Research intc Networks and Distributed Applications

R. Speth (Editor)

Elsevier Science Publishers B.V. (North-Holland) 1069
© ECSC, EEC, EAEC, Brussels and Luxembourg, 1988

GLOBAL VIEW DEFINITION AND MULTIDATABASE LANGUAGES -
TWO APPROACHES TO DATABASE INTEGRATION+

Peter FANKHAUSER*
Witold LITWIN{
Erich J. NEUHOLDY
Michael SCHREFLt

+University of Vienna
$GMD, Darmstadt
$INRIA, Rocquencourt

The paper deals with new aspects of two different approaches to achieve integrated access
1o autonomous heterogeneous databases. One is 10 assist the user in the definition of his
personal view over different databases. The other one is to provide new features 1o multi-
database manipulation languages for manipulation of distinct and mutually not integrated
databases.Both provide the capability to use multiple databases without the need to
predefine a complete giobal schema. The two approaches are related to each other.

1. INTRODUCTION

Integrating access 10 preexisting data-model-heterogeneous DBs can be split into two tasks. The first
one is 10 achieve data model homogeneity. Therefore it is required (i} to map the local conceptual
schemata (or parts of them) to export schemata in a canonical data model, (ii) to specify the transiation
of queries against the export schemata into according queries against the local schemata and (iii) to
define the mapping of the responses in the format of the local schemata into the format of the export
schemata. The data model homogeneous export schemata may stll be semantically heterogeneous.
They may model similar or even the same type of data with differences in naming, scaling, in the level
of detail and in the way of data abstraction. Thus the second task is to overcome the semantic hetero-
geneiry.

In this paper we concentrate on the latter task. In order to overcome the semantic heterogeneity either
semantically homogeneous global views may be defined (3, 9. 10, 18] or a multidatabase manipulation
language 16, 7} capable of manipulating jointly data in different databases may be supplied. The first
possibility is useful for repetitive manipulations. The second one provides the advantage to be fiexible
with respect to ad hoc queries.

In the following both approaches are introduced. In the second section an outline of useful operators
for defining integrated global views is given and some of the implied problems are discussed. In the
third section necessary extensions to database manipulation languages are discussed and they are illus-
trated by some examples. The paper is concluded by a relating the two approaches to each other.

+ This work was partially sponsered by the Comumission of European Communities under Cost 11%
project THIS and the Austrian science foundation (Fonds zur Foerdenmg der wissenschaflichen
Forschung) under grant P 5976 P. -

1070 P. Fankhauser et al,

2. PERSONALIZED GLOBAL VIEWS

The framework for the research described in this section is a project on knowledge oriented distributed
information management (KODIM), KODIM is intended to provide information management facilities
to support homogeneous access to privale and public databases by establishing global views. A single
global schema that integrates completely the local schemata of a large number of databases is toilsome
if not impossible 1o establish and will hardly meet any users intention. Contrary, a personalized global
view describes a multidatabase view on those parts of some databases which are of interest to a partic-
ular person.

2.1. The scenario

In a preintegration phase the export schemata which we assume to exist already for the purpose of this
paper are extended by some meta database information. The local database administrators add for
example domains for atributes, constraints, semantic relationships between classes, synonym names
and access rights 1o make the local databases self describing.

Then the various database administrators communicate with each other to define partially the initial
global view. The initial global view will at least consist of a set of primitive global datatypes and the
appropriate transformation rules between global and local datatypes.

An individual user or user group may define its view upon a general initial global view and several
export schemata. A personalized view should not be regarded as a static schema. It rather dynamically
evolves when a user accesses a multidatabase system and thereby increases his knowledge about the
databases’ contents. A user may have some query in mind but may not yet know how to pose it
correctly. He may not be aware of the names used for the classes and attributes of some expor
schema. He might even not know which databases to use. In this case a knowledge navigator will
assist the user in selecting appropriate databases and identifying relevant classes and attributes. If these
classes reside in different export schemata the user is assisted to integrate them imto a semantically
homogeneous representation in his personalized view. The knowledge navigator uses metaknowledge
like a taxonomy of terms (thesaurus) for which each database holds information, a reduced description
of the several local conceptual scemata and other relevant information.

It has been proposed to use the relational model as canonical model as it will be supported by many
commercial database systems. It is simple, easily understood and subject to standardization. However,
it was basically developed for tabular data, and has been found not to be that adequate to model other
types of dara frequently used. For instance in the field of document databases the domains of text
search fields are solely defined by the retrieve operators which may be applied on them. These retrieve
operators can have similar function (e.g. retrieving from full text) in several databases but usually
differ in their syntax and their semantics with respect to proximity operators, thesauri, etc.. Mapping
the contents of documents and the according queries into the relational model is bordersome and
inefficient,

We propose [4, 11, 12, 13] to use an object oriented data model as canonical model. Object oriented
data models [1, 2, 17} encapsulate data structures, termed object classes, with their (specialized) opera-
tions, termed merhods. Operations are executed on an instance of a class by sending the object class a
message which identifies a method selector and possible argument values. A message will be denoted
as:

['object-identifier’ method-selector: {argument-values}).

Global View Definition and Multidatabase Languages 107}

The set of messages to which an object can respond is called interface of the object and the set of pos-
sible reactions behaviour. Global views - global object classes - derive their behaviour fully from
(local) object classes of the export schemata or other already established global views.

In the next subsections several concepts to establish global views are introduced.

2.2. Object class integration by generalization

In many cases global views constitute a generalization of exported object classes with some common
behaviour. Consider for example the selections of the order handling databases of two companies in
Figures 1 and 2. The class PART of company A has the attributes "PartNo", "ManufacturedFirst” and
“Weight”, and the method "Price” which calculates the price of a product in POUND according to the
practice of company A. Company B has modelled a comparable entity PRODUCT, but has used
different names for methods and attributes with comparable functionality, e.g. it uses "Print” for
displaying a PRODUCT whercas company A uses *Show" for displaying 2 PART. Furthermore the
prices of parts and products are represented in different currencies.

class PART

antributes:
PartNo: STRING
ManufacturedFirst: YEAR
Weight: KILO

methods:
Price: POUND
Show:

class CUSTOMER

anributes:
Name: STRING
Address: STRING

Credit: POUND

Figure I: Selection from the order handling database of Company A

class PRODUCT

attributes:
ProductNo: STRING
ManufacturedFirst: YEAR
methods:
Price: DM
Print:

class CUSTOMER

artributes:
Name: STRING
Address: STRING
Credit: DM

Figure 2: Selection from the order handling database of Company B

1072 P. Fankhauser et al,

To operate the databases afier a merger of the two companies joinily the differences in attributes and
methods will become burdensome. A view offering a single set of data manipulation functions (mes-
sages) should be available. This is achieved by the definition of a common generalization class for two
or more related object classes. The most flexible way to specify the global behaviour of the instances
of the related object classes is to define explicitly all methods at the generalization classes and combine
their results properly. However if there exists a large number of methods this task becomes burden-
some. Therefore we use upward inheritance [15] by searching for methods not found at a (global) gen-
eralization class at its subclasses. To combine methods inherited upward from more than one subclass
appropriately by default rules we distinguish several generalization types:

"CATEGORY GENERALIZATION

Classes that mode! different real world objects which share some common properties (methods) but
cannot be identified by any of these consttute categories. Consider for example classes PART and
PRODUCT from Figure 2 which are category generalized 1o the global class PRODUCT in Figure 3.

class PRODUCT
metaclass: CATEGORY_GENERALIZATION_CLASSES
generalization of: APART, BPRODUCT
auributes:
OrderNo
corresponding:
A PART.PartNo
B PRODUCT.ProductNo
methods:
Display
corresponding -
A PART Show
B.PRODUCT.Print
Price: DOLLAR

Figure 3: The category generalized class PRODUCT

The global class PRODUCT is made an instance of the metaclass
CATEGORY_GENERALIZATION_CLASS. Only the combination of synonymeousely named and
differently scaled methods and atributes has 1o be specified explicitly. The rest is inherited upward
and combined according 1o default rules specified with the metaclass. The method specification
“Display” says o display products of company A by the message “Show" and products of company B
by the message "Print”, and the method specification "Price” states that the price of a product is 1o be
given uniformly in DOLLAR.

ROLE GENERALIZATION
Classes that model the same real world entities in a different situation or context can be role general-
ized.

class CUSTOMER
metaclass: ROLE_GENERALIZATION_CLASSES
generalization of: A.CUSTOMER, B.CUSTOMER

object correspondence rules:
A.CUSTOMER .Name = B.CUSTOMER.Name and
A.CUSTOMER. Address = B.CUSTOMER .Address

Global View Definition and Multidatabase Languages 1073

attributes: :
Credit: DOLLAR

Figure 4: The role generalized class CUSTOMER

-

In Figure 4 the class CUSTOMER is defined as role generalization of the classes A.CUSTOMER and
B.CUSTOMER. As both classes have been instantiated independently they will represent the same real
world person by different object identifiers and several object identifiers exist for one and the same
instance of the generalization class. In order to be able to relate equivalent object identifiers, object
corresponding rules, which are predicates that evaluate to true for corresponding instances of the local
classes, are associated with role generalization classes. In cases where the correspondence cannot be
expressed by a generic predicate a1 class level it has 10 be instantiated expicitly for objects found to
correspond with each other.

IDENTITY GENERALIZATION

Object classes that model the same set of reat world objects at the same point of time can be identity
generalized 1o global views without any change. This special case will hardly occur. Nevertheless the
operation makes sense because of the restriction not to violate the autonomy of the export schemata. If
a user wants to include a local object class as it is into the global view in order 10 further semantically
relate it to other global views he can identity generalize it alone and feel free to modify it further.

HISTORY GENERALIZATION

Classes that model the same real world objects at different points (intervals) of ime can be history
generalized (e.g. employees who are modeled as former studenss in a university's database and arc now
modeled in their company’s database).

COUNTERPART GENERALIZATION

Object classes that model disjunctive sets of objects which share some common properties but
represent altemative situations in the real worid can be counterpart generalized (e.g. air-connections
and train-connections correspond with each other according to their departure- and arrival-city and can
therefore be generalized to travel-connections)

When an object is retrieved by a query against a global view it should continue 1o follow the global
behaviour that query. In order to distinguish between the local and global behaviour of an object the
concept of object coloring is used. An object follows the behaviour of a certain object class when it is
tinged by a color unique for this object class. The color of an object identifier is denoted by a super-
script to the identifier, e.g. "Meier-ACUSTOMER: The special message "as: object-class-name” sent 10
an object changes its color accordingly. The corresponding method “"as” is defined at and inherited
from the metaclass of the generalization class constituting the global view.

Additionaly when inherited atributes are scaled in a different way a unique scale has to be chosen for
the global view. In order to switch between the local and global representation of the corresponding
values (objects) the concept of object transformation is used. It is assumed that every instance of a
local data type class will respond to the message

('data-value’ in: data-type-class-name}
by first coloring the data-value by the data-type-class-name and sending itself the mesage
"TransformFrom”, i.e..

[['data-value’ as: data-type-class-name) TransformF rom).
The methods "TransformFrom” and "TransformTo" are inherited from the system defined meta class
DATA_TYPE_CONVERSION_CLASS and use the actual transformation methods specified with the
individual global data type class. Note, that an asymetric approach is necessary because modification of

1074 P. Fankhauser et al.

local classes has 1o be avoided and the appropriate transformation methods have to be specified with
the global class (Figure 5).

class DOLLAR .
metaclass: DATA_TYPE_CONVERSION_CLASS
generalization of. POUND, DM
transformation methods:
FromPound
FromDM
‘FoPound
ToDM

Figure 5: The global view DOLLAR

For example the message {’SDM’ in: DOLLAR] will be transformed into [{'SDM’ as: DOLLAR]
TransformFrom). The colored object’SDMPOLLAR" follows the behaviour of the global class DOL-
LAR. Therefore it can respond to the »TransformFrom" message, which is inherited by DOLLAR
from DATA_TYPE_CONVERSION_CLASS, and use the transformation method "FromDM" to con-
vert 'SDMPOLLAR® into *3§’

Consider now that all customers named "Meier" are retrieved and assigned to a variable by the expres-
sion:

meier = [CUSTOMER where: Name = "Meier"].

Note that it is assumed that every class can respond to the special message where in order to select
objects by a qualification given as parameter. In order to access the concrete instances of the local
object classes the message is transformed into

[A.CUSTOMER where: Name = "Meier"] as: CUSTOMER] union
{[B.CUSTOMER where: Name = "Meier"} as: CUSTOMER]

The interpretation of union specific for role-generalized objects uses the given object correspondence
rules to relate equivalent objects and chooses deliberatly one of the corresponding object identifiers to
represent the generalized object. The as-message is used to color the resulting objects according to the
global context of the query. Now the credit of the retrieved customers can be obtained by the message

{meier Credit}

When a cenain member of the set in meiers, let it be 'Meier-ACUSTOMER: ' receives the message
Credir it will retrieve its color and realize that it has to foliow the behaviour of the role generalized
class CUSTOMER. There it will find that if it is instance of A.CUSTOMER and B.CUSTOMER,
which is the case in our example, it has 10 union multiply inherited credits of both related objects.
Thus the message is transformed into

{{{'Meier-ACUSTOMER: g A.CUSTOMER] Credit] in: DOLLAR] union
{'Meier-ACUSTOMER" g B.CUSTOMER] Credit} in: DOLLAR]}

The object transformation from POUND in DOLLAR and from DM in DOLLAR has to take place
because the local object classes use different currencies. When union-message has been implemented
as summation (operator overloading) for the data type class DOLLAR the total credit given by both
companies to Mr. Meier is retumed. .

Global View Definition and Multidatabase Languages 1075

2.3. Qualified inheritance

With inheritance along the well known is-a relationship it is assumed that all methods and attributes of
a superclass are propagated 10 its subclasses unless it is overridden at a subclass explicilly. With the
reverse relationship generalization-of we assume as well that all attributes and methods are inherited
upward. This concept of full inheritance can be refined by associating to other semantic relationships
(e.g. part-of) a message "Propagates” which is implemented as a logic expression serving as selective
qualification on methods and attributes 10 be inherited over that relation (Figure 6). That logic expres-
sion is evaluated by the message handling mechanism when an attribute or method not found at an
object is searched for and found at some semantically related object. If it evaluates to true the con-
sidered attribute or method is inherited. In the implementation of "Propagates” the methods and attri-
butes can either be explicitly enumerated (connected by "or”) by name or selected by some predicate.
For example with the PART_OF relationship each candidate <attribute> for inheritance is tested for
belonging to the metaclass PART_OF INHERITABLE_ATTRIBUTES. If an attribute is not associated
10 an appropriate metaclass or a semantic relationship has got no method "Propagates” no inheritance is
assumed. The concept corresponds to the notion of inclede schemata in CRL™ (Camegie Representa-
tion Language) [5) in KnowledgeCraft™.

class: GENERALIZATION_OF

metaclass: RELATION_CLASSES
methods:
Propagates: BOOL

implemeniation: TRUE

class: PART_OF

metaclass: RELATION_CLASSES
methods:
Propagates: BOOL

implementation:
{[<attribute> metaciass) = PART_OF_INHERITABLE_ATTRIBUTES]

Figure 6: semantic relationships with qualified inheritance
The object classes of the export schemata can be semantically enriched in the preintegration phase by

associating their methods to appropriate metaclasses. For instance in Figure 7 the atiribute "Owner” of
the local object class CAR has been enriched appropriately.

class: CAR
anributes:
Owner: PERSON
metaclass: PART_OF_INHERITABLE_ATTRIBUTES
Motorld: STRING
Color: STRING

Figure 7: semantically enriched object class CAR in daiabase of company A.

The user then has at his disposal a number of predefined semantic relationships 10 express his inten-
tions for a global view. For instance if an already established global view MOTOR is related to the

1076 P Fankhauser et al.

above object class CAR as in Figure 8 it additionally inherits al} part-of-inheritable auributes.

class: MOTOR .
part_of: A.CAR
attributes:

Power: KJOULE
1d: STRING

Figure 8: use of semantic relationship PART_OF

When some motor is sent the message Owner which it cannot handle directly the message is forwarded
along the semantic relation PART_OF to an associated car where an appropriate attribute is found.
The inheritance specification of PART_OF evaluates 10 true therefore in order to respond to the origi-
nal request the according value is propagated o the motor. Note that as with role generalized objects
the pan-of relation has 10 be explicilly instantiated if it is not possible to relate objects by a
corresponding rule over user defined keys at object class level.

2.4. System assisted derivation of methods

If databases have been designed autonomously the same universe may be modelled in different ways.
Differences in logical data structures result for example when some fact is modelled once as attribute
and once as object. In these cases the comprehensive behaviour derivation by inheritance is 100 inac-
curate. In order 1o overcome structural differences and to derive the behaviour of global views very
specifically the system agsists the user to implement the according methods.

For this purpose the concept of message forwarding [14] is used. When a message cannot be handled
by an object directly - due to structural differences or not sufficiently established semantic relationships
it is forwarded as inquiry message at class Jevel along related objects that can handle the message.
Thereby the path(s) are recorded which serve - if the search has been successful - as basis for a
(number of) plan(s) to jmplement the desired method. A set of message forwarding rules guides the
search and a set of plan combination rules assists the user in choosing appropriate plans and combining
them. The process 0 determine a message forwarding plan is related 1o the problem to determine
implicit joins in queries against a (multi)relational database [8).

Once a plan is defined it serves as method until it becomes obsolete because of subsequent changes of
some export schemata. Then the plan is presented for modification or a completely new plan can be
derived as described above.

The concept of object coloring from section 2.2. is generalized to the concept of context coloring in
order to remember with an object the environment in which it has been retrieved. The object that is
remmed to a forwarded message is colored by the objects which identify the context through which the
message has been forwarded. Thereby it refiects the environment in which it was originally retrieved
in its subsequent behaviour. Consider the following scenario. A product some customer has ordered is
retrieved by a message to the customer. The same product may have been ordered by a number of
other customers as well. Nevertheless in the context of the actual query the product with respect only
1o the considered customer is of interest; the retrieved product depends on that customer. If a subse-
quent message seni 10 the retrieved product asks for the order date the product takes into account the
context of the previous message and will respond with the date on which the considered customer, and

Global View Definition and Multidatabase Languages 1077

not another one, has ordered the product.

Note that the above concept results in a weaker version of inheritance. Whereas the system exploits
the combination rules given by generalization metaclasses (2.2.) and the inheritance qualification asso-
ciated 1o semantic relationships (2.3.) automatically, both combining and cuiting out possible plans at
has to be partially confirmed by the user. Upward inhefitance, qualified inheritance and system assis-
tance 1o implement methods explicitly together form a rich set of tools to establish and dynamically
refine global views.

3. MULTIDATABASE MANIPULATION LANGUAGES

3.1. New needs

Database languages were intended for the definition and manipulation of data within a database. A
multidaiabase language has the same goals, but for a collection of databases. This extension requires
new capabilities responding to the following new needs:

(1) - in general, if a manipulation is expressible in a data model for data are in a database, it should be
expressible as well for these data spread in any way over different databases. For the relational model,
it should be in particular the case of joins.

(2) - the user should be able to indicate databases to be used. The language should provide therefore
the notion of the database name. The database name may in particular be needed to solve name
conflicts between data in different databases.

(3) - while data in a database are assumed integrated, they cannot be in general assumed integrated for
different databases. The databases are indeed autoriomous and the primary goal of each databasc are
the local needs. A multidatabase query may then need to specify a8 common manipulation of data that
unlike in a database are redundant or differ with respect to names, value types or strcture. The
language has 1o allow the user to formulate such manipulations in a non procedural way despite these
discrepancies.

(4) - for the similar reasons, the user should be able to define data in a cooperative way. This involves
the definition of data in multiple schemas in a single statement or the definition of access right
imported from another database etc.

(5) - the user should be able to move data between databases. These data may need to be gathered
from several databases and included into several others as well. The transfer may include data conver-
sion.

(6) - the user should be able to define (i) various types of dependencies among selected databases and
(ii) impon schemas (global views).

The overall purpose of these capabilities is 1o make simple the usage of multiple databases without any
global (import) schema. It is felt that to make the requirement for such a schema mandatory prior to
any multidatabase manipulation of a collection of databases, would greatly restrict the user flexibility.
In contrast, the integrated presentation may be useful for repetitive and basically known in advance
manipulations. This observation comes out from experiments with the prototype multidatabase system
MRDSM and is shared by database systems manufacturers. Most of new major sysiems provide indeed

1078 P Fankhauser et al.

the basic mulidatabase capabilities (1) and (2) above. This is especially the case of Sybase, of Oracle
V5 and of Empress V2, though the corresponding syniax differs. The Oracle provides in particular
extensive capabilities for interdatabase queries (5). In contrast, Sybase allows 10 definc interdatabasc
manipulation dependencies in the form of interdatabase triggers.

3.2. Design probiems

The new capabilities require solutions to two aspects of 2 (muhi)database language design:

At the user interface level:

New concepts have 1o be introduced for the formulation of various types of statements. For instance, in
addition to the concept of the database mame, it is useful to admit the possibility of multiple
identification of data types 10 deal with redundant data sharing names. 1t is aiso useful to allow the
user to define new data names in staiements for a common manipulation of data that have different
actual names. Then, the user should dispose of powerful functions for instance conversion or homogen-
ization of value types, for unit specification etc.

At the implemeniation level

New capabilities require technical solutions at the implementation level that were not considered for
database systems Of insufficiently developed as not required strongly. For instance, to bind data name
used by the user to the actual names, some analyses should be done, including sometimes the access 10
an external thesaurus. On the other hand, a flexible value iype conversion for both retrievals and
updates may requirc the access to systems for symbolic calculus like Macsyma and/for 10 equation
solvers. It also requires efficient methods for unit conversion that do not exist yet in database systems,
since the actual units of data 10 be gathered, compared or updated by a staiement may differ from one
database to another, These and similar problems werc supposed not 10 exist in a database, as the task
of the database administrator was precisely 1o remove such discrepancies.

3.3. Examples
To illustrate both types of problems consider the following queries.

1. The user wishes 10 know the wages of Policemen and of Firemen which are recorded in two tables
named accordingly in distinct databases also named accordingly. He knows that the comesponding
columns are called wage for Policemen and wages for Firemen. To do it in a single query, one way is
to allow the user:

e 1o open both databases simultaneously.

e to name both tables through a single name, let it be X. If the user prefers meaningful names, he
would choose Employees for instance.

e 10 use gencric characters like '@ for any sequence of characiers in data names.

If SQL is extended by these features, to the language we termed MSQL, the query may be simply as
follows:

USE Policemen Firemen +Choice of the databases
LET X BE Policemen Firemen /*Common name for the tables
SELECT wage% /*Double selection

Global View Definition and Multidatabase Languages 1079

The result of the query would be two tables defined by the classical SQL statements obtained through
the substitution of actual names to X and executed in any order:

/* Database Policemen /* Database Firemen
SELECT wage SELECT wages
FROM Policemen FROM Firemen

2. Consider now a similar query to ultimately ali databases where there are wages of the French state
employees, collectively named Employees multidatabase. Assume further that the local autonomy
allows each database to call its employee tables as the administrators prefer: Teachers, Workers, Phy-
sicians.... . The wages may also be called salary, payment,.. The above simple formalism at the
language would not suffice anymore. Rather the user query should be simply:

USE Employees
SELECT wage
FROM Employees

To find the corresponding actual names in the databases, the systems should dispose in contrast at the
implementation level of the service of a (sub)system exploring a general purpose thesaurus. The query
to each database would be rephrased accordingly. The Thesaurus could be a database by itself.

Consider now that the Firemen wages are indicated with 10 % Social Security payment, while Police-
men wages are net. A user wishes to increase by 5 % the wages whose net value is under 5000 F. One
way 10 formulate the corresponding query is to dynamically define for the Firemen a column with net
wages and then to update all net wages. In MSQL this may be done as follows:

USE Policemen Firemen /*Choice of the databases

LET X BE Policemen Firemen /*Common name for the tables
D-COLUMN wage = 0.9 * wages /*Declaration of the dynamic colum
UPDATE X

SET wage = wage * 1.05 /* Update of the net wages

WHERE wage < 5 000

The capability of defining the dynamic columns is new with respect to the SQL user interface. The
statement would update both the actual columns Policemen.wage and Firemen.wages. The latter update
would require also the capability of symbolic calculus at the implementation level. The definition of
wage has indeed to be inverted for the update o the form wages = wage /09

4. Finally, consider a user wishing to know in FF the wages of Policemen from databases in various
European countries, recorded using the local currencies. The formalism of dynamic columns would not
suffice anymore. A natural solution is to allow the system 10 have at the implementation level the
access 10 a (sub)system in charge of currencies conversions. All together, the system would convert by
itself the actual currency units to that chosen by the user.

1080 P. Fankhauser el al.

4, CONCLUSION

Multidatabase languages should allow users to formulate multidatabase manipulations in a flexible way
and possibly in a single statement. This, no matter what are the actual names or value types that may
be heterogeneous from one database 10 another.

When the semantic differences between data structures of local databases reach a certain degree of
complexity the approach of global view definition will be more benificial. The user is mainly interested
in getting responses 1o a query. Thus the process of view definition has to be well integrated into the
process of querying at the user interface level. For an enduser view definition should only occur when
necessary to respond 10 a query. Additionaly he should not be burdened with all the details of defining
a view.Therefore semantic knowledge is needed. Pan of it can be specified in a preintegration phase
without anticipating the details of some user's personal views. By establishing semantic relationships
that propagate a broad range of behaviour by ;nheritance the user can specify a view by possibly a sin-
gle statement. Only those parts of a view's behaviour which do not meet the users intention have 1o be
further specified. The evolution of a personalized global view can furthermore be assisted by means to
navigate through the global and local schemata along semantic relationships in order to derive more
specific compiex methods.

As also stated in [16] semantic knowledge is as well benificial for resolving ambuigities in translating
view updates in updates against the underlying classes. A future issue thercfore is 10 extend the con-
cept of semantic relationships and generalization types to addionally capture knowledge about update
translation.

In the multidatabase language approach a view may be defined as stored (multidatabase) query, which
is evaluated by query modification. In the worst case this requires explicitly defining all dynamic
columns and join qualifications (the behaviour) of the view and makes its modification and evolution a
complex editing task. These difficulties partially can be solved by accessing auxiliary thesauri and unit
conversion systems. Additionally some of the introduced concepls for semantic integration may also
apply to the (multi)relational approach by implementing powerful operators which generate a com-
pietely defined view according to the assumed semantic relationship between the underlying relations
by deriving dynamic columns and inserting appropriate (outer) join predicates by default. Thereby the
introduced concepts for view definition would form another layer on the layer which a multidatabase
language constitutes on conventional database manipulation languages.

So the two approaches that originally followed a different integration philosophy meet each other at the
point where view definition and querying dynamically dissolve into each other.

Acknowledgements

We wish to thank the participants of the JHIS cooperation group for the fruitful discussions and M.
Kaul from GMD Damstadt for carefully reading the paper and helpfully commenting it.

References

1

Serge Abiteboul and Richard Hull, “IFO: A Formal Semantic Database Model (Preliminary
Report),”” ACM, pp. 119-132, 1984.

U. Dayal and J. M. Smith, “PROBE - A Knowledge-Oriented Database Management System.”

10

11

12

13

14

15

16

Global View Definition and Multidatabase Languages 1081

On Knowledge Base Management Systems, Springer, New York, 1986.

U. Dayal and H. Wang, **View-Definition and Generalization for Database Integration in a Multi-
database System," JIEEE-Transactions on Software Engineering, vol. SE-10, No. 6, pp. 628-644,
November 1984.

Wolfgang Klas, Erich J. Neuhold, and Michael Schrefl, **An object orienied datamodel for a
knowledge base,”” this volume.

KnowledgeCraft User Manual, Camegie Group.

W. Litwin and A. Abdeliatif , **Multidatabase Interoperability,”” /EEE-Computer, vol. 19, No. 12,
pp. 351-381, IEEE Computing. Soc. Press, 1986.

W. Litwin, ‘‘Concepts for MultiDatabase Manipulation Languages,” 4th Jerusalem Conference
on Information Technology (proc.), pp- 309-317, IEEE Computing. Soc. PRess, Silver Spring,
MD, USA, May 1984.

W. Litwin, **Implicit joins in the multidatabase system MRDSM," IEEE-COMPSAC, pp. 495-
504, 1985.

Michael V. Mannino and Cynthia R. Karle, ““An extension of the general entity manipulator
language for global view definition,” Data&Knowledge Engineering, vol. 1, pp. 305-326, North-
Holland, 1985.

Amihai Motro, **Superviews: Virtual Integration of Muliipie Databases,”” JEEE Transactions on
Software Engineering, vol. SE-13, No. 7, pp. 785-798, July 1987.

Erich 1. Neuhold, Wolfgang Klas, and Michael Schrefl, **Using object-oriented data base systems
for modelling and representing multimedia objects,”” internal circulated draft, p. 20, Darmstadt,
1987.

E.J. Neuhold, **Objects and abstract data types in information systems,’” Proc. of the IFIP TC2
Working Conference on Database Semantics; R. Meersmann, Steel T.B. (editors). pp. 1-12, North
Holland, 1986.

E.J. Neuhold and M. Schrefl, **Towards Databases for Knowledge Representation,” Foundations
of Knowledge Base Management. Contributions from Logic, Databases and Artificial Intelligence;
Schmidt J.C., Thanos C. (editors), Springer, New York, 1987.

Michacl Schrefl and Erich J. Neuhold, “A Knowledge-Based Approach to Overcome Structural
Differences in Object Oriented Database Integration,”* The Role of Artificial Intelligence in Data-
base & Information Systems, IFIP Working Conf., Canton, China, July 88.

Michael Schrefl and Erich J. Neuhold, ‘‘Object class definition by generalization using upward
inheritance,” Proceedings of the 4th International Conference on Data Engineering-IEEE, p. 10,
Darmstadt, 1988.

Amit P. Sheth, James A. Larson, and Evan Watkins, “TAILOR, A Tool for Updating Views,"

1082

17

18

P Fankhauser et al.

draft, October 1987.

Peter Wegener, "‘Classification in Object-Oriented Systems,” SIGPLAN Notices, vol. 21, pp.
173-182, Oct 1986.

S.B. Yao. V.E. Waddle, and B.C. Housel, ‘*View Modeling and Integration Using the Functional
Data Model,”* IEEE Transactions on Software Engineering, vol. 8, No. 6, pp. 544-553, 1982.

