
RAID 6
Intel® Storage Building Blocks

White Paper

Intelligent RAID 6 Theory
Overview and Implementation

www.intel.com/design/
storage/intelligent_raid.htm

2

Abstract
RAID 5 systems are commonly deployed for data protection

in most business environments. However, RAID 5 systems

only tolerate a single drive failure, and the probability of

encountering latent defects of drives approaches 100 percent

as disk capacity and array width increase. To address this

issue, RAID 6 systems will soon be widely adopted because

RAID 6 systems protect critical user data even when two

drives or more fail concurrently. The Mean Time to Data Loss

(MTDL) of RAID 6 systems is greater than RAID 5 systems;

therefore, RAID 6 systems provide much better data protection

than RAID 5. The RAID 6 theory is based on Maximum

Distance Separable (MDS) coding, as well as Galois Field (GF)

mathematics, which is introduced briefly in this paper. In

addition, the P and Q parity computation and data recovery

schemes are presented to help readers transition to RAID 6

systems rapidly. Lastly, the RAID 6 acceleration features of

the Intel® IOP333 I/O processor are discussed. The IOP333

processor offloads the host CPU from intensive RAID 6

computations performed on a byte-by-byte basis in the

data-path, allowing implementation of RAID 6 without

compromising performance.

Introduction
The rising demand for capacity, speed and reliability of storage

systems has expedited the acceptance and deployment of

Redundant Array of Independent Disks (RAID) systems. RAID

distributes data blocks among multiple storage devices to

achieve high bandwidth input/output and uses one or more

error-correcting drives for failure recovery. There are different

RAID levels available for different data protection requirements.

This paper focuses on RAID 6 systems and technology.

A RAID 5 system adds one parity drive in the form of parity

elements in addition to the data; and is capable of recovering

user data when one drive fails. When two drives fail, the user

suffers data loss. A RAID 6 system, however, protects user data

when two drives fail at the same time. In a practical scenario,

the probability of two drives failing at the same time can be

much higher than one might think. For example, as the

capacity of drives used in a RAID 5 array grows, the RAID 5

rebuild time increases; during this time, the system is exposed

to potential data loss. Furthermore, in a RAID 5 system, the

operator occasionally pulls the wrong drive; thus, causing two

drives to fail simultaneously. The ability of RAID 6 to tolerate

simultaneous failures without loss of user data makes RAID 6

a better choice than RAID 5 for mission-critical applications.

The remainder of the paper is structured as follows. The second

section discusses the advantages of RAID 6 over RAID 5.

The third section gives an overview of RAID 6 theory. The

fourth section narrates a method for RAID 6 P and Q check

value generation. The fifth section describes the recovery

schemes when two drives fail at the same time. The sixth

section discusses the programming of the Intel IOP333 I/O

processor to facilitate RAID 6 algorithm implementation.

The last section concludes this paper.

RAID 5 vs. RAID 6
In this section, the fail time and probability of failure of RAID 5

vs. RAID 6 systems will be examined. As mentioned before,

the capacity of disks is growing each year to satisfy user

demands. The effect of growing disk capacity is MTDL has

decreased from approximately 2 years to 1 month for some

large RAID 5 arrays. The MTDL for large RAID 5 arrays with

high capacity disks is unacceptable in most scenarios.

However for the same drive capacity (320 GB), and number

of drives, the MTDL is approximately 100 years for a RAID 6

array. RAID 6 MTDL improves drastically over RAID 5 MTDL.

Figure 1 compares the MTDL figures for RAID 0 (no redun-

dancy), RAID 5 (tolerates 1 failure), and RAID 6 (tolerates 2

failures); accounting for the chance of encountering an

unrecoverable read error during rebuild.

In Figure 1, the bottom line with diamonds shows the expected

time before any one disk fails in the array. In an array with no

redundancy (e.g. RAID 0), this would result in loss of data.

The next line, with triangles, shows the MTDL for a RAID 5

array with the probability of finding a latent defect during re-

build factored in. Note that a RAID 5 array with greater than

about 5 TB in total capacity could lose data multiple times in

a single year. To illustrate the impact of latent defects in MTDL

calculations, or Mean Time to Additional Failure (MTAF), the

3

Figure 1 Time to Failure vs. Disk Capacity

Array Capacity

 1.0E+10 Mo

 1.0E+09 Mo

 1.0E+08 Mo

 1.0E+07 Mo

 1.0E+10 Mo

 1.0E+10 Mo

 1.0E+10 Mo

 1.0E+10 Mo

 1.0E+10 Mo

 1.0E+10 Mo

 1.0E+10 Mo

 10
0

GB

14
4

GB

20
7

GB

29
9

GB

43
0

GB

61
9

GB

89
2

GB

12
84

GB

18
49

GB

26
62

GB

38
34

GB

55
21

GB

79
50

GB

11
44

8
GB

16
48

4
GB

23
73

8
GB

Desktop Drive Arrays
Range from 5 to 87 disks per array

Disk sizes range from 20 GB to 273 GB
Disk MTBF = 10 5hr

Unrecovered Read Error Rate = 10 -14

MTAF(R0)
MTAF(R5)
MTDL(R5)
MTDL(R6)

next curve, with squares, shows the probability of failure due

to two disk failures, ignoring latent defects, for a RAID 5 array.

Ignoring the impact of latent defects, the MTDL for a RAID 5

array remains quite good, even for arrays of 5 TB or greater

capacity. The top line, with circles, shows the MTDL for a

RAID 6 array taking into account the probability of finding

latent defects. It shows the MTDL for RAID 6 arrays, even

accounting for the impact of latent defects, is many orders

of magnitude better than that for a comparable RAID 5 array.

To better understand how latent defects affect MTDL in RAID

5 arrays, we look at the probability of encountering a latent

defect during a rebuild operation. If a RAID 5 controller

encounters a defect during a rebuild operation, user data is

lost because the failed disk and the defective sector represent

two missing elements, exceeding the capability of RAID 5 to

recover the lost data. Figure 2 shows the probability of finding

a latent defect during array rebuild as array capacity grows.

For extremely large arrays with high-capacity disks, it would

be surprising not to encounter a latent defect during a rebuild

operation. This graph assumes an error rate typical for desktop

class drives. The probability is an order of magnitude lower

for enterprise-class drives.

RAID 6 Theory Overview
A complete understanding of RAID 6 theory requires some

knowledge of algebra and finite-field coding theory. The intent

of this paper is not to bog down readers with minute details

of algebra and coding theory. However, an overview of the

theory is essential to implement the RAID 6 algorithm. Readers

who are interested in a more in-depth discussion of coding

theory are encouraged to read more detailed articles. ("Practical

Error Correction Design for Engineers" by Neal Glover,

4

Trent Dudley; Data Systems* Technology Corp; Rev 2nd

edition — March 1, 1991).

RAID 6 technology uses MDS codes based on GF or Finite

Field mathematics to encode data on the drives to protect

data from error or erasure. The following paragraphs provide

an overview of GF algebra and MDS encoding used in RAID 6

implementations.

MDS Codes

Irving Reed and Gus Solomon published a paper in 1960 that

presented a new class of error-correcting codes referred to as

Reed Solomon codes, which are an example of MDS codes.

In this section we will discuss elements of Reed Solomon codes

with characteristics similar to the MDS codes used in P and Q

check value generation. Reed Solomon codes are non-binary

systematic cyclic linear block codes. The encoding method

generates a codeword consisting of a block of data symbols

with a number of check symbols calculated from the block of

data, which are appended at the end. The non-binary charac-

teristic facilitates encoding of symbols consisting of several

bits (normally 8 bits). The Reed Solomon encoding/decoding

technique is widely used today in storage devices, wireless/

mobile communications, satellite communications, digital

television and high speed modems.

A Reed-Solomon code is specified as RS(n,k) with s-bit

symbols (see Figure 3 below). n denotes the total number of

symbols per codeword and k denotes the total number of

data symbols per codeword. s represents the total of number

of bits per symbol.

The number of parity symbols are 2t = n – k. The RS code

corrects up to t symbol errors and up to 2t erasures when the

position of an error symbol is known. The MDS erasure coding

used in P+Q RAID 6 is closely related to Reed-Solomon codes,

where 2t = 2 so the system corrects up to two erasures with

two parity disks when the position of failure is known (as is

always the case for disk failures or unrecovered read errors).

For a symbol size s, the maximum codeword length is n = 2s – 1.

For example, when we use an eight bit symbol (i.e, GF(28), the

maximum codeword length is 28 – 1 = 255. A P+Q RAID 6

implementation forms a code word by taking a single byte from

each of k data disks in the array and calculating two parity

Figure 2 Latent Defects vs. Array Capacity

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%
4 12 20 28 36 44 52 60 68 76 84 92 100

Number of disks in array

Probability of Unrecovered Read Error during Rebuild
Disk Unrecovered Error Rate: one in 1014 bits read

P(Read Error: 300GB Drives)
P(Read Error: 100GB Drives)

Figure 3 Reed-Solomon Codeword

symbols (P and Q) stored on P and Q parity disks, and forming

an n-symbol code word consisting of the k bytes read from k

different data disks and the calculated P and Q parity values.

Because the maximum code word length for GF(28) is 255,

the maximum number of drives (n) that can be supported is

255 which includes data drives (253) and parity drives (2).

Galois Field (GF) Algebra Basics

A GF is a set of values that contains a finite number of elements.

GF with 28 elements are denoted as GF(28) and have elements

from integer 0 to 28 – 1. Moreover, a finite field has an important

property that arithmetic operations (add, subtract, multiply,

divide) on field elements always have a result that is also in the

field. The catch is the add, subtract, multiply and divide oper-

ations are not the same as the ones normally used in integer

arithmetic, but are redefined to yield the desired properties in

the finite field. The generation of elements in GF(28) will be

investigated in the next paragraph.

Galois Field Element Generation

To enumerate elements in GF requires a primitive polynomial,

which means the polynomial cannot be factored. There are

several known primitive polynomials available based on the

value of s (8). The GF elements are enumerated with the

selected primitive polynomial, and the enumeration ends at

the 2s element. The following simple example demonstrates

the generation of GF(22) elements. For example, let s = 2 (22

= 4 elements in GF) and let the primitive polynomial be q(x) =

x2 + x + 1. Enumeration begins with a primitive element in the

field which is a root of q(x). If the value of x (say, α, called a

primitive element) is a root of q(x), then it is true that α2 + α +

1 = 0, or α2 = α + 1. Addition is defined to be a bit-wise XOR

of the coefficients of the polynomial, and multiplication corre-

sponds to multiplication of polynomials of the primitive element,

α. We start with {0, 1} elements then continue to enumerate

subsequent field elements by multiplying the previous field

element by x and taking the result modulo q(x) if it has degree

>= 2. The third element is generated from 1 * α = α. The fourth

element is generated from α * α = α2. But because x is a root

of the primitive polynomial, q(x), we know that α2 = α + 1.

Therefore, we end up with {0, 1, α, α+1} constituting the 4

elements in GF(22). In Figure 4, the table shows the GF ele-

ments expressed in various formats.

Note that multiplying the last element in the table by x, yields,

α*(α +1) = α2+ α = α +1+ α = 1,

which results in a field element (1) already defined. To continue

this process simply cycle through the same four elements

already calculated.

Galois Field Arithmetic Operations

To encode and decode MDS codewords, finite-field arithmetic

is needed. Remember that the closed-field operation of finite-

field arithmetic mandates that all arithmetic operations of ele-

ments in the field produce another element in the field. The

following paragraphs discuss GF arithmetic operations and

present a few examples.

Addition and subtraction of elements in GF fields are performed

as an exclusive-OR. Because a GF is enumerated by taking

powers of a primitive element, α; the ith element is represented

by αi. Likewise, the jth element is represented by αj. Multipli-

cation is achieved by addition of the exponents (i.e., αi * αj =

α(i+j),which is the (i+j)th element in the GF). In this case, addition

is modulo 2n-1, so for GF(28) if i+j >= 255, the result is the (i+j

– 255)th element in GF(28). Note that since αi is the ith element in

the set, then i = logα(αi). If the values of GF(28) are enumerated

as an indexed list, the index of the value is the log of the value.

By swapping the columns and sorting in order of the values,

αi, one creates a log table to look up the log of any value.

Multiplication in GF(28), then, is a simple matter of looking up

the log values of the multiplicands, adding them (modulo 255),

and looking up the inverse-log of the result. Software imple-

mentations will typically generate two tables (gflog and gfilog)

to simplify these operations. Division in GF(28) is a similar

operation with exponents subtracted rather than added (again,

modulo 255). Examples of how to use gflog and gfilog tables to

perform multiplication and division operations are presented

in the next paragraph. The software to generate both tables

is shown in Figure 5, and the primitive polynomial selected for

s = 8 is q(x) = x8 + x4 + x3 + x2 +1. GF(28) is constructed using

a primitive element, α = 1, which is a root of the polynomial,

and therefore is a solution to the equation, x8 = x4 + x3 + x2 +1.

5

Generated Polynomial Binary elements
 elements of GF(4) elements of GF(4) of GF(4)
 0 0 00
 a0 1 01

a1 a 10
a2 a+1 11

Figure 4 GF(22) Elements in Different Representations

In Figure 6 and 7, to simplify the multiplication and division

examples, we only list the first 64 elements in hex value of the

gflog and gfilog tables which are generated by the routine in

Figure 5. These elements are used to demonstrate closed-

field multiplication and division operations.

The value of x is represented in rows and columns so that the

function result (in hex) is found by looking in the cell with row

R and column C. For example, gflog(0x13) is found in the cell

with row-1 and column 3 of the gflog table which gives a

value of 0x0e. Likewise, gfilog(0x0e) is found by looking in the

gfilog table in row 0, column e, which has the value 0x13,

which is decimal 19.

Notation:

⊕ : denotes GF addition.

⊗ : denotes GF multiplication

÷ : denotes GF division

+ : denotes normal integer addition

0x64 : denotes hex value of 64

18 : denotes decimal value of 18

Multiplication:

2 ⊗ 8 = gfilog [gflog[2] + gflog[8]] = gfilog[1+3] = gfilog[4] = 0x10

0x12 ⊗ 5 = gfilog [gflog[0x12] + gflog[5]] = gfilog[0xe0+0x32]

= gfilog[0x13] = 0x5a

Note: Addition here is normal integer addition performed

modulo 255 (as opposed to the XOR function used for addition

of two GF field elements).

Division:

0xd ÷ 0x11 = gfilog [gflog[0xd] - gflog[0x11]] = gfilog[0x68 -

0x64] = gfilog[4] = 0x10

2 ÷ 0xb = gfilog [gflog[2] + gflog[0xb]] = gfilog[0x1 - 0xee] =

gfilog[0x12] = 0x2d

6

Figure 5 Logarithm Table Generation code

//***

// This routine is used to create logarithm and inverse loga-

rithm tables for computing

// P&Q parity. In our P&Q computation, we use all 1’s for the

//coefficients of P.

//***

int gen_tables (int s)

{

unsigned int b, index, gf_elements;

//polynomial = x8 + x4 + x3 + x2 +1

unsigned int prim_poly_8 = 0x11d;

unsigned short *gflog, *gfilog;

//convert s to the number of elements for the table

gf_elements = 1 << s;

gflog = (unsigned short *) malloc (sizeof (unsigned short) *

gf_elements);

gfilog = (unsigned short *) malloc (sizeof (unsigned short) *

gf_elements);

b = 1;

for (index = 0; index < gf_elements - 1; index++)

{

gflog[b] = (unsigned char) index;

gfilog[index] = (unsigned char) b;

b <<= 1;

if (b & gf_elements)

b ^= prim_poly_8;

}

return 0;

}

gflog(x) 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 -- 00 01 19 02 32 1a c6 03 df 33 ee 1b 68 c7 4b
1 04 64 e0 0e 34 8d ef 81 1c c1 69 f8 c8 08 4c 71
2 05 8a 65 2f e1 24 0f 21 35 93 8e da f0 12 82 45
3 1d b5 c2 7d 6a 27 f9 b9 c9 9a 09 78 4d e4 72 a6

Figure 6 Logarithm Table -GF-1(28)

gfilog(x) 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 1 2 4 8 10 20 40 80 1d 3a 74 e8 cd 87 13 26
1 4c 98 2d 5a b4 75 ea c9 8f 3 6 0c 18 30 60 c0
2 9d 27 4e 9c 25 4a 94 35 6a d4 b5 77 ee c1 9f 23
3 46 8c 5 0a 14 28 50 a0 5d ba 69 d2 b9 6f de a1

Figure 7 Inverse Logarithm Table -GF(28)

The following basic properties of algebra apply to GF arithmetic

operations. These properties are useful in manipulating GF

elements.

• Commutative: A ⊕ B = B ⊕ A;
A ⊗ B = B ⊗ A;

• Associative: (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C);
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C);

• Distributive: (A ⊕ B) ⊗ C = A ⊗ C ⊕ B ⊗ C;

• Inverse: A
-1

= 1 ÷ A;

• Multiplicative Inverse : For all x in GF, there exists y in GF
such that x ⊗ y = 1

• Multiplicative Identity : 1 ⊗ AA == AA;

• Additive inverse : For all xx in GF, there exists yy in GF
such that xx ⊕ yy == 00.

• Additive Identity : For all x in GF, xx ⊕ 00 == xx

P and Q Check Value Generation
In the previous paragraphs we have shown how to integrate

gflog and gfilog tables and demonstrated using these tables

how to simplify GF multiplication and division. Now we discuss

how to generate P and Q check values when a stripe of data

is being written or updated on to disks. If P and Q elements

were always mapped to the same two disks, then every write

operation serviced by the array would require updating of the

same two disks. To avoid the bottleneck, P and Q check

values are rotated through the disks in the array as follows.

Figure 8 shows one possible layout of P and Q elements in a

RAID 6 array. For stripe 0, drive 0 through 4 store data blocks

but drives 5 and 6 store P and Q parity, respectively. For stripe

1, drives 1 through 3 and 6 store data blocks and drives 4 and

5 store P and Q parity respectively. The rotation continues

until P and Q arrive back at their original positions, and the

sequence repeats.

P Check Value Generation

P check value generation is the same as RAID 5 parity com-

putation. To simplify our examples, we assume each data

block in a stripe contains only one byte of data. Therefore, P(0)

check value for stripe 0 and P(2) check value for stripe 2 are

computed as follows. The equation is simplified if we assume

P is always one.

P(0) = P0⊗D(0,0) ⊕ P1⊗D(0,1) ⊕ P2⊗D(0,2) ⊕ P3 ⊗D(0,3) ⊕ P4⊗D(0,4)

= D(0,0) ⊕ D(0,1) ⊕ D(0,2) ⊕ D(0,3) ⊕ D(0,4)

P(2) = P0⊗D(2,0) ⊕ P1⊗D(2,1) ⊕ P2⊗D(2,2) ⊕ P3 ⊗D(2,3) ⊕ P4 ⊗D(2,4)

= D(2,0) ⊕ D(2,1) ⊕ D(2,2) ⊕ D(2,3) ⊕ D(2,4)

When a specific data block in a stripe is being updated, the P

check value must be updated. This is normally referred to as

a strip write. The following examples depict the computation

of new P check values when strip 0 and strip 3 are written.

P(0)new = P(0)old ⊕ D(0,2)old ⊕ D(0,2)new

P(3)new = P(3)old ⊕ D(3,1)old ⊕ D(3,1)new

Q Check Value Generation

To generate the Q check value we use the multiplier coefficients

selected from GF elements in the gfilog table. The previous

assumption that each data block contains only one byte of

data applies here as well. The following examples show how

Q(0) and Q(5) check values are generated when stripe 0 and

stripe 5 are written.

Q(0) = g0⊗D(0,0) ⊕ g1⊗D(0,1) ⊕ g2⊗D(0,2) ⊕ g3 ⊗D(0,3) ⊕ g4⊗ D(0,4)

= 0x1⊗D(0,0) ⊕ 0x2⊗D(0,1) ⊕ 0x4⊗D(0,2) ⊕ 0x8⊗D(0,3) ⊕
0x10 ⊗D(0,4)

Q(5) = g0 ⊗D(5,0) ⊕ g1⊗D(5,1) ⊕ g2⊗D(5,2) ⊕ g3 ⊗D(5,3) ⊕ g4⊗ D(5,4)

= 0x1⊗D(5,0) ⊕ 0x2⊗ D(5,1) ⊕ 0x4 ⊗D(5,2) ⊕ 0x8⊗D(5,3) ⊕
0x10⊗ D(5,4)

When a specific data block in a stripe is being updated, the Q

check value must also be updated. The following examples

depict the computation of new Q check values when strip 2

or strip 3 are modified.

Q(2)new = Q(2)old ⊕ g2⊗D(0,2)old ⊕ g2⊗D(0,2)new

= Q(2)old ⊕ 0x4⊗D(0,2)old ⊕ 0x4⊗D(0,2)new

= Q(2)old ⊕ (0x4 ⊗ (D(0,2)old ⊕ D(0,2)new)) - apply

distributive rule

Q(3)new = Q(3)old ⊕ g3⊗D(3,1)old ⊕ g3⊗D(3,1)new

= Q(3)old ⊕ 0x2⊗D(3,1)old ⊕ 0x2⊗D(3,1)new

= Q(3)old ⊕ (0x2 ⊗(D(3,1)old ⊕ D(3,1)new)) - apply

distributive rule

7

Figure 8 RAID 6 Data Blocks on Drives

 Stripe 0 1 2 3 4 5 6

 0 D(0,0) D(0,1) D(0,2) D(0,3) D(0,4) P(0) Q(0)

 1 D(1,0) D(1,1) D(1,2) D(1,3) P(1) Q(1) D(1,4)

 2 D(2,0) D(2,1) D(2,2) P(2) Q(2) D(2,3) D(2,4)

 3 D(3,0) D(3,1) P(3) Q(3) D(3,2) D(3,3) D(3,4)

 4 D(4,0) P(4) Q(4) D(4,1) D(4,2) D(4,3) D(4,4)

 5 P(5) Q(5) D(5,0) D(5,1) D(5,2) D(5,3) D(5,4)

 6 Q(6) D(6,4) D(6,0) D(6,1) D(6,2) D(6,3) P(6)

RAID 6 Recovery
RAID 6 recovers user data when two drives fail simultaneously.

When two drives fail, to restore redundancy it is necessary to

rebuild data that was on the failed drives to replacement drives

using data from the remaining good drives. This paragraph

discusses the rebuild process when two drives fail. There are

four cases to consider: 1) P and Q drives fail, 2) P drive and

one data drive fail, 3) Q drive and one data drive fail, 4) two

data drives fail. The rebuild steps for each case are presented

below. The recovery method for different stripes is different

depending on whether the failed disks had P, Q, or user data

as P and Q are rotated from one stripe to the next, but the re-

covery method for any given stripe is always one of the four

cases listed above.

Recovery of P and Q Drive Failure

This is the easiest rebuild scenario. Since all data drives are

intact, P and Q check values can be recomputed from data

drives as mentioned in the previous paragraphs.

Recovery of Q and Single Data Drive Failure

The rebuild process is similar to RAID5 recovery. Since Pdrive

is intact, the data blocks can be rebuilt using P check value.

This process is exactly the same as RAID 5 rebuild process.

After the failed data blocks have been recovered, Q can be

recomputed as mentioned above. The following example as-

sumes drive 1 and the Q parity drive failed and demonstrates

the recovery of the data block and Q check value of stripe 0.

D(0,1) = P(0) ⊕ D(0,0) ⊕ D(0,2) ⊕ D(0,3) ⊕ D(0,4)

Q(0) = g0⊗D(0,0) ⊕ g1⊗D(0,1) ⊕ g2⊗D(0,2) ⊕ g3 ⊗D(0,3) ⊕ g4⊗ D(0,4)

Recovery of P and Single Data Drive Failure

In this rebuild process, the Q check value is used to rebuild

the data drive. Let’s assume drive 2 and the P drive failed.

The first step in the rebuild process is to compute Q’ (Q com-

puted based on the remaining data drives), then GF add Q’ to

Q and GF multiply the result by g2
-1
. Drive 2 data blocks may

be rebuilt through this process. After rebuilding drive 2 data

blocks, the P check value can be recomputed using a normal

XOR operation.

Q0’ = g0⊗D(0,0) ⊕ g1⊗D(0,1) ⊕ g3 ⊗D(0,3) ⊕ g4⊗ D(0,4)

D(0,2) = g2
-1

⊗ (Q(0) ⊕ Q0’)

P(0) = P0⊗D(0,0) ⊕ P1⊗D(0,1) ⊕ P2⊗D(0,2) ⊕ P3 ⊗D(0,3) ⊕ P4⊗D(0,4)

= D(0,0) ⊕ D(0,1) ⊕ D(0,2) ⊕ D(0,3) ⊕ D(0,4)

Recovery of Dual Data Drive Failure

The rebuild process to recover from a two data drive failure is

the most complicated case. Let’s assume drive 1 and 2 failed;

so, we have two equations and two unknowns.

D(0,1) ⊕ D(0,2)= P(0) ⊕ D(0,0) ⊕ D(0,3) ⊕ D(0,4)

g1⊗D(0,1) ⊕ g2⊗D(0,2) = Q(0) ⊕ g0⊗D(0,0) ⊕ g3⊗D(0,3) ⊕ g4⊗D(0,4)

Using matrix inversion we solve for D(0,1) and D(0,2). D(0,1) and

D(0,2) can be computed directly using the equations below.

After we restore one of the data blocks, we can use the P

check value to restore the other data block. This is an alternate

way to compute the second data block.

D(0,1) = (g1 ⊕ g2)
-1

⊗((g2 ⊗ (P(0) ⊕ P(0)’))⊕ (Q(0)) ⊕ Q(0)’))

D(0,2) = (g1 ⊕ g2)
-1

⊗ ((g1 ⊗ (P(0) ⊕ P(0)’)) ⊕ (Q(0)) ⊕ Q(0)’))

P(0)’ = D(0,0) ⊕ D(0,3) ⊕ D(0,4)

Q(0)’ = g0⊗D(0,0) ⊕ g3⊗D(0,3) ⊕ g4⊗D(0,4)

D(0,2) = D(0,1) ⊕ (P(0) ⊕ P(0)’)

RAID 6 Acceleration with the
Intel® IOP333
The Intel IOP333 is a multi-function device that integrates the

Intel XScale® core (ARM* architecture compliant) with intelligent

peripherals and dual PCI Express*-to-PCI-X bridges. The

IOP333 is Intel's 6th generation I/O processor.

Intel® IOP333 Architecture Overview

The Intel IOP333 combines the Intel XScale core with power-

ful new features to create Intel's latest and most powerful

intelligent I/O processor. This multi functional device is fully

compliant with the PCI local bus Specification 2.3 and the PCI

Express Specification, Revision 1.0a. The features included in

the IOP333 are listed below:

• Intel XScale® Core @ up to 800 MHz

• PCI Express* 2.5 GHz x8 link

• Application Acceleration Unit (AAU) for XOR

• Application Accelerator for RAID 6, P + Q Implementation

• Address Translation Units (ATU)

• Dual-ported DDR 333 MHz/DDR2 400 MHz Memory

Controller

• Peripheral Bus Interface (PBI)

• Two PCI Express-to-PCI-X* bridges to secondary PCI-X 133

MHz Bus Interfaces

• Two I2C Bus Interface Units

• Two DMA Controllers

• Messaging Unit (MU)

8

• 333 MHz Internal Bus

• Two UARTS

• Interrupt Controller and GPIOs

Intel® IOP333 Application Acceleration Unit (AAU)

The Application Acceleration Unit (AAU) provides low-latency,

high throughput data transfer between the AAU and IOP333

local memory. It executes data transfers to and from the

IOP333 local memory, checks for all zero results across local

memory blocks, fills memory blocks, computes XOR values

for 4, 8, 16 and 32 source data blocks and carries out GF

multiplication. The main enhancement in the IOP333's AAU

is the ability to accelerate the GF multiplication for RAID 6

implementations. The AAU operations can be chained

together using descriptor entries. Chain descriptors provide

efficient and effective programming interfaces to handle

crossing scatter-gather buffer and stripe boundaries.

As mentioned in the previous sections, the GF multiplication

is an important operation when computing the check value

and when recovering one or two failed data drives. The AAU

in the IOP333 relieves the CPU from doing time-consuming GF

multiplication, thereby increasing the overall system perform-

ance. The AAU performs GF multiplications in conjunction

with the XOR. The AAU multiplies source data blocks with GF

field elements before the XOR operation when the P+Q RAID

6 feature is enabled. Additionally, the chain descriptor in the

AAU allows the user to chain several RAID 6 computations

together and offloads the RAID 6 computation to hardware

instead of burdening the CPU.

The descriptor chain in the AAU provides high performance

RAID 6 throughput to the RAID application. The descriptor

chain is located in DDR SDRAM memory. The AAU reads the

descriptor chain and performs the operations specified by it.

The data structure of the P+Q chain descriptor for six source

data blocks is shown in Figure 10.

NDA – contains the address of next chain descriptor

PQSAR1 – contains the source address of data block 1

PQSAR2 – contains the source address of data block 2

PQSAR3 – contains the source address of data block 3

GFMR1 – contains GF field elements for source 1 through 3

for GF multiplication

DAR – contains the destination address for XOR-ed data block

BC – contains the byte count to be XOR-ed and GF multiplied

DC – contains descriptor control bits for P+Q operations

PQSAR4 – contains the source address of data block 4

PQSAR5 – contains the source address of data block 5

PQSAR6 – contains the source address of data block 6

GMFR2 – contains GF field elements for source 4 through 6

for GF multiplication

9

Figure 9 IOP with RAID 6 Acceleration

Intel XScale®

Core
Bus Interface Unit

UART
Units

Interrupt/
GPIO
Unit

SMBus

Performance
Monitoring

2 Channel
DMA

Controller

IOAPIC

Timers

Arbiter

Arbiter /

2 - I 2C
Units

16-bit
PBI

Application
Acceleration

Unit

32/64-bit
DDR/DDR II

Interface
Memory Controller

Message
Unit

ATU

PCle-to-PCIx
Bridge

IOAPIC
PCle-to-PCIx

Bridge
PCIe x8

A PCI-X IOP-Bus (133 MHz)

B PCI-X Slot Bus (133 MHz)

2.7 GB/s Internal Bus (333 MHz)

Figure 10 Data Structure of Six Source Chain Descriptor

Next Descriptor Address (NDA)
Source Address 1 (PQSAR1)
Source Address 2 (PQSAR2)
Source Address 3 (PQSAR3)

Data Multiplier Values (GFMR1)
Destination Address (DAR

Byte Count (BC)
Descriptor Control (DC)

Source Address 4 (PQSAR4)
Source Address 5 (PQSAR5)
Source Address 6 (PQSAR6)

Data Multiplier Values (GFMR2)

The following sample code demonstrates the programming of a chain descriptor to setup a six source data block and P+Q

check value computation using the AAU. The first routine, bld_3src_pq_desc() builds a 3 source descriptor entry, and the

second routine, bld_6src_pq_desc() calls the first routine then fills in the additional 3 source data blocks in the chain descriptor.

/*==

* Function : bld_3src_pq_desc()

*

* Arguments : desc - contains a 3 source descriptor (empty) pointer

* byte_cnt - contains the byte count of data block

* parity_type - contains the type of parity to compute (P or Q)

* last_entry - indicates the last entry of the descriptor.*

* Description : this routine sets up the P+Q xor chain descriptor for 3 sources.

*

* Return : void pointer

* ==*/

void *bld_3src_pq_desc (void *desc, unsigned int byte_cnt, parity_type parity,

boolean last_entry)

{

unsigned char *gfmulti;

unsigned int i;

pq_3src *desc_ptr;

unsigned int *save_nda;

//convert void * to 3src descriptor structure

desc_ptr = (pq_3src *)desc;

//allocate sar1, sar2 and sar3 buffer space and fill with known data.

alloc_buf_and_fill (byte_cnt, &(desc_ptr->sar1), (unsigned int)0x3);

desc_ptr->gfmr1 = 0;

//convert from word pointer to byte pointer

gfmulti = (unsigned char *) &(desc_ptr->gfmr1);

//use all one for coefficient if computing P parity.

if (parity = P_PARITY)

desc_ptr->gfmr1 = 0x00010101;

else

{

//fill in the value of GM multipler using coefficient generated

//the lowest order byte of the word contains the data multipler for sar1,

//the second byte for sar2 and the third byte for sar3.

for (i = 0; i < 3; i++)

{

*gfmulti = (unsigned char) gfilog [i];

gfmulti++;

10

}
}

//allocate memory space for destination address

desc_ptr->dar = (unsigned int) malloc (sizeof(unsigned char) * byte_cnt);

//set byte count in the descriptor entry

desc_ptr->bc = byte_cnt;

//set the descriptor control value to

//bit 31 = 1 (dual XOR operation) 0x80000000

//bit 1..3 = 111 (blk#1 op=direct fill) 0x8000000E

//bit 4..6 = 001 (blk#2 op=XOR) 0x8000001E

//bit 7..9 = 001 (blk#3 op=XOR) 0x8000009E

desc_ptr->dc |= 0x80000000;

desc_ptr->dc |= (0x00000007 << 1); //setting block op for blk #1

desc_ptr->dc |= (XOR_OP << 4); //setting block op for blk #2

desc_ptr->dc |= (XOR_OP << 7); //setting block op for blk #3

save_nda = (unsigned int *)&desc_ptr->nda;

desc_ptr++;

if (last_entry)

*save_nda = (unsigned int)0;

else

*save_nda = (unsigned int)desc_ptr;

return ((void *)desc_ptr);

}

/*===

* Function : bld_6src_pq_desc()

*

* Arguments : desc - pointer points to 6 src descriptor (empty) entry.

* byte_cnt - contains the number of bytes of data block.

* parity - contains the type of parity to compute (P or Q)

* last_entry - indicates this is the last entry.

*

* Description : this routine sets up the P+Q xor chain descriptor for 6 sources.

*

* Return : descriptor pointer

*

==*/

void *bld_6src_pq_desc (void *desc, unsigned int byte_cnt, parity_type parity,

boolean last_entry)

{

unsigned char *gfmulti;

unsigned int i;

pq_6src *desc_ptr;

11

unsigned int *save_nda;

desc_ptr = (pq_6src *)desc;

if (last_entry)

bld_3src_pq_desc (&(desc_ptr->three_src), byte_cnt, parity, TRUE);

else

bld_3src_pq_desc (&(desc_ptr->three_src), byte_cnt, parity, FALSE);

//allocate sar4, sar5 and sar6 buffer space and fill with known data.

alloc_buf_and_fill (byte_cnt, &(desc_ptr->sar4), (unsigned int)0x3);

desc_ptr->gfmr2 = 0;

//convert from word pointer to byte pointer

gfmulti = (unsigned char *) &(desc_ptr->gfmr2);

//use all one for coefficient if computing P parity.

if (parity = P_PARITY)

desc_ptr->gfmr2 = 0x00010101;

else

{

//fill in the value of GM multipler using coefficient generated

//the lowest order byte of the word contains the data multipler for sar1,

//the second byte for src2 and the third byte for sar3.

for (i = 3; i < 6; i++)

{

*gfmulti = (unsigned char) gfilog [i];

gfmulti++;

}

}

//setting block op for blk #4

desc_ptr->three_src.dc |= (XOR_OP << 10);

//setting block op for blk #5

desc_ptr->three_src.dc |= (XOR_OP << 13);

//setting block op for blk #6

desc_ptr->three_src.dc |= (XOR_OP << 16);

//setting supplemental block control interpreter to 6 src.

desc_ptr->three_src.dc |= (0x01 <<25);

save_nda = (unsigned int *)&desc_ptr->three_src.nda;

desc_ptr++;

if (last_entry)

*save_nda = (unsigned int)0;

else

*save_nda = (unsigned int)desc_ptr;

return ((void *)desc_ptr);

}

12

Conclusion

A RAID 6 storage system provides enhanced data protection for critical user data. But, it is challenging to implement a RAID 6

system due to its complexity. In this paper, an overview of RAID 6 theory and implementation was presented. Additionally, the

Intel IOP333 processor which accelerates RAID 6 P and Q check value computations was introduced. Users who are interested

in migrating from RAID 5 to RAID 6 or designing a RAID 6 system are encouraged to use this paper as a starting point.

13

Copyright © 2005 Intel Corporation. All rights reserved. Intel, Intel logo, and Intel XScale are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others. 0505/DLC/S2D/HO/1K 308122-001US

