greatly help the already
mentioned potential Big Data users.

Below, we first define and analyze the RENS
schemes with discounts using, so-called 2-share
noised secret sharing. We generalize for this purpose
the two related schemes defined in [2]. These are told
respectively static and scalable and are analyzed
further more in depth in [3]. We define the backup
and the discount creation, then the discount-based
recovery calculation. Next, we analyze the
correctness, the complexity and the safety of the
resulting schemes. Afterwards, we generalize the 2-
share recovery calculation to a (k + 1) -share one with
k > 1 at key owner will. We show attractive property
of such schemes. Next, we briefly address the related
work and we finally conclude. Space limitation
forced us to evacuate all the figures we discuss into
[6].

II. BACKUP CREATION

Let K be the key to backup, e.g. a 256b long AES
key. The key owner or rather the owner’s client
program, running on owner’s site, say O in every
case, first creates a usual 2-share secret, with shares,
say s0 and s1 = K XOR s0, Fig. 1a. It is the common
knowledge that K = s0 XOR s1. Next, O chooses
some time D, e.g., 70 days. D is the intended recovery
time at the escrow’s site alone, assuming it a 1-node
(core) configuration. The choice of D value reflects
O’s trust in the escrow service that that no (illegal)
disclosure attempt occurs there. Lower it is, higher D
should be.

After that, Fig. 1b, C defines the hint h = H (s0),
using some one-way hash function H, e.g., SHA256.
We recall that in practice (i) h is unique for any s0 and
(ii) it is impossible for good H such as the one
mentioned, to calculate s0 as H-1(h). Next, C
determines the backup hardness M. This parameter is
the maximal number of match attempts H (s) =? h
where each s is a different integer that could be s0,
sufficient to find the successful match. Also, M is the
owner’s expectation of the number of match attempts
that 1-node site may perform at most in time D. Next,
if there is no g = 1, 2… such that M = 2q, then C
verifies whether the log2 M - bit long suffix r of s0
is r < M. If not, then C chooses random q  I = [0, M[
and sets up r := q, i.e., substitutes q as new suffix r of
s0, and recalculates both shares accordingly. Next, C
calculates the bit-length of r, i.e., calculates an integer
g such that either g = log2 M when such value exists,
or g = log2 M. Then, C cuts off r from s0, i.e.,
produces the integer p = s0 \ 2

g, where p denotes thus
in fact the remaining prefix of s0 = p |r.

As in [2], we call below each x a noise and I is the
noise space. Then, f = p|0…0 is the base noise share,
while s0 a noised one. The naming comes from the
backup representation of s0 that is P = (p, h, M). P
makes s0 hidden somewhere among M different noise
shares, formed each as s = f + x ; x = 0,1..M -1, Fig.

1b. The noise shares form the noise share space, say
Q, with card |Q| = card |I| = M. Each s is an integer, as
we just said and can be s0. This happens iff x = r. The
only known way to find out is to attempt the match.
By the well-known properties of a good 1-way hash,
this one succeeds iff s = s0. The backup sent to the
escrow is the couple (s1, P).

Notice that, while the backup creation is quite
similar to that in [2], the definition of noise shares
differs. The rationale (that we do not plan to address
further here) is a programmatically simpler discount
calculation.

III. DISCOUNT DEFINITION

In [2], the full-cost recovery, i.e., using
exclusively the backup as above defined, was the only
capability of RENS schemes defined there. One may
nevertheless observe that the requestor could also
forward with the backup request some prior
knowledge of s0 that could lower the recovery
complexity. For instance, the key owner could
observe that s0 is an odd integer. This would lower the
complexity by 50%, as we show. We say that any
such knowledge defines a discount, of 50% in this
case.

More precisely, the key owner defines the
discount for a given backup according to an RENS
scheme, by choosing some discount code. For what
follows, the code is simply an m-bit suffix of the
noised share s0 ; m = 0,1….Fig. 2. The value of m = 0
tacitly means the no-discount request, i.e., the full-
cost one. Otherwise, as we signaled already, we will
talk about a discounted recovery. We expect for the
latter m = 8 or m = 16 at most in practice. We call
discount value the complexity reduction that the
recovery with the code offers with respect to the full-
cost. The analysis later on shows that the value of any
m-bit long code is 2m for both, worst case and average
complexities.

The reason for such value is the 2m times smaller
discounted (backup) hardness, i.e., the accordingly
smaller maximal number of match attempts towards
the successful one for sure. That discount with respect
to M characterizing the full-cost recovery, is due to
smaller noise space I’. That one becomes of size |I’| =
M’ = M /2m, Fig. 2. We will show it in the sections
that follow. Notice nevertheless already that the suffix
r must be r = r’|d for some noise r’  I’. We expect
accordingly in practice the reduction of the worst
case, as well as of the average, complexity of up to 28
= 256 for m = 8 and 216 = 64K times for m = 16.

Discount codes that short may appear to the key
owner as a single 16b Unicode digit or as one or two
(extended) 8b ASCII digits, or as 2 ÷ 4 hex digits.
One may expect them generally easy to retain, e.g., on
a smartphone, or just in memory. Recall that
Europeans are routinely trained to keep in mind their
4-digit credit card codes.

As the result that will appear, these codes may
lower the recovery time 28 ÷ 16 times with respect to
the full-cost timing for the same cloud size.
Alternatively, they may reduce the cloud size by the
same value, while keeping the same timing. The
discounted hardness also allows combining both
reductions. Au finale, the discount decreases the
cloud cost. Obviously, the necessary condition for a
successful match attempt is that the noise share
embeds the code provided. The rationale for the
discounted recovery algorithm we define in next
section is to attempt matches only for such shares.

Ex. 1. Key owner’s client key encryption
generates s0 = ‘….0000 0000 0110 1010’. In Unicode
the owner sees the 16b suffix above, qualifying for
the discount code, as a single symbol ‘j’, hence we
have : s0 = ‘….j’. In extended ASCII, the bits appear
as two characters s0 = ‘….j’, where  denotes the
NULL, i.e., ‘00’ character. Finally, the owner
observes that s0 is an even integer. The owner retains
as discount code representation for storage
somewhere or simply for memory, the Unicode
representation, i.e., ‘j’. Later, this same single
character may represent either discount code: the 8b-
long d = ‘0110 1010’ in ASCII and the 16b-long
d = ‘0000 0000 0110 1010’. The owner may decide
only when needed which discount to choose. The
former will offer the discount value of 256 times, the
latter will provide 64K times hardness reduction. As
2nd line protection against loosing even this simple
code value, the owner retains that s0 is even. At the
minimum, the code d = ‘0’ will still provide 50%
discount, as it will appear. In the very last but not
least, resort, the full-cost recovery is always feasible.

RECOVERY

A. Recovery Request

The escrow performs the recovery upon the
legitimate request. How the escrow knows which
request is legitimate is out of scope here. Recovery
schemes with discount discussed below reuse the
scheme for full-cost only recovery defined in [2] and
[3]. The recovery request has in particular the same
form, augmented however with the discount code. It
is thus formally the tuple Pd = (P, R, d). As for the
full-cost only recovery request in [2], here, R
designates the desired maximal recovery time, e.g., 10
min. Recovery schemes in [2], as well as those below,
consider then R as the upper bound on recovery
computation time over any cloud node used. They
thus fulfill the user’s desire for sure provided the
cloud overhead consisting of messaging, node
allocation etc. times, is negligible.

B. Full-Cost Recovery

If the request has no discount, i.e., m = 0 in d, the
escrow proceeds with the full-cost recovery. The
schemes in [2] apply then as they are, except for the

revised s0 base noise share definitions. The escrow
forwards thus Pd to some cloud node C, called
coordinator, with the exception of s1. In this way no
cloud insider can disclose the recovered key.

With respect to the actual execution on the cloud,
managed by C, we recall now that [2] defines two
basic schemes. We called them respectively static and
scalable partitioning. The former was proposed for a
homogenous cloud. The latter targets a heterogeneous
one. Their common characteristic is that the recovery
calculations attempt the matches over different noise
shares f + m, until the successful match. This one
must occur, but attempts may possibly explore even
every m in I. Both schemes partition the attempts
over N nodes, with the linear speed-up O (N). The
choice of N value depends on the scheme. In both
cases, it makes the recovery computation at each node
fitting the time bound provided by the requestor, e.g.,
10 mins. As the result, the whole calculation fits this
bound. Typically, N should be possibly in thousands,
as we discussed.

The cloud delivers the noised share s0 found to the
escrow. The escrow XORs it with s1 and, finally,
delivers the key to the requestor.

C. Discounted Recovery

The discounted recovery request differs from the
full-cost one by additional presence of the discount
code with m > 0. The cloud uses then the discounted
recovery scheme that follows. Its rationale is that the
noised share has to have d as m-bit long suffix, Fig. 2.
The only noise shares in the noise share space that
could match must have the same suffix. The recovery
processing should generate all and only such shares.
We say they form the reduced noise share space. The
prefixes of noises in these shares, preceding suffix d
in each noise, must form a subspace I’ with noises x =
0,1,…M’ - 1 where M’ is M with d cut off from its
binary representation. We call it reduced noise space.
One may explore only this space. The exploration
should form for each visited noise x, the noise x|d. It
then should concatenate it then with prefix p of s0 to
form noise share p|x|d, belonging to the reduced noise
share space, for the match attempt. The successful
match occurs when for some x,
H (p|x|d) = H (p|r’|d) = h. See Fig. 2 for d = ‘j’. The
exploration of I’ may use either partitioning scheme
for full-cost recovery in [2] or [3]. The details of the
scheme we sketch now follow these considerations.
We explain it more and finalize its correctness proof
afterwards.
1) C calculates M’ = M \ 2m.
2) For m > 0, Step (1) defines the reduced noise
space I’ = [0, M’ [we spoke about. C initiates the
static or the scalable scheme for this space, i.e., uses
M’ instead of M. We recall that this step determines
later N, in function of M’ and R.
3) C delivers to each of N nodes the “usual” full-cost
request for match attempts and the discount code d.

The delivery is direct for the static scheme, and may
be indirect for the scalable one, [2]. The scalable
scheme determines N progressively, while
propagating the request for match attempts.
4) Each node n ; with n = 0,1…N - 1 for the static
scheme and perhaps noncontiguous integers for n in
some [0…N’[where N’ ≥ N, for the scalable one, one
first calculates the base share f’ for the discounted
recovery. According to what we have said, we define
it as the smallest possible with the suffix d, i.e. we
clearly have f’ = ‘p |0’ + d. Notice that f’ generalizes
f for full-cost recovery, since f’ = f for m = 0.
5) Next, using M’ instead of M, every node
calculates one after another every value of noise x for
which it should generate noise share s for match
attempt H (s) =? h. For each x used, each node
calculates s as s = f’ + x * 2m. The noises used at each
node n depend on n and on the distribution scheme
used, in the same way as for the full-cost recovery.
Fig. 3 illustrates the issue that we address also in
depth later in this section.
6) As for the full-cost recovery, every node attempts
the match for each s. If the match occurs, the node
reports s as the noised share s0 to C, unless the node is
C itself. The node terminates the service then, freeing
all the resources.
7) Otherwise, the node continues the attempts. It
does so until the last relevant x or until the node
receives the termination message from C. This one
requests the node to terminate, i.e., to stop the service
and free all the resources.
8) Assuming the cloud finds in this way s0, C returns
it to the escrow. The escrow XORs it with s1 and
returns the recovered key to the requestor. C sends
also out to the already mention termination message.
For the static scheme it may send it simply directly to
every node. It may alternatively send indirectly to
most of the nodes, through the direct send-out to a
few selected ones only that propagate it further in
parallel. For the scalable scheme, the latter strategy is
usually the only possibility. Space limits prevent
dealing with more details.
9) For m = 0, i.e., the full-cost recovery, C must get
s0 or there is the failure of a cloud node or of the
network connection between C and that node. One
can reasonably expect such a failure to be very rare.
We thus avoid discussing here the related details.
Rules indicated for schemes without discount applies
fully, besides.
10) For m > 0 in contrast, if C does not get s0 a new
cause may be the invalid d that is different from the
actual one in s0. The legitimate requestor made
perhaps an error, or the discount came from an
intruder… As before, the cause may be also a cloud
failure, as for m = 0. C cannot distinguish from the
above scheme between the cases. C acts then as if d

was invalid. The rationale is that this cause may be
expected orders of magnitude more likely than the
others. C reports to the escrow accordingly. It then
terminates as discussed in Step 8.
11) As the result, we expect the requestor to usually
send a different d. The whole algorithm restarts. Very
rarely, the requestor may confirm nevertheless d as
valid. C starts then a specific procedure. That one also
restarts the recovery, but with additional features.
These discriminate for sure at termination time
whether there is a failure or d is invalid. The former
case can still “hide” an invalid d. In the latter case, C
reports to the escrow again that informs the recovery
requestor accordingly. There are various ways to
design that procedure. All should be nevertheless
more complex, hence more expensive, than the basic
one above. Again, we cannot address the related
details here.

Discussion. Fig. 3 and Ex. 2 below illustrate the
discounted recovery algorithm. The figure shows the
distributed partitioned noise and noise share spaces
over N nodes, for the discounted recovery using the
static scheme and code ‘j’ from Ex. 1. The total size
of the noise space and that of the noise share space is
now M’. As for M for the full-cost recovery in [2], but
for M’ here, a noise subspace on node n ; n = 0,1…N-
1 ; contains each and every noise x < M’ and such that
x mod N = n. The size of each noise subspace is M’ \
N or is M’ \ N + 1. The sizes of noise share subspaces
at each node are accordingly the same.

Fig. 3 and Ex. 2 illustrate the discounted recovery
algorithm. The figure shows the distributed
partitioned noise and noise share spaces over N nodes,
for the discounted recovery using the static scheme
and code ‘j’ from Ex. 1. The total size of the noise
space and that of the noise share space is now M’. As
for M for the full-cost recovery in [2], but for M’ here,
a noise subspace on node n ; n = 0,1…N-1 ; contains
each and every noise x < M’ and such that x mod N =
n. The size of each noise subspace is M’ \ N or is M’ \
N + 1. The sizes of noise share subspaces at each
node are accordingly the same.

These sizes are in practice 2m times smaller for
m > 0 than for M and the same N in [2]. It is the same
for M’ with the same N and m = 0 and in the
algorithm above, generating then the full-cost
recovery. At each node, the discounted recovery has
accordingly 2m times less match attempts to perform
at worst for any m > 0, than for m = 0. This property
leads to new possibilities for the recovery requestor
aiming at best advantage of a discount. We address
these issues in Section 5 below.

Ex. 2. Consider M = 250 which should be rather
typical. Suppose the noise shares 256b long, as an
AES key. We have the base share (for the full-cost
recovery) f = ‘p |0….0000’ with some prefix p and
zero value suffix over 50 bits. Suppose further m = 2
and d = ‘01’. C calculates M’ as M = 248. The base

noise share for the discounted recovery is
f’ = ‘p |0…00000000000|01’. Suppose the use of the
static scheme and that after the calculations for M’ as
in [2] for M, we have N = 1K, hence n = 0,1…1023.
Node 0 attempts the matches for noises x = 0, 1024,
2048…, i.e., with each successive x such that x mod N
= 0 and till the largest such x < M’. Each x is
multiplied by 22 then added to f’, then node 0 attempts
the match of the resulting noise share, etc.

In particular, node 0 always starts with the match
attempt for s = f’. If no success, next attempt is for
s = f’ + 1024*4, hence s = ‘p |0…010000000000|01’.
Then, if needed, there is the attempt for
s = f’ + 2048*4, i.e., s = ‘p |0…100000000000|01’
etc. Likewise, node 1, attempts the match for noise
x = 1. Then, may continue for x = 1025, 2045…., i.e.,
where x mod N = 1 and till the largest such x < M’.
Node 1 starts thus with the attempt for s = f’ +1*4,
i.e., s = ‘p |0…00000000001|01’. Perhaps continues
then for s := s + 1024*4, i.e., s = f’ + 1025*4, that is
for s = ‘p |0…10000000001|01’ etc. In general, as on
Fig. 3, every node n attempts in this way the matches
for each and only x < M’ that yields x mod N = n.
The scalable partitioning has a more complex rule,
see, e.g., [2] for it.

With respect to Steps 10 & 11, the rationale for
acting first as if d was invalid is easy to see.
Assuming the use of a 1K-node cloud and the cloud
sufficiently reliable to make a double failure among
these nodes unlikely, the probability that a failure
strikes just the node that should find s0 should
normally be 1/1K. Everyone’s experience with PINs
of credit cards, passwords…, shows errors once every
relatively few uses, perhaps once every couple of
dozens at most. The invalid d case should thus happen
dozens of times more often.

Next, observe that until the procedure in Step 11,
the cloud acts in the same way for valid and invalid d.
There is no way for C to distinguish between both
upfront. An invalid d will thus cost the requestor
more. This feature is intentional, expected to curb the
discount tampering.

The integer division ‘\’ by 2m amounts to m-bit
right shift. Likewise, the multiplication by 2m
performs the m-bit left shift. Dedicated shift functions
may be faster than the arithmetic calculations. There
are thus various ways to implement the algorithm we
do not address further here.

IV. ALGORITHM ANALYSIS

A. Correctness

Basically, it should appear that for every I, every f
and every d, each RENS schema under consideration
generates for every N the match attempts for all and
only noise shares ending with d, in the noise share
space generated by noise space I’. Also, no such share
should be generated twice. Finally, it should appear
that the recovery always terminates.

Proof. We skip the last part as quite obvious, at
least in the absence of failures, here. The proof of the
rest is rather easy to see from the figures and Ex. 2.
We also skip the tedious details, referring the reader
to [2], especially for the scalable scheme. The
calculus of M’ obviously calculates the number of
noises in I that terminates with d. This is the size of I’
hence of Q’. In Step (4), each node calculates f’ in the
way that yields an integer being a noise share and
such that (i) it ends with d and (ii) is greater than or
equal to f. By definition this is f’. The loop at each
node then attempts the matches using every noise x
handled by the node. It should be clear from Fig. 3
and the example that whatever is then N and d, all the
M’ noises in I’ are possibly explored and only once
per noise. Hence are all the noise shares in Q’ and H
cannot map a share beyond Q’. The calculation of s in
Step (4) produces clearly for each x the noise share
ending with d. There cannot be such a share in the
noise share space I (as well as in I’) missing from the
distributed calculus. Also, one easily sees from Fig. 3
that no noise shares in Q’ may be generated twice,
whatever are the parameters there. Similar analysis
holds for any partitioning that could be generated by
the scalable scheme.

Finally, it is easy to see that the termination
protocol, i.e., the rules for cloud service termination
without a cloud failure, is also correct. Every node
starting the attempts indeed terminates. It either gets
the termination message from C or terminates itself
after all possible attempts. Next, C also terminates
either by providing s0 or by finding an invalid d, as
we discussed in Step 10. Finally, the recovery cannot
produce in practice s0 for an invalid d. We prove this
point in Section 4.3 below, as it rather concerns the
safety.

B. Complexity

An m-bit long d decreases the recovery calculation
complexity (hardness) 2m times in practice.
Respectively, we have O (M / 2m) for the worst case
and O (M / 2m + 1) on the average.

Proof. For the full-cost recovery, the complexity
could be measured basically by the number of noises
to try out: at most or on the average. Each noise may
indeed trigger a match attempt. The computational
cost of SHA256, as well as any other known good 1-
way hash function dominated additional operations
required, at the start-up or termination etc. of the
algorithms. We had thus basically the complexity of
O (M) in the worst case, for both static and scalable
schemes. For both schemes, the discounted recovery
has at most M’ noises to try out. This is 2m time
smaller. On the other hand, the discounted recovery
algorithm requires an additional initial calculation of
M’. Next, it requires the calculation of f’. Finally, at
each attempt, there is an additional multiplication by
2m. However, it is the common knowledge that the
cumulated computational cost of a few such

operations is again negligible with respect to that of
SHA256 or another good 1-way hash calculation.
Hence, we have basically the O (M’) worst case
complexity, i.e., the O (M / 2m) one.

For the average case, we had under similar
assumptions O (M / 2) for the full-cost recovery. The
reason was that both schemes enumerated all attempts
till the successful one, while every noise, hence every
noise share tried out, were equally likely to try out
and succeed, provided a good 1-way hash, as we
supposed. For the discounted recovery, every attempt
uses again a different noise and at worst all noises M’
noises are explored. The discount code is
(pseudo)random, hence every code is equally likely.
Also, the rest of s0, beyond the discount code, is
(pseudo)random. Hence, every noise share generated
is again equally likely to be the noised one, under the
same good 1-way hash assumption. We thus have on
the average the O (M’ / 2) complexity, hence
O (M / 2m + 1).

Ex. 3 Consider the running example in [2] where
the encryption complexity is set up so that 1-node
recovery would require up to prohibitive 70-days and
35 days on the average. To recover the key in 10 min
at most instead, using the full-cost, a 10K-node wide
cloud may do. The actual cost could be 200$.
Consider that the owner retained our 8b discount code
‘j’, as in Ex. 1 and Fig. 3 previously discussed. Now,
40-node cloud may suffice for the same timing.
Alternatively, the same 10K cloud, delivers the
discounted recovery in up to a couple of seconds. In
both cases, the cost theoretically drops to less than 1$.
A 16b discount ‘j’ would lower these figs accordingly
further. The requestor could even recover the key at
her/his own presumably single node, in about 2m1ins.

C. Safety

1) Knowledge of a discount code cannot lower the
complexity of the requested backup under values
O (M’) at worst and O (M’/2) on the average,
provided by our algorithm (see below).

Proof. Our algorithm enumerates all attempts till
the successful one (if any). Every attempt uses a
different noise among M’ and, at worst, all noises M’
noises are explored. The rest of s0, beyond the
discount code, is (pseudo)random and thus
independent of the discount code value. Also, for a
good 1-way hash as we suppose, each such value is
equally likely to generate the matching f’. Hence,
whatever is a given a discount code, one cannot
calculate from it or otherwise any f’ that could be less
or more likely than any other possible. No method
exists that would allow to attack the requested backup
from its given discount, towards lowering the
complexity under that of our algorithm.
2) The recovery cannot produce in practice s0 for an
invalid d.

Proof. Indeed, any invalid d, say d’ here, is by
definition different from the valid one. Hence the

share it defines, namely s = p|x’|d’, is a noise share
different of s0. As we discussed already, chance of
having then H (s) = h are almost zero. Hence, in
practice, no d’ may ever lead to a successful match.
3) Guessing a discount code does not lower the
complexity of any backup under O (M)

Proof. See [4].
4) A discount code d for backup B does not lower the
complexity of any discounted recovery using d for a
different backup B’. The latter remains O (M)
characterizing full-cost recovery of B’.

Proof. The discount codes being pseudo-random,
it would be indeed like guessing in (2).

Property 3 means that the knowledge a discount
code for a backup by the escrow, does not threaten
any different backup at escrow’s possession. A
discount code once used by the escrow is thus of no
further utility.

V. MULTI-SHARE NOISED SECRET
SHARING

A. Rationale

The above discussed schemes used at the basis the
2-share secret sharing. Share s0 was then noised,
resulting in the, so-called, 2-share noised secret
sharing. Complexity analysis sketched above and
discussed in depth in [3], has shown that the 2-share
noised secret sharing noised secret sharing schemes,
for any given full-cost maximal recovery time R,
provide the expected (full-cost) recovery time E (R)
equal to at most R/2. The static scheme provides
exactly that expected value, while the scalable one
may provide slightly less. These values are immediate
and easy to spot consequences of the O (M / 2)
average full-cost complexity for the static scheme.

One rationale of these properties is a uniform
distribution of the suffix r (or r’) of the noised share
within I or I’ for m > 0. One consequence is that for
any probability p, the recovery time may be over (1-
p) R. For instance for p = 10%, it would be at least
0.9R, i.e., almost twice as big as the user could expect
most likely. By the same token, it could be also under
0.1R. The cloud costs would be in accordance. Some
users may be expected to feel uneasy with such a
relatively likely perspective of the almost double bill.
In turn, intruders may feel attracted to gamble over
the uniformly likely perspective of the cheaper that on
the average disclosure. In both cases, there is room
for schemes where R is closer at will to E (R). As it
will appear, this is the property of the (k + 1) – share
noised secret sharing schemes we introduce now.
These schemes generalize the schemes above,
assimilated to k = 1, towards larger k values k =
2,3,4… We keep the notation from Section 2 and
after, adding eventually obvious indices.

B. Backup Creation

To start, O chooses k and, as before, the
prohibitive 1-node recovery time D. The rationale for
“best” choice of k will appear soon. Next, O defines a
(usual) (k + 1) – share secret with thus the random
shares s0…sk-1 and sk = K XOR s0 XOR s1… XOR sk-1.
Each sj ; j = 0…k-1 ; has the same structure as s0

above, namely sj = pj |rj. Every suffix rj is also as
before adjusted to be under the size of the noise space
M, if the need occurs. We provide soon the way to
define M that slightly differs from the previous one. O
computes then k hints h0… hk-1, where hj = H (sj) for
every j. A match attempt for any noise x, to be
performed during the recovery, will consist of the
calculation H (fj + x) ?= hj for specific j.

It may occur that all the noises and hints are
explored for a successful full-cost recovery. To
choose then M conform to D, O starts with the
measure or an estimate of the throughput T that is the
number of 1-node match attempts per time unit,
basically a second. Then M is chosen as M = D T / k.
Indeed, for every M, there are k M match attempts
possible. Hence D = k M / T. Note that for k = 1 the M
choice is compatible with that above for the 2-share
noised secret sharing. Next, O forms P that is now P
= (p0…pk-1, h0…hk-1, M). Finally, O sends out the
couple (sk, P) as the K backup. O retains also the
vector d = (d0…dk-1) as the discount code, where
every dj spans (the same) number m of the suffix bits
of its sj.

C. Recovery

To recover K, the legitimate user sends out the
request Pd = (P, R, d). Escrow sends then to the cloud
all the backup data except for sk. The match attempts
split over the N cloud nodes, as before, Fig. 4, using
the static or the scalable scheme. For the latter
scheme, the coordinator defines N as N = k M’ / T R.
The rationale is first that for every noise x’ within the
reduced noise space, i.e., x’ = 0,…,M’ – 1, the node in
charge of attempting the matches for some x
embedding x’, i.e., for some dj within d we have x
= x’|dj, has in fact k such match attempts to generate.
These are all the attempts H (fj + x) = H (fj + x’|dj) ?=
hj for every j = 0…k – 1. Notice that up to now we
had k = 1 only, hence a single match attempt for every
x’. Next, to meet the R bound, the node has to
perform at most R T attempts, assuming that all the
nodes provide the same throughput (a homogeneous
cloud). On the other hand, with the already discussed
hash partitioning, the node performs in practice
k M’ / N attempts. Hence, we have k M’ / N ≤ R T.
The coordinator of the static scheme chooses the
minimal possible N that is the one above. The
scalable scheme generates N in a more involved way.
The cloud is supposed heterogeneous, we recall,
hence T may vary among nodes. The calculus is then
distributed among the nodes as we mentioned already.

The N finally generated is usually somehow larger
than the size-optimal one, [2].

Regardless of the partitioning scheme, every node
attempts the matches for each y assigned to it as
already discussed. Every node determining x for some
hj, i.e., encountering a successful match, reports the
share sj = fj + x to the coordinator. Once the
coordinator gets every expected sj, it reports them to
the escrow. That one performs the XORing of all of
them with sk and sends the recovered secret, i.e. K, to
the user. As for k = 1 above, the full-cost recovery
must normally (without any cloud infrastructure
failure) succeed for every k. A discounted one
accordingly always succeeds in practice for a valid
discount code and always fails otherwise.

D. Discussion

The recovery computation has obviously the
maximal complexity O (M’), for every k. The average
one is now O (M’ k / (k + 1)). Accordingly, the
average recovery calculation time is R * k / (k + 1).
The value k / (k + 1) is known as the average value of
the largest randomly chosen value in interval [0, 1[,
among k such choices. Obviously it increases towards
1 with k. For the 2-share noised secret sharing we
match the already discussed values O (M’ / 2) and
R / 2. For higher k, both raise up towards M’ and R’
respectively. For instance, if O chooses a 6-share
secret sharing, hence k =5, and the recovery requestor
U expects a 5-minute recovery, U may choose
R = 6 min. Instead of choosing R = 10 min for a 2-
share only scheme. A perhaps up to 40% lower cloud
bill in consequence. Also, the probability of the
recovery time being within some fraction yR is now yk
instead of only y for a 2-share only scheme. Hence,
in our example, it is 10-5 instead of 10-1 only. One
may expect thus to deter much more strongly any
gambling temptations of an insider on the escrow site.

A possible inconvenient of a larger k may be a k
times longer d. The key owner wishing to only
memorize it, as one does it for the credit card, may
have trouble for k > 3. A way out may be parts of a
one-way hash of a code phrase. That one should be,
for the owner, easy to remember or reconstruct. It
should also be harder to crack by known tools than a
full-cost recovery itself. This can result, as usual for
passwords, from mix of letters, numbers and special
characters. It could be as easy nevertheless as, e.g.,
“In Jan. 1950 my age was 3.5 years”. For, say, 1B
discount code per share and our k = 5, any five bytes
of the hash could do. The generation of the k pseudo-
random shares should be amended consequently.
There are various easy ways to do it.

VI. RELATED WORK

The basis for the work above is the static and the
scalable schemes in [2]. These schemes use both hash
partitioning. In [3], one proposes also an RENS

scheme using the range partitioning. Our discounted
recovery calculation may be expected applying to this
scheme as well. Another scheme in [3], noises
multiple shares, i.e., it provides the (k + 1)-share
noised secret sharing with k > 1, like we do in Section
5. However, whether that scheme may be generalized
to support discounts is at present an open question.

Besides, we are not aware of any other related
work specific to some kind of discounted recovery.
The work related to the noised secret schemes in
general, including the overview of various proposals
for key recovery, is extensively discussed in [2] and
in [3]. We thus avoid repeating it here. We only
notice however that a bird’s eye view may assimilate
a discount code to a particularly easy to use trapdoor
decryption function dm, of bit-length m. The “power”
of successive functions for a key: d1, d2… scales up
then exponentially with m.

VII. CONCLUSION

Discounts appear a potentially highly useful
capability for an RENS scheme. The existing 2-share
schemes generalize towards discount management
easily. The key becomes “never-lost”, with (illegal)
disclosure cumbersome at will for the attacker and yet
with cheap (legal) and practical recovery by the
discount possessor. This combination, unique up to
now for a key recovery scheme, has the potential to
offset the current fears of key loss. On the one hand,
our schemes may help users managing sensitive data
purely locally, but fearing key loss or data disclosure
anyhow. On the other hand, they may aid those
attracted by big data outsourcing. Who remained
deterred up to now, by fears of accordingly big
consequences of key loss, or, by perhaps equally
calamitous consequences of cloud content disclosure.

With respect to the work in progress, we continue
the analysis of our schemes. We further plan to
extend it to other schemes in [3].

 [1] ARO Meeting on Cloud Security. GMU March 11-

12,2013. http://csis.gmu.edu/albanese/events/march-2013-cloud-
security-meeting/ .

 [2] Jajodia, S., Litwin, W., Schwarz, Th., S.J. Recoverable
Encryption through a Noised Secret over a Large Cloud. 5th Inl.
Conf. on Data Management in Cloud, Grid and P2P Systems
(Globe 2012). Springer Verlag, Lecture Notes in Comp. Sc.

[3] Jajodia, S., Litwin, W., Schwarz, Th., S.J. Recoverable
Encryption through a Noised Secret over a Large Cloud. Intl.
Journal on Large-Scale Data and Knowledge-Centered Systems,
TLDKS IX, LNCS 7980, 2013.

[4] Jajodia, S., Litwin, W., Schwarz, Th., S.J. Key Recovery
Using Noised Secret Sharing with Discounts and Large Clouds.
Lamsade Research Report. July 2013
http://www.lamsade.dauphine.fr/~litwin/cours98/CoursBD/Key%2
0Recovery%20with%20Discounts%20Res%20Rep.pdf

[5] Raluca Ada Popa, Redfield, C., Zeldovich, N. &
Balakrishnan, H. CryptDB: Protecting Confidentiality with
Encrypted Query Processing. SOSP ’11, October 23–26, 2011,
Cascais, Portugal.

 [6] Smith, K. How Practical Is Computable Encryption? In[1].

