IEEE-COMPSAC 1991, Kyoto

Implicit Joins in the Structural Data Model

Byung Suk Lee
Bellcore

Abstract

In general, it 1s cumbersome and prone to errors
to write a relational query involving many join pred-
icates. One approach to resolve this problem is the
implicit join method [6, 8]. This method derives the
unspecified join predicates of an incompletely speci-
fied query from the semantic dependency - a set of
the pairs of semantically dependent atiributes - in the
database schema. Although the implicit join method
has some advantages over the universal relation ap-
proach [2, 4, 5], it frequently derives a complete query
differently from what a user would do, and generates
redundant subqueries. This is because, in the implicit
join method, the semantic dependency is discovered by
a syntactic observation of the database schema. We
show that using the structural model [10, 11, 12] re-
moves the problem of redundancy by making the se-
mantic observation of the database schema possible,
and provides a complete query that many users would
prefer to that of the original implicit join method.

1 Introduction

The relational model has been widely accepted
since it was proposed by Codd [1]. The relational al-
gebra is equivalent to the relational calculus in terms
of relational completeness [2]. A join is expressed as
a join predicate in the relational calculus. Joins are
essential in a relational query. They transform the set
of relations referred to by the query to a single rela-
tion the query defines. To specify the joins basically
requires performing logical navigation over relations.
It is however often cumbersome to specify all the joins
participating in the query. This has motivated a lot
of research on user interfaces for formulating a rela-
tional query without joins. A graphical interface and
natural language interface fall into this category. An-
other category are techniques for writing a relational
query without explicitly specifying some joins. One
approach is the universal relation [2, 4, 5] scheme. It
eliminates joins from the user query by presenting to
users a single relation (universal) schema from all re-
lations in the database. Another approach in [6, 8] de-
rives the unspecified joins, called implicit joins, from
a database schema or from the multiple schemas for
queries with interdatabase joins. The method has ad-
vantages over the universal relation approach, easy up-
dating in particular. There are also cases when the
query the method provides appears preferable to the
query that would result from the universal relation
approach [6].

Witold Litwin
INRIA.

Gio Wiederhold
Stanford University

In [6] implicit join scheme uses semantic depen-
dency - a set of the pairs of semantically dependent
attributes - to derive implicit joins from the database
schema and from explicit joins that are the joins spec-
ified in the query. A query completion algorithm gen-
erates minimal complete queries given an incomplete
query. Semantic dependency configures into the edges
of a database graph. Given an incomplete query and
its query graph, the database graph is searched to find
minimal trees covering all the nodes in the query and
including all explicit joins. Each of the minimal trees
is translated into a complete subquery. The final query
is the union of the complete subqueries.

Semantic dependency is sufficient for deriving im-
plicit joins. However, sometimes it contains more than
necessary dependency information so that the query
completion algorithm generates needlessly equivalent,
alternative complete queries. This is because in [6] a
semantic dependency is discovered by syntactic obser-
vation of the database schema . We discuss in Section
2.3 a situation when one gets ten queries, while four
are enough.

We propose in what follows a solution to this prob-
lem, that is the use of the structural data model
[10, 11, 12]. In this model, the semantic dependency
1s defined through explicitly declared connections. We
will call this dependency ezplicit semantic dependency
(ESD) while the implicit semantic dependency (ISD)
will be this from [6]. We prove that the use of the ESD
allows us:

¢ to avoid redundant subqueries.

e to have, for the corresponding non-redundant sub-
queries, no more joins than the complete queries of
the original method, provided the database satisfies
some rules of referential integrity we define.

e to provide the complete queries that many users
would prefer to those of the original method.

The use of the structural model thus makes the
processing of queries with implicit joins more effi-
cient. Our work constitutes also a method simplifying
queries to the structural data model with respect to
the previous use of this model.

In Section 2, we review the concept of semantic de-
pendency and the computation of implicit joins as de-
scribed in [6]. In Section 3, we review the structural
model. Then, in Section 4, we discuss using the se-
mantics of connection constraints for deriving implicit
joins. Finally, Section 5 contains the conclusion.

2 Implicit joins
2.1 Semantic dependency

The idea of implicit joins is to avoid specifying all
join predicates in the query, and have the system de-
rive the missing join predicates. The system needs
information complementary to the missing join predi-
cates. This information is called the semantic depen-
dency in [6]. It is classified into natural dependency
and equivalence dependency. The natural dependency
is discovered from the usual database schema, and is
used to derive implicit joins within a single database.
The equivalence dependency is assumed to be defined
in databases in multidatabase environment in addi-
tion to the usual definition of relations, and is used to
derive implicit joins between databases. We describe
these two dependencies here.

In the following discussion, DOM(X) denotes the
cartesian product of the domains of each attribute of
X, Key(R) denotes the primary key of a relation R,
and Key'(R) denotes a candidate key [3] of a relation
R

. Naturally dependent attributes are found according
to the following definition.

Definition 2.1 (Natural dependency) Given two
sets of attributes A C R; and B C R; where R; and
R, are relations on the same database, A and B are
said to be naturally dependent if and only if DOM(A4)
= DOM(B) and A C Key(R1) V B C Key(Rz), that
is, A and B share a domain and at least one belongs
to the primary key. A natural dependency is a set of
the pairs of naturally dependent attributes.

This dependency allows us to consider that the same
value of an attribute in different relations correspond
to the same thing [6].

The notion of domain equivalence needed for nat-
ural dependency is not valid precisely for defining an
equivalence dependency because the equivalence de-
pendency is used in multidatabase environment. For
example, there frequently occurs a domain mismatch
problem [9] between attributes in different databases.
Hence, we introduce a notion of approzimate domain
equivalence, denoted as DOM(A4) ~ DOM(B), which
acknowledges the possibility of domain mismatch and
assumes a necessary mismatch resolution mechanism.
Sometimes the domain mismatch also hinders the
mapping of primary keys between two relations on
different databases. In [6], secondary keys are used
in such a case. Likewise, we use a candidate key for
the definition of equivalence dependency here.

Definition 2.2 (Equivalence dependency)

Given two sets of attributes A C R; and B C R,
where R; and R, are relations on different databases,
A and B are said to be equivalently dependent if and
only if DOM(A) ~ DOM(B) and A C Key'(R;)AB C
Key'(R2). An equivalence dependency is a set of the
pairs of equivalently dependent attributes.

This dependency relates the sets of domains in dif-
ferent databases where identity of values implies the
same real object [6].

Inventory Multidatabase Schema.

Underlined attributes are the primary key attributes.
IA (Inventory database A):

S(s#, name, tel, city) /* Supplier */

P(p#, name, color) /* Part */

SP(s#, p#, qty) /* Supplier-Part */
Comp(majp, minp, assembly-type) /* Component */

IB (Inventory database B):
Sup(id, name, phone#, addr) /* Supplier */
Itm(inum, name, size, weight) /* Item */
Supltm(id, inum, unit-price, quantity)

Figure 1: Multidatabase schema

Example 2.1 The relations of the IA (inventory
database A) whose schema is shown in Figure 1
have the following natural dependency: { (S.s#,
SP.s#), (SP.p#, P.p#), (SP.p#, Comp.majp),
(SP.p#, Comp.minp), (P.p#, Comp.majp), (P.p#,
Comp.minp) }. Similarly, IB has the following natu-
ral dependency: { (Sup.id, SupItm.id), (Supltm.inum,
Itm.inum) }. We further consider there is the follow-
ing equivalence dependency between the relations of
the two different databases IA and IB: { (IA.S.name,
IB.Sup.name),(IA.P.name, IB.Itm.name) }, assuming
that name is a secondary key of IA.S, TA.P, IB.S,
IB.Itm, and domains are approximately equivalent
between IA.S.name and IB.Sup.name, and between
IA .P.name and IB.Itm.name. O

The natural dependency and equivalence dependency
are not exhaustive. However, we ignore the other (triv-
ial) dependency as semantically meaningless [6]. We
say a pair of attributes are semantically dependent
if and only if they are either naturally dependent or
equivalently dependent.

2.2 Computation of implicit joins

Given the dependency information, the system gen-
erates missing join predicates using a query comple-
tion algorithm shown in Algorithm 2.1. For simplicity,
we restrict the discussion here to conjunctive select-
project-equijoin queries. A query is either a mono-
database or multidatabase query. We use the MSQL
[8] as our query language. See [6] for more complete
discussion of the query completion algorithm.

We first define two graphs — multidatabase graph
and query graph — and then describe the query com-
pletion algorithm.

Definition 2.3 (Multidatabase graph) A multi-
database graph is an undirected connected graph
where each node represents a relation and each edge
represents an element of the semantic dependency. An
edge represents an element of the natural dependency
if it is connecting two nodes of the same database, and
equivalence dependency if different databases.

An example of the multidatabase graph is shown in
Figure 2 for the Inventory multidatabase in Figure 1.
Attribute names are shown for clarity.

(8 QG,

(b) QG,

Figure 3: Incomplete query graphs (QG; and QG;)

Definition 2.4 (Query graph) A query graph is an
undirected graph where each node represents a rela-
tion and an edge represents an explicit join appearing
in the query. If there is a join between two instances
of the same relation, they are distinguished by a tuple
variable-like subscript.

Example 2.2 Given the multidatabase of Figure 1,
let us assume users issue the following incomplete mul-
tidatabase queries.

Q1: Select addr where assembly-type = ‘screw’;

Qs Select addr, color where assembly-type =
‘screw’;

The query graphs of Q; and Q3 are shown in Figure 3.
Note these queries do not have From clauses [8]. For
example, the user’s thought for Q; is “I don’t know
the structure of the databases. All I know is that the
assembly type is screw. Now, I want to know the sup-
pliers’ addresses corresponding to the assembly type.”
a

In general, the graph of an incomplete query is a
disconnected graph. We call the edges and nodes that
appear in an incomplete query graph as ezplicit edges
and ezplicit nodes. It is the goal of the query com-
pletion algorithm to find out the impilcit edges and
tmplicit nodes that render the query graph complete.

Algorithm 2.1 (Query completion)
Input:multidatabase graph(DG),incomplete query(Q)
Output: complete query (Q')

" o

Figure 4: Complete query graphs (QGY)

Procedure:

Let F, be the set of explicit join edges in QG.

1. Parse the query Q into a query graph QG.

2. For each node v of DG which has multiple in-

stances (distinguished by subscripts) in the QG,

a. Replicate v and the edges incident to v so that
DG has the same number of the instances of v as
QG.

b. Distinguish the replicated nodes with a subscript,
i.e., v1,V2,***,V, Where n is the number of the
instances of v in QG.

3. Find all connected subgraphs of DG such that
each subgraph includes all the nodes of QG and has
minimal number of edges.

4. For each subgraph (V', E’) found in Step 3,

a. Compute the set of implicit join edges as E; :=
E' - E,.

b. Add to the condition part of Q the conjunction of
all join predicates corresponding to the elements
of F;, and set the base relation part of Q to the
relations corresponding to the elements of V'.

The subgraphs found in Step 3 are all minimal trees
and have the same number of edges and nodes. Users
are assumed to want the union of the complete queries
formulated in Step 4.

2.3 Examples of query completion

We use the Inventory multidatabase (Figure 1)
whose database graph was shown in Figure 2.

Let’s consider the incomplete query Q; of Exam-
ple 2.2. Its complete query graphs (QG/) obtained by
Algorithm 2.1 are shown in Figure 4. The resulting
complete queries are:

e Select IB.Sup.addr from IB.Sup, IA.S, IA.SP,
TA.Comp where TA.Comp.assembly-type = ‘screw’
and TA.Comp.majp = TA.SP.p# and IA.SP.s# =
TA.S.s# and IA.S.name = IB.Sup.name;

e Select IB.Sup.addr from IB.Sup, TA.S, IA.SP,
TA.Comp where TA.Comp.assembly-type = ‘screw’
and TA.Comp.minp = TA.SP.p# and IA.SP.s# =
TA.S.s# and IA.S.name = IB.Sup.name;

Let’s consider the incomplete query Q, of Exam-
ple 2.2. Algorithm 2.1 generates ten complete queries
whose graphs are shown in Figure 5. Among these ten
queries, (a), (b), (c) are equivalent and (e), (f), (g) are
equivalent because of equijoin associativity. Therefore,
there is a problem of partitioning the set of complete

€ &up)

S B G®B B C
maj majp mi nmajp
(©) (

d) (€

Figure 5: Complete query graphs (QGY5)

queries into a set of equivalence classes and choosing
one from each class.

3 Structural model

The structural model is the relational model aug-
mented with connections [10, 11, 12]. Connections are
part of the data model and used to enforce interrela-
tional constraints - cardinality constraints and update
constraints. The structural model consists of seven re-
lation types (entity relations, foreign entity relations,
nest relations, associative relations, lexicons, subre-
lations, derived relations) and four connection types
(ownership connection, reference connection, subset
connection, identity connection). Relations are those
of the relational model and take on different types de-
pending on the connections to other relations.

3.1 Connections

Table 1 shows the constraints of the four connec-
tion types [13]. Each connection type specifies its own
update constraint. These constraints preserve the ref-
erential integrity between connected tuples. For ex-
ample, for an ownership connection R;.A4; —* Rs.A3,
there must exist a matching tuple in R; for each tuple
of R; such that R;.A; = R5.A45. We denote the ref-
erential integrity constraint as R;.4; — R3.A4; for all
types of connections. In Table 1, Cardinality column
shows the cardinality relationship between the source
relation and the destination relation, and the arrows
in the Ref. int. column show the directions in which
the referential integrity constraints are enforced.

By convention, ownership, reference, and subset
connections consider a single database only. The iden-
tity connection is distinct from the others in that
it is used to enforce (delayed) update consistency
of derived data or of replicated data in distributed
databases [13].

Formally describing, given two relations R; and
R,, a connection from A C R; to B C R, satis-
fies the constraints of Definition 3.1. Connections are
defined between two sets of attributes, at least one

of which should be a primary key. Omne can inter-
pret it as a formal description of an entity-relationship
model [14] without many-to-many relationships. Con-
nections also make it possible to describe entities in a
more object-oriented manner than when we have rela-
tions only [15]. In this way, connections support the
semantics of ‘correspondence’ between database ob-
jects as used in [6].

Definition 3.1 (Connection constraints)

e Ownership connection: DOM(A) = DOM(B) A
A =Key(Ri)ANBCKey(R;)NA=B

e Reference connection: DOM(A) = DOM(B)AB
Key(R;)A(A=nullv A=B

e Subset connection: DOM(4) = DOM(B) A 4
Key(R1) AB = Key(R:)ANA=B

e Identity connection: DOM(A) = DOM(B)A A =
Key(R1) A B = Key(R2) A A =4 B where d is the
time delay.

3.2 Using the identity connection in a
multidatabase

As mentioned in Section 3.1, the identity connec-
tion is defined for a (delayed) synchronous update of
replicated data in a single or distributed database.
This concept needs to be modified to fit into multi-
database environment. In a multidatabase, an identity
connection is defined between attributes belonging to
different databases. Hence, we should use the same
notion of approximate domain equivalence and a can-
didate key as in Definition 2.2. Synchronous updates
between connected attributes are not needed if we as-
sume each database operates autonomously. Hence,
we drop the constraint of A =; B from the constraints
of Definition 3.1. Thus, the constraint of the identity
connection used in multidatabase environment is as
follows.

Definition 3.2 (Identity connection constraint)
DOM(A) ~ DOM(B)AA = Key'(R1)AB = Key'(R,)

Type Cardinality | Symbol | Insertion Rule Ref.
Deletion Rule int.

Ownership 1:m —k Source (Owner) tuple must exist. —
Source deletion implies Destination deletion.

Reference n:1 >— Destination (Referenced) tuple must exist. —
Source existence prohibits Destination deletion.

Subset 1:lpartial —>3 Source (Super) tuple must exist. —
Source deletion implies Destination deletion.

Identity 1:14c1ayed =—= | Source (Primary) tuple must be updated first. —
Source deletion causes Destination deletion.

Table 1: Connections of the structural model

name |

[s ¥

Figure 6: Structural diagram

Example 3.1 Figure 6 shows the diagram of the
structural model of the Inventory multidatabase (Fig-
ure 1). The following types of connections are shown.

e Ownership: S.s# —x SP.s#, P.p# —x SP.p#,
Sup.id —* Supltm.id, Itm.inum — Supltm.inum

e Reference: Comp.majp >— P.p#, Comp.minp
>— P.p#
e Identity: S.name =——= Sup.name, P.name =—=
Itm.name

There is no connection between Comp.majp and
SP.p# and between Comp.minp and SP.p# since there
is no referential integrity constraint between them. O

4 Implicit joins in the structural model

4.1 Connection constraints as semantic
dependency

A case was shown in Section 2.3 in which ISD gen-
erates redundantly equivalent queries. Now we show
this problem can be resolved by using the ESD. We
start from the following Lemma.

Lemma 4.1 Given two sets of attributes A C R; and
B C R, where R; and R, are relations,

e If R; and R, are on the same database, and A
and B are connected by an ownership, reference, or
a subset connection, then A and B are naturally
dependent.

e If R; and R, are on different databases, and A and
B are connected by an identity connection, then A
and B are equivalently dependent.

Proof: Let us compare Definition 2.1 and Defini-
tion 2.2, respectively, with Definition 3.1 and Defi-
nition 3.2. The constraints of an ownership, refer-
ence, and subset connections (Definition 3.1) all satisfy
the condition of natural dependency (Definition 2.1)
between two relations on the same database. Like-
wise, the constraints of an identity connection in mul-
tidatabase environment (Definition 3.2) satisfies the
condition of equivalence dependency (Definition 2.2).
Note the contrary is not always true. Q.E.D.

The semantic dependency defined by Lemma 4.1 is
an ESD while that of Section 2.1 is an ISD.

Lemma 4.2 Given a database schema, the ESD is a

subset of the ISD, i.e., ESD C ISD.

Proof: According to Lemma 4.1, any pair of at-
tributes that have connections between them are se-
mantically dependent. However, all semantically de-
pendent pairs do not necessarily have connections be-
tween them unless they have referential integrity to be

preserved. Q.E.D.

We can now deduce the following theorem.

Theorem 4.1 The number of equivalent complete
queries generated using ESD is no more than the num-
ber of those generated using ISD.

Proof: The number of complete queries is decided
in Step 3 of Algorithm 2.1. Let’s say we have a set
Gt of complete query graphs generated using ISD. By
Lemma 4.2, we know there exist G; C G1 where G} is
a set of zero or more g € Gy that contain edges corre-
sponding to the elements of ISD that do not belong to
ESD. Those g’s cannot appear as a connected graph in
the set Gg of complete query graphs generated using
ESD. Therefore, Gg = Gy — G%. Since G} has zero
or more elements, Gg has no more elements than Gj.
Q.E.D.

Thus, if we complete queries using ESD only, we can
avoid the overhead of generating equivalent complete
queries and choosing one of them.

Figure 7: Complete Query graphs (QG%)

Example 4.1 Let’s consider the Inventory multi-
database whose structural diagram was shown in Fig-
ure 6. The structural diagram can be viewed as a
multidatabase graph as well.

Given the incomplete query Q; of Example 2.2, the
complete query graph (QGY%) obtained with ESD is
shown in Figure 7. QG{ has more number of joins
than QG!. In Example 4.2, it will be reduced to the
same number.

Given the incomplete query Q, of Example 2.2, the
complete query graphs (QG}) obtained with ESD is
the same as the a, e, i, and j of QG), shown in Fig-
ure 5. Note the other six equivalent alternative com-
plete queries are not generated because of the missing
connections between SP and Comp. Generating less
alternatives will reduce the overhead of choosing one
of them. O

4.2 Reducing a complete query to a sim-
pler query

We now show that it is possible to reduce a com-
plete query to a simpler query using the semantics of
referential integrity defined by connections.

We say a join path follows a chain of connections
if, for each relation on the path, the connections to
the relation are defined on the same attribute. Be-
sides, the referential integrity constraint along a chain
ofconnectlons (R1.41 — Rs. Az)/\(Rz A; — R3.A3)A

‘(Rp—1.4n_1 — R,.A,), is denoted by a simpler
form R{.Ay — Ry Ay — --- — R,.A, and called @
chain of referential integrity.

A query can be reduced if we can replace a join path
with a single join and still get the same tuples. The
following lemma describes the conditions that make
such a reduction possible.

Lemma 4.3 Let’s say there is a join path following
connections C; ;11,2 = 1,2,---,n — 1, where C; ;14 is
a connection between R;.B; and R;41.4;+1. Then

HRluRn(Rl DA R, DK --- DA R, =
By = A By=A3; B,_,1=A,

B, oS, R g

if and only if
AiEBi,i:2,3,---,n—1 (2)
i.e., the join path follows a chain of connections, and

IRy, 1<p <,

(Rl.Al —F = ‘RTAP A
Rydy o Ry.Ay) (3)
e., the chain of referential integrity is either unidi-

rectional or can be decomposed into two subchains
heading toward each other.

Proof: Let’s define Tz as the LHS of Equation 1 and
Tt as the RHS.

1. if part: Given Equation 2, Tg becomes
Og,ur, (Rl |>< R, DX - D R,). Then
=A; Ay=A3 A, 1=A4,

we know, by the definition of joins, ¢ € Tg if and only
if

Aty € Ry,t3 € R+ +,tp_1 € Ry_y,
(A1 =1t3. A3 Ntg. Ay =t3. A5NA - A
tn—l'An—l :t.An) (4)

for the given ¢. Similarly we know ¢ € 77 if and only
if

t. Ay =t.A, (5)
for the given ¢. Then, it can be easily seen that Equa-
tion 4 becomse equivalent to Equation 5 given that
Equation 3 is true.

2. only if part: Let’s prove this by contradiction.
First, let’s assume Equation 2 is not satisfied although
Equation 1 is true. We know, by the definition of joins,
t € Tg if and only if 3t2,t3, vee ,tn_l(t.Bl = t3.45 A
tz.Bz = t3.A3 A * A tn—l'Bn—l = t.An). Likewise,
t € Ty if and only if ¢t.B; = t.A,. From these, it is
clear that Ty # T7. This contradicts the assumption.

Second, let’s assume Equation 3 is not satisfied, al-
though Equation 1 and Equation 2 are true. The fol-
lowing shows the examples of such a case for a join
path between R; and R,,.

Ri— »R,<«—R,—» R,
3.R1 <—Rz —PR]' <—Rk—> Rn

Ri—»>R;,«—R;—»R,<+— R,
4.

(The R;, R;, and R; are intermediate nodes on the
join path and switching the direction of the chain of
referential integrity. The numbers on the left side are
the number of these intermediate nodes. The arrows
denote the chains of referential integrity along con-
nections.) The examples show that any case not sat-
isfying Equation 3 has at least one intermediate node
from which the chains of referential integrity are going
out. Therefore, in such a case, there exist three nodes
R, ,R,,,R,, for 1 < p; < ps < p3 < n such that
neither R, .A,, — R,,.A,, nor R,,.A,, — R, Ay,
is true. From this observation, we can see that Equa-
tion 4 is not equivalent to Equation 5. In other words,
t € Ty is not equivalent to ¢ € T7. This contradicts
the assumption. Q.E.D.

(a) Before reduction

(b) After reduction

(Arrows shown in () denote the referential integrity.
Sup and Comp are the only explicit nodes.)

Figure 8: Reducing QGj to QG|

Thus, as long as there is a chain of referential in-
tegrity for a join path, and it satisfies Equation 3, a
query can be safely reduced to another one involving
less number of joins.

Based on Lemma 4.3, Algorithm 4.1 shows how to
reduce a complete query. Note in Lemma 4.3, the
LHS of Equation 1 was projected on R; U R,,. This
was to make it compatible with the RHS. In the con-
text of query completion, they are compatible only if
Rs, R3,---, R,_1 are implicit nodes.

Algorithm 4.1
Input: a complete query (QG’)
Output: a reduced complete query (QG")
Procedure:
1. Find all pairs of nodes (R; and R;) that are con-
nected by a join path P;; oflength > 1 which follows
a maximal length chain of connections that satisfies
Equation 3, and whose nodes between R; and R;
are implicit nodes.
2. For each pair of nodes (R;, R;) found in Step 1,
replace P;; with a single edge between R; and R;.

Example 4.2 QG{ shown in Figure 7 is reduced to
QG shown in Figure 4 by Algorithm 4.1. Figure 8
shows it for one of the complete queries. In Step 1, we
find only one pair of nodes (SP, Comp), which is con-
nected by the join path SP D P D Comp.
P#=pP# _ p#=majp
This is replaced by a smgle join SP Comp
p#=majp
in Step 2. Note there is no referential integrity con-
straint between Sup and S because we assumed no
(delayed) synchronous update in multidatabase envi-
ronment. QG4 and QG produce the same tuples, i.e.,
this reduction is safe. This is because of the referential
integrity constraints SP.p# — P.p# and Comp.majp
— P.p#.

Figure 9 shows another example. We can find a
pair of nodes (R;, R4) connected by the join path
Ry l>< Ry Bl>< R3 C|>4 R4, which is replaced by
R, I><ID R,. Likewise, the join path connecting R4
and Rg can be replaced by R4 D<| Rs. Note b is not

the only possible result. For example the join path

(Rl,R5, and Rs are explicit nodes; Rz, Rs, and R4 are
implicit nodes. All edges are implicit. The arrows denote
the direction of referential integrity constraint.)

Figure 9: Query reduction

between R; and Rg could have been replaced by the
join R; ANE Rs. O

Now we can deduce the following theorem.

Theorem 4.2 Complete queries generated using
ESD and reduced by Algorithm 4.1 has no more joins
than the complete queries generated using ISD pro-
vided that, for any (R;.A;, R;.A;) € ISD — ESD, the
join path between R; and R; generated using ESD
satisfies Equation 2 and Equation 3 of Lemma 4.3.

Proof: Let’s consider a complete query graph gen-
erated using ESD. From Lemma 4.2, A = ISD —
ESD has zero or more elements. Therefore, adding
the edges corresponding to the elements of A to ESD,
we may find a ‘short-cut’ to a join path. Let’s say we
found a short-cut to a join path F;; between R; and
R;. Given that P;; satisfies Equation 2 and Equa-
tion 3, we can conmsider a join path P;; D P;; which
satisfies the same conditions. Then P;; will be re-
placed with a sigle edge by Algorithm 4.1. On the
other hand, if ISD was used, Py, = {(R;, R;)} U Pji,
i.e., there would be one or more joins between R; and
R;.. This completes the proof. Q.E.D.

4.3 Semantics of a complete query

Now, we discuss the case of the use of ESD to gen-
erate a query whose semantics is different from that
generated using ISD.

Consider the structural diagram in Figure 10 and its
relation schema. Let us consider now the incomplete
query:

e Select t_name where p_name = ‘Litwin’.
Using ISD we generate the complete query:

e Select Teacher.t name from Teacher, Parent where
Teacher.ssn = Parent.ssn and Parent.p_name =
‘Litwin’.

This query will provide all the teachers who are the

same person as the parent named Litwin, i.e., Litwin

itself. On the other hand, using ESD we generate the
query:

e Select Teacher.t_name from Teacher, Child, Parent
where Teacher.ssn = Child.teacher and Child.ssn =
Parent.ssn and Parent.p_.name = ‘Litwin’.

ssn teacher Child

ssn
ssn
Parent

Teacher

(a) Structural diagram

Teacher (ssn, t_name)
Child(ssn, c_name, teacher)
Parent(ssn, p_name)

(b) Relation schema

Figure 10: Example database schema

The corresponding semantics is ‘Get the teachers
who are teaching the children of the parent named
“Litwin” ’. This semantics is likely to be preferred by
users.

5 Conclusion

The connections of a structural data model allows
it to derive implicit joins more efficiently. The query
completion algorithm can avoid generating redundant
subqueries through the use of the connections as the
source of semantic dependency. The remaining com-
plete queries can be reduced to equivalent simpler
queries that have no more joins than the complete
queries of the original method. Our method can also
provide complete queries that users prefer to those of
the original method.

Our approach through the structural data model is
a new alternative to both the implicit join approach
and the universal relation approach. Its drawback is
that it requires additional definitions in the database
schema, i.e., those of the connections. It pays off how-
ever not only through a more efficient implicit join in-
terface, but also other benefits such as explicit update
constraints and integrity control rules [12].

With respect to further research, we need more
work on the query reduction algorithm. Sometimes
it produces alternative reduced queries, so it has room
for further optimization. The algorithm considers in
particular the number of joins as the only criterion.
We are able to get a more optimal query by consider-
ing other criteria. For instance, we can consider also
the relation cardinality and choose the query with the
smallest relations.

References

[1] Codd, E, “A relational model of data for large
shared data banks,” in ‘Readings in Database
Systems’ edited by Michael Stonebraker, pp. 5 -
15, Morgan Kaufmann Publishers, Inc., 1988.

[2] Ullman, J., “Principles of database systems” (2nd
edition), Computer Science Press, Inc., 1983.

[3] Ullman, J., “Principles of Database and
Knowledge-Base Systems”, Vol.1, Computer Sci-
ence Press, 1988.

[4] Maier, D., Ullman, J., and Vardi, M., “On
the foundations of the universal relation model,”

ACM Transactions on Database Systems, Vol.
9:2, 1984.

[5] Lecluse, C., and Spyratos, N., “Implementing
queries and updates on universal scheme inter-
faces,” Proceedings of the 14th VLDB Confer-
ence, Los Angeles, California, 1988.

[6] Litwin, W., “Implicit joins in the multidatabase
system MRDSM,” Proceedings of the IEEE
Computer Software & Applications Conference
(COMPSAC), Chicago, lllinois, pp. 495 - 504, Oc-
tober 1985.

[7] Codd, E., “Relational database: a practical foun-
dation for productivity,” The Relational Journal,
November, 1981.

[8] Litwin, W., “MSQL: a multidatabase language,”
Information Science (Special Issue on Databases),
Vol. 48, No. 2, July 1989.

[9] DeMichiel, L., “Performing Operations over Mis-
matched Domains,” Proceedings of the IEEE
Data Engineering Conference 5, Los Angeles,
February, 1989.

[10] El-Masri, R., “On the design, use, and integra-
tion of data models,” Ph.D. dissertation, Com-
puter Science Department, Stanford University,
Stanford, CA 94305, May 1980.

[11] Wiederhold, G., “Design concepts and implemen-
tation of databases,” (To be published).

[12] Wiederhold, G., “Database design (2nd edition),”
McGraw-Hill, Inc., 1983.

[13] Wiederhold, G., and Qian, X., “Modeling asyn-
chrony in distributed databases,” Invited paper,
Proceedings of IEEE Data Engineering Confer-
ence, Los Angeles, February 1987.

[14] Chen, P., “The entity-relationship model — to-
ward a unified view of data,” from ‘Readings
in Database Systems’ edited by Michael Stone-
braker, Morgan Kaufmann Publishers, Inc. 1988.

[15] Hull, R., and King, R., “Semantic data model-
ing: survey, applications, and research issues,”
ACM Computing Survey, Vol.19, No.3, Septem-
ber 1987, pp. 243.

	ref: IEEE-COMPSAC 1991, Kyoto

