October 9-11, 1985 |

The IEEE Computer Society’s Ninth{International

Americana Congress Hotel, Chicago, lllinois

ISSN 0730-3157 _ SEOMELJER
IEEE CATALOG NO. 85CH2221-0 PRESS D,

LIBRARY OF CONGRESS NO. 83-640060
IEEE COMPUTER SOCIETY ORDER NO. 643
ISBN 0-8186-0843-6

@ izee compurer sociery 2 o THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC.

IPLICIT JOINS IN THE MU TIDATAGASE SYSTEM MROSH

witold LITWIN

INRIA, 78153 Le Chesnay, France

ABSTRACT

Implicit jolns are joins that determination is left to
the system. This functionality simplifies query
formulation. We present a method for determination of
implicit equijoins and the corresponding
implementation within HRDSH. The method is more
general than others with similar aims, in the sense
that it works for usual relational schemas and avoids
the logical navigation in more casss.

1. INTRODUCTION

Yhen a gquery involves attributes from different
relations, a typical relational system regquires one to
indicate all the corresponding interrelational joins.
In partioular, one has to indicate the equijoins. One
fregquently considers that this property of the
relational mode, typloally called MMQ&&}@
annoys users, First, since it 1s unnatural to explicit
natural equijoins and since shorter queries are
usually felt simpler.Next, sinoe the query expression
depends then on the database structure i. e, its
decomposition into relations. However, the ability
te define the logical navigatation may also be
considered as an interesting property of the model, as
it allows users to express their informal queries
(wishes) particularly precisely /COOT79/,

A user may, in particular, wish data from a collection
of usually independently administrated databases,
managed by & multidatabase system 1ike HRDSH
/WONB4/, /LITES/. Such databases may be relational,
as in MRDSM or MERMAID /TEMB4/, or at least
conceptually relational while internally
hetercgeneous /BREBA/, /DAY84/, /LITB3/. They may
model similar universes or even the same one, through
to some extent different schemas. A user wish may then
correspand to a set of queries, one per database, as in
examples in Section 2 below. If each gquery has to
explicit & particuler logicel navigation, one may need
to formulate as many different queries as there are
databases. Otherwise, one formulation may suffice and
as it is shown below this formulation may become the
unfgue query to be specified by the user. Since many
databases may be involved, savings in user effort may
be considerable. To avoid the logical navigation in
the multidatabase environment should thus be of high
interest.

while the multidatabase case 1s new, the
(mono)database one already generated an important
research work, This work is mainly based on the idea
that a relational database should be considered as
only one, so-called universal relatjon /SAGB1/,
MUC82/, /MAIB3/, /KENB4/, /MAIB4/, /ULLB4/, /XORB4/,
7/INIB4/, /WALB4/, .. The need for the logical
navigation disappears then automatically, However,

(730-3157/85/0000/0495501.00 © 1985 IEEE

495

other inconveniences appear /KENB4/.
the following ones :

- @& monorelational database may be considered as a
messy model of the universe,

- one may need to rename many attributes since all
attributes must have different names.

- one may frequently need to enumerate in a query a
long list of attributes. that otherwise may be all
attributes of a {(smaller) single reletion. In a
typical. multirelational. system it suffices then to
invoke only the relation name or a special character
like '»* in SQ. meaning “all attributes*,

- some queries lead to unnatural results, unless one
reintroduces several relations (maximal objects).
Even g0, Tresult of some queries still remain
unnatural. Alsa, the logical navigation reappears for
queries encompassing several relations.

- there is no, at least yet, possibility of updates.

Below, we presant an alternative mathod. We do not
assume anything particular about the database schema
that is, thus, & wsual (mdti)relstionsl cre. The
idea is therefore that the system determines by itself
soma of interelational joins that should otherwise be
in the query. We call such joins implicit joins. We
show how the implicit equijoins may be found through
an analysis of semantic dependencies among
attributes. We discuss the corresponding algorithmic
for both the database and the multidatabase cases. We
also overviaw the implementation within MROSM.

Wo called our method Implicit Joins methed. Its
following properties shouid reveal interesting:

-~ 8 user may consider a the database as ona or sevaral
relations,

- relation names may be used,

- attributes in different relations may have the same
names,

- updates may be performed,

- multidatabase queries may be formulated,

~ queries that lead to unnatural results and/or to
additional oonstructs in a universal relation
database schemas, do not lead to such side effects in
our approach,

- guery language may be fully compatible with any
typical relational languaga,

- if the way in which the system determined the
implieit joins is not the on¢ the user had in mind. the
query may aslways be formulated in the usual precise
[anner. .

- Joing other than those corresponding to the logical
navigation may potentially be rendered implicit as
well.

In particular,

Section 2 recalle some features of the multidatabase
manipulation language of MROSM, called MBS /LITB4h/,
that are needed by the method. Section 3 discusses
the concept of implicit joins and presents algorithms
that determine them in various cases. Section 4
discusses the implementation aspects. Section 5
compares our method to related work. Section 6
concludes the paper.

2. ML TIDATABASE HANIPLE ATION LANGUAGE

A multidatabase system allows users to formulate
multidatabase queries and, eventually, to define

multidatabase dependencies A IT82/. _ /ALITBS/. Such
queries and dependencies address more than one
database. For instange the following queries to
datebases presanted in Annex are multidatabase gqueries
/LITB4a/ :

(1) - Select from the databsse michelin and from the
databsase cinamas all restaurants and cinemas at the
same street,

(2) Select from the databases michelin, and
gault-m all restaurants that are chinese according te
at least one database.

(3} - If the value of the attribute street is
'Etoile’ in all the above databases. then update it
to ‘Ch. de Gaulle'.

In order to allow users to formulate multidatabase
queriaes, current {monodatabaca) manipulation
languages have to be aextended. Manipulation
languages for multidatabase queries were called
muitidstabase manipulation languages (MML) /LITE2/.
Featuras of relational MM s are analysed in /LIT84a/.
Host of these features characterize the manipulation
language HOSL of the prototype relational
multidatabase system MRDSH /LITB4b/. The overall goal
of MDSL wac to render simple the expression of
multidstabase wishes. The following meaning was
adoptad for the concept of simplicity :

- one wish should leed to one gquery.
- & query is simpler when it ie shorter, provided it
stays understandable to the user.

This meaning seems wall correspond to the natural
perception of the oconoept. For inctance, the
relational queries are simpler than navigational
ones, the universal relation interface may be simpler
than the corrasponding (typical) relational ona stc.

The #nalysis show in particular that in the relational
multidatabase environment it is useful to introduce
the following possibilities for an ML :

(a) - the concept of multiple identifiers. While a
unigue identifier designates in the selection
expression of & query one one attribute or one
relation, a multiple identifier designates severa)
objects bhaearing the same name. Currant relational
languages know only unique identifiers. MDSL allows
aleo quariac with multiple ones /ABDS3/. Such s query,
let it be §. 1s considered as the set of all queries,
let tham be q that :

q basically ocorrespond to all possible

replacements of the all multiple identifiers with the

underlying unique ones, -

- however, only the replacements called in /LITB4/
rtinent to a datsbase are teken to the account

Eusuaf relational queries are always pertinent).

-

496

- also, replacements Jeading to queries called
incomplete queries in the next section are taken to
the account only if there is no replacement leading to,
so-called below. complete gueries (usual relatipnal
queries are always complete)

= in particulsr, if Q asks for a modification, then,
as usually, -select clause of q must concern gne
relation at a time,)

(k) - the possibility of
alone. This, either as
nultiple one.

usage of attribuyte namg
& unique identifier or as a

Ex 1. The wish (2) may be formulated in MOSL as
ollows :

open wmichelin gault-m (4)
-selaot * -whare (type = "chinese’)

ratrieve) ’

In the selection expression of this query. type is a
multiple - identifier that designates both
michelin.r.type and gault-m.r.type. The system

considers therefore (4) as the set of two “normal"

queries :

open michelin (4.1)
-select r -where (r.type = "chinese'). :
ratrieve)
open gault-m (4.2)

-select r -where (r.type = 'chinese’)
retrieve

(4) ic in our sense, as well as for most users,
simpler than (4.1) plus (4.2). The difference would
increase with the number of databases involved.
Hultiple identifiers avoid here one kind of logical
multidatabace navigation. Note that a restaurant may
figure in only one of databases and it may be chinese
for only one of datasbases. Note also that the relations
produced by (4) would not be union compatible, as
their attributes would differ.

Ex 2. Consider bank database {(Annex and Fig 3) that is
that from /MAIS3/, but without the universal relation
interface. Congider the wish "retrieve sll customers”
noted {(2) in /MAIB3/ that had no expression in the
universal relation model. In HOSL. the corresponding
query would simply be :

-select ¢
retrieve

The response would be the sat of relations, indicating
not only all values of ¢, but also, through the value
position, the kind of the customer {having 2 loan, or.
might be also, an account etc.). If one does not wish
1o know these details, one should apply the standard
function union :

-select (union {o*)) 7

In this case only one relation being the union of the
above ones will appear.

Consider on the other hand the database s-p (see
Anngx) and tha wigth : “delete the supplier with &2 =
‘123, This wish may be formulated as follows :

-select s# ~where (s# = "123%) (5)
delete

s# is here a multiple identifier of s.s# ond of
sp. s&. {5) roplaces two usual DS quories. Note
that (5} 1is not only simpler, but thet it also
preserves the referential integrity botwaen s ond
ap. .

A guery where all the identifiers are unigue is called,
in our terminology, elementary gquery. If some
identifier are multiple (or the gquery Ainvolves
so-called in /LITB4b/ semantic variables), then we
speak sbout a multiple query. Both, elementary and a
multiple queries may be monodatabase queries, or
multidatabase queries.

3. HPLICIT JOINS

3.1 Thae idea
We call licit joins all joins that figure in a
query. typically through the corresponding join
clauses within -where clause. In contrast, a join is
implicit if one does not formulata it. although it
should exist if the query was a typical one. Implicit
Joins simplifies the formulation of both mono and
multidatabase query. In particular the logical
navigation, corresponding basically to explicit
equijoining of key attributes, may be avoided.

Ex 3. The uish_ “select (from the database s-p) the
cities of suppliers of red parts" may in MDSL be
formulated as follows :

-select (oity)

(6.1
-where {(color = “red”) & .
(s.s# = sp.s#) & (sp.pl=p.p#) - - -~

If the last two joins could be implicit, the expression
would be simpler :

-select (gity) -where (color = ®red”) (6.2)
Ex. 4. Consider a database s-p' where the attributes

of relations s, p, s t §- a 1 i
{universal) relatio‘r,x, let it %e s.%og thagJ at least

one of attributes name must then be renamed. Consider
then that one wishes to select all cities of suppliers
of red parts, known to s-p and/or to s—p°‘.

The query (6.2) would then be meaningful for s-p’. For
s-p in contrast, if the joins had to be explicit, one
would need (56.1). The wish expression would then need
two different queries. If Jjoins in (6.1} could in
contrast be implicit. then (6.2) would be an adequate
expression also for s—p. It would then suffice for

the whole wish as only cne multiple query..

3.1 Basic concepts
3.1.1 Relstional database

As usually, we consider that a relational dstabase
je & set of relations Rj :. i=T.m. The number of
elements of each Ri is assumed finite and typically
varying. £ach relation relates sone attributes
(811, .. 8ij). Each attribute tekes values within a set
called domain dx ; k=1.n. A domein is an atomic model
of some real concept. It thus is characterized by some
cementic and is not only "simply & set of values®
ALLBO/. Attribute names are sometimes called domain
role names /COD71/.

For each relation, some of its attributes constitutes
its primary key. Generally one defines this concept
as the set of attributes whose values that are minimel
(unique) identifiers of tuples, for all possible

497

relation contents. Ancther definition of this concept
may ba that thst the primary key is the set of values
that are definitions ir intension of distinot real
objects (things) which some properties are modelled by
other attributes values in each tuple. Below, if we
wish to insist on tha second meaning we speak about

natural key. One may easily see that both meanings are
not slways equivalent.

3.1. 2 Semantio dependencies

Tha datsbase relations are implicitly assumed to be
semantically depended. Only such dependencies allow
to consider that the same value of an ettribute in
different relations, corresponds the same thing (ax.
same values of p#). OQOr, thst attributes model the
samp concept (ex. attributes name) atc.

Let a and b be two attributes from respectively.
relations Rt and Rg2. Wo will call tham naturally

dapendent if (i) they shara a domain, (ii) at least
one belongs to the primary key. A natural dependency
between R1 and R2 will consist of all those between
pairwise naturally dependent attributes, let them be
(a1. 91). (8K bk) : where k 2 1 andi + j --> aj »
aj /\ bi #bj. If some a is in natural dependency with
more than one b or vice versa, as it may happen, then
esch poseible choica leads to one distinct natural
dependancy between Ry and R2. Wnhile many netural
dependencies may then in principle appear between two
relations. the case study through the litterature
shows only two practical cases :

(a) - Only one & in natural depsndency with some
91....bx ; k21 with typically k=1, R{ and R2 present

then k natural dependencies, corresponding to
couples (a, b1)...{a bk).

(b) - Some a1,....ax are parwise in natural
dependencies with some bq,...bx and no other

attributes of Rt and of Rz are in mutual naturally
dependency. R1 and Rz are then naturally dependent
through the dependency corresponding tn
(at...b1). ... {ag ... bk} together,

Attributes may be semantically dependent without being
naturally dependent. Such dependencies exist in
particular between attributes that do not belong to
the primary key, but share a domain and a name, or
share a domain, but their names giffer or share the
name only..

A natural dependenoy will be denoted

- (a)or (Rt.a; Rz.a) irf it involves two
attributes with the same name 'a’,
-{a; b) or (Rt.a . Rz2.b) if it involves

sttributes. a and b,

- (a1, an) or (R1.(al,_, an); R2Z2.{(al,.. an)}
if it involves several attributes in both relations
named in the same manner.

- {(al,—. an) : (bl bn)) or (R1. {al.-an)
R2. (b1, bn)) if some attribute names differ.

In AITB4/ and /SHIB4/ natural dependencies are called
(in french) canonical connections.

Ex 5 In the database s-p there are following
dependencies ;

- natural dependencies (s¢#), (so.p® ; p.pt),
(comp.pmaj® : p.p#), (comp.pwin® ; p.p#).
(comp.pmaj®" ; sp.p#) and (comp.pmin* ; p.p#).

- & dependency (name).

Suppose now that s-p contains also 2 relation let it
be sp’, that has the atiributes of sp. Then, beteeen
sp and sp" there is s natural dependency (s®, p#).

3.1.3 Database graph.
¥e call dependency graph the graph shere :

- nodes sre relation names,
- edges are semantic dependencies between nodes.

A database graph is the dependency graph that involves
all relations. We will say that a graph is natural, if
it deals only with natural depengencies. Unless the
contrary is stated below we consider only the natural
and connected qraphs. The latter property is the
formal expression of the characteristic property of
any database that it should model ome universe.

Fig 1 shows the s-p graph. Edges are named as the
corresponding dependencies. The purpese of edge
numbers will be explained later on. .

s

1

5 (p¥)
2

{pi? ; pain}

conp

Fig 1 s-p datahese graph

3.1.4 Conjunctive guery graph

For a while the term guery will mean conjunctive
monodatabase guery. We consider that any such guery
involving more than one relstion and/or tuple
variahle typically defines some dependencies betwaen
these relations. In SQL. QUEL etc. like gueries, these
dependencies correspond either toc join clauses in the
-where clause or to cartesian product. The
dependencies defined by join clauses may be natural
or not depending on the schema snd on the type of the
Jjoin. The oartesian product dependency is inferrad by
the system when no join clause relates a relation
enumarated in the -selact clauge to othaers. This ic a
trivial and meaningless dependency. since it relstes
everything to everything.

The {conjunctive) guery graph is the graph where :

-~ each node. corresponds bijectively either to &
relation named in the query or to a tuple variable. if
more than one variable share a relation

- edges are dependencies.

3.1.5 Complete and incomplete queries

We call a query complete if it is a {well formed) SQL.
QUEL etc. query. The graph of a complete guery is
always connected. if the lack of & connection is
considered as the trivial dependency i. e. the
cartesian product. However. we disregard below this
dependency, unless the contrary is stated. An
incomplete query is then a query whose graph is not
connected. Some clauses lack then with respect to a
complete query. The algorithm finding missed clauses

498

will be called completion algorithm.
3.2, Completion slgorithm for impliecit joins
3.2. 1 The idea

An incomplete query may a priori be completed in many
ways. Below, we consider that the incompleteness is
tha formal counterpart of the common expression
"corresponds to”. This expression denotes in-general
the relationship that is the simplest and the most
natural for most users. Usually, anyone understands
the choice. A misfit is nevertheless possible. One
has then to precise more what was meant. Or. one may
even have to define the meaning completely. :

The aim of a completion algorithm is then to find the
complete query that is the most natural and the
simplest completion, The notion of natural completion
is interpreted as meaning the sotural capendencies
only. The one of simplicity is interpreted as meaning
as rew additional Ies as possible. The user
should typlcally be satisfied with the algorithm
output, but a misfit is poseible. The user has then
either to indicate more clauses or, may even need to
specify all the dependencies he ment. This may always
be done, since both incomplete and complete gueries
address the same and uwsual schema Next, since the
capability of dealing with incomplete queries does
not impede the system to understand the complete onhes.

¥e consider as the basic case the one of an incomplete
monodatabase, «lementary and conjunctive query., with
at most one tuple variable per relation. Tha
completion algorithm works then as follows :

Completion algorithm CAT -

1 - Find from the database graph all the connhected
grephs let them be G such that each 6 :
- includes all the nodes of the query graph,
- is minimal in number of edges.
Z -Foreach G :
2.1 - pick-up all and only the edges that added to
the query graph render it conhected,
2.2 - add to the incomplete quary as the conjunotions
all the clauses corresponding to the new edges.
3 - Let g denote each query resulting from (2.2).
Consider as the complete query the union of all q.

Since 6 ere all minimal in the number of edges. they
have all the same number of edges. For the same reason,
all G are acyclic, 1. e. they are all minimal trees.
The number of edges of 8 will be called its size. In
practice the union of g 1is the guery with the
selection expression unioning through the key word
union the selection expressions of esch q.

Ex 6.

1. Consider the query {6.2). Theonly & is the path
of size 2 between & and p. The completion leads to
{6.1). &s most users would wish,

2. Consider the query :

-select (s. name)
-where (tass = “screw”™)
retrieve

This query is incomplete. It is then basically
considered as axpressing the wish "Selcct the names of
supplierc oorracponding to the ascaembling typa
“screw”. The graph of s-p shows that there are then two

{gi)

b
minimal trees (pathas in this csse) of size 2
conngcting tha nodes & and comp. Both includa the
edge (s#)., but differ by the choica of either tha edge
{p# : pmin) or of (p# . pmaj). The first choice
lgads to the exprassion :

~select (s.name) : {q1)
-where (tass = "scres®) &

(s.5¢ = sp.s#) & {sp. p# = pmin)

The secand choice leads to :

-seleot (s.name) (a2}

-gyhere {tass = "screw”) &
(s.52 = sp.s2) & (sp.p# = pmaj)

{(qt) maens that “corraspond to" wac interpreted as
“suppliers of minor parts assemblad with screes®.
{q2) maeens that one considered tha suppliers of such
major parts. Since, there is no indication in favour
of any of these interpretations, the natural approach
is to assume them both. The assumed wish becomes
“suppliers of minor or of major parts _®. That is what
CA1 provides through the union in the step (3). The
final gquery is then:

-select {s.name)

-where (tass = "screw”) &
{s.s = sp.s) & (sp.p = pmin)}
union

-select (s.name) -where (tass = "screv”) & (s.s =
sp.s) & (sp.p = pmaj)

ratrieve

(ol) will effectively appeer to most users
(much) simpler than {gec) . -

3. Consider the query :

-select {s.name p.name) -where {tass = =screv”)
retrieve

Since this query is incomplete its
sratrieve names of suppliers and of parts
corresponding to assembling with screw®. Two
relationships between parts and suppliers are then
intuitively mest natural ones :

(a) - the part is supplied by the supplier,
(b) - the part is assembled (through screws) with a
part supplied by the supplier.

The completion algoritnm produces now eight minimal
trees of size 3. shown at the Fig 2. These trees are,
by the way. no more pathes and correspond to all trees
of the s-p graph at Fig 1. They thus lead to the union
of eight subgueries. One may easily see that the result
correctly expresses the considered relationships.

1 2 1 2 1 2 1 2
3; 4 si 5
: 0 :i::]
() () {e) 0]

1 1 1 1
3 ; 5; 3 :‘ [4? Sj 4 i 6

() (g) o -

Fig 2 Trees within s—p database graph

(qc)

rather

meaning is

{e}

~ tuple varisbles Xi.

459

Note that, because of equijoin associativity, several
of the eight trees lead to equivalent gueries. For
instance ?a) and {(d) as well as, on the other hand
(b) and (c). Thus it would suffice to take to the
account only two of the corresponding four gueries,
{(a) and {b) for instance. While to producs more
queries has no consequence on the result (unioning)
correctness, it shows that there is room for CA1
optimizing.

5. Consider now that a user is interested only in the
relationship (a) above. Then he has to explicit in the
query the corresponding dependency, living implicit
the others. The corresponding (incomplete) selection
expression may then be :

-select (s.name p.name) -where (tass = "scree”) &
(s.5# = sp.s#) & (5p.p# = p.p#)
CA1 will then produce the corresponding intuitively

correct complete query, since invelving the part
eftheras the minor or as the major one.

4, Consider the relation sp* (ex. S)
seleotion :

-select sp’.qty —eshere (sp.gty = "10%)

We showed in ex. S that there is a natural dependency
between sp and sp’ that involves jointly two
attributes. CA1 will thus lead to the following
completion :

-galact sp’.qty -whare (sp.qty = "10°) & (sp.s# =
sp'.s8) & (sp.p¥ = sp'.p#)

This expraession olearly correcponds to tha natural

meaning that one could expect, 1. e. sp°.qty of parts
that sp.qty is 10.

9.2.2 Several variables gver the same relation.

Let R be a relation over which one defined several
Each Xj constitutes then in the

guery graph one node named R.Xi. The algorithm CA1
expands as follows : '

and the

Complation algorithm CA2 :

1 - Consider that all nodes corresponding to R
constitute one (multi)node. Then apply step (1) of
CAl.
2 -Fforeach@:
2.1 - apply the step (2.1) of CA1,
2.2 - Lat multiedge be any new edge which one or
both extremities are multinodes. Replace each
multiedge with all edges which one or both
extremities are nodes within the corresponding
multinodes.
2.3 - Apply step (2.2) of CAl.
3 - Apply step (3) of CAl.

Ex 7. Consider the following query :

-range (x s) (y s)

-select x.nama y.name

-where (x.city » y.city) & (qty = *207)
retrieva

This query is incomplete. It therefore basicslly
means “select couples of suppliers that. although in
different oitiec, oorrespond to parts in quantity
equal to 20". The query graph will contain one
multiedge that one may note ({e.x. s.y}.s¥% ;
sp.s#). It will lead to two natural equi-join

clauses, one for each variable. The
generated by CA2 will be:

-range (x &) (y s)

-select x.name y. hame

-where (x.city » y.city) & (qty =
=sp.s#} & (y.s#=sp. s#)
retrieve . - ’

The meaning of “correspond to™ is now ™ both supply™.
3.2.3 Set type and/or dis junctive gueries.

Set type queries involve operations 1like union,
intersection, ete., between -selgoct claugses. Eaoh
-salect clausa corresponds toc & full subquery, i.e
may ba followed by itc own -whare clause. One may in
partioular replace any disjunctive query with a set
type quary where (1) to each can Junction corresponds
exactly one’' -select and -where clauses (ii) the
select olauses are unioned. _Set type and/or
dis junctive queries are completed as follows :

Completion algorithm CA3 :

1-1If » quary is a disjunctive query, replace it with
the corresponding set type gquery,

2 - Apply CA1 or CA2 to any incomplete subquery.

Ex 8. Retrieve nemes of suppliers that supply ‘red’
parts but not 'yellow' parts.

-select s. name -where (colour = 'red")

differ

-select s.name -where {colour = ‘yellow®)
ratrieve

Each -where clause will be completed.

3.2.4 Hultiple queries

Hultiple queries are completed as follows :
Completion algorithm CA4 : '

1 - apply the adequste CA to each elementary query that
reveals incomplete.

2 -~ if several such queries exist for a datasbsse, then
consider only the ches minimizing the query graph.

Ex 9. The multidstabase wish "retrieve cities of red
part suppliers, -known to databases s-p and/or s-p°"
from the example 4 may be offectivaly exprassad
through (B8.2), namely :

-select {eity) -where (color = *red")
retrieve

This query will first be considered as one
incomplete elementary query to s-p and one complete
elementary query to s-p'. The final query would then
be the set of two queries :

-select (s-p.s.city)
-where {s-p.p.color = "red”) &
s-p.sp.s#) & (s-p.sp.p# = s-p.p.p#)

complete query

=20°) & (x.s#

{s-p.5.s% =

- ratrieve

-select (s-p'.s.city) -where (s-p’.s.color =
“red")
ratrieve

Note how simpler (6.2) is.

Example 10

Consider again the bank database.
following selection expressions :

Consider the

-salect bnk -where (o = "Jones”) ?’J‘Z% :
~salect aco -whare (1 = *4-326%) Q'3

They are formulated slmost like queries noted Q2 and
Q3 in MAIB3/. These queries led in the universsl
relation model to intuitively wrong interpretationa.
W¥hile one could expect that (02) meant "banks where
Jones has efther an account or a loan®, its actual
interpretation was. "banks whera Jones -has both an
socount #ng. & loan™. For (Q3). it was suggested
that one could expect the meaning “print accounts that
are either at the seme bank &3 loan 4-326 or are owned
by 8 tustomar who also holds loan 4-3256". Howaver. not
only it was not the cese, but even it was unclear:
whether any natural interpretation of (Q3) existed.

In order to get responses, at first one had then to
define in addition to tha univesal relation two
maximal objeots. These are tha largest sets of
smallar -objects in which the user it willing to
navigate (note that ona may considar that tha
corresponding interface is then no more the universal
relation interface since it oconsists again from
several relations). Then one could express the wishes

corresponding to (Q2) and (Q3). However, one had to
use two queries per wish. In particular, each query

‘oorresponding to (Q3) had to involva an -additional

500

equijoin on, respectively, ¢ and bnk. They

corresponded to the logiocal navigation between the
maximal objects (for details sea /HAIB3/).

In 2ppears easily from the Fig 3b that for (Q'2), the
replacement of the multiple identifiers and the
evaluation of implicit joins through CA4 leads to two

complete gueries :

adr - address
aCC - MCCOUL
amt - SAOUNt
bal - balsnce

O

) (8)

has
{acc)
[

()
auan(g———-(lx) o ::;D
1t ci——m \/‘L/(c,

[¢] hold
for

Fig 3 bank database : (a) hypergraph (b) graph.

lives

-select acost.bnk -where {(own.c = “Jones”) &
{acoat. aco = own. aoc) ,
retrieve

-select lat.bnk
(lat.1 = hold.1)
retrieve

The corresponding aﬁning will be thus the natursl
one. In addition one would know whether the bank

_-where (hold.c = "Jones") &

Querias of type (i) are completed in the manner
analogous to the one developed above for the
monodatabase gueries. Queries of type (ii) lead to 2
naw situstion sinoe they cpan over two separated sets

- of domain. No dstabase graph contain therefore the

corresponds to the account or to a loan. If one is not

interested by these details, one should ask for :

-select union (bnk) -where (o = "Jones")
retrieve

:zth respect to (Q°3), -the only complete query would

-salect own.acc -where (hold.l =
{own.c = hold.c)

The corresponding interpretation of (Q'3) would thus
be “Accounts that are are owned by a customer who
holds loan 4-326°. It would thus be be only the second
subinterpretation sithin the one expected in /MAIBI/.
It would alsc correspond then to one of the queries

"4-326") &

that one could finally formulate when the maximal

objects were defined, the cne with the explicit jein
over © (but without this join). For the first
subinterpretation, one has to formulate a query
similar to the one with the maximal objects, i.e. with
the explicit join over bnk.

Technically, the first subinterpretation was
disregarded. since there is no natural dependency
between accat.bnk and lat.bnk. The corresponding
background reason is that
important as relating concepts in this sohema than the
customers. This, 8s there is no definition Jn
Jintension of banks through some natural key. Thay are
then not (in this schema) raal objeets by themselves.
but only proparties of some objects. of losns and of
accounts in the occurrence. The dependency through
properties is lesc important, as, for similar reasons,
in s~p it the dependency between parts and suppliers
through the same name.

Note that CA4 would provide as the meaning of (Q°'3)
poth subinterpretations, if banks were considered as
important a&s customers, that is they would have a
natural key in bnk. This. in contrast to /MAIB3/,
where two queries would still be required.

3.2.5 Updates

Update queries may be incomplete as well. According to
the type of their selection expression they are
completed as we discussed above.

Ex 11. Delete suppliers corresponding to red parts.

-gelect s -where (colour = “red”)
delete

3.2.6 Interdatabase joins

A multidatabase query may involve interdatabase join
clauses. This is for instance the case of the query 1
in Seotion 2 and in general of any elementary
multidatabase query. Such queries may in particular
be incomplete A ITB4b/. Two oCOSES - WAy’ be
distinguished : . -

(i) - 8ll implicit clauses are monodotabase. This

. means that one may connect the disconnected parts of
the (multidatabase) query graph using edges of

interdstobase. The
completion must use edges -encompassing different

database graphs only.
(i1) - some implicit clauses are

databases.

....banks are then less -

501

porresponding edges.

For such queries we apply the concept of interdatabase
dependencies /LITBZ/ that may either be ed within
the muitischema of a collection of databases or may
be dynamically inferred from database schemas through
@xpart system capabilitites. In the case under the
analysis wa consider the equivalence dependencies.
These dependencies relate the sets of %ou_naim in
different detabases where identity of values implies
the same real object. One may thus oconsider them as
multidatabace natural dependencies. For instance. in
the casa of michaelin and gault-m ong¢ may consider the
following dependancies : -

michelin (rname, street) =
street)
michalin (cnama) = gault-m (cname)

They would mean that the same name and address in both
databases identify a restaurant and that course names
identify courses. Note that, in contrast, there is no
equivalence dependency between names and addresses
within michelin and within cinemas.

—

R rd
TJ- (hame, streat) +
(

4
:
C!)-———'- (cnane) —

gault-e {(rname,

p—
, .

)

~

~O~R0¢°

e
L

050

A L]
{m) ({ch)
R ¢ €
hY rd LY ' N
cinenas nichelin gault-n

Fig 4 Hultidatabase graph of cinemas, michelin
and gault-m with equivalence dependencies.

If equivalence dependencies are not known in the case
of a query of type (ii). we consider that either the
trivial (cartesian product) dependency is generated or
the guery is rejected. Otharwise. ona appliss the
sbove CA algorithms, except that instead of the
databace graph one refars 1o the multidatsbase graph.
The latter is simply the union of the former ones,
connected through the equivalence depandencies, if
known,

Ex 12. Assume known the above equivalence dependencles
(Fig 4). The selection expression of the query
nretrieve gault-m comments corresponding to ‘'we!
restaurants in michelin may then be expressed as
follows : -

open michelin gault-m
-selegt comment —where (stars = =ww=)

The completion, will add the join clauses :

(michelin. r.rname - gault-m. 1. rname) &
(michelin. r.street = gault-m.T, street)

3.2 1 Implementation aspects

The prototype implementation within MRDSM is described
in /SCHB4/. The completion algorithm leaded mainly
to the following graph manipulstion problems :

(i) - test of the connectiveness,

(ii) - determination of all oconnected minimal trees
including a given set of nodes (nodes of the gquery
graph). -

In order to solve (1) it suffices to apply the matrix
representation of graphs and the oorresponding
elgorithm used in particulsr by INGRES /5T076/. One
way to solve (ii) is as follows :

(1) - union the database graph and the query graph.

(2) - if teo nodes are then linked by an edge of the
query graph and some edges of the database graph, then
ueleu)a the database graph edges (priority to query
edges).

(:-J‘)J ~ find all trees of the resulting graph.

(4) - for each tree delete recursively all the edges
which one extremity is a terminal node (node that is
not within any other edge) that is not within the query
graph,

It is easy to see that the result of (4) is the
solution to . (ii). The only non obvious step above is
(3). While several algorithms may be devised for this
purpose, a particularly elegant solution is provided

by the algebra of structural num!?ers LIT72/.,
/BELGS/, /DUFEY/. Since this algebra is not largely

known, we will shortly present its aspeots relative to
our purpose.

If X is some set, then structurel numbers aver X are
finite sets of finite subsete of X. A structural
number is ususlly represented as a table where the
subsets are columne which lengths may differ. X may in
particular be the set of (nemes of) all edges of &
connected graph let it be D. If t is then the set of
‘names of all edges of a maximal tree in D (a tree on
8l nodes of D), then one may characterize D with a
structural number let it be T where each column is
exactly one t and to any t corresponds one column. It
may be shown that T may be computed in the following
way :

Computation of maximal trees within a connected graph
{TA) -

- let n be the number of nodes in D. Define for n-1
nodes the structural numbers where each column denotes
one edge adjacent to the node and all edges are

denoted. iLet 8§ be these numbers called node
(structural) jmages.
- let 8° and 5" be structural numbers. Let the

structural number denoted $' x S® be the nutber whose
columns are all possible unions of a column of S° with
a column of S'°, provided the exclusion : (i) of
unions of equal columns, {11} of the maxdmal even
number of equal results, Then -

T= 81 x.x8n1.

The agaration *x" is called multiplication. Its result
ic oalled product. T, oalled {structura image of D,
is thus s%ly the product of n-1 node imsges. The
choice of the nodes has no influence on T value, but

may influence the speed of computing. The reason is
that it may lead to less or more unuseful unions. The

'aruinal of T is larger when D has more cycles.

If X are natural numbers, storage representation of a
column may consist of a bit string where the bit bj =1
iff 1 belongs to the column. Storage representation
of T may thus be compact even for O with large number of

" cyoles. Structural numbers represented in this form

- are celled binary structural numbers. See /LITT2/ for

502

‘to the entity-relstionship model. Alsa,

the- oorresponding
multiplication
numbers.

Ex 13. For simplicity, the edges of s-p graph on Fig 1
are also named 1, 6. The trees of s-p, shown at the
fig 2, may be computed as follows :

T="T11""[1234] [3456) =
r
|

S |

algorithme for the binary
~and other operations on structural

LN md et
- N -
NN -
AN -
» W
ML) -
(=1 P
[)

11}

4]
= 6_{
In order to compute then, for instance, all the minimal
irees oonnecting the nodes 5 and p, one (i) deletes
from the columns the elements 3, 4, 5 and 6, since
they denote edges leading to the node comp that is a
terminal one in trees, (ii) deletes, if any, the
resulting columns that are empty or are shorter than
the longest columns (shorter columns correspond to
incomplete trees), (iii) unions equal columns, if
any. The result as expected is:

1T
I

2_|l

T(s. p) =

4. RELATED WORK
4. 1 Universal relation model

Host related proposals concern the universal relation
model. HMain practical differences between these
proposals and qurs are that in our case (i) there is no
‘additional requirements on the dstabase schema and/or
need for additional types of objects ; (ii) logical
navigation is eliminated or shortened in more cases
(queries in Ex’ 7, -updates, multiple queries and
multidatabase queries). These properties of our
method es well as those listed in the introduction,
seem to result from the faot that we take to the
account the semantic aspects of the concept of a
domain.

¥ithin thase proposals and the discusced limitations,
many of ideas within /WALB4/ are particularly close
to ours. However, the methods being developed
independently, one should be careful since the precise
masning of the same terms ususlly differ (ex. the
“database graph™). Next, graphs in /#AL64/ correspond
/748 B4/
looks only for retrievals and for a way to choose only
one “quary tree“ if ceveral oorrespond to a wish. Thea
result should frequently coincide with ours for
acyolic graphs. In oontrast, it should be typiocally
different otharwise. /WALB4/ should then usually
provide as result only one of our subgueries, (the one
that minimizes the cost function of /WALB4/), while we
provide them all, eonsidering that there is nc further
ob)active criteris in favour of any of them. In
particular, 4if ceveral queries minimize the /WALB4/
cost function, user intervention is assumed, wnlike in
our method.

- possible).

4.2 Semantic model

A less known approach, based no more on the idea of
universal relation, but on » particular semantic data
model is described in /SUGB4/. One proposaes
this model to users of a relstional database. instead
of the relational one. The model allows then 8 query
language, named DOMCALC, intended as largely logical
navigation free extension of QBE. The model is used in
order to dafine by an administrator a collection of
“"domains” and a list of possible interconnections
among tham. The “domaing” are not the ones of tha
relational model, but “may be regarded as collections
of qentities of attributes or of relationchips™.

DOMCALC allows then the user to formulate retrieval
only queries referring to at most two "domains®. The
result may be ours. if the completion algorithms were
applied to QBE or vice versa (both cases seem
However, the DOHCALC user must learn a new
data model. Next, the administrator has to identify
(1) the 1ists of all the joinable sttributes and (ii)
all generalizations of the similar attributes intoc a
common “domain*, The “domains™ have then to be, in
addition, adequately named. OQur method is free of such
constraints, and again deals with more types of
queries.

4. CONCLUSION

¥e have presented a method simplifying relational
queries expression. The method allows to leave
implicit natural equijoins, avoiding in this way the
corresponding * logical navigation. This property
should reveal important in practice, In particular it
should allow to formulate new types of multidatabase
queries.

Implicit joins are implemented on the prototype
relational multidatabase system MRDSH. The
implementation took sbout six months of student work,
The corresponding principles may be extended or
improved in several ways. First, one may optimize the
completion algorithm in particular in order to
eliminate equivalent queries. Then, one may provide to
the user not only the union of results of subgueries,
but also, upon demand, the set of results
corresponding each to a nonequivalent completion.
Furthermore, one may include cost considerations or
select also nonminimal trees. Then one may take to the
account statistics sbout a user behaviocur, infering
therefore completions particularly adapted to habit
of this user. These completions may then include even
joins other than equijoins and/or dependencies other
than natural ones.

Acknowledgements
¥e thank Y. Sagiv for fruitful discussions.

to show.

503

I&W.

JARSTS/ MSI-SPARC imterin Tt On _G8th DISE AINIDSAONT SYSTON
Doc. TSIATSOY. mm?mm (Feb. 19T5).

FBELS9/ Bellert. opological S ad synthesis of linesr
xtuu J. Franklin Ins., 274, 1089,

E84/ Oreitbart. M. ADGS : snother mul SYStan.
3-rd Int. Sem. on Distr Sharing Syst, Parme, 1984}, Rorth
Holland, 7-24.

/C00T1/ Cood, detabase subl founded on the
T m\ncnemu msmnnﬂ (m 19}, .

/C0019/ Good, E., me‘4 1%%}0!2!&5110‘!1 model 0
caoture mruemrﬁ June

/000827 Codd Relational : APractical Foundation
for Productivity. , 55, z(rw 1982). o

/DAYBN/ mu.u.. uuua. M., & Using s«ummloms o Process
?enes in Multi dluuse Systeas. ACH-PODS, (Canaca},
,mrﬂ 1”4), 153-

A0 anal sofmmumnfmm Trans.
pors mgusus 1959 sa:li A Universal Relati ?nu
I&m Via the Iletsomnodal ACH-PODS, (March, mz) 147-157

Kk, S, N Sagiv, Y. Dexi; Globally Congigtent Network
Schenas. m—sxm (M 1903) 1
718184/ Inielinsid, Rezensmem IJ. Touru: a Flexible User

Imerface o Helmoml Database Systems
Oroer Queries. JCIT-4, Jerusalen, (June 1964)
{'lqa;.uv fent, W. The Universal Relation aevmwd 10058, 4,

XDRBA/ Knrtn H.. Funoa'nu Gelder, van A,
Ullsm, J.. 0. System! Systen Btsedonmmnveml
Relation Assunption. m—ms (Sep. 1984}, 331-347.

/LITTI2/ Litwin, W, menetmoed uulysedegnphes Suppl. to Bull. of
INRIA, 13 (Sep 1972).

WJH

/LITe1/ Uwin, W. umuofueimmmmwe =m
ntem‘lg‘mmw. u.aisuimmq,dnm smxinuSystuls Ansterdan
’ IRIUS Systems for Jistributed Dats
North-Holland, 1982, 311-366.
nws;r:m.

COTSTRIBUTED DAT BASES.
:E Litvin, V., Kabbaj, K Mt

X).
/L11840/ Litwin, §. Concepts for mltidatabase manipulation languages.
X11-4, Jerusuen " (June 1384}, pub. IEEE, 433, a42.
/L1TBS/ Lituin, W, An merv:eu of the sultidstabase systen MROSH. INAIA

fes, Rep. 314, (Jm 85), 26
/MAIB3; Maier. 0., tlmen, J.. faxinal ODjects and the

wu‘csﬁof Universsl Relation l.‘wunases ACH-TODS, B, 1, (March
/MAIB4/ maier, D, Ullman J).. D., Vami On the foundstions of
the Universal _Helauonllodal ACH-To0S. 2 (m 1984), 263-308.
/WILB/ Multics Relational Dats Stnre (MRDS) Reference Hanual
uxnmewellbm. Ref. 68 A2 REVA, &Jm. 1982).

/SAGB1/ Sagiv, Y. Can We Use the Unive Assunertion Without

T58l
Using Nulls? ACH-SIGNOD, (Apr. 1961), 108-120.

ISHIW shili, 8. Dépendances inmterbases et jomtures implicites dans
mfr(m wgstim multibases (MROSM). Th. Univ, de Tunis, ed.
7SUGBA/ Sugihars Hiyso, Kikuno. T.. Yoshida, A senantic
Approach to mimv in relmoml Systens, IEEE-B(II’DEC
Los Angeles, (May 1%4) 203-218

/STATE/ Stonsbraker

Wong, Kreps. P.. Held, G. The design and
imlmuumof!mts m-rws 1, 3, 19 189-222.
/TENG4/ Templeton, H. An ar tecwre for multidstabase systess.

Rareh ¥ u&'«"‘;sfw"z%p‘“ e b syst... pamme,
T
,,,W,mng',' iniesofuamasesmms:
1S,
JULLBA/ Ullman, B. On Kent ‘cutm Assuming &
Universsl Reletion”. ACK-TODS B, 4, (Dec u; 638-643.
AL/ mas&i , Sotm_fmgmo(m ﬂ%e Inference
Problen Using Steiner Trees.
AIIEW Wiedernold, 6. on. niu Book M
Uanf : 8 Telational multigatabase
ten. 3-1d Int .onmnr Dats Sharing Syst., Parme ch
gl) North Holland, 77-86.

X

The databases cinemas michelin and gault-m have
the following schemas /LITB2/ :

db cinemas
e { o#*, cnama, street, tel)
m (m#*, mname, kind)
on { o, m¥~, price)
db michelin
r) { r#, rname, streot, type, stars, avprice,
tal
¢ { of*, cnama)
= {(of~, r#=, price)
¢k gault-a
r { r#*, rname, street, qual., tel , type.
avprice, comment)
o (c#>, cnome, ncal)
m (c#», v, price)

The character '#' indicates in DSL the key. The
domain names are assumed the same as the ones of the
corresponding attributes. The attribute values and in
particular natural key values, are independent in
different databases, even if attribute and domain
names are the same. The attribute stars in michelin
mesures the quality of a restaurant as a value ranging
* ' to "s«*'_ qual of gasult-m measures it as a
fraction i/20 ; 0 < i < 20. A restaurant may figure in
one or both guides.

- The database s-p has the following schems :

s (s, name, tel, city)
p (p#* . name, colour)
sp (sh= p#s, qty)
(pmin*. pmaj*, tass)
e domains of s-p are assumed named as the
corresponding attributes, except that the domain of
pmin and of pmej is the one of p#.

~ the bank database schema and its hypergraph image at
fig 3a, are from /HAIB3/. For our purpose we
oonsidered, as by the way also in /MAIS3/, that the
pradicates aococat,_ lives define the corresponding
relstions. The meaning of predicates is
straightforward (accat : account x is in bank y. lat
: loan x is in bank y,.}. The domains are assumed
named as the corresponding attributes. 8iven the
functional dependencies in /MAIS3/, the relation
schemas of bank are :

accat (acc®, bnk)

for { (1=, amt)

has {accs, bal)

hold (1=, c*)

lat (1=, bnk)

livas (c* adr)

own {acc™, c%)

Note that banks have no natural key. That is why the
bank graph (fig 3b) has no connection through bnk, in
contrast to the hypergraph. Banks name in this schema,
only properties of loans and of accounts.

504

