
InfoJapan 90, Tokyo

- 1 -

1

Abstract
We propose to organize the logical level of the computers
interconnected worldwide as a kind of a life modeling our
own. We assume this universe populated with programs of
a new kind called beings. Beings do not need to be
intelligent, their goal is to provide services through some
internal and external capabilities. They are autonomous,
active and interoperable to the point to behave living
individuals. They are aware of their capabilities, able to
use those of other beings, may acquire new capabilities and
may give birth to new beings. We show that the model is
feasible already and that beings may be implemented as
multidatabase systems, storing data and capabilities and
working in a federation. We discuss perspectives for the
software engineering and the database systems that follow
from the model.

Motto. From the "Popular Journal", 1860 : Well
informed people know that it is impossible to transmit voice
over wires and that were it possible to do so, the things
would be of no possible value.
Historical note. The telephone was invented in 1861.
Shortly after, President of the Western Union Telegraph
Comp. turned down exclusive rights to Bell's invention,
explaining "What use could this company make of an
electrical toy ?".

1. INTRODUCTION

1.1. Evolution of data management goals
Computers will soon be interconnected worldwide.

They will have database software to serve the sharing of
large data banks [Cod70]. The evolution of the technical
development was as follows :

- Data to be shared were removed from autonomous
files and redefined as an integrated collection called a
database [Dat86]. The collection was to be under central
control of the database administrator, on a large mainframe.

 - To improve access performance, the database was
proposed to be distributed over a number of interconnected
sites [Chu87], [Cer87]. The system was expected to provide
logically central management over distributed data. The
data

1 Witold Litwin is on leave from INRIA & Univ. Paris 9, France,

litwin@eclipse.stanford.edu, wiederhold@sumex-aim.stanford.edu

were allowed to be contained in multiple autonomous
databases. Now the system should provide functions for
non-procedural manipulations of data in different databases
[Lit87]. Data were not assumed to be
integrated, as administrators should have the autonomy of
naming, choosing the data structures and values according
to their needs [Lit82], [Hei85], [Tem87], [Kuh88], [Jac88],
[Rus88], [Wol89].

The latter type of systems is called multidatabase
systems, or federated systems [Lit82], [Hei85], [Day85],
[Sar87]. Databases that are jointly manipulable without
integration are called interoperable [Lit86], [Int87].
Research on interoperability showed that it is useful for a
multidatabase system to interoperate not only with database
systems, but also with other types of systems. For instance,
to update dynamic attributes, the multidatabase system
MRDSM calls the formal calculus system MACSYMA.
There is no question to integrate MACSYMA under
MRDSM, MACSYMA is several times larger than
MRDSM [Lit87b].

1.2. Remaining drawbacks
The notion of using services of different systems, leads

to the idea of interoperable systems, which are autonomous
systems that may be manipulated together without
integration. Such systems are the next step beyond the
multidatabase systems [Lit89]. However, if designed
according to the current principles of software engineering,
the interoperable systems will still leave a significant
burden to the users:

 - Computers carry a skyrocketing amount of software.
The classification of this software is now well understood
and falls into well understood classes of services such as:
database systems [Bur86], text editors, compilers, image
manipulators,... The programs realizing these functions
duplicate a large number of components realizing
subfunctions or services [Gas87]. On the other hand no
program provides everything that might be needed for an
application. Also, users are generally lost in subtle
differences between programs with similar purpose.

 - Systems are now being designed to provide user
autonomy [Abb88], [Gar88]. However, these systems are
designed for what the author imagined the user wants, not
less (unless they have bugs) and not more. They have no
autonomy with respect to their designer and user, and
behave in a predetermined way. If an unexpected function is
needed, the designer has to rewrite the program. The user

 A Model for Computer Life

Witold LITWIN Gio WIEDERHOLD

Stanford University, Stanford CA 943051
Hewlett Packard Laboratories, Palo Alto

InfoJapan 90, Tokyo

- 2 -

has to wait or to find another program with the desired
function, which may lack in turn functions the user had
available.

1.3. A solution
We need a model to organize the computer universe.

We therefore sketch such a model and call it computer life.
Its axiom is that the ultimate goal of our activity inside the
computer universe is to set up a kind of a life, mirroring
ours. To organize it, we should transpose the rules and
properties that proved most effective for ourselves.
Software designers already do it frequently intuitively, but
only for particular applications.

 To create the computer life, we propose to populate the
computer universe with programs of a new kind we call
beings. Beings are autonomous, active and interoperable to
the point they behave largely like us in the professional life
(but they are anthropomorphic creatures for other aspects of
our lives). They survive in general only if they generate
profit covering their living expenses. They are aware of
their capabilities to provide services and may interoperate
with other beings. They do not need to be intelligent, just
skilled. They may self-modify and may give birth to new
beings. They handle their decisions usually autonomously
without making us aware of. They may also create
organizations providing services beyond capabilities of a
single being. While these organizations are primarily for
their own benefit, they mirror organizations like banks,
hiring agencies, schools, law enforcement institutions,...
[Lit89a].

We argue that the computer life model is a rewarding
organization for ourselves as well. We should have less
hassle in managing the computer universe. We will also use
operational capabilities of beings that they could create or
improve by themselves. Finally, we may gain financial
profit from the lease of the services of a being. The self-
organization characterizing the computer life looks also the
only way for the computer universe to reach the scale of
millions of interconnected nodes we will require soon.

We also argue that the model is not a science fiction.
While almost not similar work exist, the knowledge objects
KNOs [TsI87] present some properties of beings, as well as
the active objects with learning capabilities [McL88], the
actors [Hew86], and the agents with beliefs and desires
[Tho89]. Also, the capabilities of beings called user agents,
representing our interests inside the computer universe are
these of mediators [Wie89]. More generally, the state-of-the
art of the tools like multidatabase systems and database
systems, object oriented paradigm and logic programming,
makes the model already feasible. We show how these
technologies let us to put the computer life into practice.

We finally show that even a partial implementation of
properties foreseen for the beings leads to interesting short-
term gains for the software engineering and the database
systems. We focus on the idea that a (multi)database system
implementing a being manages both data and capabilities.
We show that application programs could be generated by
queries. They become open ended, and able to provide
services they were not designed for. The frontier between
application programs and databases disappears, and more
flexibility results from for the users.

Section 2 defines the model. Section 3 discusses details
and the feasibility of the model. Section 4 shows the

perspectives for the software engineering and the role of
database systems. Section 5 contains the conclusion.

2. THE MODEL

2.1. The basis
The model has for goal the organization of the computer

universe at the logical level. Physical details, like size of
memories, type of computer used or interconnection
procedures are irrelevant. The model starts from the
observation that the main phenomenon organizing our
universe is the life. Its remarkable property is that it is self-
organizing and continuously evolving towards a more
effective organization. To set up a kind of a life in the
computer universe should therefore be the most effective
way to organize this universe as well. This is the main
axiom of the model. We believe that this is the goal of our
activities concerning this universe already.

A life is seen as an organization of a collection of
individuals. The individuals seek gain exceeding expenses
for survival. The organization also lets the collection to
persist, despite the death of the individuals that do not
survive. The individuals are autonomous and they
interoperate. They also exhibit an active and adaptive
behavior to survive. Finally, they are able to create new
individuals to maintain their life forever.

The major aspect of life pertinent to the model is that an
individual provides services to others. The benefits in the
computer life come from such activities. The model is the
framework for organizing the computer universe towards
this goal. The general approach is to map appropriate
aspects of our life. Many rules to organize efficiently any
universe, are indeed already in our life. We now outline the
principal concepts. More details are in [Lit89a].

2.2. Beings
A being is an individual inside the computer universe. It

is a new type of program that is a tightly coupled,
autonomous and active collection of capabilities oriented
towards service to other beings. It is not necessarily
intelligent, in the sense common to the artificial
intelligence, it is just skilled. The overall effectiveness of a
being is measured by the difference between the gain from
the services the being provides and its expenses for staying
alive. The capabilities themselves are programs that are not
autonomous.

Formally, a being B is a triplet B = (Co, V, Cs). Co are
the operational capabilities of the being through which it
provides the services. V (Curriculum Vitae) is a self-
description of B, to make other beings aware of B's
capabilities. Cs denotes the survival capabilities that allow
B to survive and, especially, to find the way to earn more
than it spends and to create new beings. Survival
capabilities also allow B to autonomously decide to accept
or refuse a task, to exchange information with other beings,
to seek for employment etc. A being that looses more than it
gains usually dies.

The birth of a being may result of our action. It may
also result of an individual act of a being (cloning), or from
a cooperative act, basically between two beings. The child
inherits some, but not necessarily all the capabilities of the
parent(s) [Lit89a].

InfoJapan 90, Tokyo

- 3 -

The crucial aspect of the autonomy of a being is that it
provides capabilities that were not built-in. For this
purpose, the being may invoke external capabilities, like we
use various tools. It can also make requests for service to
other beings. Finally, it can import capabilities into itself
for durable usage. Both Co and Cs sets of capabilities are
thus time-dependent.

2.3. Organizations
Beings may form organizations providing more services

than an individual being. An organization O is formally a
quadruple O = (Co, V, Cs,). denotes the time-
dependent set of beings forming O (employees of O). Any
capability of O is that of an employee or is a composition
of capabilities of it employees.

The difference between an organization and a being is
that the constituents of a being (capabilities) are not
autonomous. An organization may also provides resources
to the employees.

As beings, organizations may acquire capabilities that
were not built-in and drop the useless ones. This is done
through the evolution of the employees, and the hiring or
firing of the employees. The evolution may be on the
initiative of an the employee or may be requested by the
organization. The corresponding decisions are autonomous
with respect to us, ie, we are not aware of them.

The computer universe will need a number of
organizations useful for our own life. There should be hiring
agencies, journals and universities for capabilities
exchange and diffusion. There should be travel agencies to
let the beings to move elsewhere. One will also need
hospitals for damaged beings, courts, judges, police, etc.
Not all beings will be gentle, as they may be set up by
humans who are not [Cac89].

2.4. Autonomy, interoperability and competition
A being should find operational capabilities it needs and

does not have without our intervention. These capabilities
are provided by other beings or organizations. The being
should choose them on competitive basis. It should sell its
own capabilities (or of its organization) to other services
(beings or organizations). The curricula vitae V exist
precisely for this purpose. Protocols for interoperability and
operational capabilities should allow a being to exhibitV to
others and to change it with the time. A being should also
be able to to negotiate prices of services it provides or
requests. In this sense, a being is aware of its existence, as
we are aware of ours.

To provide a service, a being or an organization receive
a request for. A request may be thought of as a high level
message to an object or an actor [Hew86]. The properties of
a being make however this concept richer than that those
two, going beyond that of an active object [McL88].
Objects and actors are basically passive with respect to
beings and present a much lower degree of autonomy and
interoperability. These concepts do not have a clearly
defined objective of curricula, do not require ability to self-
change the set of capabilities, to give birth to other objects
or to create organizations. An exception are the knowledge
objects (KNOs [Tsi87]). The concept of a KNO is the
closest to that of a being, though is more restrictive. Beings
are not required to communicate only through black-boards,
a KNO does not carry a vitae etc.

2.5. Interface to our universe
Some beings will receive request for service from

human users. They will provide these services by
themselves or will issue requests to other beings. Such
beings will be user agents , extending the current meaning
of this concept. A marionette KNO, is an example of a
user agent. A user agent will however usually have
capabilities of a mediator [Wie89], presenting thus a more
autonomous behavior. A user agent may also belong to a
user who is then its owner. The owner has the control of its
agent, priority for service and (especially) financial benefits
from the services dispensed by the agent.

The degree of the autonomy of a being means that its
behavior will be largely undeterministic with respect to this
of the present programs. We will progressively lose control
of the computer universe that will rely upon itself. An
indirect benefit is a reduction of hassle in managing this
universe. The self-organization of the computer life is
probably the only way to manage millions of interconnected
nodes we will have soon.

The direct benefit of the existence of beings is two fold.
We will utilize their operational capabilities, or will earn
money for services of "our" beings to others. This money
may directly enter a being owner's accounts in the computer
universe. Alternatively, an agent may have its own
accounting system, the owner's part being collected through
some tax collection system. An owner may have several
agents and may be an organization.

It is worthy to note that the owners will appear from the
computer universe as a kind of Greek Gods. There will be
multiple Gods with autonomous conflicting interests and
sometimes evil intentions. Fights between God's will
become these of their agents.

3. FEASIBILITY OF THE MODEL

3.1. Overall analysis
While the model may appear as science fiction, many

pieces exist already. The services and capabilities may be
described using the abstract data types or object oriented
principles. Rules to be defined for various organizations to
create, may be implemented using the logic programming.
The production, evolution and the mutual understanding of
curricula vitae between beings may be achieved through
the self-description [Rou83], [Rou85], [Ccs87], [Bat88].
Efficiency of cooperation between distributed services may
be achieved through the usage of techniques for parallel and
distributed processing of autonomous data. They are now
under intensive studies [Alo87], [Bre87], [Bel87], [Dee87],
[Elm87], [Wie87], [Pu87]. The technique of contract nets
[Smi80] seems particularly adapted to the kind of
negotiations a being will be usually involved in.
Incidentally, it is an instructive example of an intuitive
application of the model.

The model adds to these paradigms the goals of
autonomy and of interoperability at all levels. It also
stresses the fundamental importance of these goals which
only start to be fully appreciated [Eli87], [Dai88], [Gar88].
While many technical problems remain to be solved, it is
also promising that the model principles worked already
rather well for ourselves.

To examine more in detail the feasibility of the model
functions, we now review an example. We then focus on

InfoJapan 90, Tokyo

- 4 -

some concepts transposed from our own life that are useful
for the computer universe as well. We analyze their
feasibility and we point out research issues.

3.2. Example
The user agent will usually reside on the user

workstation. It is likely that the workstations will be
individually owned and will be permanently a part of the
computer universe connected through the Open System
Architecture [Hew85], [Iso87], [Dai88]. A workstation may
be the location of the number of services and of beings, only
some of them belonging to the workstation's owner. The
composition of the services on the workstation will
probably be decided by the user agent or the mediator
[Wie89].

Consider a user wishing to write a text. The agent may
itself have the corresponding capabilities ie may be a writer
(a sophisticated word processor in the current terminology).
If not, it will call for a writer. The writer may be on the
workstation or elsewhere. A distant writer may generate a
clone that will travel to the workstation.

During the writing, it may happen that the user requests
a capability that the writer does not have, such as to solve
an equation. The writer attempts then to find this capability
elsewhere. It either posts a request for a mathematician
(equation solver in the current terminology) to delegate him
the whole task or finds the capability somewhere and either
applies it or even imports it into itself. In the latter case the
capability may be dropped later on or kept permanently.
The mathematician may move to the writer's workstation or
may entirely or partly copy itself to the workstation as a
clone. Alternatively, the writer may send the equation to
the mathematician or to the organization the mathematician
works for.

To gain money, for its survival and/or for its owner, if
any, the writer also seeks to sell its services to other beings.
If idle, it is supposed to use the time to hunt for new
capabilities to enhance its profitability. It may also advertise
its services somewhere. It may finally do some
housekeeping, update its vitae, etc.

3.3. Implementation of beings
A practical kernel for the implementation of a being

may be a dedicated multidatabase system (MBS), especially
a relational one. A being will consist of the system itself and
of some databases under its management. The kernel and
its databases will be identified by the multidatabase name
that would be the logical name of the being itself. The
commands of the multidatabase language of the system,
like these of MSQL [Lit87] or of VIP-MDBS [Kuh88],
will allow merging in a single query data from different
databases. They will also provide the interoperability with
respect to data in the autonomous databases of other beings.
Other features characteristic of an MBS or of a DBS will
allow for concurrent processing, for privacy, data security,
etc. These features will be the kernel for the survival
capabilities of the being.

A new fundamental feature of some of these databases
should be a POSTGRES like ability to have attributes
whose values would be the capabilities themselves [Sto86].
A command analogous to EXECUTE command in
POSTGRES, should allow to execute selected capabilities.
We call this command APPLY. We assume that APPLY has

one selection expression for capabilities and an optional
selection expression for data it applies to. The latter
expression follows then the keyword TO, to be placed after
the former expression. The clause TO is optional as the
capability may find its data itself.

Basically, the system activates in parallel all the
selected capabilities, although they may determine the
execution order by themselves. Especially, a capability
should be able to call another one or even itself recursively.
The flexibility of the multidatabase manipulation language
of the system will allow import and export of the
capabilities. It will also allow dropping of useless ones.
Finally, it will allow to define complex operations,
involving several beings, through multidatabase
transactions.

Other databases will contain data relative to the vitae.
These data and the corresponding needs are discussed
below. Finally, some databases may be necessary as the
working environment for the capabilities.

Example. The writer could bear the logical name, let
us say John Smith or John in short. Its kernel MBS may
have a database named Op-Capabilities with the following
relation :

Capab (Name, Type, Source, Version, Code)

where Name is the name of a capability, Type its type, eg,
Speller, Source its source or supplier like Microsoft,
Version is the version id., and Code is the code to be
executed. To check the spelling of a word, John may issue
to its kernel the query :

USE Op-Capabilities

 APPLY Code FROM Capab WHERE Name = 'Speller'

Once in control, the speller will then ask John for the

word to check. If it should be applied to a whole text,
somewhere in a database, then a TO clause would follow
the WHERE clause above and would bring the text.

A simple request for service to John from Nick could
be:
USE John.Op-Capabilities

APPLY Code FROM Capab WHERE Name = 'Speller'

To provide the service, John would allow the query to

be executed by its MBS. IF John wants Nick to learn this
capability, then John will issue the interdatabase query :

Use John.Op-Capabilities Nick.Op-Capabilities

INSERT INTO Nick.Op-Capabilities . Capab

SELECT * FROM John.Op-Capabilities . Capab

WHERE Name = 'Speller'

From now on, Nick will dispose of the capability by its

own.

3.4. Curriculum Vitae
The Curriculum Vitae V' is a fundamental tool for the

interoperability of the beings. V should carry information
allowing to evaluate its bearer skills. The evaluation should

InfoJapan 90, Tokyo

- 5 -

be performed autonomously, by the beings themselves. A
vitae should contain the following parts.

3.4.1. Definition of the capabilities
Many programs have capabilities described today

through the form of an explicit menu or of icons. Such a
description usually rely on some implicit capabilities. These
are not defined precisely. We need a language defining
capabilities and their expression through other capabilities
in some standard form. This description should form the
capability description section ofV. The description should
be oriented towards the usage by the beings. It should be
evolutive, as the being can gain new capabilities.

A language may consist of standard names of
capabilities, eventually with parameters. Abstract data type
approach and object oriented languages and systems are
more elaborated candidates. A starting point may also be the
capability description language like in [Rya86]. One should
also consider the work on the self-description of databases
[Rou82], [Rou83], [Rou85], [Mar87].

Anyhow, it does not seem practical to require the full
description of each capability in each V. One should
consider external databases defining in depth capabilities. V
should usually contain only the generic definitions, defining
together the profile of the being.

3.4.2. References
The process of evaluation of capabilities should also be

autonomous. A helpful tool may be the reference section in
V. This section should describe the work experience of the
being. One issue is the language for the description of this
information. While the general solution is an open issue, a
lot may be achieved if the kernel of the being is an MBS.

3.4.3. Salary
A being should generate profit. Its CV should indicate

the price of its services, in a pricing section. The pricing
should be established basically by the being itself. An
interesting issue is how it can be done.

3.4.4. Interview
The generic capabilities announced in V may be not

understandable to another being. Also, the confidence in
the V should be limited. The being examining V of another
one should be able to interview its bearer. This may consist
of requests for details of the bearer's capabilities. It may
also include the benchmarking of corresponding
performance. The interview may be done by a specialized
being or organization.

3.5. Organizations
The beings that formed an organization should pool

their capabilities for the group work. This leads to a
number of technical issues. We outline a few:

- joint representation as an organization.
- choice of the most effective manner to perform the

work.
- internal structure of the organization and its its

conceptual scheme.
- internal communication and management of various

dependencies [Mar85].
- some kind of legal responsibility, with respect to the

privacy and security of the universe.
- negotiation protocols between the beings and

organization.

The proposed way to implement the beings may help to
achieve these needs. The negotiation protocols may be an
extension of those for federated databases [Hei85].

3.6. Exchange of capabilities
It is assumed that some beings export capabilities. In

general a being also uses external capabilities. There are
following ways for it :

(a) - the being calls another being or organization. This
being or a representative of the organization executes then
the task requiring the capability on the behalf of the
requestor. This is the groupware approach.

(b) - the being learns through some script how to use
capabilities available in some recipients, database or
knowledge base. These capabilities remain outside the
being. It only uses them as we use tools helping us to do a
task.

(c) - the being learns the capability which means that it
imports the corresponding code into itself.

An elementary implementation of (a) is to use remote
procedure calls. The requester knows then who provides the
service. If this information is unknown, one may design a
mediator describing who provides a given service, how
much it costs etc. Services may then be searched for using
database or knowledgebase queries.

This type of cooperation will require also standards for
the interfaces between capabilities. Many such de facto
standards exist already, especially for microcomputer
software. There are many independently developed
auxiliary programs in this area, able to interoperate over
data in format of some basic programs. For instance, there
are several speller checkers that operate on the text of
MsWord while the text is being written, as if they were
parts of the MsWord.

In the case (b), the being will need to purchase the right
to use capability from some server. It may then get a
script (transaction scheme) to be downloaded it into its
private database. Like a manual, the script will define how
to use together local and server's capabilities, what data
should be sent to the server etc. To use the server may be
advantageous if the server is on a powerful computer, or
more up to date.

However, the strategy (c), that is importing a capability,
may lead to similar advantages, and offers better control
over the capability. The implementation of this strategy may
require nevertheless software engineering techniques, we
are not aware of presently. However, while one may foresee
technical problems related to the transition between
modified source code, new object code, linking etc., none of
them seem really hard to solve. One basis for (c) may be
techniques for extendible database systems, if they are
generalized to make the extensibility autonomous.

On the other hand, the use of an MBS as a kernel, also
may allow to realize the goals (a) to (c)., as the following
example shows.

Example. Assume that CompuServe server has the
database Capabilities with the following scheme :

Capab (Name, Version, Code, Interface, Type)

Cap_pricing (Name, Rent, Buy&Share, Buy&Copy, Update)

 Usage (User-Id, Name)

 Volume_Discount (User-Id, Name, Discount).

InfoJapan 90, Tokyo

- 6 -

To download cheap equation solvers, the writer John may
issue the following MSQL query with obvious meaning:

USE CompuServe.Capabilities

 John.Op-Capabilities

 INSERT INTO Op-Capabilities.Capab

 LET X BE CompuServe.Capabilities

 SELECT X.Capab.Name X.Capab.Version X.Capab.Code

 X.Capab.Type

 FROM X John.Op-Capabilities

 WHERE X.Cap_pricing.Buy&Copy < 10 $ AND

 X.Capab.Type = 'Equation solver' AND

 X.Capab.Name = X.Cap_pricing.Name

4. IMPACT ON SOFTWARE ENGINEERING
While the concept of a being with all its properties is

futuristic, we have shown hopefully that it is feasible. In
[LIT89a], one finds further discussion of the beings. Below,
we show that an implementation of the property that a being
is a database system (DBS) able to manipulate data and
capabilities in a multidatabase environment should already
have an impact on software engineering and on the role of
database systems.

4.1. Architecture of programs
A classical program is a set of instructions of fixed size

and with predefined set of possibilities, responding to also
predefined user needs. It is not updatable once compiled and
link edited. In contrast, data in a database, may be modified,
change the size and may be retrieved in many ways to
satisfy unexpected needs. The concept of a being transfers
these properties also to programs.

As the result, the notion of a program changes, at least
for the application programing. A program becomes a set of
capabilities dynamically defined by a query. This program
has neither a fixed size nor predefined possibilities. These
properties are desirable for programs as they were for data.

On one hand, a program may be asked to perform an
unexpected task, as in examples above. For a task to be
reexecuted, it may apply a new version of a capability that
was transparently improved or may select a competing
capability etc. Clearly, a yet unknown degree of flexibility
becomes available to the users. While such a flexibility was
not that important in the classical environment of
application programs and of batch processing, it is
fundamental for modern interactive users.

To design a program becomes mainly the problem of an
associative retrieval of capabilities and of communication
between them. (Multi)database languages and systems are
now powerful enough to allow selections of extremely
various set of capabilities. The control statements of an
application program may be designed as some capabilities
as well. This approach may deal better with complex
decision sequences through a shared use of decision tables,
or of guarded commands or of knowledge-based techniques,
as proposed in [WIE82]. A new problem for the software
engineering are the techniques for the design of capabilities.
Some issues will be briefly addressed below.

4.2. Role and architecture of a database system
A DBS may consist itself of capabilities and of a

bootstrap program that would initialize the DBS once it is
called. The bootstrap would load or at least would activate a
number of capabilities own to DBS, necessary for query
decomposition, transaction management, etc. The choice of
these capabilities may depend on the machine, the working
environment, the task itself, etc. The bootstrap or a
capability it activates may act as the system generator in
mainframe operating systems.

A DBS may now be viewed as an operating system of a
new type. The main difference is the use of an assertional
language to select tasks, instead of simple commands (as
well as the data manipulation capabilities of a DBS). The
benefit is a new flexibility and open-ended possibilities for
the user, including access to capabilities of other DBSs.

A user of DBS may wish not only to import or export
existing capabilities, but also to design capabilities himself.
The DBS should provide an adequate programming
environment. Although, the corresponding functions are
new for a DBS, they are basic to the software engineering.
Note that DBS should be more protective of errors in
capabilities than of those in data.

A frequent view of a DBS is that it is a repository of
data for the application programs, ie, a kind of persistent
data storage. The role of a DBS becomes larger in the
proposed approach, Not only data, but also application
programs come under its control and attractive possibilities
appear. It is like a revenge of database methodology over
the methodology of programming languages.

4.3. Interoperability of capabilities
It is desirable to allow capabilities to be created by

autonomous designers. They have therefore to be
interoperable. The federated database approach develops the
corresponding principles for data access. The application of
these principles to capabilities could be as follows:

- the capabilities read and write only the logical data
managed by the DBS. They use for this purpose the data
manipulation language of the DBS. In other terms, only
DBS is in charge of sharing data among capabilities.

- The management of physical data structures is the task
of DBS. The capabilities should neither deal with the
corresponding optimization issues, nor with the concurrency
control, recovery etc. Unlike classical programs, capabilities
should not pass to each other information at a low level
data: pointers, physical location of variables etc.

- capabilities may need to deal with autonomous data.
Through the DBS language one should be able to deal with
the corresponding issue of name, value type and data
structure autonomy. A DBS should be able to convert data,
if the data types exchanged between capabilities differ (eg,
by units of measure).

- the description of capabilities may be to some extent
heterogeneous. Again, the DBS language should allow to
deal with mismatches.

- structures hidden to the DBS, such as a stack for
instance inside a complex attribute, should be avoided.
They may however be necessary, if DBS does not provide
an alternative choice.

- for import/export, the capabilities themselves should
be defined in a high level language. This language should
be understandable by all DBSs in the federation, as is the

InfoJapan 90, Tokyo

- 7 -

common data manipulation language in the federated
systems. It probably should even be a part of it. It should
depend on the local DBS, whether the capabilities are stored
in this language or in some kind of object language resulting
a compilation.

- despite the common description, it will happen that
some capabilities will need more resources than a computer
with a given DBS is able to provide. It will be a
responsibility of a DBS to decide whether a foreign
capability should be imported or the corresponding data
should be exported. The user query will need to be
optimized accordingly.

5. CONCLUSION

The principles of autonomy and of interoperability lead
to the organization of the computer universe as a life
modeling our own. Living individuals are then programs
of a new type called beings that are more general and
autonomous. Like us, they seek to survive providing and
using services, may import and export capabilities, may
multiply and may exhibit to other beings the description of
their skills and of their experience. They are also able to
create organizations.

The computer life model appears attractive and feasible,
although its creation is a major enterprise. Multidatabase
systems able to execute capabilities appear at present the
best tool. They open attractive perspectives for database
systems and software engineering.

While we have surveyed the applicability of the model,
we did not enter into details, typical of a research
contribution. It is nonetheless also a role of researchers to
introduce new frameworks. Specific contributions will find
in the model their overall purpose. The perspectives are
vast and fascinating.

Acknowledgments
We thank Nick Roussopoulos and Dennis McLeod for

many suggestions.

This work was supported at Stanford University by DARPA
contract N39-84-C-211 (task 24) on Knowledge-based Data
Management. It is largely based on [LIT89], supported by the Institute
of Advanced Computer Studies of the University of Maryland
(UMIACS), by the National Science Foundation under Grant CDR-85-
00108 and by the Institut National de Recherche en Informatique et en
Automatique (INRIA) under the INRIA - SRC cooperation protocol.

REFERENCES
[Abb88] Abbott, K. R., McCarthy, D. R. Administration and

Autonomy in A Replication-Transparent Distributed DBMS. 14-th Int.
Conf. on Very Large Databases, Los Angeles, USA, (Aug. 1988), 195 -
205.

[Alo87] Alonso, R., Garcia-Molina, H., Salem, K. Concurrency
Control and Recovery for Global Procedures in Federated Database
Systems. IEEE Data Engineering, (Sep. 1987), 10, 3, 5-11.

[Bat88] Batini, C. Di Battista, G. A methodology for conceptual
documentation and maintenance. Inf. Syst. 13, 3, 1988, 297-318.

[Bel87] Bellcastro, E & all. DQS -Distributed Query System.
(Sept. 1987), CRAI, Italy, 21. Int. Conf. on Extending Database
Technology, Springer Verlag, 1988.

[Bre87] Breitbart, Y., Silberschatz, A., Thompson, G. An Update
Mechanism for Multidatabase Systems. IEEE Data Engineering, (Sep.
1987), 10, 3, 12-18.

[Bur86] Burns, T. Fong, E. Jefferson, D. Knox, R. Reedy, C
Reich, L. Roussopoulos, N. Truszkowski, W. Reference Model for
DBMS Standardization. ACM SIGMOD Records, (March 1986).

[Cac89] Special Section on Internet Worm. CACM, 32, 6 (June
1989), 677-710.

[Cod70] Codd, E., F. A Relational Model of Data for Large Shared
Data Banks. CACM, 13, 6, 1970, 377-387.

[Ccs87] Consultative Committee for Space Data Syst. : Standard
Formatted Data Units - Structure and Construction Rules. Red Book,
Issue 2, (Feb. 1987). Nat. Aeronautics and Space Adm.

[Cer87] Ceri, S., Pernici, B., Wiederhold, G. Distributed Database
Design Methodologies. Proceedings of the IEEE, (May 1987), 533-546.

[Chu87] Special Issue on Distributed Database Systems. Chu, W.
(ed). Proceedings of the IEEE, (May 1987), 532-735.

[Dai88] Distributed Aspects of Information Systems (DAISY
Working Group Rep). Research into Networks and Distributed
Applications. R. Speth (ed.). Elsevier Science Publ. 1988, 1029 - 1049.

[Dat86] Date, C., J. An Introduction to Database Systems. 4-th
Ed. Vol. 1. Addison-Wesley, 1986, 639.

[Eli87] Eliassen, F., Veijalainen, J. Language Support of Multi-
database Transactions in a Cooperative, Autonomous Environment.
IEEE Region 10 Conf., Seoul, (Aug. 1987).

[Elm87] Elmagarmid, A., Leu, Y. An Optimistic Concurrency
Control Algorithm for Heterogeneous Distributed Database Systems.
IEEE Data Engineering, (Sep. 1987), 10, 3, 26-32.

[Fan88] Fankhauser, P., Litwin, W., Neuhold, E., Schrefl, M.
Global View Definition and Multidatabase Languages : Two
Approaches to Database Integration. Research into Networks and
Distributed Applications. R. Speth (ed.). Elsevier Science Publ. 1988,
1069-1082.

[Gar88] Garcia Molina, H., Kogan, B. Node Autonomy in
Distributed Systems. IEEE Int. Symp. on Databases in Parallel and
Distr. Systems. 1988, 158-166.

[Gas87] Gash, B., Kelter, U., Kopfer, H., Weber, H. Reference
Model for the Integration of Tools in the "EUREKA Software Factory".
ACM-IEEE Fall Joint Comp. Conf. (Oct. 1987), 183-190.

[Ham79] Hammer, M., McLeod, D. On database management
system architecture. MIT Lab. for Comp. Sc. MIT/LCS/TM-141, (Oct
1979), 35.

[Hei85] Heimbigner, D., McLeod, D. A Federated Architecture for
Information Management. ACM Trans. on Office Information Systems.
(July 1985), 3, 3, 253-278.

[Hei87] Heimbigner, D. A Federated System for Software
Management. IEEE Data Engineering, (Sep.1987), 10, 3, 39-45.

[Hew85] Hewitt, C., De Jong, P. Open Systems. On Conceptual
Modeling. Springer Verlag, 1985, 147-164.

[Int87] Interoperable Database System. 1st International
Symposium. INTAP, (May 1987), 167.

[Iso87] Remote Database Access Protocol. 2-nd Working Draft.
ISO/TC 97/SC 21/WG 3, 1987.

[Jac88] Jakobson, G., Piatetsky-Shapiro , G. Lafond, C.,
Rajinikanth, M., Hernandez, J. CALIDA : A Knowledge-Based System
for Integrating Multiple Heterogeneous Databases. 3-rd Int. Conf. on
Data and Knowledge Bases : improving usability and responsiveness.
Jerusalem, (June 1988), Morgan Kaufmann Publ., 3-18.

[Kuh88] Kuhn, E., Ludwig. Th. VIP-MDBS : A Logic
Multidatabase System. IEEE Int. Symp. on Databases in Parallel and
Distr. Systems. 1988, 190-207.

[Li87] Li, Q., McLeod, D. Object Flavor Evolution through
Learning in an Object-Oriented Database System. 2nd Int. Conf. on
Expert Database Systems. The Benjamin/Cummings Publ. Comp. 469-
495.

[Lit82] Litwin W. et al. SIRIUS Systems for Distributed Data
Management. Ed. H. J. Schneider. North-Holland, 1982, 311-366.

[Lit86] Litwin W., Abdellatif, A. Multidatabase Interoperability.
IEEE Computer, (Dec. 1986), 19, 12, 10-18.

[Lit87] Litwin W., et al. MSQL : a Multidatabase Language.
Inf. Science - An International Journal, Special Issue on Databases, 48,
2 (July 1989).

[Lit87b] Litwin W., Vigier, Ph. New Functions for Dynamic
Attributes in the Multidatabase System MRDSM. HLSUA Forum XLV,
New Orleans, (Oct. 1987), 467-475.

[Lit89] Litwin W., Mark, L. Roussopoulos, N. Interoperability of
Multiple Autonomous Databases. System Research Center. Univ. of
Maryland, College Park. Techn. Rep. TR 89-12, 45.

InfoJapan 90, Tokyo

- 8 -

[Lit89a] Litwin W., Roussopoulos, N. A Model for Computer
Life. Res. Rep. UMIACS-TR-89-76, University of Maryland Institute
for Advanced Computer Studies, (July 1989), 20.

[Mar85] Mark, L., Roussopoulos, N., Chu, B., Update
Dependencies. IFIP TC2 WG 2.6 Working Conference on Database
Semantics, (Jan. 1985), Belgium.

[Mar87] Mark, L. Roussopoulos, N. Information Interchange
between Self-Describing Databases. IEEE Data Engineering, (Sep.
1987), 10, 3, 46-52.

[Mar87a] Mark, L., Roussopoulos, N. Operational Specifications of
Update Dependencies. SRC Res. Rep., Univ. of Maryland, (Feb. 1987),
44.

[McL88] McLeod, D. A Learning-Based Approach to Meta-Data
Evolution in an Object-Oriented Database. Advances in Object-
Oriented Database Systems. Springer-Verlag Lecture Notes in Comp.
Sc., 1988.219-224.

[Pu87] Pu, C. Superdatabases : Transactions Across Database
Boundaries. IEEE Data Engineering, (Sep. 1987), 10, 3, 19-25

[Rou84] Roussopoulos, N. Mark, L. Update Dependencies in
Relational Databases. 1st International Conference on Expert Database
Systems, Kiawah Island, South Carolina, (Oct. 1984).

[Rou85] Roussopoulos, N. Mark, L. Schema Manipulation in Self-
Describing and Self-Documenting Data Models. Int. J. of Comp. and
Inf. Sc., 14, 1, 1985, 1-28.

[Rus88] Rusinkiewicz, M et al. Query Processing in OMNIBASE :
a loosely coupled multi-database System. Tech. Rep. #UH-CS-88-05,
Univ. of Houston, (Feb. 1988), 27.

[Rya86] Ryan, K., Larson, J. The use of E-R models in capability
schemes. 5-th Conf on E-R Approach. Dijon, France (Nov. 1986).

[Sam88] Samy Gamal-Eldin, M., Thomas, G. Elmasri, R.
Integrating Relational Databases with Support for Updates. IEEE Int.
Symp. on Databases in Parallel and Distr. Systems. 1988, 202 - 209.

[Sar87] Special Issue on Federated Database Systems. Sarin, S.
(ed.). IEEE Data Engineering, (Sep. 1987), 10, 3, 64.

[Smi80] Smith, R. G. The Contract Net Protocol: High Level
Communication and Control in a Distributed Problem Solver. IEEE TC,
C-29, 12, (Dec 1980), 1104-1113.

[Sto86] Stonebraker, M. Rowe, A. L. The Design of POSTGRES.
ACM-SIGMOD 86, 340-355.

[Tho89] Thomas, B. Shoham, Y. Schwartz, A. Modalities in
Agent-Oriented Programming (prel. report), Stanford University,
Computer Forum 1989.

[Tsi87] Tsichritzis, D. Fiume, E., Gibbs, S., Nierstrasz, O.
KNOs: KNowledge Acquisition, Dissemination, and Manipulation
Objects. ACM-TOIS, 5, 1, (Jan 1987), 96-112.

[WIE82] Wiederhold, G. Scientific Computing. Roles of Industry
and the University in Computer Science Research and Development.
National Academy Press. 1982, 60-66.

[Wie87] Wiederhold, G., XiaoLei, Q. Modeling Asynchrony
in Distributed Databases. 3rd IEEE Conf. on Data Engineering, Los
Angeles, (March 1987), 246-250.

[Wie89] Wiederhold, G. The architecture of Future
Information Systems. Draft. Stanford University, (Jan. 1989), 17.

[Wol89] Wolski, A. LINDA : A System for Loosely Integrated
Databases. 5-th IEEE Conf. on Data Engineering, Los Angeles (Feb
1989).

