

2nd Intl. Workshop on Cooperative Internet Computing (CIC 2002), August, 2002, Hong Kong

Abstract

A table to be managed by a Scalable Distributed Database
System (SD-DBS) should be able to horizontally scale
over several DBMSs. The partitioning and especially its
dynamic evolution should remain transparent to the
application. We propose an architecture for an SD-DBS.
Our architecture aims at SQL Server, but generalizes to
other relational DBSs.

1 Introduction
A parallel DBS allows a table to be partitioned over a

cluster of server-DBSs distributed over a network. Most of
major DBSs are parallel, e.g. SQL Server, Oracle, DB2 and
Sybase. The partitioning can be hash or range based. If a
table scales, as more and more often these days, potentially
to Petabytes, e.g., for the Skyserver [G02], the partitioning
must be able to incrementally include a new node at a time.
In present commercial parallel DBSs, the DBA has to
manually redefine the partitions and typically run a utility
to redistribute the data. In this sense, current parallel DBSs
do not provide scalable data partitioning. In other common
terms, their tables are not horizontally scalable or, in short,
are not scalable.

On the other hand, the technology of Scalable
Distributed Data Structures (SDDSs) provides for the
scalable partitioning, e.g., in the SDDS-2000 system [C01].
In particular, LH* schemes provide for scalable distributed
hash partitioned files of records identified by a primary
key, and RP* schemes provide for scalable distributed
range partitioned files. It becomes tempting to reuse this
technology to provide for scalable tables as well.

We call Scalable Distributed Database System (SD-
DBS) a relational DBS whose tables may be scalable
according to SDDS principles. No SD-DBS exists at
present. Our goal here is to define an architecture putting
this concept into practice.

Accordingly, we consider that a table T of an SD-DBS
resides on some SD-DBS servers, starting at one of them.
When it grows beyond some predefined size b of T, e.g. b
tuples, the SD-DBS mechanism splits T.

An Architecture for a Scalable Distributed DBS:
Application to SQL Server 2000

(Extended Abstract)

W. Litwin, T. Risch, Th. Schwarz
U. Paris 9, U. Uppsala, U. Santa Clara

Witold.Litwin@dauphine.fr, ; ; Tore.Risch@it.uu.se tjschwarz@scu.edu

The split partitions T at a node so to create a new table
with the same schema at another node and migrate there
about half of T tuples from the splitting one. The splitting
process is managed according to some SDDS schema. It
keeps T size at any node as at most b for an RP* schema,
or, typically, close to b for an LH* schema.

Likewise, the application accesses an SD-DBS through
its client node. According to SDDS principles, each client
has some private image of the actual partitioning. It uses
the image to process the queries. With SDDSs client
images are not refreshed synchronously by splits. This
could be too cumbersome, e.g., because of moving or
partly-available clients. Instead, the client is always
allowed to make addressing errors. Such an error may
trigger some forwarding among the servers to correctly
locate the searched tuples. In particular, it may trigger an
image adjustment message (IAM) back to the client. Data
in an IAM improve the image, avoiding at least to repeat
the same error.

It is obvious that building a full scale SD-DBS is a
potentially very challenging task. We focus therefore on
the maximal reuse of the capabilities of an existing parallel
DBS and on the minimal programming effort of the
additional functions. We aim for the largest possible use of
standard SQL manipulations. In particular, we do not
intend to write an SD specific query optimiser from scratch
as this might be a huge task.

Below, we base specifically on new functions that are
available in SQL Server 2000 for the management of so-
called federated DBs [MS01]. The essential idea is that an
application sees a federated view that is defined as a union
view on some client SQL Server 2000 of union-compatible
tables at different server nodes. These tables are elements
of a range partitioning over some partitioning key attribute,
possibly a composite attribute. The partitioning range of
each server is defined by a check constraint at the server.
The processor of the union view accesses these constrains
when a query or an update is issued. This allows
processing the query more efficiently, directing it to only
the nodes where data may reside. In particular the
federated view supports inserts. The use of check
constraints allows the insert to be directed to the single
node where it should reside.

- 1 -

mailto:Witold.Litwin@dauphine.fr
mailto:Tore.Risch@it.uu.se
mailto:tjschwarz@scu.edu

We call our system SD-SQL Server. We attempt to use
the new SQL Server capabilities in the following way. We
cover the SQL Server by an additional layer, we call the
SDDS layer. The application interfaces that layer, i.e, it
submits there any queries. The SDDS layer manages the
SDDS-like table splits at the servers side, and the federated
union-views representing the SDDS images at the client
side. At each server side, every split alters the check
constraints so they reflect the current partitioning. It also
puts some input into some meta-tables. Those contain the
actual image of the partitioning for the SDDS layer. The
splits can create also parity tuples. Those provide the k-
availability, i.e., the tolerance of unavailability of up to k
table segments, e.g., as for the LH*RS schema.

On the client side, the federated union views constitute
the private images. Each time an application query issues a
query towards the view, the SDDS layer checks whether
the image is adequate. The image checking is done by
queries to SD-SQL meta-tables at the client and some
servers. The query checks at least the adequacy between
the number of tables known to the image and the actual
number in the meta-tables at the servers. If the test does not
match, the application query is either not issued towards
the SQL Server, or aborted, if it already started, as it may
happen. The SDDS layer updates then the view definition
from the meta-tables. The query is (re)issued to the SQL
Server by the SDDS layer, i.e., transparently for the
application. It is hence optimised by the SQL Server query
optimiser as usual, or re-optimised, and executed correctly.

The image adjustment strategy of SD-SQL Server is
based on the checking of image correctness at the client. It
is thus a departure from the current principle of an SDDS
where this check takes place at a server sending an
asynchronous IAM back to the SDDS client. The crucial
benefit is that the query optimisation remains entirely with
SQL-Server, as we wished. The cost is additional
messaging. We show that its significance for the user query
performance should nevertheless be rather negligible in
practice.

Below, we outline the SD-SQL Server architecture. We
begin with the gross architecture at servers side. We focus
on the table scale-up through the splits in particular. We
also outline the high-availability management. Afterwards,
we outline the client side architecture. We end up with the
conclusion showing how our proposals match our goal for
an SD-SQL Server.

2 Gross architecture
The SD-SQL Server manages a federation of SQL

Servers. The word federation means here its sense in the
SQL Server 2000 literature. Each of the SQL Servers
carries one or more databases.

Fig. 1 presents the gross architecture of SD-SQL
Servers. At each node of the federation there is an
additional component called SD-DBS manager, or
manager in short. The manager can play the role of SDDS

client, termed here SD-DBS client, or client in short.
Alternatively, it can be an SD-DBS server. Finally, it can
play both roles. As a client, the manager receives the
application queries to application data in the databases of
the federation. These are queries to SQL Server. If the
manager acts as a server, it gets messages from the client
together with the applications queries that it passes to its
SQL Server for execution. SQL Servers communicate
among them as usual for the federation. SD-DBS servers
are from them applications like any others.

We distinguish for SD-SQL Server between tables that
can be partitioned and those that should not. The latter
may, e.g., have “strings attached”, such as indexes, triggers
stored procedures, etc. They are not handled at present by
SD-SQL Server since they present some degree of
complexity that requires further analysis. Notice that SQL
Server 2000 does not manage indexes or triggers etc. over
a partitioned table neither. One may only create those
objects manually for each segment. Notice also that the
automatic creation of indexes for the new segment by a
split, upon those of the splitting segment, does not present
conceptual difficulties. In contrast, the replication by the
split of triggers or stored procedures obviously needs
caution.

Let Di ; i = 1,2… ; be the databases under the SD-DBS
servers. We basically consider one such DB per server,
although what follows applies otherwise as well. Any
scalable table T is created with some schema at some Di.
When T scales, the splits partition it over several Di’s. Each
element of T then, called segment, is a full fledged table
with the same attributes as those with which T was created.

A segment in Di is named locally T and globally Di.T.
Each segment has a maximal size s, representing bucket
size b for an SDDS [C01]. The value of s for each segment,
is measured below as the number of tuples. The Di server
defines s when its T segment is created. The client may
specify the maximal s for all the T segments.

Among Di’s some segment DBs serve simply as
common storage pool for segments. In other words,
segment DBs do not bear semantics. A segment can
basically enter any segment DB. The manager may reuse
for the choice an algorithm for physical allocation of
buckets among SDDS servers. It may choose an existing
Di, or may create new Di at some SD-DBS server.

In addition, the application can create application DBs.
These are usual SQL-Server databases that typically bear
some semantics. Application DBs should rather be on the
clients, but could be at servers as well. They are intended
for the non-scalable tables of the application and the
federated views of the scalable ones. Nevertheless, an
application can create these tables and views in a segment
DB as well.

Fig. 1 illustrates also these principles. There is a
federated view presenting some table, let it be T, in the
application database at the client that is also the server of
segment database D1. The actual table T was initially

- 2 -

created at some Di, perhaps at D2. It substantially scaled up
thereafter, being now range partitioned into almost
thousand segments D1.T, D2.T…D999.T. Perhaps, it grew up
so much because of the large stream of data from a virtual
telescope [G02]. The segments have different sizes,
perhaps because of differences to the storage space
available at the segment DBs. The dotted arrow line of the
last segment symbolizes that it is just being created, and
added to the view transparently for the application. At any
time, the view shows to the application the tuples of all and
only the segments it currently maps to. The application
issues the queries to view T as if these tuples were in real
table T in the application database1.

3 Server side
3.1 SDDS-layer Meta-tables

Let Di,T be the segment database where one creates the
initial segment of some table T. At every Di there are three
meta-tables at SD-SQL Server disposal. These are called at
present SD-RP (DB-S, Table), SD-S (Table, S-max), and
SD-C (DB-T, Table, S-size). Table SD-RP describes at
each Di,T the actual partitioning of each table T. Tuple (Di,
T) is created in Di,T.SD-RP by SD-Manager anytime one
creates a segment of T at Di. This include the initial
segment, i.e., at the creation of T itself. Likewise, an
optional tuple (T, s-max) in table SD-S fixes the maximal
segment size for all the segments of T, if the application
provides such a limit, as discussed later on. Finally, for
each segment of some T at database Di table Di.SD-C
points towards Di,T. Tuple (Di,T, T,s) is created in Di.SD-C
anytime one creates a segment of T at Di. The size s is
either the one found for T in its tuple in its SD-S table, or
the Di server defines it according to its local storage policy.

3.2 Scalable Table Management
3.2.1 Table creation

An application requests the creation of a scalable table,
let it be T, from SD-SQL Server. It uses the usual SQL
Create Table query with the following additional clause.
The clause concerns the size of T segments :

 Segment : size Any | s-max.

Size Any means that each server chooses the size of its
segment. The choice of s-max fixes the limit on the size s
of each segment of T. This choice may be useful if DBA
wishes to make the T scan time about fixed. A server can
nevertheless choose s < s-max.

To create table T, SD-DBS manager issues two queries
to SQL Server layer. One Create Table query creates the
1st segment of T. It is the only one existing for T, as long as

it does not overflow. Its scheme is that defined in the
original statement. The allocation to each Di is determined
by the manager and the servers. The manager may reuse an
algorithm for physical allocation of buckets in an SDDS to
choose an existing Di, or may create Di at some server.

SQL-
Server

Application

SD-DBS
Manager

SQL-
Server

Application

SQL-
Server

Application

SD-DBS
Manager

SD-DBS
Manager SDDS

layer

SQL-Server
layer

D1 D2 D999

 Fig. 1 Gross Architecture of SD-SQL Server

The other query is Create View query that creates the
view T of table T. View T is created at D.

Finally, if T was created at database Di,T, the manager
creates at Di,T the trigger monitoring T size as discussed
next. It also inserts the tuples describing T respectively into
tables SD-RP, and SD-S and SD-C at Di,T.

3.2.2 Table scale-up
SD-DBS manager at each Di tests s anytime it gets

(from SD-DBS client) the application query that could
change there the number of tuples, i.e., an Insert or Delete
query. To test s, SD-SQL Server performs simply the
SQL query:

 Select Count(*) From T;
Anytime the number of tuples in Di.T overflows s, SD-

Manager at that server triggers the split. For this purpose, it
first determines Dj that could handle the new segment. The
algorithm may reuse those for physical allocation of
buckets in an SDDS to choose an existing Dj, or may create
Dj at some server. Then, let it be s’ = s / 2 and let C denote
the partitioning key attribute. One executes at Di the SQL
query:

Select into Dj.T Top (s’) from T order by C;
This query creates at Dj table T with the same attributes

as Di.T and copies there top s’ tuples (notice it might not
recreate the primary key definition). Once this process is
done (by SQL Server 2000), SD manager at Di performs
the following queries. These determine the new middle
key, hence the new range of Di.T and delete from Di.T the
tuples that moved:

 Delete * from T where C >= (Select min (C) from
(Select Top (s’) from T order by C)); 1 Whether SQL Server 2000 is able at present to really manage an

actual federated view of a thousand segments remains an open
question.

- 3 -

For every partitioned table T that the client manages, there
is a tuple (Di,T , T, n’) in C-Image. Initially, when T is
created, n’ := 1.

Next, the manager at Dj executes the SQL Server 2000
Alter Table query that alters the check constraint of T at Dj.
We avoid here to give the syntax of it. Likewise, the check
constraint with the appropriate range (the new middle key
and the former maximal key at Di) is added to Dj.T
schema. Finally, the manager inserts tuple (Di,T, T) into
Dj.SD-C and tuple (Dj, T) into Di,T.SD-RP. The former
will be reused by the future splits at Dj. The latter will be
used to check by the clients for the actual partitioning of T.

4.2 Image Adjustment
Data in C-Image allow the client to check whether its

image of T is the actual one. If not, query optimisation by
SQL Server at the client could silently lead to erroneous
results for some queries involving T. The necessary
condition for the correct image is that the number of T
segments n’ known to the client and hence used in the T
view schema, is the actual one. The actual number of T
segments is that of the number of tuples created by T splits
in table SD-RP of T. It thus results simply from the query:

3.3 High-availability
High-availability allows an application to use an entire

partitioned table despite unavailability of some of its
segments. SD-SQL Server may provide scalable k-
availability which means that the simultaneous
unavailability of up to k ≥ 1 segments is tolerated where k
scales with T. This is done by reusing the technique
developed for LH*RS SDDS, [LS00], [S02]. Namely, for
each T there are k additional parity tables each located at
some DB other than those supporting any of T segments.
When a tuple is inserted into T, or updated or deleted, a
trigger and a stored procedure compute the so-called δ -
 tuple and send it to k parity tables. There, tuples from up
to m >> 1 distinct segments of T constitute logically the
tuple group. Each tuple group gets a value called rank and
one parity tuple identified in the parity table by its rank.
Ranks are attributed by auto-numbering of parity tuples.
Each parity tuple contains the parity attribute whose
content is calculated by a stored procedure at the parity DB
as for LH*RS. One uses these tuples to recover the tuples
the query needed, if segments searched by the query are
unavailable.

(Q1) Select count (*) into @n
 From Di,T.SD- RP Where Table = ‘T’;

Here, variable n (denoted as @n for Transac SQL) will
contain the actual number of T segments. If n’ = n, then the
application query can execute safely. Otherwise, n’ should
be adjusted. The client has to find then the location of the
new segments. It seems nevertheless more efficient at
present to rather locate all the T segments. The client can
do it using the following query:
(Q2) Select DB-F into Temp-T
 From Di,T.SD-RP Where Table = ‘T’ ;

The client then uses the tuples in the temporary table
Temp-T to trivially alter its T view definition so it includes
all the n existing segments.

4.3 Query Processing
The client checks the image correctness whenever the

application submits a query. A query, let it be A, may
address several tables, some partitioned others not. The
client first parses therefore all the FROM clauses for
partitioned table names2. It then prepares all the (Q1)
queries and executes them as dynamic SQL statements.
The negative result should be infrequent. The application
query, should be also, typically; more complex than (Q1).
The client issues therefore all (Q1) queries and A in
parallel. Typically, (Q1) results should come back before
those of A. If not, the client waits with A commitment. If
any image reveals incomplete, the client aborts A. It then
adjusts the image and restarts A. This is done transparently
to the client.

4 Client side
4.1 Client Image Structure
The SD-DBS client manages the image of each partitioned
table. The image presents table T as if it were entirely in
the client’s DB. This is done through the SQL Server union
view of T segments known to the client:

 Create View T as
select * from Di,T.T union all select Di,2.T… select
select * from Di,n’.T ;

Here, Di,T is the database where T was created and Di,n is
the database where n’-th segment of T resides. Notice the
use of union all despite lack of duplicates which is due to
possible presence of OLE attributes, not supported by
union. The view is stored in the SQL Server and used by
the application queries. It is however created by the SD-
DBS client upon the application query. Afterwards, it is
altered dynamically and transparently for the application.

The testing of the image correctness within SD-SQL
Server occurs in this way at the client. This is a departure
from the current principles of an SDDS with the checks at
servers. The latter would require checking the subqueries
received by the server. One would need to add these SDDS
specific capabilities to the current SQL Server query
optimiser. The former strategy allows the query To manage images SD-DBS client has a meta-table termed

C-Image with the schema:

C-Image (DB-T, Table, Size). 2 The present scheme does not permit queries to views over
the partitioned tables.

- 4 -

- 5 -

optimisation to perform entirely as at present. The SQL
Server does not need any modifications, which is a crucial
benefit.

The SD-SQL Server image adjustment strategy checks
the image at the client. The basic strategy for an SDDS, is
in contrast to check the image at the server. The price for
the SD-SQL Server strategy is the additional messaging.
The basic strategy triggers indeed the additional messages
among the servers and to the client only when an incorrect
image was detected. The former one implies basically at
least two additional messages per query. However, these
messages correspond to a typically simple query compared
to that of the user. Next, assuming several servers and
about uniform distribution of SD-RP tables among them,
no server should constitute a hot-spot delaying the replies
to the clients. Hence, these replies should typically come
fast enough to avoid delaying the user query. Also, they do
not block the start of the processing of the user query and
should rarely lead to a restart because of an incorrect
image. They should therefore have a rather negligible
incidence at the user query performance.

5 Conclusion
SD-SQL Server attempts to put into practice the

scalable distributed database partitioning. The SDDS layer
reuses the SDDS technology, as present in SDDS-2000
prototype. The SQL Server layer applies new capabilities
for federated multidatabase management of SQL Server
2000. Both layers uses also standard SQL capabilities
coupled with a few meta-tables to perform crucial SDDS
operations that are splitting and image adjustment.

As the result, the outlined architecture appears attractive
and, hopefully, simple to put into practice. It paves thus the
way towards experimental confirmation. In particular, the
scalability of SD-SQL Server appears limited only by the
size of the federation that SQL Server capabilities allow to
manage in practice. It is a crucial advantage of SD-SQL
Server gross architecture that it also gracefully
incorporates future improvements to these capabilities.
This includes especially the progress in the parallel query
optimisation, new capabilities for federated views, e.g. the
referential integrity constraints on such views, triggers at
them, or hash partitioned views.

The exposed principles of SD-SQL Server functioning
are just the basic scheme. Variants are easy to see that
provide additional capabilities or can optimise
performance. For instance, the split operation can easily
recreate local indexes following their schemes at the
splitting segment, as well as validity constraints on
attributes etc. Likewise, an image checking query may
easily concern several tables sharing an SD-RP table at
once.

SQL Server uses the federated union views for the range
partitioning with check constrains defining the ranges at
the servers available for the query optimiser at the client.
These are the key properties to the SD-SQL Server

architectural simplicity. Parallel DB2 and Oracle uses a
different approach through their clauses “Partitioning Key”
of Create Table statement. DB2 manages furthermore only
hash partitioning, while Oracle allows for both types. This
approach has potential advantages, e.g., allowing for a
global index over a partitioned table, impossible at present
for SQL Server. Our principles should generalize to these
DBSs as well, probably, however, at the expense of a more
extensive implementation effort.

Acknowledgments
We thank Jim Gray for fruitful discussions during WDAS-
2002 workshop, and for 100 GB of SQL Server SkyServer
data to experiment with. This work was partly supported by
the research grants from Microsoft Research, the
European Commission project ICONS project no. IST-
2001-32429, and by Vinnova project no. 21297-1.

References
[C01] CERIA: SDDS-2000 prototype and related papers.

[G02] Gray J. & al. Data Mining the SDSS SkyServer
Database. To appear in Proceedings of 4-th Workshop on
Distributed Data & Structures (WDAS-2002), Carleton
Scientific (Publ.), 2002.

[LNS96] Litwin, W., Neimat, M-A., Schneider, D. LH*:
A Scalable Distributed Data Structure. ACM-TODS,
(Dec., 1996).

[LNS96] Litwin, W., Neimat, M-A., Schneider, D. RP* :
A Family of Order-Preserving Scalable Distributed Data
Structures. VLDB-94, Chile. With Neimat, M-A.,
Schneider, D.

[LS00] Litwin, W., J.E. Schwarz, T. LH*RS: A High-
Availability Scalable Distributed Data Structure using
Reed Solomon Codes
ACM-SIGMOD-2000 Intl. Conf. On Management of
Data. With Thomas J.E. Schwarz, S.J.

[R02] Risch T., Koparanova M., Thide B. High
performance GRID database manager for scientific data.
To appear in full in Proceedings of 4-th Workshop on
Distributed Data & Structures (WDAS-2002), Carleton
Scientific (Publ.), 2002.

[S02] Schwarz T. Generalized Reed Solomon code for
erasure correction. To appear in full in Proceedings of 4-th
Workshop on Distributed Data & Structures (WDAS-
2002), Carleton Scientific (Publ.), 2002.

[MS01] Federated SQL Server 2000 Servers.

http://ceria.dauphine.fr/
http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-2002-01
http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-2002-01
http://www.microsoft.com/

