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Abstract 

 
A table to be managed by a Scalable Distributed Database 
System (SD-DBS) should be  able to horizontally scale 
over several DBMSs. The partitioning and especially its 
dynamic evolution should remain transparent to the 
application. We propose an architecture for an SD-DBS. 
Our architecture aims at SQL Server, but generalizes to 
other relational DBSs.  
 

1 Introduction 
A parallel DBS allows a table to be partitioned over a 

cluster of server-DBSs distributed over a network. Most of 
major DBSs are parallel, e.g. SQL Server, Oracle, DB2 and 
Sybase. The partitioning can be hash or range based. If a 
table scales, as more and more often these days, potentially 
to Petabytes, e.g., for the Skyserver [G02], the partitioning 
must be able to incrementally include a new node at a time.  
In present commercial parallel DBSs, the DBA has to 
manually redefine the partitions and typically run a utility 
to redistribute the data.  In this sense, current parallel DBSs 
do not provide scalable data partitioning. In other common 
terms, their tables are not horizontally scalable or, in short, 
are not scalable.  

On the other hand, the technology of Scalable 
Distributed Data Structures (SDDSs) provides for the 
scalable partitioning, e.g., in the SDDS-2000 system [C01]. 
In particular, LH* schemes provide for scalable distributed 
hash partitioned files of records identified by a primary 
key, and RP* schemes provide for scalable distributed 
range partitioned files. It becomes tempting to reuse this 
technology to provide for scalable tables as well. 

We call Scalable Distributed Database System (SD-
DBS) a relational DBS whose tables may be scalable  
according to SDDS principles. No SD-DBS exists at 
present. Our goal here is to define an architecture putting 
this concept into practice. 

Accordingly, we consider that a table T of an SD-DBS 
resides on some SD-DBS servers, starting at one of them. 
When it grows beyond some predefined size b of T, e.g. b 
tuples, the SD-DBS mechanism splits T. 
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The split partitions T at a node so to create a new table 
with the same schema at another node and migrate there 
about half of T tuples from the splitting one. The splitting 
process is managed according to some SDDS schema. It 
keeps T size at any node as at most b for an RP* schema, 
or, typically, close to b for an LH* schema. 

Likewise, the application accesses an SD-DBS through 
its client node. According to SDDS principles, each client 
has some private image of the actual partitioning. It uses 
the image to process the queries. With SDDSs client 
images are not refreshed synchronously by splits. This 
could be too cumbersome, e.g., because of moving or 
partly-available clients. Instead, the client is always 
allowed to make addressing errors. Such an error may 
trigger some forwarding among the servers to correctly 
locate the searched tuples. In particular, it may trigger an 
image adjustment message (IAM) back to the client. Data 
in an IAM improve the image, avoiding at least to repeat 
the same error.  

It is obvious that building a full scale SD-DBS is a 
potentially very challenging task. We focus therefore on 
the maximal reuse of the capabilities of an existing parallel 
DBS and on the minimal programming effort of the 
additional functions. We aim for the largest possible use of 
standard SQL manipulations. In particular, we do not 
intend to write an SD specific query optimiser from scratch 
as this might be a huge task.  

Below, we base specifically on new functions that are 
available in SQL Server 2000 for the management of so-
called federated DBs [MS01]. The essential idea is that an 
application sees a federated view that is defined as a union 
view on some client SQL Server 2000 of union-compatible 
tables at different server nodes. These tables are elements 
of a range partitioning over some partitioning key attribute, 
possibly a composite attribute. The partitioning range of 
each server is defined by a check constraint at the server. 
The processor of the union view accesses these constrains 
when a query or an update is issued. This allows 
processing the query more efficiently, directing it to only 
the nodes where data may reside. In particular the 
federated view supports inserts. The use of check 
constraints allows the insert to be directed to the single 
node where it should reside.  
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We call our system SD-SQL Server. We attempt to use 
the new SQL Server capabilities in the following way. We 
cover the SQL Server by an additional layer, we call the 
SDDS layer. The application interfaces that layer, i.e, it 
submits there any queries.  The SDDS layer manages the 
SDDS-like table splits at the servers side, and the federated 
union-views representing the SDDS images at the client 
side. At each server side, every split alters the check 
constraints so they reflect the current partitioning. It also 
puts some input into some meta-tables. Those contain the 
actual image of the partitioning for the SDDS layer. The 
splits can create also parity tuples. Those provide the k-
availability, i.e., the tolerance of unavailability of up to k 
table segments, e.g., as for the LH*RS schema.  

On the client side, the federated union views constitute 
the private images. Each time an application query issues a 
query towards the view, the SDDS layer checks whether 
the image is adequate. The image checking is done by 
queries to SD-SQL meta-tables at the client and some 
servers. The query checks at least the adequacy between 
the number of tables known to the image and the actual 
number in the meta-tables at the servers. If the test does not 
match, the application query is either not issued towards 
the SQL Server, or aborted, if it already started, as it may 
happen. The SDDS layer updates then the view definition 
from the meta-tables. The query is (re)issued to the SQL 
Server by the SDDS layer, i.e., transparently for the 
application. It is hence optimised by the SQL Server query 
optimiser as usual, or re-optimised, and executed correctly.  

The image adjustment strategy of SD-SQL Server is 
based on the checking of image correctness at the client. It 
is thus a departure from the current principle of an SDDS 
where this check takes place at a server sending an 
asynchronous IAM back to the SDDS client.  The crucial 
benefit is that the query optimisation remains entirely with 
SQL-Server, as we wished. The cost is additional 
messaging. We show that its significance for the user query 
performance should nevertheless be rather negligible in 
practice.  

Below, we outline the SD-SQL Server architecture. We 
begin with the gross architecture at servers side. We focus 
on the table scale-up through the splits in particular. We 
also outline the high-availability management. Afterwards, 
we outline the client side architecture. We end up with the 
conclusion showing how our proposals match our goal for 
an SD-SQL Server. 

2 Gross architecture 
The SD-SQL Server manages a federation of SQL 

Servers. The word federation means here its sense in the 
SQL Server 2000 literature. Each of the SQL Servers 
carries one or more databases.   

Fig. 1 presents the gross architecture of SD-SQL 
Servers. At each node of the federation there is an 
additional component called SD-DBS manager, or 
manager in short. The manager can play the role of SDDS 

client, termed here SD-DBS client, or client in short. 
Alternatively, it can be an SD-DBS server. Finally, it can 
play both roles. As a client, the manager receives the 
application queries to application data in the databases of 
the federation. These are queries to SQL Server. If the 
manager acts as a server, it gets messages from the client 
together with the applications queries that it passes to its 
SQL Server for execution. SQL Servers communicate 
among them as usual for the federation. SD-DBS servers 
are from them applications like any others.  

We distinguish for SD-SQL Server between tables that 
can be partitioned and those that should not. The latter 
may, e.g., have “strings attached”, such as indexes, triggers 
stored procedures, etc. They are not handled at present by 
SD-SQL Server since they present some degree of 
complexity that requires further analysis. Notice that SQL 
Server 2000 does not manage indexes or triggers etc. over 
a partitioned table neither. One may only create those 
objects manually for each segment. Notice also that the 
automatic creation of indexes for the new segment by a 
split, upon those of the splitting segment, does not present 
conceptual difficulties. In contrast, the replication by the 
split of triggers or stored procedures obviously needs 
caution.  

Let Di ;  i = 1,2… ; be the databases under the SD-DBS 
servers. We basically consider one such DB per server, 
although what follows applies otherwise as well.  Any 
scalable table T is created with some schema at some Di. 
When T scales, the splits partition it over several Di’s. Each 
element of T then, called segment, is a full fledged table 
with the same attributes as those with which T was created.  

A segment in Di is named locally T and globally Di.T. 
Each segment has a maximal size s, representing bucket 
size b for an SDDS [C01]. The value of s for each segment, 
is measured below as the number of tuples. The Di server 
defines s when its T segment is created. The client may 
specify the maximal s for all the T segments. 

Among Di’s some segment DBs serve simply as 
common storage pool for segments. In other words, 
segment DBs do not bear semantics. A segment can 
basically enter any segment DB. The manager may reuse 
for the choice an algorithm for physical allocation of 
buckets among SDDS servers. It may choose an existing 
Di, or may create new Di  at some SD-DBS server. 

In addition, the application can create application DBs. 
These are usual SQL-Server databases that typically bear 
some semantics. Application DBs should rather be on the 
clients, but could be at servers as well. They are intended 
for the non-scalable tables of the application and the 
federated views of the scalable ones. Nevertheless, an 
application can create these tables and views in a segment 
DB as well.  

Fig. 1 illustrates also these principles. There is a 
federated view presenting some table, let it be T, in the 
application database at the client that is also the server of 
segment database D1. The actual table T was initially 
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created at some Di, perhaps at D2. It substantially scaled up 
thereafter, being now range partitioned into almost 
thousand segments D1.T, D2.T…D999.T. Perhaps, it grew up 
so much because of the large stream of data from a virtual 
telescope [G02].  The segments have different sizes, 
perhaps because of differences to the storage space 
available at the segment DBs. The dotted arrow line of the 
last segment symbolizes that it is just being created, and 
added to the view transparently for the application. At any 
time, the view shows to the application the tuples of all and 
only the segments it currently maps to. The application 
issues the queries to view T as if these tuples were in real 
table T in the application database1.  

3 Server side 
3.1 SDDS-layer Meta-tables 

Let Di,T be the segment database where one creates the 
initial segment of some table T. At every Di there are three 
meta-tables at SD-SQL Server disposal. These are called at 
present SD-RP (DB-S, Table), SD-S (Table, S-max), and 
SD-C (DB-T, Table, S-size). Table SD-RP describes at 
each Di,T  the actual partitioning of each table T.  Tuple (Di, 
T) is created in Di,T.SD-RP by SD-Manager anytime one 
creates a segment of T at  Di. This include the initial 
segment, i.e., at the creation of T itself. Likewise, an 
optional tuple (T, s-max) in table SD-S fixes the maximal 
segment size for all the segments of T, if the application 
provides such a limit, as discussed later on. Finally, for 
each segment of some T at database Di table Di.SD-C 
points towards Di,T. Tuple (Di,T, T,s) is created in Di.SD-C 
anytime one creates a segment of T at  Di. The size s is 
either the one found for T in its tuple in its SD-S table, or 
the Di server defines it according to its local storage policy.  

3.2 Scalable Table Management 
3.2.1 Table creation 

An application requests the creation of a scalable table, 
let it be T, from SD-SQL Server. It uses the usual SQL 
Create Table query with the following additional clause. 
The clause concerns the size  of T segments : 

 Segment : size  Any | s-max. 

Size Any means that each server chooses the size of its 
segment. The choice of s-max fixes the limit on the size s 
of each segment of T. This choice may be useful if DBA 
wishes to make the T scan time about fixed. A server can 
nevertheless choose s < s-max.  

To create table T, SD-DBS manager issues two queries 
to SQL Server layer. One Create Table query creates the 
1st segment of T. It is the only one existing for T, as long as 

it does not overflow. Its scheme is that defined in the 
original statement. The allocation to each Di is determined 
by the manager and the servers. The manager may reuse an 
algorithm for physical allocation of buckets in  an SDDS to 
choose an existing Di, or may create Di  at some server. 
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 Fig. 1 Gross Architecture of  SD-SQL Server 

The other query is Create View query that creates the 
view T of table T. View T is created at D.  

Finally, if T was created at database Di,T, the manager 
creates at Di,T the trigger monitoring T size as discussed 
next. It also inserts the tuples describing T respectively into 
tables SD-RP, and SD-S and SD-C at Di,T. 

3.2.2 Table scale-up 
SD-DBS manager at each Di tests s anytime it gets 

(from SD-DBS client) the application query that could 
change there the number of tuples, i.e., an Insert or Delete  
query. To test s, SD-SQL Server   performs simply the 
SQL query:  

 Select Count(*)  From T; 
Anytime the number of tuples in Di.T overflows s,  SD-

Manager at that server triggers the split. For this purpose, it 
first determines Dj that could handle the new segment. The 
algorithm may reuse those for physical allocation of 
buckets in an SDDS to choose an existing Dj, or may create 
Dj  at some server. Then, let it be s’ = s / 2 and let C denote  
the partitioning key attribute. One executes at Di the SQL 
query: 

Select into Dj.T  Top (s’) from T order by C; 
This query creates at Dj table T with the same attributes 

as Di.T and copies there top s’ tuples (notice it might not 
recreate the primary key definition). Once this process is 
done (by SQL Server 2000), SD manager at Di performs 
the following queries. These determine the new middle 
key, hence the new range of Di.T and delete from Di.T the 
tuples that moved: 

                                                 Delete * from T where C >= (Select min (C)  from 
( Select Top (s’) from T order by C ) );  1 Whether SQL Server 2000 is able at present to really manage an 

actual federated view of a thousand segments remains an open 
question.  
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For every partitioned table T that the client manages, there 
is a tuple (Di,T , T, n’) in C-Image. Initially, when T is 
created, n’ := 1.  

Next, the manager at Dj  executes the SQL Server 2000 
Alter Table query that alters the check constraint of T at Dj. 
We avoid here to give the syntax of it. Likewise, the check 
constraint with the appropriate range (the new middle key 
and the former maximal key at Di)  is added to Dj.T  
schema. Finally, the manager inserts tuple (Di,T, T )  into 
Dj.SD-C and tuple (Dj, T) into   Di,T.SD-RP. The former 
will be reused by the future splits at  Dj. The latter will be 
used to check by the clients for the actual partitioning of T.  

4.2 Image Adjustment 
Data in  C-Image allow the client to check whether its 

image of T is the actual one. If not, query optimisation by 
SQL Server at the client could silently lead to erroneous 
results for some queries involving T. The necessary 
condition for the correct image is that the number of  T 
segments n’  known to the client and hence used in the T 
view schema, is the actual one. The actual number of T 
segments is that of the number of tuples created by T splits 
in table SD-RP of T. It thus results simply from the query: 

3.3 High-availability 
High-availability allows an application to use an entire 

partitioned table despite unavailability of some of its 
segments. SD-SQL Server may provide scalable k-
availability which means that the simultaneous 
unavailability of up to k ≥ 1 segments is tolerated where k 
scales with T. This is done by reusing the technique 
developed for LH*RS SDDS, [LS00], [S02]. Namely, for 
each T there are k additional parity tables each located at 
some DB other than those supporting any of T segments.  
When a tuple is inserted into T, or updated or deleted, a 
trigger and a stored procedure compute the so-called δ -
 tuple and send it to k parity tables. There, tuples from up 
to m >> 1 distinct segments of T constitute logically the 
tuple group. Each tuple group gets a value called rank and 
one parity tuple identified in the parity table by its rank.  
Ranks are attributed by auto-numbering of parity tuples. 
Each parity tuple contains the parity attribute whose 
content is calculated by a stored procedure at the parity DB 
as for LH*RS. One uses these tuples to recover the tuples 
the query needed, if segments searched by the query are 
unavailable.  

(Q1)   Select   count (*) into @n   
          From Di,T.SD-  RP Where Table = ‘T’; 

Here, variable n (denoted as @n for Transac SQL) will 
contain the actual number of T segments. If n’ = n, then the 
application query can execute safely. Otherwise, n’ should  
be adjusted. The client has to find then the location of the 
new segments. It seems nevertheless more efficient at 
present to rather locate all the T segments. The client can 
do it using the following query: 
(Q2)   Select   DB-F into Temp-T  
          From Di,T.SD-RP Where Table = ‘T’ ; 

The client then uses the tuples in the temporary table 
Temp-T to trivially alter its T view definition so it includes 
all the n existing segments. 

4.3 Query Processing 
The client checks the image correctness whenever the 

application submits a query. A query, let it be A, may 
address several tables, some partitioned others not. The 
client first parses therefore all the FROM clauses for 
partitioned table names2. It then prepares all the  (Q1) 
queries and executes them as dynamic SQL statements. 
The negative result should be infrequent. The application 
query, should be also, typically; more complex than (Q1). 
The client issues therefore all (Q1) queries and A in 
parallel. Typically, (Q1) results should come back before 
those of A. If not, the client waits with A commitment. If 
any image reveals incomplete, the client aborts A. It then 
adjusts the image and restarts A. This is done transparently 
to the client. 

4 Client side 
4.1 Client Image Structure 
The SD-DBS client manages the image of each partitioned 
table. The image presents table T as if it were entirely in 
the client’s DB. This is done through the SQL Server union 
view of T segments known to the client: 

   Create View T as  
select * from Di,T.T union all select Di,2.T… select 
select * from Di,n’.T ; 

Here,  Di,T  is the database where T was created and Di,n is 
the database where n’-th segment of T resides. Notice the 
use of union all despite lack of duplicates which is due to 
possible presence of OLE attributes, not supported by 
union. The  view is stored in the SQL Server and used by 
the application queries. It is however created by the SD-
DBS client upon the application query. Afterwards, it is 
altered dynamically and transparently for the application.  

The testing of the image correctness within SD-SQL 
Server occurs in this way at the client. This is a departure 
from the current principles of an SDDS with the checks at 
servers. The latter would require checking the subqueries 
received by the server. One would need to add these SDDS 
specific capabilities to the current SQL Server query 
optimiser. The former strategy allows the query To manage images SD-DBS client has a meta-table termed 

C-Image with the schema: 
                                                 

C-Image (DB-T, Table, Size). 2 The present scheme does not permit queries to views over 
the partitioned tables. 
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optimisation to perform entirely as at present. The SQL 
Server does not need any modifications, which is a crucial 
benefit. 

The SD-SQL Server image adjustment strategy checks 
the image at the client. The basic strategy for an SDDS, is 
in contrast to check the image at the server. The price for 
the SD-SQL Server strategy is the additional messaging. 
The basic strategy triggers indeed the additional  messages 
among the servers and to the client only when an incorrect 
image was detected. The former one implies basically at 
least two additional messages per query. However, these 
messages correspond to a typically simple query compared 
to  that of the user. Next, assuming several servers and 
about uniform distribution of SD-RP tables among them, 
no server should constitute a hot-spot delaying the replies 
to the clients. Hence, these replies should typically come 
fast enough to avoid delaying the user query. Also, they do 
not block the start of the processing of the user query and 
should rarely lead to a restart because of an incorrect 
image. They should therefore have a rather negligible 
incidence at the user query performance. 

5 Conclusion 
SD-SQL Server attempts to put into practice the 

scalable distributed database partitioning. The SDDS layer 
reuses the SDDS technology, as present in SDDS-2000 
prototype. The SQL Server layer applies new capabilities 
for federated multidatabase management of SQL Server 
2000. Both layers uses also standard SQL capabilities 
coupled with a few meta-tables to perform crucial SDDS 
operations that are splitting and image adjustment.  

As the result, the outlined architecture appears attractive 
and, hopefully, simple to put into practice. It paves thus the 
way towards experimental confirmation. In particular, the 
scalability of SD-SQL Server appears limited only by the 
size of the federation that SQL Server capabilities allow to 
manage in practice. It is a crucial advantage of SD-SQL 
Server gross architecture that it also gracefully 
incorporates future improvements to these capabilities. 
This includes especially the progress in the parallel query 
optimisation, new capabilities for federated views, e.g. the 
referential integrity constraints on such views, triggers at 
them, or hash partitioned views.  

The exposed principles of SD-SQL Server functioning 
are just the basic scheme. Variants are easy to see that 
provide additional capabilities or can optimise 
performance. For instance, the split operation can easily 
recreate local indexes following their schemes at the 
splitting segment, as well as validity constraints on 
attributes etc. Likewise, an image checking query may 
easily concern several tables sharing an SD-RP table at 
once.  

SQL Server uses the federated union views for the range 
partitioning with check constrains defining the ranges at 
the servers available for the query optimiser at the client. 
These are the key properties to the SD-SQL Server 

architectural simplicity. Parallel DB2 and Oracle uses a 
different approach through their clauses “Partitioning Key” 
of Create Table statement. DB2 manages furthermore only 
hash partitioning, while Oracle allows for both types. This 
approach has potential advantages, e.g., allowing for a 
global index over a partitioned table, impossible at present 
for SQL Server. Our principles should generalize to these 
DBSs as well, probably, however, at the expense of a more 
extensive implementation effort.  
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