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Abstract

Multidatabase SQL (MSQL) is an extension of the
SQL query language that provides new functions for
non procedural manipulation of data in different and
mutually non-integraled relational databases. We dis-
cuss the problems introduced by these new functions
and analyze the semantics of multiple updates, global
commilment and rollback. New language constructs
are developed 1o allow declarative specification of mults-
dalabase transactions. We also discuss the design and
implementation of aen environment for the ereculion
of ertended MSQL queries in a heterogeneous multi-
database environment.

1 Introduction

In many application areas the information that may
be of interest to a user is stored under the control of
multiple database systems that were developed and are
managed independently of each other. Although the
existence of computer networks makes these databases
easily accessible, the data in different databases are not
integrated and the users must deal with multiple, au-
tonomous and heterogeneous databases. The access to
such databases is complicated by the possible naming,
structure or type differences in the descriptions of the
same real objects. Manipulation of data located in dif-
ferent databases requires functions that do not exist
in currently used query languages such as SQL (Strue-
tured Query Language) [2].

The need to provide systematic access to multiple
databases led to the emergence of the concept of mul-
tidatabase systems (MDBSs). A basic requirement of
a multidatabase system is the existence of a multi-
database manipulation language [11] that facilitates ac-
cess to data controlled by multiple Database Manage-
ment Systems (DBMS). The databases that are mem-
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bers of some MDBS are called Local Database Sys-
lems (LDBSs). Multidatabases, also called Federated
Databases [15], can be classified as tightly coupled or
loosely coupled, depending on the level of autonomy of
the LDBSs.

Multidatabase SQL (MSQL), an extension of the
SQL query language, was proposed in [11] as an ac-
cess language for loosely coupled multidatabase sys-
tems. Since SQL is a commonly accepted standard
for relational databases, it is reasonable to think of
MSQL as an emerging standard for multidatabase en-
vironments. The basic idea is that of providing SQL
with new functions for nonprocedural manipulation of
data in different and mutually non-integrated relational
databases. Some MSQL capabilities, such as prefixing
table names with database names, are already present
in new SQL dialects, including SQL2.

The introduction of new functions for multidatabase
manipulation in MSQL led to many open problems in
the semantics and implementation of some operations.
Some of these problems have emerged in our implemen-
tation of a subset of the language. These include the se-
mantics of data definition, update, global commitment
and rollback operations. In this paper these problems
are analyzed and solutions are proposed as extensions
to MSQL. We introduce new constructs for the spec-
ification of multidatabase transactions in MSQL and
discuss the execution of MSQL queries in a heteroge-
neous multidatabase environment.

The paper is organized as follows: Section 2 is a
brief overview of the main features of MSQL. Section 3
presents our critique of the language and the proposed
extensions. Section 4 describes our MSQL implementa-
tion experience. Finally, Section 5 concludes the paper.

2 Language Concepts

MSQL provides a number of new features to facil-
itate the manipulation of multiple database systems.
New schema manipulating operations include multi-
database creation and alteration; table definition in



multiple databases; importing of database and table
schemas; creation and manipulation of multidatabase
views and of virtual databases; and manipulation of
multitables that are sets of tables originating in differ-
ent databases. New data manipulation operations in-
clude joining of data that reside in different databases;
retrieval of related data, with possibly different names
and schemas, located in different databases; dynamic
transformation of attributes’ values; data transfer be-
tween databases; new built-in functions for aggrega-
tion and manipulation of multiple tables; and definition
of interdatabase triggers. All these new functions can
be expressed using powerful and concise MSQL state-
ments.

To illustrate some of the features of MSQL, let us
consider as an example two relational databases of car-
rental companies, avis and national. Both databases
contain information about cars that are either available
or rented by customers (the schemas of both databases
are presented in the Appendix). The two databases
contain information about the same entity types and
relationships of the real world. However, they present
a number of heterogeneities in the names and struc-
tures used to model the same real entities. Let us sup-
pose that we want to retrieve from both databases the
information about all cars with related code, type and
datly rate (if it exists). The execution of such a query
involves accessing both databases, generating partial
results and merging them into the final result to be
delivered to the user.

One problem that has to be solved in this example,
for which standard SQL is not suitable, is the reso-
lution of naming heterogeneity. Naming heterogeneity
1s caused by the use of different names to identify se-
mantically equivalent objects in different databases (in
our example, we have different table names: cars and
vehicles). Another problem which cannot be solved by
standard SQL is caused by schema helerogeneity, which
exists when different database structures are used to
model the same real objects. For example, in our query
the column rate is present in the table cars but not in
the table vehicles. The following single compact MSQL
multiple query resolves both heterogeneities:

USE avis national

LET car.type.status BE cars.cartype.carst
vehicle.vty.vstat

SELECT %code, type, “rate

FROM  car

WHERE status = ’available’

First, the query scope is defined by the USE state-
ment. It contains the names of databases involved in
the query. Then, naming heterogeneities are resolved

by specifying the explicit semantic variable introduced
by the LET statement. In the query body, references
to the semantic variable car.iype.status are substituted
with the correct database objects names, specified in
the BE clause. Another naming heterogeneity is re-
solved by the implicit semantic variable %code, which
refers to both code and vcode. The wild character
% stands for any sequence of zero or more characters
and the proper names for the required column are de-
rived automatically. Finally, schema heterogeneity is
resolved by designating refe as an optional column,
identified by the special character ~. The resuit of this
multiple query is a multilable, which is a set of two ta-
bles. These two tables are generated as partial results
by the accessed databases.

3 Extensions of MSQL

MSQL maintains the simplicity of relational lan-
guages for interactive use. The language deals with
multiple objects in a transparent way and sets of sub-
queries are generated automatically whenever multi-
ple identifiers are present in a global query. This
makes MSQL very powerful. However, as stated in
[11], MSQL functions led to many open problems at
the implementation level. In this section, we propose
solutions to some of these problems as extensions of the
language.

3.1 Incorporate Services and
Databases

Import

Our prototype MDBS uses an Auzxiltary Directory
(AD) and a Global Data Dictionary (GDD). The Aux-
illary Dictionary stores the information about the
database systems (services) available in the multi-
database environment. For each service, we store the
information needed to access the service, including its
name, the address of the service site, the information
about the access protocol and the information about
the commit mode for the DML and DDL statements.
The auxiliary directory can be updated by the INCOR-
PORATE statement:

<incorporate statement> 1=
INCORPORATE SERVICE <service> [SITE <site>)
CONNECTMODE CONNECT | NOCONNECT

COMMITMODE COMMIT | NOCOMMIT
CREATE COMMIT | NOCOMMIT
INSERT COMMIT | NOCOMMIT
DROP COMMIT | NOCOMMIT

The statement inserts the information about a new
database service (LDBMS) in the AD. The CON-
NECTMODE is CONNECT if the LDBMS supports



multiple databases, or NOCONNECT if the LDBMS
supports one default database only. The COMMIT-
MODE is COMMIT if the LDBMS works using auto-
matic commit only and NOCOMMIT if it provides a
two phase commit (2PCq) interface. The 2PC protocol
is described in more detail for each DDL command such
as CREATE, INSERT and DROP. This is necessary to
cope with subtle heterogeneities that play an important
role in the definition of the semantics of multidatabase
commit and rollback.

The GDD is essentially a repository for the names
of the database objects that are visible at the multi-
database level. It stores the names of tables together
with the names, types and widths of their columns.
This information is necessary to detect multiple iden-
tifiers in MSQL queries and to perform the substitu-
tion of implicit semantic variables. The GDD is ma-
nipulated by MSQL data definition statements such as
CREATE DATABASE, CREATE TABLE, etc. It can
also be built in a systematic way, starting from exist-
ing autonomous LDBSs. Once the service supporting
a particular LDBS has been incorporated the names of
its tables and columns can be imported from the Local
Conceptual Schemas. This operation is performed by
the IMPORT statement:

<import statement> ::=

IMPORT DATABASE <database>

FROM SERVICE <service>
[ TABLE <table> [ COLUMN {<column>} ]} |
[ VIEW <view> [ COLUMN {<column>} ]}

If the table name is not specified, the information about
the structure of all tables designated as public, is im-
ported. If the table name is specified, but column
names are not, the whole table definition is imported.
Finally, if column names are specified, partial table def-
initions can be imported. View definitions can be im-
ported in a similar manner. The IMPORT operation
replaces the definition of previously imported database
objects, if necessary. It is assumed that database names
are unique inside the federation, or that an aliasing
mechanism exists that allows unique identification.

3.2 Vital Databases

In SQL there are three commands that modify the
extension of a database: INSERT, DELETE and UP-
DATE. Their MSQL version allows the user to change
the state of multiple databases simultaneously. There-
fore, in the multidatabase environment the semantics
of multiple updates must be carefully defined. The fol-
lowing example helps in understanding the problems
involved in the implementation of such updates in a
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loosely coupled environment. Again using as an exam-
ple the databases defined in the Appendix, let us as-
sume that we want to raise by 10% the fares of flights
from Houston’ to ’San Antonio’ in Continental, Delia
and United dalabases.

USE continental delta united

UPDATE flight%

SET rate% = rate% * 1.1

WHERE sour% = "Houston’ AND
dest% = ’San Antonio’

At the conceptual level the semantics of this multiple
query are clear, but at the implementation level we
have to consider several issues. The multiple query is
decomposed into three subqueries that are executed by
the three remote LDBMSs of databases Continental,
Delta and United databases. Since the LDBMSs are
autonomous and heterogeneous, they may use different
2PC protocols; some may not support 2PC. For some
reasons (local conflicts, failure, deadlock, etc.) one or
more LDBMSs may be forced to abort their local sub-
queries.

At the MSQL level the user has no way to control
the execution of the subqueries, to specify dependen-
cies among them, to specify alternative or compensat-
ing actions, etc. There is no definition of return value,
of success or failure of a multiple query and, in par-
ticular, of multiple updates. The result of a multiple
update may leave the multidatabase in a state that is
inconsistent, from the point of view of the global user.
The only possibility to check if the multiple update
was consistent would be to access each of the involved
LDBSs and see what has happened.

3.2.1 Atomicity of MSQL queries

The concept of multiple query in MSQL is related
to the concept of a saga [6]. The subqueries in a mul-
tiple query are related to each other and should be
executed as a (possibly non-atomic) unit. A partial ex-
ecution of the multiple query may be undesirable, and
if it occurs, may need to be undone in some way, by
the multidatabase system.

Our proposal is to allow the user to specify the de-
sired level of consistency for the execution of a particu-
lar multiple query. This is obtained with an extension
of the USE statement. Its syntax becomes:

<use statement> ::=
USE [CURRENT][(] <(multi)database>
[ <alias>)] [VITAL]
([(} <(multi)database> [<alias>)][VITAL]]



To illustrate this concept let us consider the example
query presented in the previous section and assume
that the updates to Continental and United databases
must either both be completed successfully or none of
them must be performed, while the update to Delta
database is optional. The query corresponding to the
above consistency requirements can be expressed as fol-
lows:

USE continental VITAL delta united VITAL
UPDATE  flight%
SET rate% = rate% * 1.1
WHERE  sour% = 'Houston’ AND
dest% = ’San Antonio’

The semantics of VITAL designators are similar to
those defined in [5] for sub-sagas. Databases in the
query scope are designated as VITAL or NON VITAL
(default). If we assume that a multiple query is de-
composed in such a way that there is at most one
subquery per database, the VITAL designations are
directly related to the generated subqueries. All VI-
TAL subgqueries are assumed to commit or abort, so
that the desired degree of multidatabase consistency is
maintained. A multiple query is successful when all
VITAL subqueries commit. It aborts when all VITAL
subqueries are rolled back. The execution is considered
incorrect if some VITAL subqueries are committed and
some other are not. All NON VITAL subqueries can be
executed in autocommit mode and their results have no
effect on the commitment or abort of the global multi-
ple query. The set of VITAL databases is called vital
sel. Failure atomicity of a multidatabase query is en-
forced by the multidatabase system with respect to the
vital set.

The user of a multidatabase language can specify dif-
ferent levels of consistency for the execution of MSQL
queries, depending on the semantics of the operations
s/he is going to perform. If all subqueries are NON
VITAL the multiple query is always successful. On the
other hand, when all databases are VITAL, we have
traditional atomic transactions providing the “all or
nothing” property. Different query evaluation plans are
possible for the same multiple query, depending on the
required level of consistency.

Assuming that all VITAL databases support 2PC,
the above query can be executed as follows. First, the
three database services are opened. Then, three tasks
are submitted to execute the subqueries (local updates}
remotely. Tasks that execute on databases designated
as VITAL are not committed. If they are executed
without errors their state becomes prepared-to-commit.
Tasks executing on NON VITAL databases may be au-
tomatically committed and reach the committed state
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or rolled back and reach the aborted state. After the
three tasks are executed the status of the VITAL tasks
is checked. Depending on their status, appropriate ac-
tions are performed to assure global consistency. In
section 4 we show how query evaluation plans, such as
the one described above, can be expressed in the task
specification language DOL 7).

3.2.2 Commit and rollback

Since MSQL is designed to access preexisting, au-
tonomous and heterogeneous databases, the semantics
of commit and rollback operations depend on the com-
mitment protocols provided by those database systems.
LDBMSs supporting automatic commit and LDBMSs
supporting user-controlled 2PC may be involved in the
same query. LDBMSs which support 2PC may adopt
different protocols. For example, in our implementa-
tion both Ingres and Oracle provide 2PC, but with dif-
ferent protocols. One of the DBMSs allows DDL com-
mands to be rolled back while another automatically
commits them together with all previously issued un-
committed statements. These possible heterogeneities
must be captured at the multidatabase level, if we want
to define clear semantics for global commit and roll-
back.

If a multiple query performs operations for which all
accessed LDBMSs provide the same 2PC protocol the
implementation of global commit is straightforward.
Assuming that the LDBMSs have a visible prepared-to-
commit state an evaluation plan can be specified which
permits all subqueries to be committed or aborted. A
subquery enters its prepared-to-commit state when it
completes the execution of its operations and leaves
this state when it is committed or rolled back. How-
ever, if a multiple query accesses LDBMSs providing
different 2PC protocols, things are more complicated.
For example, if all the accessed LDBMSs automatically
commit every database operation, there is no way to
define clear semantics for the global commit and roll-
back statements. In this case, the only way to simulate
rollback operations is to use user-defined compensating
actions (section 3.3). More problems arise if some of
the accessed LDBMSs use automatic commit and some
others use 2PC.

Query evaluation plans that are generated by the
multidatabase system must deal with all the described
heterogeneities and produce consistent results. The VI-
TAL designators introduced above can be used to pro-
vide a declarative mechanism to clarify the semantics
of global commit and rollback operations.

All MSQL commit and rollback operations refer to
databases that are VITAL in the current scope. The
evaluation plan can be structured so that all VITAL



subtransactions are successfully completed or rolled
back (or compensated). The evaluation plan will con-
tain synchronization points whenever explicit commit
or rollback operations are issued, the current query
scope is changed, or the last MSQL statement is ter-
minated. If all VITAL databases are either prepared
or committed at the synchronization point, the sub-
queries that are in the prepared state will be commit-
ted. Otherwise all VITAL subqueries will be rolled
back (or compensated). MSQL users can decide which
databases should participate in global commit and roll-
back operations by means of the VITAL designators.

3.3 Compensation

As we have mentioned in the previous section, the
described semantics of the VITAL designators are not
applicable if the user wants to include in the vital set
databases that do not support 2PC. In this case our
prototype MDBS raises an error condition and refuses
to process the query. This is because if two or more of
such databases are VITAL, it is not possible to enforce
failure atomicity with respect to the vital set. Nothing
can be done if one of them commits and another one
aborts the related subquery, and the global consistency
is violated.

A possible solution to this problem is the use of
compensation [6, 8]. Compensating actions can seman-
tically undo the effects of committed subqueries, al-
though they do not necessarily return the database to
the state that existed when the execution of the sub-
queries began. The original MSQL specifications do
not provide mechanisms for compensation of particular
subqueries of a multiple query. We propose to extend
the standard MSQL manipulation statements by allow-
ing a clause to explicitly specify compensating actions:

<manipulation statement> ::=
<USE statement> <LET statement>
<SELECT stmt> | <INSERT stmt> |
<UPDATE stmt>
<COMP statement>

<COMP statement> ::=
COMP <database name | alias>
<compensating subquery>

For each VITAL database in the scope of the query that
does not support 2PC, the user must provide a COMP
clause in which the needed compensating actions are
specified. For example, assuming that the Continental
database does not provide 2PC, the previous multiple
update can be rewritten in the following way:
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USE continental VITAL delta united VITAL
UPDATE flight%

SET rate% = rate% * 1.1
WHERE sour% = "Houston’ AND

dest% = ’San Antonio’
COMP  continental

UPDATE flights

SET rate = rate / 1.1

WHERE source = 'Houston’ AND
destination = 'San Antonio’

With the specification of the compensating action
for the local update to database Continental the orig-
inal semantics of the VITAL designator are preserved.
If the Continental update is aborted, the United update
can be rolled back. If the United update is aborted, the
Continental update can be compensated. The evalua-
tion plan for such a multiple query could be generated
as follows.

First, the tasks corresponding to the three sub-
queries are executed as in the example of section 3.2.
The second part is more complicated and considers all
possible execution paths. If the Continental database
has committed and the United database is in the
prepared-to-commit state, the United subtransaction
can be committed and the MSQL query is successful.
If Continental has committed and United has rolled
back (aborted), Continental must be compensated and
the MSQL query is successfully aborted. If Continental
has aborted and United is in the prepared-to-commit
state, United must be rolled back and the MSQL query
is successfully aborted. Finally, if both databases have
aborted the MSQL query is successfully aborted. The
Delta database, being NON VITAL, does not affect the
success or failure of the MSQL query.

The introduction of VITAL designators and com-
pensation is a step in the direction of the specifica-
tion of multidatabase transactions in relational envi-
ronments. MSQL queries which specify VITAL sub-
queries and eventual compensating actions can be con-
sidered as small transactional units. The natural next
step is the specification of more complex transactions.

3.4 Specification of Multidatabase Trans-
actions

MSQL inherits from SQL its limited ability to spec-
ify transactions. This status of the most widely used
database access language does not reflect the current
status of the research in the area of transaction man-
agement [6, 10, 13, 3, 14, 4]. However, the litera-
ture on transaction specification is much more limited
[9, 7, 1]. The ability to specify and execute transactions
with various semantics is highly desirable, especially in



a multidatabase environment. We propose an exten-
sion of MSQL to incorporate some elements of Flezible
Transactions [3].

Flexible transactions may provide Function Repli-
cation, which exists when a given task can be accom-
plished on different databases. For example, if multiple
car rental databases are available to the multidatabase
user, then the rent-a-car task can be performed on any
of those databases. MSQL can naturally take advan-
tage of this situation by specifying multiple queries
that perform functionally equivalent tasks on different
databases in a transparent way.

Compensation is useful when we want to relax some
of the Atomicity, Consistency, Isolation and Durability
(ACID) properties of traditional transaction models or
when we want to cope with various kinds of hetero-
geneities. This is the case in the multidatabase envi-
ronment, where transactions are potentially long lived
and the enforcement of full isolation or atomicity may
be potentially expensive. Compensating transactions
can semantically undo the effects of committed trans-
actions. This allows the global transaction to reveal its
partial results by committing some of the subtransac-
tions that may need to be compensated later. The iso-
lation granularity of the global transaction is reduced
to the subtransaction level. The performance of the
system may be improved through earlier release of the
resources held by global transactions.

Acceptable termination states are used to relax the
failure atomicity requirements of global transactions.
An acceptable termination state is an execution state
in which the global transaction achieves its objectives.
Frequently, there is more than one acceptable state for
a global transaction.

In the following, we describe extensions of MSQL
that allow the user to specify multidatabase trans-
actions consisting of two or more MSQL queries.
These extensions capture the described concepts of
function replication, compensation and relaxed failure
atomicity!.

An MSQL multitransaction is a set of MSQL queries.
It is started by the BEGIN MULTITRANSACTION
statement and terminated by an END MULTITRANS-
ACTION statement. Among the traditional ACID
properties isolation is not supported, since the partial
results of committed subqueries may become visible to
concurrent transactions before the commitment of the
multitransaction. The multitransaction is specified as
follows:

!The Flexible Transaction Model provides a number of ad-
ditional features, including an extensive set of execution depen-
dencies that may be specified among subtransactions of a flexible
transaction. These execution dependencies are not modeled in
the extended MSQL.
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<MSQL transaction specification> =
BEGIN MULTITRANSACTION
<list of queries>
<commit statement >
END MULTITRANSACTION
<commit statement> ;=
COMMIT <list of acceptable states>
<list of acceptable states> ::=
<db | alias> AND ... AND <db | alias>

The COMMIT statement specifies the acceptable
termination states for a multitransaction. An accept-
able state is expressed as the conjunction of the sub-
queries whose success is required for the success of the
global transaction. Subqueries that are not specified in
one acceptable state are assumed to be aborted or com-
pensated. We refer to the subqueries of a multitransac-
tion using the database names. Therefore, one accept-
able state becomes a conjunction of database names or
aliases. This is possible because MSQL queries are as-
sumed to generate at most one subquery per database.
The aliasing mechanism in the USE statement allows
database names to be unique inside a multitransaction
specification. The conditions for success of a multi-
transaction are expressed as an implicit disjunction of
acceptable termination states. The order in which ac-
ceptable states are specified may indicate the user pref-
erence.

As an example let us consider a travel agent who
needs to prepare a trip plan for a customer [3]. Let us
assume that the flight reservations may be made with
either Continental or Delta, and that a car may be
rented from either Avis or National. The trip plan-
ning is successful if a flight is reserved with one of
the two airlines and a car is reserved with one of the
rental companies. The preferred solution is to fly with
Continental and to drive a National car, an accept-
able alternative is to fly with Delta and to drive an
Avis car. The other flight/car combinations are unde-
sirable. An MSQL multitransaction that satisfies the
above requirements can be specified as follows:

BEGIN MULTITRANSACTION

USE continental delta
LET fitab.snu.sstat.clname BE
f838.seatnu seatstatus.clientname
f747 .snu.sstat.passname
UPDATE fitab
SET sstat = "TAKEN’, clname = ’wenders’
WHERE snu=( SELECT MIN(snu)
FROM fitab
WHERE sstat = 'FREE’);
USE avis national
LET cartab.ccode.cstat BE



cars.code.carst
vehicle.vcode.vstat

UPDATE cartab
SET cstat = "TAKEN’, from = ’07-04-64°,
to = '04-16-92°, client = ’wenders’
WHERE ccode = ( SELECT MIN(ccode)
FROM  cartab
WHERE cstat = 'FREE);
COMMIT

continental AND national
delta AND avis
END MULTITRANSACTION

Four different databases are accessed by this multi-
transaction. The first MSQL multiple query performs
the flight reservation on both Continental and Delta.
This is accomplished by setting the value of the col-
umn sstet to TAKEN, for the FREE seat with the low-
est number. The second multiple query performs the
car reservation on both Avis and National in a similar
way. This is an attempt to take advantage of function
replication.

Since it is not desirable to have two flight reserva-
tions and two cars, some exclusion constraints must
be specified as conditions for successful termination.
This is accomplished specifying two acceptable states in
the COMMIT statement. For example, the acceptable
state continental AND national means that the mul-
titransaction Is successfully committed when the sub-
transactions on Continental and National are commit-
ted, while the subtransactions on Delta and Avis are
rolled back or compensated. The exclusion of Delta
and Avis subtransactions is implicit in the specifica-
tion, that is equivalent to continental AND nalional
AND NOT delta AND NOT avis. In addition, an im-
plicit OR is assumed between the acceptable states.

The acceptable states will be checked in the order in
which they are specified, after the execution of the two
multiple queries. The first acceptable state that can be
reached from the execution state of the four subqueries
will be the final state produced by the multitransaction.
If neither of the acceptable states can be reached the
multitransaction fails and all subqueries will be rolled
back or compensated.

If all databases accessed by the multitransaction
support 2PC, these subqueries are kept in the prepared
state until the COMMIT point is reached. Then, the
execution states reached by the subqueries are com-
pared to the acceptable states and some of the sub-
queries are committed while other are rolled back. If
some of the accessed databases do not support 2PC,
compensation must be specified for all subqueries that
are executed on those databases. The evaluation plan
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specification will be more complicated in this case since
it will have to consider all the possible execution paths
to decide when compensation is necessary.

4 Execution of Extended MSQL

In this section we discuss the implementation of the
execution environment for the extended MSQL. The
implementation is described in detail in [16]. In our
implementation, we used the Narada distributed exe-
cution environment that was developed at the Univer-
sity of Houston. Narada provides support for transac-
tion and communication services and uses a task spec-
ification language, DOL, to describe the execution of
distributed applications in a heterogeneous computing
environment [7].

4.1 System Architecture - Narada Envi-
ronment

The main components of the system for the execu-
tion of Extended MSQL are the translator of MSQL
queries into DOL programs, the engine for the exe-
cution of DOL programs in the Narada Environment
and local access manegers (LAMs) for the transparent
access of remote databases and other information re-
sources (Figure 1).

All these components cooperate by exchanging vari-
ous information. The translator receives MSQL queries
and produces DOL programs that are passed to the
engine. The engine executes these programs and coor-
dinates the actions of various LAMs, exchanging mes-
sages, data and command files with themn. LAMs exe-
cute local commands and produce partial results, which
are sent either to the engine or to other LAMs. Fi-
nally, the partial results are collected in one database,
acting as the coordinator, and the final results are pro-
duced. The translator receives back DOL return codes,
which describe the execution status reached by the en-
gine. These codes are used as MSQL return codes. The
Narada resource directory contains up-to-date informa-
tion about all the services known to the DOL engine.
The information includes physical addresses, communi-
cation protocols, login information and the data trans-
fer methods used for all nodes in the multi-system en-
vironment.

Narada is an environment for the specification and
execution of multisystem application and can be used
for many purposes. Here it is tailored to the execu-
tion of multidatabase queries specified in MSQL. DOL
is used to specify such applications, without dealing
explicitly with the details of task synchronization and
data exchange. Once an application is defined, it can



TRANSLATOR

MSQL->DOL

LAM 1

O

ORACLE

LAM 2

O

INGRES

L |

LAM 3

O

SYBASE
!

Figure 1: System Components

be executed automatically, providing location trans-
parency and resolving most of the hardware and soft-
ware incompatibilities. MSQL queries are automati-
cally mapped into DOL programs.

Narada provides transparent access to multiple ex-
isting systemns (databases, knowledge bases, software
packages, etc.). Since none of these systems is mod-
ified, they retain their autonomy. Narada allows the
user to execute a multi-system application by specify-
ing different, actions, their logical dependencies, data
paths among them, and the possible concurrency. To
allow this, the DOL language provides primitives for
task invocation at both local and remote sites, task
synchronization, data flow control and conditional ex-
ecution handling. Although DOL can be used to spec-
ify multi-system applications, it is neither a multj-
database query language nor a transaction specification
language. DOL may serve as an intermediate language,
which can be automatically produced starting from
higher level specifications of multidatabase queries and
transactions.

4.2 Schema Architect ure

The multidatabase schema architecture used in our
implementation is presented in Figure 2. We assume
that all LDBSs have a relational interface and can
be accessed through their Local Conceptual Schema
(LCS). The public tables belonging to LCSs can be
exported to the multidatabase level. At the mul-
tidatabase level there are a Global Data Dictionary
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(GDD) and an Auxiliary Dictionary (A D). The system
is organized as a federation. LDBMSs may be incor-
porated in the federation and their description stored
in the auxiliary dictionary. When a new LDBMS is in-
corporated its capabilities must become known to the
federation and stored in the auxiliary dictionary. These
capabilities range from the possibility to support more
than one database to the adopted one-phase or two-
phase commit (2PC) protocol.

Then, the conceptual schema of incorporated
databases can be imported and stored in the global
dictionary. Since schema translation and integration
are not used, the model can be classified as a loosely
coupled federated database system [15].

4.3 MSQL Query Processing

The execution of MSQL queries is divided into the
following phases: multiple identifier substitution, dis-
ambiguation, decomposition, execution plan generation
and execution. The interpreter processes each MSQL
query as follows. If the query is multiple, all possi-
ble substitutions of multiple identifiers are generated
and non pertinent queries are discarded during disam-
biguation. Then, each global fully qualified elementary
query Q is decomposed into SQL subqueries q,, . . S qn
and a global modified query Q’. The decomposition of
Q is based on the location of the accessed data items
and is performed using query graph analysis [12]. The
global query is transformed into a set of the largest
possible local subqueries, one for each involved LDBS.
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Figure 2: Schema Architecture

One of the LDBSs is designated as the coordinator and
will evaluate the modified global query.

The subqueries and the modified global query are
then incorporated in a DOL execution plan. The ex-
ecution plan can specify exception handling, 2PC op-
erations, compensating actions, parallel execution, etc.
An MSQL query can be mapped into a number of differ-
ent DOL plans. The ability to generate optimal plans
depends on the extent of the information stored in the
GDD and AD. Due to the loosely coupled nature of
the MSQL approach the optimization is likely to be re-
lated more to data flow control and parallelism than to
database operations.

For example, the query specified in section 3.2 is
mapped into the following DOL program:

DOLBEGIN
OPEN continental AT sitel AS cont;
OPEN delta AT site2 AS delta;
OPEN united AT site3 AS unit;
TASK T1 NOCOMMIT FOR cont
{ update for continental }
ENDTASK;
TASK T2 FOR delta
{ update for delta }
ENDTASK;
TASK T3 NOCOMMIT FOR unit
{ update for united }
ENDTASK;
IF (T1=P) AND (T3=P) THEN
BEGIN
COMMIT T1, T3;
DOLSTATUS=0; { return code }
END;
ELSE
BEGIN
ABORT Ti, T3;
DOLSTATUS=1; { return code }
END;
CLOSE cont delta unit;
DOLEND

The DOL OPEN statement connects to a known
service at the specified site and establishes a reliable
communication channel to it. The connection proto-
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col and the data exchange protocol are specified in the
Narada service directory and therefore are completely
transparent to the MSQL user 2. The TASK state-
ment is used to pass the local commands to be exe-
cuted by the service. In our case, these commands are
SQL statements for the local database systems. After
the three tasks are executed, the status of VITAL tasks
is checked. The tasks are executed in a NOCOMMIT
mode; if successful their status becomes prepared-to-
commit (P). Depending on the execution status of the
tasks, appropriate actions are performed to commit or
abort the transaction.

If Continental database does not provide the pre-
pared to commit state and a compensating transaction
is provided, we have two different ways to abort the
MSQL query at the global level. One way is to compen-
sate on database Continental, when database United
has rolled back its subquery. Another way is to roll-
back on database United, when database Continental
aborted its subquery.

In a similar fashion, DOL programs are constructed
to execute the multitransactions shown in section 3.4.

5 Conclusions

In this paper we described the first implementation
of a subset of MSQL. The experience has shown that
the proposed functions led to many open problems at
the levels of the implementation and of the semantics of
some operations. These problems are mainly concerned
with non-retrieval operations such as data definition,
updates, global commit and rollback. In section 3 these
problems are analyzed and solutions are proposed as
extensions of MSQL. Since MSQL inherits from SQL
the very limited ability to specify transactions, exten-
sions of MSQL have been proposed to incorporate some

2TCP/IP and an ISODE prototype are used by the current
implementation.



elements of Flexible Transactions. The ability to spec-
ify and execute transactions with various semantics is
very important in a multidatabase environment.

The work described here can be continued and ex-
panded in many directions. Since DOL allows the
specification of flexible transactions, Extended MSQL
transactions can be easily mapped into DOL programs
and executed. The resulting DOL programs may also
be optimized. This seems to be a promising approach
to the optimization of global queries without the use
of a global schema. The optimization will be related
more to data flow control and parallelism in execution
of queries at different sites than to individual database
operations.

A Appendix: Database

Schemas

Example

Database CONTINENTAL
flights (flnu, source, dep,
838  (seatnu, seatty,

(airline)
destination, arr, day, rate)
seatstatus, clientname)

Database DELTA (airline)
flight (fnu, source, dest, dep,
fnu747 (snu, sty,

arr, day, rate)
sstat, passname)

Database UNITED (airline)
flight (fn, sour, dest, depa, arri, day,
fn727 (sn, st, sst, pasna)

rates)

Database AVIS (car rental)
cars  (code, cartype, rate, carst, from, to, client)

Database NATIONAL (car rental)
vehicle (veode, vty, vstat, from, to, client)
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