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Abstract. This paper investigates a novel computational problem, na-
mely the Composite Residuosity Class Problem, and its applications to
public-key cryptography. We propose a new trapdoor mechanism and
derive from this technique three encryption schemes: a trapdoor permu-
tation and two homomorphic probabilistic encryption schemes computa-
tionally comparable to RSA. Our cryptosystems, based on usual modular
arithmetics, are provably secure under appropriate assumptions in the
standard model.

1 Background

Since the discovery of public-key cryptography by Diffie and Hellman [5], very
few convincingly secure asymetric schemes have been discovered despite consi-
derable research efforts.

We refer the reader to [26] for a thorough survey of existing public-key cryp-
tosystems. Basically, two major species of trapdoor techniques are in use today.
The first points to RSA [25] and related variants such as Rabin-Williams [24,
30], LUC, Dickson’s scheme or elliptic curve versions of RSA like KMOV [10].
The technique conjugates the polynomial-time extraction of roots of polyno-
mials over a finite field with the intractability of factoring large numbers. It is
worthwhile pointing out that among cryptosystems belonging to this family, only
Rabin-Williams has been proven equivalent to the factoring problem so far.

Another famous technique, related to Diffie-Hellman-type schemes (El Gamal
[7], DSA, McCurley [14], etc.) combines the homomorphic properties of the mod-
ular exponentiation and the intractability of extracting discrete logarithms over
finite groups. Again, equivalence with the primitive computational problem re-
mains open in general, unless particular circumstances are reached as described
in [12].
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Other proposed mechanisms generally suffer from inefficiency, inherent se-
curity weaknesses or insufficient public scrutiny: McEliece’s cryptosystem [15]
based on error correcting codes, Ajtai-Dwork’s scheme based on lattice prob-
lems (cryptanalyzed by Nguyen and Stern in [18]), additive and multiplica-
tive knapsack-type systems including Merkle-Hellman [13], Chor-Rivest (broken
by Vaudenay in [29]) and Naccache-Stern [17] ; finally, Matsumoto-Imai and
Goubin-Patarin cryptosystems, based on multivariate polynomials, were succes-
sively cryptanalyzed in [11] and [21].

We believe, however, that the cryptographic research had unnoticeably wit-
nessed the progressive emergence of a third class of trapdoor techniques: firstly
identified as trapdoors in the discrete log, they actually arise from the common
algebraic setting of high degree residuosity classes. After Goldwasser-Micali’s
scheme [9] based on quadratic residuosity, Benaloh’s homomorphic encryption
function, originally designed for electronic voting and relying on prime residuos-
ity, prefigured the first attempt to exploit the plain resources of this theory. Later,
Naccache and Stern [16], and independently Okamoto and Uchiyama [19] signif-
icantly extended the encryption rate by investigating two different approaches:
residuosity of smooth degree in Z

∗
pq and residuosity of prime degree p in Z

∗
p2q

respectively. In the meantime, other schemes like Vanstone-Zuccherato [28] on
elliptic curves or Park-Won [20] explored the use of high degree residues in other
settings.

In this paper, we propose a new trapdoor mechanism belonging to this family.
By contrast to prime residuosity, our technique is based on composite residuosity
classes i.e. of degree set to a hard-to-factor number n = pq where p and q are two
large prime numbers. Easy to understand, we believe that our trapdoor provides
a new cryptographic building-block for conceiving public-key cryptosystems.

In sections 2 and 3, we introduce our number-theoretic framework and inves-
tigate in this context a new computational problem (the Composite Residuosity
Class Problem), which intractability will be our main assumption. Further, we
derive three homomorphic encryption schemes based on this problem, including
a new trapdoor permutation. Probabilistic schemes will be proven semantically
secure under appropriate intractability assumptions. All our polynomial reduc-
tions are simple and stand in the standard model.

Notations. We set n = pq where p and q are large primes: as usual, we will
denote by φ(n) Euler’s totient function and by λ(n) Carmichael’s function1 taken
on n, i.e. φ(n) = (p− 1)(q − 1) and λ(n) = lcm(p− 1, q − 1) in the present case.
Recall that |Z∗

n2 | = φ(n2) = nφ(n) and that for any w ∈ Z
∗
n2 ,

{

wλ = 1 mod n
wnλ = 1 mod n2 ,

which are due to Carmichael’s theorem. We denote by RSA [n, e] the (conven-
tionally thought intractable) problem of extracting e-th roots modulo n where
n = pq is of unknown factorisation. The relation P1 ⇐ P2 (resp. P1 ≡ P2)

1 we will adopt λ instead of λ(n) for visual comfort.
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will denote that the problem P1 is polynomially reducible (resp. equivalent) to
the problem P2.

2 Deciding Composite Residuosity

We begin by briefly introducing composite degree residues as a natural instance
of higher degree residues, and give some basic related facts. The originality of our
setting resides in using of a square number as modulus. As said before, n = pq
is the product of two large primes.

Definition 1. A number z is said to be a n-th residue modulo n2 if there exists
a number y ∈ Z

∗
n2 such that

z = yn mod n2 .

The set of n-th residues is a multiplicative subgroup of Z
∗
n2 of order φ(n).

Each n-th residue z has exactly n roots of degree n, among which exactly one
is strictly smaller than n (namely n

√
z mod n). The n-th roots of unity are the

numbers of the form (1 + n)x = 1 + xn mod n2.
The problem of deciding n-th residuosity, i.e. distinguishing n-th residues

from non n-th residues will be denoted by CR [n]. Observe that like the prob-
lems of deciding quadratic or higher degree residuosity, CR [n] is a random-self-
reducible problem that is, all of its instances are polynomially equivalent. Each
case is thus an average case and the problem is either uniformly intractable or
uniformly polynomial. We refer to [1, 8] for detailed references on random-self-
reducibility and the cryptographic significance of this feature.

As for prime residuosity (cf. [3, 16]), deciding n-th residuosity is believed to
be computationally hard. Accordingly, we will assume that:

Conjecture 1. There exists no polynomial time distinguisher for n-th residues
modulo n2, i.e. CR [n] is intractable.

This intractability hypothesis will be refered to as the Decisional Composite
Residuosity Assumption (DCRA) throughout this paper. Recall that due to the
random-self-reducibility, the validity of the DCRA only depends on the choice
of n.

3 Computing Composite Residuosity Classes

We now proceed to describe the number-theoretic framework underlying the
cryptosystems introduced in sections 4, 5 and 6. Let g be some element of Z

∗
n2

and denote by Eg the integer-valued function defined by

Zn × Z
∗
n 7−→ Z

∗
n2

(x, y) 7−→ gx · yn mod n2

Depending on g, Eg may feature some interesting properties. More specifically,
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Lemma 1. If the order of g is a nonzero multiple of n then Eg is bijective.

We denote by Bα ⊂ Z
∗
n2 the set of elements of order nα and by B their

disjoint union for α = 1, · · · , λ.

Proof. Since the two groups Zn × Z
∗
n and Z

∗
n2 have the same number of ele-

ments nφ(n), we just have to prove that Eg is injective. Suppose that gx1yn
1 =

gx2yn
2 mod n2. It comes gx2−x1 ·(y2/y1)

n = 1 mod n2, which implies gλ(x2−x1) =
1 mod n2. Thus λ(x2 − x1) is a multiple of g’s order, and then a multiple of
n. Since gcd(λ, n) = 1, x2 − x1 is necessarily a multiple of n. Consequently,
x2−x1 = 0 mod n and (y2/y1)

n = 1 mod n2, which leads to the unique solution
y2/y1 = 1 over Z

∗
n. This means that x2 = x1 and y2 = y1. Hence, Eg is bijective.

ut

Definition 2. Assume that g ∈ B. For w ∈ Z
∗
n2 , we call n-th residuosity class

of w with respect to g the unique integer x ∈ Zn for which there exists y ∈ Z
∗
n

such that
Eg(x, y) = w .

Adopting Benaloh’s notations [3], the class of w is denoted [[w]]g. It is worth-
while noticing the following property:

Lemma 2. [[w]]g = 0 if and only if w is a n-th residue modulo n2. Furthermore,

∀w1, w2 ∈ Z
∗
n2 [[w1w2]]g = [[w1]]g + [[w2]]g mod n

that is, the class function w 7→ [[w]]g is a homomorphism from (Z∗
n2 ,×) to (Zn, +)

for any g ∈ B.

The n-th Residuosity Class Problem of base g, denoted Class [n, g], is defined
as the problem of computing the class function in base g: for a given w ∈ Z

∗
n2 ,

compute [[w]]g from w. Before investigating further Class [n, g]’s complexity, we
begin by stating the following useful observations:

Lemma 3. Class [n, g] is random-self-reducible over w ∈ Z
∗
n2 .

Proof. Indeed, we can easily transform any w ∈ Z
∗
n2 into a random instance

w′ ∈ Z
∗
n2 with uniform distribution, by posing w′ = w gαβn mod n2 where α

and β are taken uniformly at random over Zn (the event β 6∈ Z
∗
n occurs with

negligibly small probability). After [[w′]]g has been computed, one has simply to
return [[w]]g = [[w′]]g − α mod n. ut

Lemma 4. Class [n, g] is random-self-reducible over g ∈ B, i.e.

∀g1, g2 ∈ B Class [n, g1] ≡ Class [n, g2] .

Proof. It can easily be shown that, for any w ∈ Z
∗
n2 and g1, g2 ∈ B, we have

[[w]]g1
= [[w]]g2

[[g2]]g1
mod n , (1)
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which yields [[g1]]g2
= [[g2]]

−1
g1

mod n and thus [[g2]]g1
is invertible modulo n.

Suppose that we are given an oracle for Class [n, g1]. Feeding g2 and w into the
oracle respectively gives [[g2]]g1

and [[w]]g1
, and by straightforward deduction:

[[w]]g2
= [[w]]g1

[[g2]]
−1
g1

mod n .

ut

Lemma 4 essentially means that the complexity of Class [n, g] is independant
from g. This enables us to look upon it as a computational problem which purely
relies on n. Formally,

Definition 3. We call Composite Residuosity Class Problem the computational
problem Class [n] defined as follows: given w ∈ Z

∗
n2 and g ∈ B, compute [[w]]g.

We now proceed to find out which connections exist between the Composite
Residuosity Class Problem and standard number-theoretic problems. We state
first:

Theorem 1. Class [n] ⇐ Fact [n].

Before proving the theorem, observe that the set

Sn =
{

u < n2 | u = 1 mod n
}

is a multiplicative subgroup of integers modulo n2 over which the function L
such that

∀u ∈ Sn L(u) =
u − 1

n

is clearly well-defined.

Lemma 5. For any w ∈ Z
∗
n2 , L(wλ mod n2) = λ [[w]]1+n mod n.

Proof (of Lemma 5). Since 1 + n ∈ B, there exists a unique pair (a, b) in the set
Zn × Z

∗
n such that w = (1 + n)abn mod n2. By definition, a = [[w]]1+n. Then

wλ = (1 + n)aλbnλ = (1 + n)aλ = 1 + aλn mod n2,

which yields the announced result.

Proof (of Theorem 1). Since [[g]]1+n = [[1 + n]]−1
g mod n is invertible, a conse-

quence of Lemma 5 is that L(gλ mod n2) is invertible modulo n. Now, factoring
n obviously leads to the knowledge of λ. Therefore, for any g ∈ B and w ∈ Z

∗
n2 ,

we can compute

L(wλ mod n2)

L(gλ mod n2)
=

λ [[w]]1+n

λ [[g]]1+n

=
[[w]]1+n

[[g]]1+n

= [[w]]g mod n , (2)

by virtue of Equation 1. ut
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Theorem 2. Class [n] ⇐ RSA [n, n].

Proof. Since all the instances of Class [n, g] are computationally equivalent for
g ∈ B, and since 1 + n ∈ B, it suffices to show that

Class [n, 1 + n] ⇐ RSA [n, n] .

Let us be given an oracle for RSA [n, n]. We know that w = (1+n)x ·yn mod n2

for some x ∈ Zn and y ∈ Z
∗
n. Therefore, we have w = yn mod n and we get y

by giving w mod n to the oracle. From now,

w

yn
= (1 + n)x = 1 + xn mod n2 ,

which discloses x = [[w]]1+n as announced. ut

Theorem 3. Let D-Class [n] be the decisional problem associated to Class [n]
i.e. given w ∈ Z

∗
n2 , g ∈ B and x ∈ Zn, decide whether x = [[w]]g or not. Then

CR [n] ≡ D-Class [n] ⇐ Class [n] .

Proof. The hierarchy D-Class [n] ⇐ Class [n] comes from the general fact that
it is easier to verify a solution than to compute it. Let us prove the left-side
equivalence. (⇒) Submit wg−x mod n2 to the oracle solving CR [n]. In case of
n-th residuosity detection, the equality [[wg−x]]g = 0 implies [[w]]g = x by Lemma
2 and then answer ”Yes”. Otherwise answer ”No” or ”Failure” according to the
oracle’s response. (⇐) Choose an arbitrary g ∈ B (1+n will do) and submit the
triple (g, w, x = 0) to the oracle solving D-Class [n]. Return the oracle’s answer
without change. ut

To conclude, the computational hierarchy we have been looking for was

CR [n] ≡ D-Class [n] ⇐ Class [n] ⇐ RSA [n, n] ⇐ Fact [n] , (3)

with serious doubts concerning a potential equivalence, excepted possibly be-
tween D-Class [n] and Class [n]. Our second intractability hypothesis will be to
assume the hardness of the Composite Residuosity Class Problem by making the
following conjecture:

Conjecture 2. There exists no probabilistic polynomial time algorithm solving
the Composite Residuosity Class Problem, i.e. Class [n] is intractable.

By contrast to the Decisional Composite Residuosity Assumption, this con-
jecture will be refered to as the Computational Composite Residuosity Assump-
tion (CCRA). Here again, random-self-reducibility implies that the validity of
the CCRA is only conditioned by the choice of n. Obviously, if the DCRA is true
then the CCRA is true as well. The converse, however, still remains a challenging
open question.
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4 A New Probabilistic Encryption Scheme

We now proceed to describe a public-key encryption scheme based on the Com-
posite Residuosity Class Problem. Our methodology is quite natural: employing
Eg for encryption and the polynomial reduction of Theorem 1 for decryption,
using the factorisation as a trapdoor.

Set n = pq and randomly select a base g ∈ B: as shown before, this can be
done efficiently by checking whether

gcd
(

L(gλ mod n2), n
)

= 1 . (4)

Now, consider (n, g) as public parameters whilst the pair (p, q) (or equiva-
lently λ) remains private. The cryptosystem is depicted below.

Encryption:

plaintext m < n

select a random r < n

ciphertext c = gm
· rn mod n2

Decryption:

ciphertext c < n2

plaintext m =
L(cλ mod n2)

L(gλ mod n2)
mod n

Scheme 1. Probabilistic Encryption Scheme Based on Composite Residuosity.

The correctness of the scheme is easily verified from Equation 2, and it is
straightforward that the encryption function is a trapdoor function with λ (that
is, the knowledge of the factors of n) as the trapdoor secret. One-wayness is
based on the computational problem discussed in the previous section.

Theorem 4. Scheme 1 is one-way if and only if the Computational Composite
Residuosity Assumption holds.

Proof. Inverting our scheme is by definition the Composite Residuosity Class
Problem. ut

Theorem 5. Scheme 1 is semantically secure if and only if the Decisional Com-
posite Residuosity Assumption holds.

Proof. Assume that m0 and m1 are two known messages and c the ciphertext
of either m0 or m1. Due to Lemma 2, c is the ciphertext of m0 if and only
if cg−m0 mod n2 is a n-th residue. Therefore, a successfull chosen-plaintext at-
tacker could decide composite residuosity, and vice-versa. ut
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5 A New One-Way Trapdoor Permutation

One-way trapdoor permutations are very rare cryptographic objects: we refer
the reader to [22] for an exhaustive documentation on these. In this section, we
show how to use the trapdoor technique introduced in the previous section to
derive a permutation over Z

∗
n2 .

As before, n stands for the product of two large primes and g is chosen as in
Equation 4.

Encryption:

plaintext m < n2

split m into m1, m2 such that m = m1 + nm2

ciphertext c = g
m1m2

n mod n
2

Decryption:

ciphertext c < n2

Step 1. m1 =
L(cλ mod n2)

L(gλ mod n2)
mod n

Step 2. c
′ = cg

−m1 mod n

Step 3. m2 = c
′n
−1 mod λ

mod n

plaintext m = m1 + nm2

Scheme 2. A Trapdoor Permutation Based on Composite Residuosity.

We first show the scheme’s correctness. Clearly, Step 1 correctly retrieves
m1 = m mod n as in Scheme 1. Step 2 is actually an unblinding phase which
is necessary to recover mn

2 mod n. Step 3 is an RSA decryption with a public
exponent e = n. The final step recombines2 the original message m. The fact that
Scheme 2 is a permutation comes from the bijectivity of Eg . Again, trapdoorness
is based on the factorisation of n. Regarding one-wayness, we state:

Theorem 6. Scheme 2 is one-way if and only if RSA [n, n] is hard.

Proof. a) Since Class [n] ⇐ RSA [n, n] (Theorem 2), extracting n-th roots
modulo n is sufficient to compute m1 from Eg(m1, m2). Retrieving m2 then
requires one more additionnal extraction. Thus, inverting Scheme 2 cannot be
harder than extracting n-th roots modulo n. b) Conversely, an oracle which
inverts Scheme 2 allows root extraction: first query the oracle to get the two

2 note that every public bijection m ↔ (m1, m2) fits the scheme’s structure, but
euclidean division appears to be the most natural one.
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numbers a and b such that 1 + n = gabn mod n2. Now if w = yn
0 mod n, query

the oracle again to obtain x and y such that w = gxyn mod n2. Since 1+n ∈ B,
we know there exists an x0 such that w = (1 + n)x0yn

0 mod n2, wherefrom

w = (gabn)x0 yn
0 = gax0 mod n

(

gax0 div nbx0y0

)n
mod n2 .

By identification with w = gxyn mod n2, we get x0 = xa−1 mod n and finally
y0 = yg−(ax0 div n)b−x0 mod n which is the wanted value. ut

Remark 1. Note that by definition of Eg, the cryptosystem requires that m2 ∈
Z
∗
n, just like in the RSA setting. The case m2 6∈ Z

∗
n either allows to factor n or

leads to the ciphertext zero for all possible values of m1. A consequence of this
fact is that our trapdoor permutation cannot be employed ad hoc to encrypt
short messages i.e. messages smaller than n.

Digital Signatures. Finally, denoting by h : IN 7→ {0, 1}k ⊂ Z
∗
n2 a hash

function see as a random oracle [2], we obtain a digital signature scheme as
follows. For a given message m, the signer computes the signature (s1, s2) where











s1 =
L(h(m)λ mod n2)

L(gλ mod n2)
mod n

s2 =
(

h(m)g−s1

)1/n mod λ
mod n

and the verifier checks that

h(m)
?
= gs1sn

2 mod n2 .

Corollary 1 (of Theorem 6). In the random oracle model, an existential
forgery of our signature scheme under an adaptive chosen message attack has a
negligible success probability provided that RSA [n, n] is intractable.

Although we feel that the above trapdoor permutation remains of moderate
interest due to its equivalence with RSA, the rarity of such objects is such that
we find it useful to mention its existence. Moreover, the homomorphic properties
of this scheme, discussed in section 8, could be of a certain utility regarding some
(still unresolved) cryptographic problems.

6 Reaching Almost-Quadratic Decryption Complexity

Most popular public-key cryptosystems present a cubic decryption complexity,
and this is the case for Scheme 1 as well. The fact that no faster (and still
appropriately secure) designs have been proposed so far strongly motivates the
search for novel trapdoor functions allowing increased decryption performances.
This section introduces a slightly modified version of our main scheme (Scheme 1)
which features an O

(

|n|2+ε
)

decryption complexity.
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Here, the idea consists in restricting the ciphertext space Z
∗
n2 to the sub-

group < g > of smaller order by taking advantage of the following extension of
Equation 2. Assume that g ∈ Bα for some 1 ≤ α ≤ λ. Then for any w ∈<g>,

[[w]]g =
L(wα mod n2)

L(gα mod n2)
mod n . (5)

This motivates the cryptosystem depicted below.

Encryption:

plaintext m < n

randomly select r < n

ciphertext c = gm+nr mod n2

Decryption:

ciphertext c < n2

plaintext m =
L(cα mod n2)

L(gα mod n2)
mod n

Scheme 3. Variant with fast decryption.

Note that this time, the encryption function’s trapdoorness relies on the
knowledge of α (instead of λ) as secret key. The most computationally expensive
operation involved in decryption is the modular exponentiation c → cα mod n2

which runs in complexity O
(

|n|2|α|
)

(to be compared to O
(

|n|3
)

in Scheme 1). If
g is chosen in such a way that |α| = Ω (|n|ε) for some ε > 0, then decryption will
only take O

(

|n|2+ε
)

bit operations. To the best of our knowledge, Scheme 3 is the
only public-key cryptosystem based on modular arithmetics whose decryption
function features such a property.

Clearly, inverting the encryption function does not rely on the composite
residuosity class problem, since this time the ciphertext is known to be an ele-
ment of <g>, but on a weaker instance. More formally,

Theorem 7. We call Partial Discrete Logarithm Problem the computational
problem PDL [n, g] defined as follows: given w ∈< g >, compute [[w]]g. Then
Scheme 3 is one-way if and only if PDL [n, g] is hard.

Theorem 8. We call Decisional Partial Discrete Logarithm Problem the deci-
sional problem D-PDL [n, g] defined as follows: given w ∈< g > and x ∈ Zn,
decide whether [[w]]g = x. Then Scheme 3 is semantically secure if and only if
D-PDL [n, g] is hard.

The proofs are similar to those given in section 4. By opposition to the
original class problems, these ones are not random-self-reducible over g ∈ B but
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over cyclic subgroups of B, and present other interesting characteristics that we
do not discuss here due to the lack of space. Obviously,

PDL [n, g] ⇐ Class [n] and D-PDL [n, g] ⇐ CR [n]

but equivalence can be reached when g is of maximal order nλ and n the product
of two safe primes. When g ∈ Bα for some α < λ such that |α| = Ω (|n|ε) for
ε > 0, we conjecture that both PDL [n, g] and D-PDL [n, g] are intractable.

In order to thwart Baby-Step Giant-Step attacks, we recommend the use
of 160-bit prime numbers for αs in practical use. This can be managed by an
appropriate key generation. In this setting, the computational load of Scheme 3
is smaller than a RSA decryption with Chinese Remaindering for |n| ≥ 1280.
Next section provides tight evaluations and performance comparisons for all the
encryption schemes presented in this paper.

7 Efficiency and Implementation Aspects

In this section, we briefly analyse the main practical aspects of computations
required by our cryptosystems and provide various implementation strategies
for increased performance.

Key Generation. The prime factors p and q must be generated according to the
usual recommandations in order to make n as hard to factor as possible. The fast
variant (Scheme 3) requires additionally λ = lcm(p−1, q−1) to be a multiple of
a 160-bit prime integer, which can be managed by usual DSA-prime generation
or other similar techniques. The base g can be chosen randomly among elements
of order divisible by n, but note that the fast variant will require a specific
treatment (typically raise an element of maximal order to the power λ/α). The
whole generation may be made easier by carrying out computations separately
mod p2 and mod q2 and Chinese-remaindering g mod p2 and g mod q2 at the
very end.

Encryption. Encryption requires a modular exponentiation of base g. The com-
putation may be significantly accelerated by a judicious choice of g. As an illus-
trative example, taking g = 2 or small numbers allows an immediate speed-up
factor of 1/3, provided the chosen value fulfills the requirement g ∈ B imposed by
the setting. Optionally, g could even be fixed to a constant value if the key gen-
eration process includes a specific adjustment. At the same time, pre-processing
techniques for exponentiating a constant base can dramatically reduce the com-
putational cost. The second computation rn or gnr mod n2 can also be computed
in advance.

Decryption. Computing L(u) for u ∈ Sn may be achieved at a very low cost
(only one multiplication modulo 2 |n|) by precomputing n−1 mod 2 |n|. The con-
stant parameter

L(gλ mod n2)−1 mod n or L(gα mod n2)−1 mod n

can also be precomputed once for all.
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Decryption using Chinese-remaindering. The Chinese Remainder Theo-
rem [6] can be used to efficiently reduce the decryption workload of the three
cryptosystems. To see this, one has to employ the functions Lp and Lq defined
over

Sp =
{

x < p2 | x = 1 mod p
}

and Sq =
{

x < q2 | x = 1 mod q
}

by

Lp(x) =
x − 1

p
and Lq(x) =

x − 1

q
.

Decryption can therefore be made faster by separately computing the message
mod p and mod q and recombining modular residues afterwards:

mp = Lp(c
p−1 mod p2) hp mod p

mq = Lq(c
q−1 mod q2) hq mod q

m = CRT(mp, mq) mod pq

with precomputations

hp = Lp(g
p−1 mod p2)−1 mod p and

hq = Lq(g
q−1 mod q2)−1 mod q .

where p − 1 and q − 1 have to be replaced by α in the fast variant.

Performance evaluations. For each |n| = 512, · · · , 2048, the modular multi-
plication of bitsize |n| is taken as the unitary operation, we assume that the
execution time of a modular multiplication is quadratic in the operand size and
that modular squares are computed by the same routine. Chinese remaindering,
as well as random number generation for probabilistic schemes, is considered to
be negligible. The RSA public exponent is taken equal to F4 = 216 + 1. The pa-
rameter g is set to 2 in our main scheme, as well as in the trapdoor permutation.
Other parameters, secret exponents or messages are assumed to contain about
the same number of ones and zeroes in their binary representation.

Schemes Main Scheme Permutation Fast Variant RSA ElGamal

One-wayness Class [n] RSA [n, n] PDL [n, g] RSA [n, F4] DH [p]

Semantic Sec. CR [n] none D-PDL [n, g] none D-DH [p]

Plaintext size |n| 2 |n| |n| |n| |p|

Ciphertext size 2 |n| 2 |n| 2 |n| |n| 2 |p|

Encryption

|n|, |p| = 512 5120 5120 4032 17 1536

|n|, |p| = 768 7680 7680 5568 17 2304

|n|, |p| = 1024 10240 10240 7104 17 3072

|n|, |p| = 1536 15360 1536 10176 17 4608

|n|, |p| = 2048 20480 20480 13248 17 6144

Decryption

|n|, |p| = 512 768 1088 480 192 768

|n|, |p| = 768 1152 1632 480 288 1152

|n|, |p| = 1024 1536 2176 480 384 1536

|n|, |p| = 1536 2304 3264 480 576 2304

|n|, |p| = 2048 3072 4352 480 768 3072
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These estimates are purely indicative, and do not result from an actual im-
plementation. We did not include the potential pre-processing stages. Chinese
remaindering is taken into account in cryptosystems that allow it i.e. all of them
excepted ElGamal.

8 Properties

Before concluding, we would like to stress again the algebraic characteristics of
our cryptosystems, especially those of Schemes 1 and 3.

Random-Self-Reducibility. This property actually concerns the underlying
number-theoretic problems CR [n] and Class [n] and, to some extent, their weaker
versions D-PDL [n, g] and PDL [n, g]. Essentially, random-self-reducible problems
are as hard on average as they are in the worst case: both RSA and the Discrete
Log problems have this feature. Problems of that type are believed to yield good
candidates for one-way functions [1].

Additive Homomorphic Properties. As already seen, the two encryption
functions m 7→ gmrn mod n2 and m 7→ gm+nr mod n2 are additively homomor-
phic on Zn. Practically, this leads to the following identities:

∀m1, m2 ∈ Zn and k ∈ IN

d(e(m1) e(m2) mod n2) = m1 + m2 mod n

d(e(m)k mod n2) = km mod n

d(e(m1) gm2 mod n2) = m1 + m2 mod n

d(e(m1)
m2 mod n2)

d(e(m2)
m1 mod n2)

}

= m1m2 mod n .

These properties are known to be particularly appreciated in the design of voting
protocols, threshold cryptosystems, watermarking and secret sharing schemes,
to quote a few. Server-aided polynomial evaluation (see [27]) is another potential
field of application.

Self-Blinding. Any ciphertext can be publicly changed into another one with-
out affecting the plaintext:

∀m ∈ Zn and r ∈ IN

d(e(m) rn mod n2) = m or d(e(m) gnr mod n2) = m ,

depending on which cryptosystem is considered. Such a property has potential
applications in a wide range of cryptographic settings.



14 Pascal Paillier

9 Further Research

In this paper, we introduced a new number-theoretic problem and a related
trapdoor mechanism based on the use of composite degree residues. We derived
three new cryptosystems based on our technique, all of which are provably secure
under adequate intractability assumptions.

Although we do not provide any proof of security against chosen ciphertext
attacks, we believe that one could bring slight modifications to Schemes 1 and
3 to render them resistant against such attacks, at least in the random oracle
model.

Another research topic resides in exploiting the homomorphic properties of
our systems to design distributed cryptographic protocols (multi-signature, se-
cret sharing, threshold cryptography, and so forth) or other cryptographically
useful objects.
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