fiStributed
flala
pases

edited by

i =
i IR 15045
" ol
ey IS N (681 5N
e '\l- 1 W:':" :Y“] .
b L‘n‘ B "1“
s &8 o

Second International Symposium on
Distributed Data Bases
September1-3, 1982

Crganized by
Geselischaft fir Informatik (Gl)

in cooperation with

AFCET, AICA, IBM, IEEE, IFIP-TC2,
IGDD, INRIA, Nixdeorf, Siemens,
TU Berlin, Universitat Stuttgart

Symposium Chairman
H.-J. Schneider

Program Commitee

E. J. Neuhold, Chairman (FRG),

Ph. Bernstein {USA), H. Biller (FRG), G. Bracchi {1},
J. Bubenko (S), S. M. Deen {GB}, G. Gardarin {F},
G.Le Lann (F), W. Litwin {F}, R. Munz (FRG]),

F. A. Schreiber (I}, P. Selinger {USA),

R. P.van deRiet (NL), H. Weber (FRG)

Tutcrial Session Chairman
G. Gardarin (F}

Organizer
S. Florek {FRG)

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM « NEW YORK « OXFORD

DISTRIBUTED DATA BASES

Proceedings of the Second international Symposium on
Distributed Data Bases
Berlin, F.R.G., September 1-3, 1982

edited by
H.-J. SCHNEIDER

Technische Universitdt Berfin
F.RG.

(

1882

NORTH-HOLLAND FUBLISHING COMPANY
AMSTERDAM « NEW YORK« OXFORD

DISTAIBUTED DATA BASES

H.-J. Schneider {oditor)
Narth-Holland Publishing Company
© GI, 1982

STRIUS Systems
for
Distributed Data Management

W. Litwin, J. Boudenant, C. Esculier, A. Ferrier, A. M. Glorieux,
J. La Chimia, K. Kabbaj, C. Moulinoux, P. Rolin, C. Stangret

I.N.R.I.& 78153 =~ Le Chesnay, France

Diztributed data marmagement becomes an inereasily important
field of interest. STRIUS project investigated several
approacnes to this goal. wWe present on tnhe one hand the
approach developped in the context of SIRIUS-DELTA system. The
cnaracteristic property of this approach is that users
manipulate a single database. We also present an approach that
we called rultidatabase approach., The characteristic property
of the corresponding systems 1s that users manipulate a
collection of databases.

1. INTRODUCTION.

SIRIUS project was set up in 1377. The goal of the project was the design of
systems allowing to manage distributed datavases. SIRIUS was a, so-called, pilot
project. This meant that the resources and the objectives of the project were
larger than tne ones of a typical research project. In particular, it was required
from the project :

(1) - to set up research on distributed data management in french universities,

(2) - to spread out the knowledge of the domain within the computer industry and
potential users,

(3} - To design prototype(s) of DDAMS(s) that would be sufficiently operational to
be qualified of preindustrial, ‘

In order to respond to the objective (1), several research studies have been
set up through contracts. These studies gave rise to many theoretical results, The
results have been published in virtually all Important conferences on databases
and distributed systems. The main results obtained prior to 1980 are presented and
indexed in [LEBB0]. Others are presented below and/or indexed in the references of
this paper.

University studies gave also rise to prototypes investigating the design of a
DDBMS. The prototypes POLYPHEME (CIT - IMAG), FRERES (IRISA), SYSIDOR (USST} and
ETOILE (NANCY-1) were in, particular, presented during the International Symposium
on Distributed Databases {Paris, Marcn 1980, proc. North Holland). The prototypes
MICROBE (IMAG) and TYP-R (NANCY-1) were presented during Journees SIRIUS (Paris,
Hovember 1981, proc. Agence de 1*Informatique).

yan v snse To Las cogective 020 sonalaied Lo g@seral inoa alonl crlavionanls
between the project, industry and users. Seminars and project presentations were
frequently organized, Also, industry people were systematically involved in the
teams that worked on the wain prototypes. Finally, industry or user project were
supported to some extend, in particular the projects SCOT [BOG81], SOPHIA [LED&1]
or PLEXUS [ZURR2]. Mcat of french computer manufacturers or software houses were
in this way invelved in SIKIUS project.

311

312 W. Litwirn et af.

Starting from 1979, the theoretical and practical work has heen more and more
performed in INRTA, by a growing project team. The main, altnougn not the unigue,
objective assigned to this team was to respond to the objective (3). The main
preindustrial prototype is the SIRIUS-DELTA system, intended to be a general
purpose DDBMS for enterprise DDBs. Another preindustrial prototype ealled MisS5L00K
[MOUB1] allows to manipulate sets of neterogenecus biblicgraphic Dis, distributed
over public networks (EURONET, TRANSPAC,...). Some otner, yet less complete,
prototypes were also developed : PHLOX [RDVBO], MUQUAPCL [KAB31] and MRDSM
[&IE81],

These prototypes were based on two different perceptions of distributed data
management problematic. The first approach assumes tnat distributed data
constitutes a sinzle database called distributed database (DDB). 4 DDB 1z defined
by a single conceptual schema, called global schema. Users work with the DDB as
they would work with a centralized database defined by the same schema. They are
not aware of the axistence of several sites. Also, they are not aware of the
existence of several DBs if data on a site constitute a DB.

The second approacn assumes that distributed data may also constitute a
collaction of databases called multidatabase. Users of a multidatabase typically
know that they face several databases, i. e. that data that they use are
logically distributed. The system provides a languagze for gueries to mors than one
database. It may alsc allow to define inter-database dependencies, such as
integrity dependencies for instance. Usars are not aware of the numoer of sites
underlying a multidatabase. The entire multidatabase may, in particular, be on
only one site.

SIRIUS-DELTA prototype investigated the first approach. Particular attention
was given to DDB data distribution and to distributed processing. Below, we first
sum up the objectives that guided the design of this prototype. Then, we describe
SIRIUS-DELTA DDB arcnltecture and system architecture. Afterwards, we detail the
functional layers., Finally we indicate some results of performance analysis.

The multidatabase approacn was investigated within a sub-project called B 4 BA,
In what follows, we will also present this approach. First, we will explain the
idea in tne multidatabase with respect to the one in the present database
approach, Next, we will define formally the concept of z multidatabase and we will
investigate some case studies. Then, we will present a general architecture of a
multidatabase management system. Afterwards, we will show main features of a
relational multidatabase manipulation languags. Finally, we will briefly present
MRDSM, MUJQUAPOL and MESSIDOR prototypes.

The presentation of SIRIUS-D<A prototype constitutes the section 2, Section 3
discusses the multidatabase approach. Both sections end up with conclusions. The
overall conclusions constitute section Y.

SIRIUS Systems for Distributed Data Management 313

2. SIRIUS-DELTA SYSTEM APPROACH

2.1. SIRIUS-DELTA MAIN CBJECTIVES & FEATURES

In this section we describe SIRIUS-DELTA main objectives and features, and
we give an introduction to the means used to reach them.

2.1.1. The user is not aware of data distribution :

The DDBMS is responsible for the identification of all data objects invol-
ved in the user’s request, their localizaticn and selection of the proper
copy(ies), if any. In addition, the DDBMS must be able to handle requests
from pre-gxisting query languages on the submitting sites.

This is achieved using first schemas assoclated to the DDB ard related
local DB’s, next a common internal data manipulation language :
the "pivot-language".

2.1.2. Various types of data distribution must be available :

In order to fit with the applicaticns needs, varieus types of data distri-
bution and duplicaticn must be provided and processed by the DDBMS [3DDT78]
[NEU7T7]. This is necessary if one wants to provide some DDB design and
processing facilities (local and parallel processing optimization, usage of
pre-existing local data for example).

& data distributicn description language has been developped to describe
the necessary mappings between DDB data cbjects and local data objects
and the localization rules for these jocal data objects {data obJects can
be distributed up to an attribute value).

2.1.3. Distributed data must remain consistent in case of conflicting
accesses and failures :

When concurrent update reguests are submitted on the same or on different
sites, the DDBMS must be able to keep consistent the related distributed
data.

A transaction is defined in SIRIUS-DELTA as a sequence of one or several
ingquiries/updates enclosed by a BEG-TRANS and an END-TRANS, Distributed
data consistency is achieved thanks to a distributed concurrency system
that provides a unique naming of the transaction, maintains transaction
atomicity and controls local accesses to data objects using locks.

In case of failures, the transaction is completed or rolled-back according
£o its current status of completion, Strong consistency is achieved, i.e.
all copies are updated or none,

2.1.4, System reliability must be achieved :

In a distributed system the number of components (computers, links...)
increases, thus inereasing the global fault tolerance.

In SIRIUS-DELTA, system reliability is achieved through a dynamic reconfi-
guration procedure and local log files that hold distributed checkpoints.
This permits hot and cold restart procedures.

In addition, fallure protection is achieved during transacticon commitment.

314 W. Litwir er al.

2.1.5. Heterogeneity

Heterogenelity requirements results elther from a wish to offer to users
flexibility on its eonfiguration components and extensions, or from

a wish to make use, as much as possible, of pre-existing components
(BOs78], [POLTY] :

- data processing units that can be interconnected

- local DBMSs or data managers (DM)

- local DBs cr data files.

Heterogeneity is allowed in SIRIUS-DELTA at hardware and software level,
At software level, heterogeneity at DBMS/DM level is taken into account
using the pivot-langage. Heterogeneity at local DB or data files level is
taken into account using the local external views associated to the DIB
(see 2.2.1.).

2.2, SIRIUS-DELTA ARCHITECTURE OVERVIEW

’

2.2.1. DDB architecture :

We apre concerned with data description problem-solving when data are
distributed, therefore we strongly rely upon schema concept.

The DDB architecture reflects the global/local duality of distributed sys-

tans [ADI78], [AFC78], [SPA78] :

- at global level, distributed data and systems are viewed as one logical
unit,

- at local level, local components interact with the local DBMS or DM,

In addition local systems participate in the distributed system as local

sites, as well as they maintain some local independancy (local processing
must be allowed).

This result in a proposition to extend the ANSI/SPARC schema architecture
[&NS75], [TSI77] in order to introduce a global level and a local level.

At global level the DDB is considered as a database the physical characte-
ristic, of which is data distribution, Thus, the DDB is described using the
three-level architecture.

At local level, we want to maintain some independancy from the distributed
system. Thus local data are described using the three level architecture.

% _ GEV %

GCS

<
I LEV I [_ LEV l LEV LEV LEV

LCS LCS LCS

LIS LIS LIS

Flyure 1. : Hchomas .

SIRIUS Systems for Distributed Data Management 315

Let)s now detail schemata that is hold in each one of these schemas, using
the ANSI/SPARC concepts :

a) the user is not aware of data distribution. Thus global external views
are defined for DDB users in the same way as in centralized DBM3s.

b) the DDB is considered as ONE logical database. Thus DDB conceptual schema
does not include description of the data distribution., As a result,
the global conceptual schema is described as a centralized conceptual
schema would be.

c) DDB data objects are distributed across sites. This is considered to be
the physical characteristic of DDB data. The global internal schema con-
tains the description of the mappings between global and local data, as
well as the necessary localization and duplication rules.

d) local data are expected to contribute to the DDB but -
- not all local data does,

- from the DDB point of view local, conceptual data may look
heterogensous,

Thus a lpcal external view 18 provided to the DDBMS so that hete-
rogeneously maintained local data are homogeneously presented and
handled at DDB level,

The local external view specific to the DDBMS must also be consis-
tent with the local conceptual schema, from an update point of view.

e) local conceptual schema and loecal internal schema are normal “ecentrali-
zed schemas".

It may happen that locally configured sites do nof host a DBMS and are only
provided with a Data Manager. In such a case, the local system must be exten—
ded to host the necessary data handling functions expected by the
DDBMS
- since no schemas are available, the related local external view
functionnality must be implemented, in order to preovide the
DDBMS an homogeneocus presentation of local data,
- since no data manipulation functions are available, they must

be developped using, for example, generalized catalogued proce-
dures.

2.2.2. System architecture :

In SIRIUS-DELTA DDBMS we rely on an underlying transport

layer. It provides link control between two processes {message and [low
control sequencing, message errcor-free delivery, signal message of site
inaccessibility), and an adaptative routing to network topological ehanges.

Four basic functionnal layers are defined above the transport layer,that
provides :

. database classical data management functions {"DBMSM layer)
. distributed data handling functions (3ILOE layer)

.+ distributed concurrency contreol functions (SCORE layer)

. distributed execution functions (SER layer)

This architecture is depicted in fig.2.

316 W. Litwin er al,

Global

Local

inter-layer arrow : service
intra-layer arrow : protocol

Figure 2,

All these layers reflect the global/local duality of distributed systems

[ADI78), [AFCT8], [SPAT8]. Therefore all of them are divided into two

components :

- a global level component, that provides the unified view of a distributed
system,

- a local level component, that interacts with the global levels and the
local operating system,

& kernel of a distributed executive system responsible for transaction
processing is provided by layers SER and SCORE. Their global component is
refered as the producer machine, and local component as the consumer
machine,

SER is always needed, while SCORE is required if distributed updates are
concurrently processed.

On the other hand, 3ILOE is a DBMS extension so that DDB query processing

(CAL78], [NGUT9] is allowed : at global level it decomposes the query in-

to a sequence of localized subqueries. At local level, it is the necessary
extension of existing software to allow subquery processing in a distribu-
ted enviromment.

Cooperation between the three layers - SILOE, SCORE and SER - is codified
via the Distributed Execution Plan (DEP). 4 DEP is associated to each query
and holds its transacticn-id, its data allocation requests, and its list
of subqueries with a specification of their synchronization.

All STRIUS-DELTA layers must not necessarily be implemented upon all sites.
Different configurations may exist in order to fit with specialized data
processing needs and to distribute funetionalities {global or local site
only, consumer gite, eto...).

The sections that follows are devoted to a detailed deseription of layers
SER, SCORE and SILCE.

2.3. SER LAYER

The distributed execution function is as a basic one for distributed data
base management systems. Such mechanisms are necessary to provide distribu-
ted programs with activaticn on varicus computers, synchrenization, control
{mainly in case of failures) and data exchange,

[

SIRIUS Systams for Distributed Date Management 7

Many studies about this function are being lead in France, and abroad
[ROBTT], [FOR7T]. In this section, we present the SIRIUS-DELTA distributed
execution system (named SER) [3ER80], 2 synthesis of the works conducted
within SIRIUS on the subject [DANT71, [ANDSO].

2.3.7. Obiectives

At present time, most of the distributed applications can be seen as a set
of’ locally predefined actions whicn are processed in parallel, or are con-
ditionally sequenced. Every application within this class can roughly be
schematized by a graph of requests asking for remote catalogued programs
execution,

SER 13 designed to answer the needs of every application in this class. In
order tc be used on a set of processors, it needs :

- a communication medium between the various machines involved in the
application. It must provide a classical transport service (such as
layer 4 of ISO Open System Architecture) [I3082]. We define hereafter
a "processcr " as the physical entity upon which an occurrence -of SER
can be run, In most cases a site can be considered identical to a
Processor,

- on every physical processor, a catalogue of independant logical pro-
cessors which can be used by distributed applications. Those processors
(say compilers) are programs, subroutines, software modules, or procedu-
res. They correspond to the use of an existing service or are especially
designed for the distributed application. We shall name them "programs".

Using the various catalogues of programs located on interconnected proces—

sors, SER supplies applications with the following services :

- activation of remote programs,

- scheduling of lecal programs that are inter-related according to condi-
tions specified by the distributed application in a distributed execu-
tion plan (DEP),

- data transfer between remote programs within a distributed execution
plan,

- logical expression and computing of program activating conditions. Those
conditions can be related to the results of cthers programs,

- as far as possible, use of the parallelism provided by the set of inter-
connected processors,

- detection and signal of failure, and normal or abnormal end of program
execution,

2.3.2, Basic concepts :

The DEP is a set of local acticns ; each one of them is executed upon one
processor.

In 3IRIUS-DELTA context, the DEP is automatically generated by global
SILCE. However, SER may also be used as a stand-alone Distributed Execution
System. In such a case, the DEP must naturally be specified by the appli-
cation user. The DEP is the main input to SER ; it must point out the va-
rious local actions to be performed, thelr execution processor, and their
relationships. Those relationships are data transfers and local executicn
synchronizations. SER cperation is characterized by a fully distributed
control relying on three basic entities :

- local action,

- synchronization varlable,

- Tepporary data file,

318 W. Litwin et al.

2.3.2.17. Local action

The local action is the logical execution unit of the DEP. From a physical
point of view, it is the execution of a program on a processor.

It can be, for example, a request upon a local database or the execubtion
of a local sort-merge program.

We define a local action within & DEP as an existing program running upon
a dedicated processor, as well as its input and output data flows and
synchronization conditions within the DEP.

4 local action the execution of which is in progress does not perform any
synchronization with another local action running in parallel. The only in-
teractions a local acticon may have on other local actions of a distributed
executlon program are updating of synchronization variables and the con-
sunmpticn or production of temporary data files.

2.3.2.2. Synechronization variables

These variables are asscclated with local actions ; they ensure the distri-
buted executlion control as-well as they define internal synchronizaticn
mechanisms. For each loecal action, an activation condition (defining a
determined pattern of aszociated synchronization variables) permits to
define its launching., In the same way, at the launching or at the end cf
execution, an end expression allows the update of remote synchronization
variables, i.e., associated to other local actions, For instance, a syn-
chronization variable will be used so that the launching of a leocal action
is conditioned by the launching or the end of another one, The recursive
mechaniam of activation condition - end expression enables to program the
control of the distributed execution plan.

2.3.2,3, Temporary data file

A local actien ceorresponds to the execution of a program which knows
nothing about the distributed enviroment of its execution., Therefore,
this program cannot perform data fransfer through the network,

SER ensures those transfers. SER automatically manages a network storage
area which is used to store local actions input and cutput data in the
forn of femporary data files. Temperary data files appear as sequential
files with variable size items.

They are produced without any possibility of ropll-back and are automati-
cally destroyed after consumption. SER achieves spooled transfers of
temporary data files from producer local actions to consumer local
actions. SER permits temporary data files produced by different local
actions to be merged and presented with the consumer local action as one
temporary data file. It also permits to broadeast a temporary data file
towards several consumer local actions.

2.3.3. Principle of operating :

2,3.3.1. Distributed execution control

SER is a distributed system in itself, i.e. on each processor in the
network, a portion of SER ensures exscution and controel of the actions
to be run on this processor.

SIRIUS Systems for Distributed Data Management

A distributed execution plan, when submitted on a given processor to SER,
consists of a set of commands requesting the execution of local actions

on several processors. Each command defines the context of one 1ogal
action : its activation condition, its end expression as well as its tgmpo-
rary data files to be preduced or consumed. For each commgnd, the submitter
localizes and identifies in a unique manner the local action, the synchro-
nization variables and the files.

2.3.3.2, Glcbal and local SER

& portion of SER, behaving like a customer, named g;gggév§gﬁ, resides og
the processor where the distributed execution plan is submltted: It sends
each local action context to the portion of SER, that behaves like a

server and is named local SER, where the action is to be executed. Wheg

all contexts are set-up, global SER takes no 1onger_part @0 the execgtlon.
It is only concerned with end or abort report and with fallgres or withdra=
wals of processor {using services offered by tran;port station level).
Thus, the executicn control is entirely decentrallzed_at logal SER‘level.
The schedule of local actions within a plan is determined by dynamic compu-
ting of activation conditions, the updates of which are performed without
any reference to initial global SER.

Figure 3 proposes a presentation of those principles for distributed
axecution.

Distributed Execution Plan

Global SER

execution axszoulion
report or abort
SOGIANGS

Synchronization variable
updating

data transfers
(temporary data file)

execution k*

end or
abort

launching

local acticn

Figure 3. : SER distributed execution structure

2.3.4. Detailed operating of SER :

318

320 W. Litwin et al.

2.3.4.1, Decomposition of a set-up command

Every local action within a DEP is featured by a local action context
which is the logical unit SER deals with., The information held in a context
is :

- identification : each context has an identification, that is unigue in
the whole distributed system, It includes :
. & unique DEP name within the system
. & unique local action name within the DEP,

- execution processor : 1t allows the dispatching of the context towards the
praoceasing local SER,

- program to be executed,

- local synchronization variables : the context must include the declara-
tion of the synchronization variables to be used in the activation con-
dition and end expression. They may be boolean, integer or character
string, The cperations on variables are : allotment or comparison {true
or false for bocleans ; =,> ,%, < P < 4+ for integers ; =, # for strings}

- parameters : this field contains a free character string given as input
parameter to the program,

- temporary data file : the context includes declaration and identifica-
tion of input and output files used by the local action,

- local resources : each context must include the declaration of rescurces
that are needed for the associated execution. Among these resources de-
clarations, we find the lock requests. SER transmits them to SCORE which
is responsible for data allocation (see section 2.4),

- activation condition and end expression : the end expression can be
evaluated at the launching or at the end of the local action according
to the value of a parameter,

2.3.4.2, Dynamic study

Let us congider an execution plan submitted by an application to a global
SER. This part of the system analyzes the DEF one command after the
other. It transmits to the various local 3ER the context commands. Those
commands must be acknowledged by the receivers so that global SER can give
a report on the positionning of the DEP to the application. Then the
execution of the DEP can be started in a decentralized manner.

2.3.4.2.1. Synchronization

When receiving a set-up command, local SER stores the context, and eva-
luates the associated activation condition on each update reception. When
the condition becomes true and when the context contains lock requests

as soon as data are allocated by SCORE, SER activates the program to which
the local action is associated,

When a local action reaches a normal or abnormal end, or when it is
launched, SER evaluates the end expression. It sends to the remote SER
the updated valuss of synchronization variazbles which are declared in
other contexts. This mechanism ensures an automatic schedule of the DEP,

SIRIUS Systemns for Distributed Data Management

2.3.4.2.2, Data exchanges between local actions

These files contain transient data which are only valid for portions

of the DEP processing. Data are stored and shared by SER as logical trans-
fer units, called items. The item is a flexible-size packet of data which
is produced or consumed in one operation by an action. SER shares a network
storage area, Through it, it stores and accesses the items of the various
temporary data files, The transfer of data from a producing action to a
consuming action is automatically achleved by SER.

2.3.4.2.3. Errors processing

Glcbal SER shares arrays of status variables. There is one array per
submitted DEP and one item in the array per local action. Each item is
updated on the following supervisory-command receipt from local SER :
. context set-up,

. end of local action,

. abortion of local action {with the reason).

The abortion of an action leads to the abortion of the whole DEP. When
aborting a DEP, an abort request is tranamitted- to every local SER by
global SER which destroy all conecerned loecal actions and their environment
{network storage area, temporary data files...).

When a site becomes inaccessible during the processing of a local action,
the local SER running on this site abort the processing local action,
Global SER, informed of this failure by the transport service, aborts the
whole plan.

At the end of the plan (normal end or abortion), global SER produces a
report of execution to the application.

2.4, SCORE LAYER

SCORE is the name given to the level {and to the software) corresponding
to distributed control system (Systéme de COntrdle REparti) which provides
also for a COnsistent and REsilient handling of the SIRIUS-DELTA database.

The consistency of a data base may be threatened for many reascns, in
particular :

- interferences between simultanecus accesses to common data items,

~ failures of systems components.

SCORE’s purpose 1s to provide mechanisms needed to maintain SIRIUS-DELTA
in a consistent state. What we mean 1s that not only the database should
be kept consistent but also the state information used by the distributed
executive in order to process user’s activities correctly.

To this end, it is necessary to identify all the actions which the execu-

tive must associate with any given user transaction so that every
Pgransformated” transaction is actually implemented as an atomic operation.

2.4.1. General prineciples :

The following model permits te describe SCORE functions., The database is
viewed as conslsting of a number of logical objects to which access can
be gained individually.

321

322 W. Litwin et al.

Global SILOE produces access requests to objects (i.e. access requests to

plots) intended to be processed by local SILOEs. Global SILOE tranamits to
global SCORE these requests which are inspected by concerned local SCOREs

before being entrusted to local SILOEs.

Environment characteristics are assumed to be as follows :

- access requests to obJects may be generated at any time during the exe-
cution of a transaction (dynamic claiming),

- the ordering cof messages exchanged among any two processes is random,

- the communication tool as well as physical components are not fully
reliable.

Under these assumptions, we must design decentralized mechanisms which

would meet the following constraints :

- automatic detection and automatlc recovery from failures,

- no reliance on a single entity (e.g. commit ccordinator, commit record),
in order to complete a transaction,

- no starvation, either for "reading" transactions or for "writing"
transactions,

- fairness amcng users,

- highly parallel processing,

- no domino effect, except in case of catastrophe,

= construction of consistent recovery lines in such a manner that there
would be no interference between transactions and global checkpoints
(recovery lines) executing concurrently.

In order to reach this goal, SCORE includes tine following three mecha-

nisms @

- a decentralized synchronization mechanism, called Circulating Sequencer
[LEL77]. This mechanism is used to give a unique system name to a tran-
saction,

- two-phase locking protoccls associated with a deadlock prevention stra-
tegy [BOUB1], These protocols are used for data allocation management
and assure the synchronization between coneurrent and conflicting tran-
sactions. A read request must claim a shared or exclusive access, and a
write request an exclusive one. The locks are associated to each sub-
transactions, and set accerding to the compatibility matrix.

! ReqUes—, Object

t ted \\\\\locked no lock read Wwrite

i lock in t

— |

l

i no lock yes yes yes
read yes yes ng

L.
write yes o no

The deadlook.prevention is upon conflict detection which are solved in
accordance with the transaction tickets (ROSTA],

- a two-phase commit protocol [GRAY78], [GAR&1].

SIRIUS Systems for Distributed Data Management

2.4%.2, Failures of system components :

This has been extensively described in [BOUS1aj.

It is not easy for a processor to distinguish between another processor
crash and a link failure with this processor, so these two events are
treated in the same way.

The used mechanisms guarantee the atomicity of a transaction. For each
transaction all or none of the write actions will be performed [LELS0].

In SIRIUS-DELTA a transaction is under the control of one SCORE-producer
only (a command executed by a consumer cannot generate other commands).

2.4.2.1. Consumer crash detected by a producer

A producer must only treat the event for transactions which have claimed
objects on this consumer.

a) If the transaction is not in commit phase the transaction will be
cancelled. The producer broadcasts an "Abort" message to all the
consuners involved in the transaction.

b) If the transaction is in commit phase and if the producer has received
a PTC (Prepare To Commit) acknowledgment from the crashed site, the
commit protocol goes on without any modification.,

¢) If the transaction is in commit phase and no PTC acknowledgment was
received from the crashed site, we don’t know if the "PTC" message was
received or not by the consumer ; the producer interrupts the commit
protocol, an "Abort" message is broadeasted to the consumers involved
in the transaction,

2.4.2.2. Producer crash detected by a consumer

A consumer must deal with this event only if loeal objects are requested
by transactions issued from this producer.

a) The transaction is not in commit phase : no "PTC" message received for
this transaction. The consumer decides to cancel the transaction.

b} The transaction is in commit phase and the "Commit" message has been
received, then the commit protocol goes on without any modification.

¢} The transaction is in commit phase and only the "PTC" message has been
received, the inquiry protecccl is started. The consumer must ask the
other consumers involved in the transaction in order to know what
deeision to make, Some consumers may have committed or cancelled the
transacticn and SCORE must guarantee that the same thing will be done
for all of the involved consumers. The SCORE-consumer broadcasts to
all the consumers whose names were given in the "PTC" message a query
to know what decision they have made :
- if at least one has committed, the transacticon is committed
= if' at least one has aborted, the transaction is cancelled
- if all the involved consumers have acknowledged the "PTC"
message and have detected a producer crash, the transaction is
cammitted,

323

324 W. Litwin et al

2.4.3, Recoveries :

We have chosen to write immediately the updates on the database after
having saved the object old value on a "pefore image file". This choice
minimizes the manufacturer software modifications. There is no modifica-
tion for a read, the writes are trapped to get the "before image" values.
During transaction execution, access to modified data doasn’t imply any
overhead, Of course the "before image file" must be in a stable memory.
However, this choice alters the database consistency as soon as a write

is performed by a transaction and then the processor recovery mechanism
Induces the database recovery before inserting a consumer into the distri-
buted systam.

For database recovery we can use three elements :
-~ the database itgelf,

- the journals,

- the before image files,

Then we find different possibilities for the DB recovery, depending on the
avallability of these three elements.

i

2.4.3.1. Only one site involved in the recovery

We can say that there is only cne site involved in the recovery if at the
end of the local recovery the database, journals and before image file
are in a correct state as after a correct running, The processor has just
been isolated from all the others processor.

If the site is only a producer there is no problem, the database consisten-
ey is not concerned and producers may behave as memory-less processes.

We have to repare the damage and locally restart the system ; then the site
insertion into the distributed system is automatically started.

If the site is a consumer, the recovery is more complex : the database
consistency may be destroyed. In the next sections, to simplify, we assume
that we start a new journal when we save local DBs and that all transac—
ticns are committed on the DBs.

2.4.3.1.1. The database, journal and "before image” file are available

This is the easier and more rapid local database recovery.

2} Recover all the data base using the "before image" files and release
the objects,

b) For each committing transaction we find in the journal with the PTC
item the SCORE-consumer context, the list of locks, the modified data,
the list of involved sites., Then for these transactions we can recrea-
te their contexts, the "before image" values, put the exclusive locks
on all the updated objects (the other locks previously granted tc the
transaction are no longer needed) and pub the updates in the database.

The transaction contexts are now recreated, and the site can be inserted
in the DDBMS. The communication level sends to SCORE-consumer the event
"link failure with all the other sites", then the inquiry mechanism is
initiated for all the transactions in commit phase. There is no loss of
committed transaction.

SIRIUS Systems for Distributed Data Managerriont

2.4.3.1.2. The database or "before image" file are not available

a) restart from an older DB save,
b) exscute sequentially the committed writes from the Jjournal,
@) execute step b of the previous section.

This is still a local recovery without already-committed transaction loss.

2.4.3.2, Several sites may be involved in the recovery

Recovery after a crash with journal partial loss.

We assume, the worst case, that there are no copies of the local data
base and journal on other processors. Our recovery protocol leads to a
"backward" recovery. The local site has not enough information to come
back in the system without danger for the DDB consistency. It is a castas-
trophic case where the whole DDB has to be rolled-back to a previocus
consistent state. The distributed database administrator must be informed
of this catastrophic error. Other sites may be invoived in the recovery
and it is the administrator responsability to decide the action to be
taken. To make the distributed database recovery easier we must have
Journal global recovery lines.

2.4.3.3. Global recovery line : transaction termination identifier (TTI)

A way to realize a global recovery line is to initiate a system transaction
which locks all the system resources. In some case this is too costly.

A modified version of the two-step commit protocol locks is more convenient
to write global checkpoints on journals.

When a two step commit is executed, a transaction termination identifier
(TTI) is computed. Each consumer maintains a private counter Ci. Before
sending the message "FTC", a variable TTI is zeroed at the producer site
for the transaction. The consumer writes in the journal "PICY item its
current counter value, the current counter is sent in the PTC acknowledg-
ment to the producer. Then the consumer increments its counter. The produ=
cer computes TTI as the maximum of the Ci received and sends it with the
comit message. The consumer writes this value on the commit item and
executes Clzmax(TTI+1,Ci}. The Ci computation upon receiving the commit
message ensures that a transaction not in commit phase at a consumer will
have a greater TTI than all transactions already committed by this consu-
mer. Then if a transaction Tj has dependency relation with Ti (Tj reads

a value written by Ti), the read action can be executed only after the
comiit of Ti had been executed, we have TTI(Ti)>TTFI(Ti). The transactions
which are aiready in commlt phase may have a lower or equal TTI than the
last committed one. This means that they are serializable, there is no
dependency relation and no conflict acoess between Lhese transactions.

- TTI meaning in the global system -

The TTIs assure in some measure a synchronization between the consumer
local counters ; but if there is a system partition, the TTIs of one part
of' the system are without relation with the TTIs of the other part. We can
also have a "logical" partitioning in the distributed database : some
producers only work on a part of the DDB and others work on another part
of the DDB ; if the used parts of the DDB have no common consumer, there is
no relation between their TTI. Let us assume than all sites crash at the

325

326 W. Litwin et al.

same time and all transactions are committed. If we start up all the data-
bases with their last save and if, on each site, we execute their journal
comitted writes (found in the "commit" items) in their TTI order with
TTI £ X we are sure that the global database is in a consistent state,

- If ¥ is the greater consumer counter value in the system : no transac-
ticn is lost.

- If X is not tne maximum of the TTI we have transactions which are in
journals and which are discarded. This is the case when we have a journal
partial loss on a site with the last available commit item TTI equal X and
then all other sites must roll back to this TTI. The discarded transactions
may be without dependency-relaticns with the lost ones. It may be possible
to execute some of the discarded transactions without destroying the
distributed database consistency.

In [FER81] it can be found how to build an optimized global recovery line
in case of catastrophic failure. This paper describes alsc how to perform
a global state saving so as to release local logs.

2.5. SILOE LAYER

In SIRIUS-DELTA architecture, SILOE is the layer which makes data distri-
pbution and processing distribution transparent to the users,

SILCOE layer stands between the classical DBMS and the distributed transac-
ticnal sub-system (SCORE/SER).

At global level, the users manipulate a SIRIUS-DELTA database just like a
centralized database, without references to any site or local databases.
Global SILOE major function is to transform a global query in a set of re-
lated and synchronized local queries to perform the required action, taking
into account the data distribution.

At the ;ocal level, local SILOE major functions are the language transla-
tion (pivot—-»local external language) and the local functions needed for
3CCRE (i.e. temporary update, rcllback, commit).

Let’s cutline SILOE main features :

- the data distribution definition whieh is the basis of SILOE transforma-
tion of the gueries,

- the query decgmposition which is necessary because data invelved in the
query processing can be located on several sites and databases,

- the query evgluation/optimization which determines an acceptable (if
possible optimal) scenario for coordinated local actions,

- the generation of the distributed execution plan corresponding to this

sqenario, in respect with the formalism used in SCORE, SER and local
SILOE,

- thg adapta?ion/translation necessary to interface different local DBMSs,
using distinct query languages and producing results in distinet formats,

- the loca% functions asscclated to SCORE local resources management which
are provided by local SILOE if they don’t exist in the loecal DBMS,

SIRIUS Systams for Distributed Duty Munagement

2.5.1, Data distribution capabilities supported by SILOE :

This section describes the varicus types of data distribution which are
supported by SILCE.

2,5.1.1. Qverview

SIRTUS-DELTA is aimed to be used either in a top-down approach of data _
distribution or in a bottom=up approach (where pre-existing databases will
act as local databases in a SIRIUS-DELTA DDB).

In both cases we suppose that the DDB conceptual schema is defined. We as-
sume that this conceptual schema {which is called the global conceptual
schema) describes relations, the only constraint being the existence of a
primary key in every relation definition.

The distribution of data among the local databases is defined on the bhasis
of various distribution units (a distributicn unit or DU is a flexible
piece of data which is considered as a whole in the distribution). The lar-
gest DU is the relation, the smallest one is a tuple consisting of a pri-
mary key value.

Data distribution in a SIRIUS-DELTA DDB can be very complex. Localization
of a distribution unit can be defined either in respect with some attribute
values in it or as the same localization as another related piece of data.
In both cases replication is possible,

& data distribution schema provides SILOE with the description of the daka

distribution. This schema - called the Global Internal Schema (GIS) - is
written using the SILOE data distribution definition language {DDDL}.

2.5.%.2. Distribution units

A global SIRIUS-DELTA DDB is defined as a set of relations. Several distri-
bution units can be used to define its distribution.

Relation (no partitioning)

The global relaticn is entirely located on one or several local databases.
Tuple (horizontal partitioning of R)

Tuples of R are not transformed when distributed but all tuples are no? lo=
cated on the same local database(s). Localization of every tuple of R is
decided upon its value.

Sub-relation (vertical partioning of R)

A11 tuples in R are splitted (the primary key value 1s repeated in every
piece) and localization is defined per sub-relation,

sup-tuple {horizontal partiticning of a sub-relation)

411 the tuples of a sub-relation don’t go on the same local database. Loca-
lization is decided for every sub-tuple.

327

328 W. Litwin et al,

2.5.1.3. Localization rules

A localization rule tells on which local database(s) a given distribution
unit is or must be.

- Non-dependent localization (for relations or sub-relations)

In this case, the local database (or local databases) is (or are) defined
without ceondition.

ex t DUT ON leocal-database-3
DU2 ON local-database-1, local-database-U

- Direct dependent localization (for tuples or sub-tuples)
Localization now depends on the value of one or several attributes in the
tuple or sub-tuple.
ex : DUS ON local-database-1 WHEN att2 xxx, ...
DU7 ON local-database-2, local-database-4 WHEN att? = ...,

- "WIA" function i.e. indirect dependent localization (for fuples or sub-
tuples) ,
This localization rule expresses the fact that a tuple or sub-tuple is lo-
cated on the same local database(s) than a tuple or sub-tuple of another
relation {which contains the value of the primary key attribute{s}).
ex : DUT0 VIA att3 FROM DU25
(DU25 has its own localization rule, which can be non-
dependent, direct or indirect).

2.5.1.4, SILCE data distribution definition language (DDDL)

Distribution units and localization rules are defined in the Global
Internal Schema (GIS) using SILOE-DDDL.

In order to express very complex distributions, we allow the definition of
several localization rules for a given DU. We call Homogeneous Distributed
Set (HDS) the data set which corresponds to one DU type and one localiza—

tion rule. The set of data corresponding to a given HDS on a given local DB
is called plot.

A GIS consists of three sections :

. the HDS section where the distribution unit types are defined (that is to
say the various local relation types) associated to a given localization
rule

. the mapping secticn which defines how the global database can be recons-
tructed from these HDS

. the localization section where the localization rules are given for sach
HDS.

The precise definiticn of the partitioning in several HDS is given in the
mapping section where predicates allow to express how the relation is
sub~divided,

Then, plots associated to each HDS is described in the localization sec-
rion, Plot partitioning can only be an horizontal one. It means

that the data type of the HDS on every local database where it appears is
the same (reason for the term "homogeneous"). Predicates are used to define
the horizontal partitioning.

Predicates can be complex expressions using AND, OR ..

. and comparative
cperators.

SIRIUS Systems for Distributed Data Management

Example :
GCS : RESCRT (NR, ALTITUDE, STATION) KEY = NR
=== HOTEL ({(NH, NR, NB-ROCM3} EEY = NH

GIS : * HDS 3ECTION

RESCRT1 (NR, ALTITUDE, STATION) KEY = NR
RESCRTZ (NR, ALTITUDE) KEY = NR
RESORT3 (NR, STATION) KEY = NR
HOTEL1 (NH, NR, NB-ROOMS) KEY = NH
HOTEL? (NH, NR, NB=ROQMS) KEY = NH

* MAPPING SECTION

RESORT = RESORT1 WHEN ALTITUDE > 800

RESORT = RESORT2 + (¥) RESCRT3 THRU NR
WHEN ALTITUDE g 800

HCTEL = BOTEL1 WHEN RESCRTI

HOTEL = HOTELZ? WHEN RESORTZ

* LOCALIZATION SECTION

RESORT1 ON LOCAL~-DE-1 WHEN STATION = "LION",
ON LOCAL-DB-2 WHEN STATION = "NICE"
OR STATION = "GRENOBLE™,
ON LOCAL-DB-3 ELSE
RESORT2 ON LOCAL-DB-1 WHEN ALTITUDE <500,
ON LOCAL-DB=5 ELSE
RESORT3 ON LOCAL-DB-6, LOCAL-DB-7
HOTEL1 VIA NR FROM RESORT1
HOTELZ VIA NR FROM RESORIZ

2.5.2. Global SILOE functions :

We describe gquery decomposition algorithm for retrieval queries and updates
and the generation of the distributed execution plan to be exscuted.

2.5.2.1. Query decomposition

Retrieval queries are decomposed into the following steps :
- definition of the conceptual tree (CT)

- producticn of internal trees (IT)

- reduction of ITs into reduced intermal trees (RIT)

- localization of the optimal reduced internal trees

- cheice of the final reduced internal tree

2.5.2.1.1. Conceptual tree

The global SILOE-layer receives the user query. The query is translated
into a tree call the conceptual tree (CT}. The CT is expressed in pivot
larguage which uses relational algebra operators that become the nodes of
the tree. In the CT we find all conceptual relations involved by the query.

(") {+ 1 Join vporator)

329

330 W. Litwin et a/l.

2.5.2.1.2. Internal tree

In fact the conceptual relations are fragmented into HDS and plots, as spe-
cified in the global internal schema where the portioning of the conceptual
relations is described. Using informations and the CT we construct an ano-
ther tree that we call the internal tree (IT).

In fact from one global conceptual tree cne can obtain several global in-
ternal trees, This, because there are different manners to rebuild the con-
ceptual relation from the plots. For instance the conceptual relation R
(figure 4) may be constituted from four plots and may lead to two trees
(figure 5.1 and figure 5.2}.

R
P1 P2
P3 Ph ‘
Figure 4
P1\ P3 PE\/PM P‘l\//P2 P1 P4 P3 P2 Pi 1]
Unié: Union Join Join 25515 Join
/”
in nion
Figure 5.1 Figure 5.2

2.5.2.1.3. Reduced internal tree

For some gueries it is not necessary to consult all corresponding plots
The reduction of the glcbal internal tree is the minimal tree which allows
to answer to the query, The reduction may be obtained in three different
manners :

- through projection : if no attribute of a HDS is requested then we
eliminate this HDS

- through restriction : possible only if the localization function of the
HDS or of the plots is defined by a predicate, The restriction itself is
defined by using predicate., Comparing the localization function predicate
with the restriction predicate we deduce whether HDS or plots are to be
eliminated or not

- through Via function : if plot 1 is eliminated and plot k is located by a
via function from the plot i then plot k has to be eliminated.

When a plot is suppressed in the global internal tree then one or more
internal nodes can disappear. For instance the suppression of the plet P1
decreases the tree from figure € to the tree from figure 7.

SIRIUS Systems for Distributed Data Management

F1 P2 P3 P4 E3 B4
NV
Join 1 Join 2 Join 2
Unien 1 Function
Funetion
Figure © Figure 7

The join between P1 and P2 becomes empty and the join operator "Join 1"
disappears. The suppression of the "Join 1" causes the suppression of the
union operator "Union 17.

A final tree 1s called the reduced internal tree (RIT). At this step only
the external nodes and the root are localized. They respectively correspond
to the different plots located on the different storage sites and to the
result site. Te all internal nodes correspond relational operators (join,
union), their execution localization is the next step of the processing.

2.5.2.1.4. Localization of the optimal reduced internal trees

In order te minimize the network data flow we calculate the communication
cost of each RIT. For each node we estimate the size of the intermediate
result (in bytes), The sum of the transfer results sizes, gives us the com—

munication cost. The coptimal RIT is the one corresponding to the minimal
cost,

The estimation of the cardinality relies on [DEM 80], [SMI 75], [Y40 79].
The algorithm is deseribed in detail in [LAC 81].

The localization of external nodes of each RIT is known from (IS since they
correspond to plots. The localization of internal nodes is done progressi-
vely during the communication cost evaluation of the RIT.

2.5.2.1.5. Choice of final reduced internal tree

The final RIT is the cheapest tree, from the set of the optimal RIT, which
has all its sites accessible,

2.5.2.1.6. Data update

The user can update data with CREATE, MODIFY and DELETE commands. Hach
command is translated into an IT. The retrieval sub-tree is reduced and the
optimal RIT is chcosen, Then the all tree is constituted by the concatena-
tion of the optimal RIT and the update sub-tree. The final update RIT is
the concatenation of the final reduced internal tree and the update
sub-tree,

331

332 W. Litwin et al.

2.5.2.2. Distributed execution plan generation

The internal notation used for the final tree is the post-fixed notation.

The funecticns are the pivot-language operators. The operandes are either an
external node (a plot) or a subtree.

Frgm the final tree, global SILOE produces the distributed execution plan
{DEP) and transmits if to global SCORE. DEP is made of set of local action

contexts. A context defines the schedule of a local action.

4 local action is specified by SILOE in the following way : the tree is
analy;ed from left to right in order to find the site associated to each
function and the site of its operande. The operande defines a local action

when 1ts site differs from the site of its funetion. 4 local action is a
mono-site sub-tree.

Then, any reference to that operande in the final tree is replaced by a
reference Lo the temporary data file that will be produced.

Example : Let us assume the following final tree (fig. 8).

P pz P3 PY
57 52 1 383
£l 2 P : plots
s1 a3 f 1 functions of the
pilvot language
3 : Sites
f3s3
Figure 8

This tree leads to DEP composed of four local actions (fig. 9).

LA3 Lad

LA : local action
5 ! 3ites

Figure 9

SIRIUS Systems for Distributed Data Managoment

Local actions exchange values associated to synchronized variables

and temporary data files in a producer/consumer mode. These specification
are stored in the related local action context in a symetrical way. Thus,
tWo phases are required by SILOE to fully generate a DEP : first all
consumers, then all producers,

The choice between the two possible end expressions depends on the query
and the local action type. For example, the process of an update guery re-
quires first a search for the tuple identifiers to be updated, then a test
on the result {empty/not empty) that is used to opticnally launched the up-
date sub-gqueries. In such a case, the second end expression is used to pre-
vent the launching of updating local acticns while the searching local
actions are active, When dealing with inquiries, the first end expression
is generally used to allow maximal parallel processing.

The resources allocation requests are produced by the analyze of the local
action. If this sub-tree contalns a reference to a plot, an allocation re-
quest for this plot is produced, in read or write mode, depending on the
sub=-query type (inquiry or update).

Then, this DEP is submitted to global SCCRE.

2.5.3. Local SILOE funetion :

Local SILOE ensures the interface with the local DBMS. The main module

of local SILOE is scheduled by local 3ER at the launching of the local
action. Local 3ER transmits to local SILGE tne tree expressed in the pivot-
language associated to this local action.

SILOE is responsible for the translation of this tree in a (or a sequence
of) command in the local DBMS data manipulation language. The translation
of the local tree uses a local external view where the local relaticns
belonging to the DDB are described using the structure from the global
conceptual schema and the global internal schema. This view allows the
hemogenization of the local relations and the mapping between global and
local deseription of these relations.

If scme operators of the pivot language don’t exist in the local DML,
programs making possible to execute these missing operators are added in
local SILOE.

Local STLOE manages the scheduling of DML commands and programs, by using,

when nscessary, working files in order to store temporary results.

To do so, local SILOE looks at the tree deseription and isclates sub-trees.
These sub-trees are translated into either a command of the leocal DML or

a command of launching of a lonal SILOE program. This franslation uses the

jocal SILOE view,

When all the tree is executed, local SILOE stores the result either in a
temporary data file to be tranamitted to another local action by local
SER, or in an edition file so that it is returned to the user (see
figure 10).

333

334 W. Litwin et al.

rree in result

pivot—languaae A\ local SILOE
N I

. translator
and monitor L.E.V
data | command dataN)' L
\cc@ﬁanas
dd
added DIMS L.C.8

LEV : local external view

LCS : local conceptual
schema

LDB : local data base

Figure 10. : Local SILCE architecture

2.5.4. User’s facilities :

Several user’s facilities that exist in SIRTUS-DELTA are polinted cut.

2.5.4.1. Catalogue of a query

Singe a query may be localization sensitive, or since it may deal with
coples that may not all of them be up, then the query should be decomposed
at run time. On the other hand, why should the same query be decomposed

each time it is submitted ? Today, the fact that query decomposition may be
very costly is well know,

We havg included an option to catalogue a query at user’s request. Several
scenarios are stored gith their related list of required sites and cost.
For each list of required sites only the least expensive scenario is kept.

When a_catalogueq query is submitted again, SILOE searches for the least
expensive scenaric among those that match the up-list.

2.5.4.2. DDB design considerations :

Some DDB design thoughts have been involved in our approach to data dis-
Lribution,

- Although it would have been functionnally feasable, no attempt has been
done to allow for a recursive description of data distribution. We deal
wiph a "flat" description of the data distribution since we consider that
this is the physical characteristic of the data belonging to the DDB.

~ Mappings between global and local data types may becoms very complex
as scon as the DDB is built from a cooperation of pre-~existing DBs. The
HDS‘concept permits tc describe that mapping at a logical level, without
having to be concerned with the problems of "where" and "how" lécal data
is maintained.

- A major DDB change is the addition of a DB in the configuration.

SIRIUS Systerns for Distributed Data Managemaent

At global level, it results in recompilation of the GIS to define distribu-
tion rules for the new tuples on existing relations, If new relations are
added, the GC3 must also be amended and recompiled,

At the local level, a local external view must be defined, to permit compa-
tibility between local data and their global presentation. Finally global
SILOE 1s expecting a set of operators used by the pivot-language. Therefore
if the local DBMS or DM does not contains these features, they must be

added.

2.5.5. SILOE status :

At present time SILCE is providing some DDB design facilities such as the
DDLL, and data distripbution functions, that permit any combination of
horizontal and vertical partitioning of the global relation.

Query decomposition does static optimization using an heuristic, and can
pe requested both at "precompile” and at "run" time. Heterogeneity is
aillowed at global and local level thanks to the pivot-model and the pivot-

language.

Integrity constraints must be included in the transaction design, and are
maintained using atomicity of the transaction. A user authentificaiton
routine is implemented using pass-word at global level, and some data
access control is achieved through the Global External View. Extended data
access conbrol that includes access prevention at relation, attribute or
attribute value is under testing.

2.6, PHLOX AS A& SERVER IN SIRTUS-DELTA

2.6.1. The PHLOX project :

The aim of the PELOX project is the design and the realization of DBMS
packages for micro-computers [BDVEO].
Each package is intended for a particular use :
_ PHLOX1 for individual micro-computers (mono-user, mono-server)
- PHLOXZ for a dedicated server in a local network (multi-user,
mono-server) [FER81a]
— PHLOX3 distributed data bases management system {multi-user,
miiti-server).

In administration, PHLOX offers the possibility of describing a new data
base at three completely separated levels which are those of ANSI-SPARC
[4NS75] : an external level and a conceptual level using the relational mo-—
del [CODTO] and an internal level based on the DBTG” s network model
[con7il.

Tn manipulation, PHLOX offers two high level languages : a navigational
data manipulaticon language and a relational data manipulation language.

The systems themselves manage all the problems that can be solved transpa-
rently for the user : access paths, consistency, recoveries, deadlocks, ...

335

336 W. Litwin et al.

2.6.2. PHLOX in the SIRIUS-DELTA prototype :

The SIRIUS-DELTA architecture has been designed in order that existing
DBM3s can be included in a distributed DBMS. The possibility of building
an heterogenecus (in term of DBMSs) DDBMS with SIRIUS-DELTA is being proved
by the realization of an heterogeneous prototype using PHLOX as a server,

In this prototype, PHLUX is not an access point to the DDBMS, but it is
only a storage point, it only supports the functions of a local DBMS (see
figure 11).

Users Users
N
[SIRIUS-DELTA | N | SIRIUS-DELTA |
T o~ . = T
. . . s N
F .‘l .. L - <‘-—-’>‘;
S ! Local S
network
Users o e

R : P
| SIRIUS-DELTA |
L

A

Figugé 11. : Heterogeneous prototype of SIRIUS-DELTA
with a PHLOX server

The PHLOX server only deals with its own data, In today”s version, it can~
not take into account partial results sent by other sites. It receives
requests and sents results to one {or more) SIRTUS-DELTA site{s} which can
exploit them or present them as the result of the global request. PHLOX
receives and processes requests of consultation as well as of modifiecation.

In order to ccoperate with SIRIUS-DELTA, PHLOX has to participate in the
distributed protocols of SIRIUS-DELTA (i.e. DEP local handling) : it has
to be able to understand the messages sent by the other sites, to recognize
the data base requests and to ensure the consistency of the distributed da-
ta base. Some of these functions could already have been assumed by the
PHLOXZ prototype and other ones have been added since, as shown in the next
section,

2.6.3. Implementation of the SIRIUS-DELTA protocols in PHLOX :

The protocols designed by STRIUS-DELTA have been implemented in PHLOX using
as far ag pogsible the existing software of PHLOX2. Only some functions
have been added through a new level ¢alled SIRIUS-DELTA interface.

The different levels appear in figure 12 below.

SIRIUS Systems for Distributed Data Managemant

N Network
comnmands results
I: SER Interface — SIRTUS-DELTA
N SCORE Tnterface N i interface
q\
pivot langug%e requests results
Pivot-Language Interpretor { l Relational
Relational Operators i | Interface
navigational requests results
Navigational Primitives)
Multi-User Virtual Context b PHLOX 2
File Management System)

Gl

l Base |
—

Figure 12. : The three levels of a PHLOX server

2.6.3.1, SIRIUS-DELTA interface

This interface manages the messages which are exchanged between the PHLOX
site and the STRTUS-DELTA sites. It analyses the received messages, it
sends the requests to perform to the lower level (relational interface), it
treats the system commands of SER (e.g. "send the next records of the
result") and of SCORE (e.g. "abort transaction mumber t") and it sends

the messages expected by the other sites (e.g. "local action performed").

2.6.3.2. Relational interface

The aim of this interface is the translation of received pivot-language
relational requests into PHLOX navigaticnal requests. This translation
requires, moreover, during the administration phase, a mapping from the
relational schema of the local database, as viewed by the global DBMSsz, in-
to the internal network schema used by PHLOX for accessing data.

This interface has alsoc to prepare and to send the results of the received
requests to the upper level,

This relational interface consists of two layers : a pivot language inter-
pretor and relational operators.

2.56.3,2,1. Pivot-langusge interpretor

The pivot-language has been designed by the SILOE team of SIRIUS-DELTA and
the PHLOX team. Thanks to this common language, requests can be sent from
the global sites preducing the transactions te the local sites which per-
form the sub-transactions. It is an algebraic language based on the relatio-
nal model, and it expresses a request by a tree in post-fixed notation,

The interpretor manages the execution and the chaining of the relaticnal
operators. It also realises the mapping from the external names of rela-
tions and attributes corresponding to the pivot model into the local names
corresponding to the conceptual local schema desoribed in the tables of
PHLOX.

337

338 W. Litwin et al,

The "Fivot-language Interpretor! layer has different functicns :

- functions of coptimization :
a) reorganization of the sub-reguest tree,
b) clustering of relational operators which can be executed
simultansously,
c) choice of the algorithims to apply in order to use at their best the
access paths existing in the network schema of the data base.

- a function of interpretation :

it consists in managing the chaining of the calls to the relational
operators,

2.6.,3.2.2, Relational Operators

At this level, we find the three relaticnal operators : project, select

and join. The operations on sets are the union, the intersection and the
complement. It’s possible to execute easily the operations of insertion,
suppression and update thanks to the existing primitives.

The project, select and joint operators use the navigational primitives of
PHLOX. They have been implemented so that they use the access paths and

the operators already implemented in the data base. The inversion index are
used to realize the selection in such a way that the system access only to
a limited amount of data. The father-son’s links of the network schema cor-
respond to already implemented joins the use of which makes possible the
decreasing of the reading number.

2.6.3.3. Existing functions in PHLOX2

The part of the distributed protocol already existing in PHLOX2 consists
mainly in the consistency and resiliency functions. The mechanisms which
ensure data sharing and reliability are integrated into the inner part of
PHLCX2, inside the level called multi-user virtual context management.

- Data sharing :

Data sharing is ensured in PHLOX by setting locks on objects with the same
principle as in SIRIUS-DELTA. The main difference batween both prototypes
for data allocation is that SIRIUS-DELTA allccates the data needed by a re-
quest before beginning to perform it, whereas PHLOX, because it locks logi-
cal pages that it cannol wholly know in advance, sets the locks only as the
request proceeds, at the moment when the page becomes really necessary. But
both systems have the same external behaviour,

- Data base integrity :

At the end of a transaction, the PHLOX system checks that the modification
made by the transactlon leave the data base in a consistent state. If, and
only if, the modificaticns are accurate, they are then copied in the data
base itself.

- Commi tment

PHLOX manages a two step commitment [BAEB1] : in the first step, the pages
modified by the committed transaction are saved on a disk and, if the final
commit order is given, the second step is initiated and the pages are then
copied in the data base and they are unlocked. 3o, if a breakdown occurs
during the commitment, the system restores the data base to a consistent
state.

SIRIUS Systems for Distributed Data Managerment 338

In order that PHLOX can participate to the distributed protecol of conais-
tency and resiliency, it has to converse with the other systems in the
network. This is done in the SCORE interface {see figure 12) ; this level
receives and sends the abort orders, sends the acknowledgements after each
step of the commitment and works with the other sites for the recovery
after a breakdown.

2.7. MEASURES ON THE PROTOTYPE

The existence of the prototype rises questions about performances : is the
implementation efficient ? What is the cost of the different layers ? What
is the cost of the primitives in a layer 7 How 1s parallelism used ? Are
the effects significantly profitable or the system cost overheads 1t 7

We must immediatly point out that it is not possible in a prototype Lo mea-
sure a real application since there is none currently. Also, we have limi-
ted our effort on the cost of the wajor system elements.

In order to give a flavour of what could be the cost of an application we
will decompose the cost of a transaction. But befcre anything we had to
find a method to get general enough results. Response time is in fact too
much linked to the machine characteristies, Our point of view is that the
number of instructions needed to perform a function is more general. It
does not depend on the machine speed. It 1s impacted by the language used
to program the prototype but as it is commenly accepted that a compiler has
an extension rate, it can be corrected acecording to the efficiency rate of
the compiler. For these reasons we will give most of the result as a num-
ber of executed instructions. Scmetimes we can use the ellapse time to get
5 flavour of where are the waiting times.

2.7.1. Dverheads :

By overhead we mean all permanent processes needed to schedule, manage the
virtual ring, manage the network. This overhead on our very slow machines
represent about 21 % of the CPU activity. 14,5 % are due to the network
management and 6,5 % to the virtual ring management.It is obvious that this
is a prohibitive cost, but in our prototype it is mainly due to our very
slew machine (about 40 ms per instruction). A more efficient machine would
reduce greatly that cwernead.

2.7.2. Network cost :

The novelties in a distributed system is the use of a network to
comminicate. Also the efficient of the network impacts deeply the results.
We have observed that a complete message exchange cost about 7600 instrue-
tions which are devided in 3700 instructions at the emission and 3600 at
the reception.

It is obvious that a front end processor in charge of releasing the main
precessor of the network management reduces widely its load.

2.7.3. Distributed executive cost SER :

The different functions of the distributed executive system are : remcte
activation of a local action, synchronisation variable activation, tempora-
ry file transfer installaticn and temporary file items file transfer.

340 W. Litwin st al,

2.T.3.1. Local action cost

This cost is divided into two parts, firstly the cost at the global site
which receives the DEP and sends each local action to the appropriate site,
secondly the cost of the local site which receives that local action and
c¢reates a context for it.

On the global site the cbserved cost for n local actions is : n 37500

+ 10 000 instructions. The constant is due to the entry in the program. We
can see that for sach local action the cost is 37 500 instructions, among
them 15 200 are the result of the messages emission and reception cost in=-
volved by the protocol. This represent 60% of the cost. The reader can re-
mark that it would be better to send in one message all the local actions
dedicated to one site, since the cost of the message is rather important.
On the local site sinece each local action is received alone, the cost is a
constant and the observed value is 45 000 instructions. The cost of
protocol’ s messages 1s 15 200 instructions, about 34% of the global cost.
In order to give an overview of the elapsed time cost the fig. 13 shows
the elapsed time in the loeal action installation process. We can observe
that message transfer delay is the most significant elapsed time cost.

2.7.3.2. Synchronization variable

The cost is divided into the cost at the activating site and at the
reception. The site which activates the synchronization variable (5V) send.
Alsc the observed cost for n SV is : n 6000 + 32 000 instructions.
Notice the important cost for program initialization.

The site receiving the 3V activation has to set the SV its new value and
then to test if the corresponding process becomes ready. This explains that
the cbserved cost is not linear, The observed curved is given on fig, 14,

DPEX
\CTXALR
e : :
2,7 £ 0,4 s 07301 + 0,2 s context installation
4,—,.,,,,/~””d CIRALA
7,8 s LAMPEX
+ 0,5 - 3,83+0,8 wait for execution order
™ CTXALL/CTXALP
0,9 + 0,5 s
5,1£ 0,5 s CTYALE = wait for resources
’ 0,45 + 0,5 s Execution
45 000 instructions
FPEX
global site local site

Figure 13. Elapsed time in the local action installation
and execution process (the local acticn is empty)

SIRIUS Systems for Distributed Dute Mansgement
U

3
Nb ()F1 P activate the synchronization variable

Kinst A activated the synchreonization variabl/
100 4

9(/

A0

AL cost
30.
20 4
10 .
T T 3 T e T
1 2 3 4 5 6 7 8 YNbof

BV

Figure 14, : SV activation cost

2.7.3.3. Temporary data files and data transfer

Crea@ing a temporary data file (TDF) needs a context and so there is an
initialization cost, which is not exactly the same at the producer and at
the consumer site, Observed result are for the producer of n TDF :

n * 25 250 + 37 500 instructions, for the consumer of n TDF : n ¥ 35 000 +

10 000 instructions. The reader will notice that the cost for initiating an
TDF is about the same as the one for a loeal action.

Data transfer is much more important since it is a major function used to
execute a distributed query. The first implementation transferred item by
item, the transfer cost of n item, at the producer site, item by item is :
n * 18 500 + 50 000 instructions and at the consumer site n ¥ 25 850 +

23 000 ipstrgctions. Also a single item transfer cost about 44 350 instruc-
tions which is quite prohibitive,

441

342 W. Lirwin et af.

Only 7600 are used for the message, This cost is caused by a very uneffi-
cient implementation in Basic based on item read and write in a new file ;
each time a layer is crossed (SILOE .-—- SER ~——-, Transport). Observing
very soon this bottleneck we grouped item before the transfer, Two diffe-
rent blocking values have been measured, 7 and 10. Results are reported
on fig. 15, The reader will notice that we have not a linear curve, and
that a blocking value of 7 improves significantly the result. The blocking
value of 10 gives results guite near the value 7. Of course, the blocking
mechanism reduces the paralleliam since the consumer site has to wait at
least for T item before fto hegin even if the producer had made available
items longer before, There is obviocusly a trade-off between paralle-

lism and efficiency.

2.7.3.4. SCORE cost

The first operation of a transaction is to get a ticket. This includes for

SCORE the management of a context at the global site. The cost observed

for that primitive is of 110 000 instructicns.

The two-step commitment protocol cost is made of :

- a cost at the global site for n involved sites is : n * 12 000 instruc-
tions. This cost is mainly due to the messages used by the protocols,

- a cost ab each local site of about 90 000 instructions. This cost is
important since two items have to be written in the journal. This cost
does not depend of the number of data objects accessed,

Nb of
K inst .
P cost at producer s%tej Blocking factor=7
C cost at consumer site P
9 C
609 - /Blocking factor=!
/ Blocking factor= 7 ———
500 4 //
4004

Blecking
factor=10

300+

200+

T T T v T T T T

10 20 30 40 50 60 70 80 20

Nb of FDT
. item transferred
Figure 15. : Item transfer cost for three different

blocking factors

SIRIUS Systems for Distributed Data Management

Locking object in the measure includes the releasing phase. The observed
cost is of 30 00C instructions. This does not include the before-lock
process each time an object is modified.

The cost of a single call before-lock process is about 2000 instructions
with an initialization cost of 30 000 instructions.

The cost of the different aspscts of SCORE are rather moderate. Locks are
expensive if the granularity is small. We didn’t measure the cost of
roll-back since it is very difficult to repeat it systematically.

2.7.3.5. SILOE cost

Among the different functions of SILOE we have only measured the main
relational operators. The query decomposition cost and DEP generation
would be interesting, but it is difficult to define cost factors in them,
The cost of JOIN, UNION and PROJECTION has been measured in the distri-
buted context. This is not very specific of a DDBMS but will be useful in
{he next chapter to evaluate the cost ratlio between work useful for the
query execution and work involved by the query in the DDBMS.

SILOE exchanges local actions using a pivot-language. This pivot-language
must be interpreted at sach local site, The observed cost of the
interpretor was about 100 000 instructions and seems not depend greatly

of the sub-query complexity. This means that most of that cost is due to
context set-up.

The observed union cost is about 700 instructions per operation. Join cost
depends on the result. If it succeeds then it is about 1560 instructions
if it fails then it is 940 instrueticns. Projection cost is asbout 2000

instructions. It has not been possible to get the cost of the restriction
for implementation reasons,

2.7.3.6. Example and conclusion

We want now study a transaction in order to have an index of where are its
costs. For that we have used all the previously described results and
reported them on the fig. 17. The transaction is the following :

Begin Transaction
List activity with zone = "mountains™ and with activity.type =
Nexoursion® desoribe-activity, fees, correspondant

End Transaction

We describe below the transaction graph and give a list of required
ressources {fig. 16).

343

344 W. Litwin et al. l
e_%
. A
i P %
. i 5 tuples &
J .
el S
5 tuples . _~""transfer q\\hh‘“‘~\-.h:\\lf tuples
- e P
i l ’ i
LA 1 R [R LA 2
_ A 61 Read A 82 Read
——" Lock - Lock
Local site 1 Local site 2
94 tuples 94 tuples

2 local actions
LA 1 activates synchronization variable for LA2

LA 1 produces 1 FDT
LA 2 consunes 1 FDT

Figure 16. : Transaction graph

Using all these informations we are able to compute the different costs
induced by the SER, SCORE and SILOE layers. The results obtained are not
detailed here, they are reported on fig., 17.

This figure shows clearly that even with a very simple transaction, only
one step, and a simple ‘query in that step working on a little experimental
data base, more that 50 % ¢f the executed instructions are dedicated to
user work execution.

Of course system cest is rather important and effort must be deone to
industrialize the prototype. We can also observe that most of the user
work Is executed in parallel, In fact more that 80 % of this transaction
is executed in parallel on the two sites.

As a quick conclusion we can say that the use of a distributed system will
offer the possibility to parallelize at an efficient cost transaction
that would be to long to execute on a single site. System cost does not
overhide parallelism since it uses itself parallelism potentialities.
Improvement in the design and realization of the transport funection will
certainly reduce global cost and message waiting time.

SIRIUS Systems for Distributed Data Management

SILOE ‘ ?
I SILOE 487
SCORE 132 400 757 460
SER 85 000
Global site
TRANSPORT 10,17
47,97 318 000 SILOE 439 460 63,17 SCORE 23,67
372 400
127 80 00O TRANSPORT 8C 000
18% 120 000 SCORE 120 000 | 11,5% I
17,29 SER 18,272
227 145 750 SER 56 160 g ’I v 287 750
L7
663 750 6%6 160 V577 610
local site |: 427 of total Local site 2:;44% of total TOTAL

Figure 17. : Costs induced by SER, SCORE and SILOE layers

2.8. CONCLUSTON

The prototype SIRIUS-DELTA, initiated in 1979, is now operational. It is

a pre-industrial prototype the aim of which was to validate research
studies within the SIRIUS project. Focus, in SIRIUS-DELTA, was on data
distribution and distributed processing aspects of an heterogeneous Distri-
buted Database Management System.

We think that it has proven feasibility of our approach. Application stu-
dies show that systems like SIRIUS-DELTA should be useful for a large class
of applications.,

346

346 W. Litwin er al.

3. MULTIDATABASE APPRCACH.

3.1. PRINCIPLES QF THE MULTIDATABASE APPRUACH.

3.1.1. The idea in the database approacn.

Any database (DB) iz defined according to some data model. The relational data
model [COD71], [COD79] considers that a DB is a set of relations. The other models
consider that elements of a DB are record types, or entity types, or components
ete, As the names of the elements indicate, the implicit principle of all these
data models is that the elements of a DB are nof themselves DBs. We will call any
DB constituted from such elements a (logically} ceatralized DB or, shortly, a
single DB,

The fundamental principle of the present database approach is that a universe is
modelled with a single DB [(SMIS1], integrated or fedsrated [HAM79] (fig. 18a).
There cannot be data that model some universe and are in more than one DB, If such
a thing seems to happen, especially when one gains access to a previously unknown
DB, it means that the universe revealed wrongly perceived. 4 single DB
corresponding to the updated perception of the universe must be defined, prior to
data manipulation. ,
This DB may, in particular, be a distributed DB (DDB) in the sense used in this
article. It is thus defined by a global schema that one assumes therefore always
definable !! Users manipulate this (single) DB or its views, They have no
knowledge of the underlying DBs.

3.7.2. The idea in the multidatabase approach.,

The fundamental principle of our multidatabase approacn is tnat a universe is
typleally modelled with several databases [LITS80] (fig. 18b). Some of DBs model
(subjuniverses that are ratner distinct : universe of cinemas, universe of
restaurants ete (ex. 3.1). Others model differently the same universe (restaurant
guides in ex. 3.2). Some DBs may be derived from others, including, in addition,
data on their cwn (a personal DB about the restaurants derived from a public DB,
ex. 3.3). Finally, one may discover the existence of DBs relative to his universe
in the moment he needs them for the first time (one may discover that his universe
includes QUANTAS airline and the corresponding DB only when he needs to fly to
Australia).

This variety of DBs that may correspond to a universe means that the corresponding
zlobal schema should typically be unknown. The general case should be the one
Where a user Knows that he manipulates several DBs. The general goal of cur
approach 15 Lo render these manipulations easy. The historical evolution of tne
database approach and the sense of realities, imply that "easy" means for us the
followlng goals :

1. One should dispose of all the possibilities that may result from the concept of
a (D)DEMS, extended to the case of a collection of DBs. For instance, one should
be able to define a view of a collection of DBs. of several (D}DBs, instead of
cnly one.

2, Multidatabase manipulations should be formally expressible in a data
manipulation language. The goal of such a language should be one assertion
{command), per manipulation. This was already the goal of assertional languages
(ALPHA, QUEL etc)} with respect to older navigational languages [CODB2].

SIRIUS Systems for Distributed Data Management 34/

3. One should be able to formulate constraints preserving integrity and privacy of
data that are not within the same DB.

the world model

(a} [€:))]

cinemas model

metre model

i restaurant model |
_,.—"—F’ “,[Mictieli:\ guide)

e~ restaurant model 2

f‘ {Kleber guide)

Iigure 18 : Database approach {a),
Versus rmltidatabase approach (b),
to the reality modelling

we first present the concept of a multidatabase that we introduce in order Lo
aatisfy these goals. Then case studies identify user needs. Afterwards we propose
the coneept of a multidatabase management system and the corresponding general
architecture, Finally, a language that we call MALPHA shows a way to satisfy the
goal (2). Goal (3) will not be discussed in what follows, proposals relative to

this goal may be found in [LIT80] and [ABCE2].

Since the goal of the multidatavase approach is the management of several DBs, it
must ipso facto inelude the subgoal that is the management of one DB. Thus our
approach is a generalization of the database approach,

3.1.3. Tne coneept of a multidatabase.

We call multidatabase (MDB), a set of databases or of multidatabases presenting

the following properties @

(i} - there is a data manipulaticn language to express manipulations of data that
are not within the same DB {multidatabase manipulation language).

(ii) - there is a data definition language to define data within the MDB and,
eventually, its structure and the dependencies between DBs or MDBs (multidata?ase
definition language). The dependencies may be semantic dependencies or integrity
dependencies or privacy dependencies etc [LITSGT.

348 W. Litwin et al.

Since any MDB includes some single DBs one may consider that the concept of an MDB
is a generalization of the present concept of a DB, An MDB iz not a DB if one
considers that a DB must be a single DB. It is a DB if one considers a DB as a
collection of data that is provided with data definition and data manipulation
languages, that allow it to be consistent and protected. MDds become then a yet
unknown type of DBs. One may then define the concept of an MDB recursively as "a
DB that is a set of DBs" [LITB0], [LEBS0]. One may then also consider that an MDB
is a logically distributed DB [LIT81].

An MDB may be physically centralized. It may also be physically distributed. DBs
of an MDB may in particular be DDBs that means that the schemas of these DBz may
be global schemas. The general properties of MDBs are extensively analysed in
(LIT81].

A relational MDB is an MDB that is a set of relaticnal DBs or a set of relational
MDBs [LIT8T]. & relational MDE is thus a collection of relational DBs. It may be a

set of sets of relations or a set of sets of sets of relations etc. For obvious
reasons, relational MDBs constitute a particularly important class of MDBs.

3.2, CASE STUDY, !

The examples that follow define some relational MDBs. They have been cnosen in
order to determine typical user needs. MDBs are defined and manipulated according
to MALPHA language [LIT82], As its name suggests, MALPHA is a (multidatabase) a
generalization of ALPHA language of Codd [COD70].

Example 3.1,

Let us consider the following DBs :

DB RESTAURANTS

R (R#, RMAME, STREET, TYPE, TEL) Restaurants
C (C#, CNAME, NCAL) Courses
“ (R#, C#, PRICE) Menus
ElbpB
DB CINEMAZ
C (C#, CNAME, STREET, TEL) Cinemas
M (M#, MNAME, KIND) Movies
P (M#, C#, HOUR, PRICE} Projections
ENDDE
DB METRO
Mo M, MNAME) Metre lines
S S#, SNAME, HOPEN, HCLOSE) Stations
C { 3#, STREET) Streets near a station
M3 (TM#, SFr Stations of a line
P (5F, §"#, PRICE) Station-to-staticn prices
ENDDB T T

These DBs are single DBs since they are sets of relations. They could be on the
same computer managed all by the same relational DBMS: 3QL, INGRESS, MRDS or any
otner. They could alsc be on different computers or sites. Moreover, they could be
distributed DBs 1. e. the above schemas would be the global schemas for SDI-1 or
SIRIUS-DELTA or K* or any other DDBMS. For the purpose of the example, we assume
however that the system managing these DBs use ALPHA language, instead of the
actual languages of these systems.

SIRIUS Systems for Distributed Data Management 348

We noW assume that these DBs constitute the set named NIGHTLIFE. Furthermore we
assume that NIGHTLIFE is managed by a system providing MALPHA. NIGHTLIFE is thnen
an MDB.

The practical consequences of this fact would be that, on the one hand, users will
continue to be able to manipulate sach DB as they would do if it was managed by a
relational (D)DBMS provided witn ALPHA. In other terms, using MALPHA, users
continue to be able to formulate ALPHA compatible queries that address relations
all within the same DB {ex. 3.5). We call such a gquery elementary query,

Cn the other hand, the property (i) would allow users to formulate a new type of
queries like the following one :

- Retrieve from RESTAURANTS and from CINEMAS the names of all restaurants and of
all the cinemas that are on the same street ;

OPEN NIGHTLIFE (1)
RANGE R X

RANGE CINEMAS.C Y

GET W (X.RNAME, Y.CNAME) : (X.STREET = Y.STREET)

This query addresses more than one DB, two in ocourrence. We call such queries
multidatabase queries. Data obtained using {1) may obviously have importance for
someone wishing to see a film and to eat a dimner, Sinee none of the known
{D)DBMSs allows to formulate this query, one may see from this example alone how
important new possibilities the multidatabases may bring to users.

The above query has the syntax that is the one of ALPHA query addressing relations
that would be named R and CINEMAS.C within a relational DB, In tne example, the
use of the composed name "database name.relation name" was necessary in order to
distinguish between the relation C within CINEMAS DB and the relation O within
METRO DB (this was not necessary for R relation). A multidatabase query that aets
as an elementary query except that it manipulates relations that are in different
DBs, will be called simple multidababase query (shortly : simple query). Simple
queries are cobviously practically as easy to formulate as ALPHA gueries. On the
other hand, for any possible ALPHA query there is a corresponding simple
multidatabase query. This means that simple queries alone offer all the power of
ALPHA for multidatabase manipulations. Thus if one designs a system allowing even
only simple queries, a fundamental extension of present data manipulation
posaibilities follows.

The examples 3.6 and 3.9 show other mutidatabase querles to NIGHTLIFE,
Example 3.2.

We consider that some editors of restaurant guides wish to put data on computers
accessible through a system like TELETEL, We assume that this is the case of
famous french guides : Michelin, Kleber and Gault-Millau. Sach of these guides
describes the restaurants to some extend differently : they do not recommend all
the same restaurants, the attribute differ, same meaning may lead to different
attribute name ete. Since, in addition, these guldes compete for the customers,
one may be certain that they would constitute three distinet DBs. This is exactly
the case of the guides already available through TELETEL.

Given these premises, we assume for the purpose of the case atudy that the DBs
created by the editors are as follows :

360 W. Litwin et al.

DB MICHELIN
R (R#, RNAME, STREST, TYPE, STARS, AVPRICE, TEL) Restaurants
C { C#, CHAME) Courses
M { R#, C#, PRICE) Menus
ENDDE T T
Do KLEBER

REST (REST#, NWAME, STREET, TYPE, FORKS, T#, MEANPRICE, OWNER)
¢ (C#, CNAME, NCAL)
MENU (R#, O#, PRICE)

ENDDB

DB GAULT-M
R (R#, RNAME, STREET, QUAL, TEL, TYPE, AVPRICE, COMMENT)
C (C#, CNAME, NCAL)
M { R#, C#, PRICE)

ENDDB

In particular, the following differences characterize tnese DBs :

1 - the quality of a restaurant is measured differently. MICHELIN gives to a
restaurant up to three stars (#%%), KLEBER up to four "forks". GAULT-M apreciation
is m/20 ; o =<m =<20. There is no exact translaticn rule between these measures.
Also, the guides may strongly disagree on the quality of a restaurant.

2 = the guldes typically disagree also with respect to the value of the average
price for a meal and with respect to the number NCAL of calories in a meal.
Furthermore, for the purpose of the example, we assume that while MICHELIN and
KLEBER indicate the price in french francs (FF), waile GAULT-M uses the popular
unit called "old franc', (AF), where FF = AF/100,

3. - key values are chosen independently i. e. the same restaurant or course has
different key value in different DBs and there 1s no translation rule between kKey
values. Thus, in crder to identify the same restaurant one must a priori use
candidate keys, such as phone number or restaurant name and street,

If these DBs are managed each by a (D)DBMS, then one may formulate only the
elementary queries. However, users may also have in mind many multidatabase
queries., Thus, one may need the query :

- retrieve all the restaurants that MICHELIN or KLEBER considers as chinese
(ex. 3.5), Also, one may need the queries from the ex. 3.6 to 3.8.

Such a query either cannot be executed by (D)DBMSs or lead to several elementary
queries, In addition, the elementary queries must be formulated differently,
despite the same goal. The result would be that, in practice, users would probably
never try to use several DBs, as the experience shows already [MOUB1}, [R0S82],

We now assume that these DBs are elements of an MDB named REST-GUIDES. It might be
that REST-GUIDES contains many other guides as well, We will show, as the geoal 2
requires, that the above multidatabase queries may be expressed easily, using only
one (formal) query.

NIGHTLIFE was composed from DBs thal were models of distinet universes,
REST-GUIDES is composed from DBs that model differently the same universe. MiBs
like REST-GUIDES will be ealled semantically heteregenecus MDB. The example shows
that one will frequently need to deal with such MDBs,

SIRIUS Systems for Distributed Data Managaemaernt et

Exanple 3.3.

We consider that a user of MICHELIN disagrees upon the gquality of some
restaurants, Furthermore, he is interested typically only in good restaurants, for
instance, the ones that are rated at least '#¥', Also, he knows scme good
restaurants on nis own. Finally, for the restaurants that interest him
particularly, he has in mind additional personal attributes.

It is rather obvious thnat the owners of a public DB like MICHELIN will not allow
this user to modify this DB. The only solution for the user iIs then to constitute
fiis own personal DB, let it be MY-FAV-REST. The schema of MI-FAV-RE3T may be as
follows :

DB MY-FAV-REST

R { R#, RNAME, STREET, TYPE, 3TARS, AVPRICE, TEL) Restaurants
C (C#, CNAME) Courses

¥ { B#, Ci#, PRICE) Menus

TEST { B#, DATE, RESULT) User tests

ENDDB

The content of MY-FAV-REST may be initially a copy of all data relative in
MICHELIN to the restaurants rated "#*' op more. R value and, in particular STARS
value, may express the user judgment if the corresponding Ré¢ value is in TEST,
else R may correspond to the original MICHELIN data. Ancther cholce could be to
weep in MY-FAV-REST only data about the restaurant that the user has tested.

As he wished, the user may now attribute STARS according to his judgment, add or
witndraw restaurants, perform nis own control of a restaurant quality etec, He
needs nmultidatabase queries, first, in order to easily create the DB (see ex. 17
of PUT comnand in [LITB2]). Next, after some time, he will need to add to
MY-FAV-REST the restaurants that became rated '¥%' or more in MICHELIN (ex. 3.9).
Also, he may wish to know the restaurants upon quality or price of which
MY-FAV-REST and WMICHELIN disagree ete. Clearly, first, an MDB 1s needed also in
this case. Next, MDBs mixing public and personal DBs will be obviously of great
importance,

Although this subject will not be discussed, one may see that if interdatabase

integrity dependencies were handled by the system managing the above DBs, then the
updates of MY-FAV-RE3T due to the evolution of MICHELIN could occur automatically.

3.3. MULTIDATABASE MANAGEMENT SYSTEM ARCHITECTURE.

We call multidatabases management system (MDBMS) a system allowing to manage MDBs.
In particular, any MDBMS must allow to formulate simple multidatabase queries,
Fig. 19 shows the general architecture that we propose for an MDBM3. We called it
three-four level architecture [LIT81].

The MDB is defined at the level that we call multidatazbase {conceptual) level. The
definition of the MDB iz called (conceptual) multischema., A multischema is a
collection of the following schemas :

1. - the conceptual schemas of all single DBs.
2. - one ar more schemas that define the interdatabase dependencies.

We call the last schema(s) dependencies schema(s) [LIT80], [LIT81].

352 W. Litwin et af.

MILTIDATABASE
CONCEPTUAL
LEVEL
INTERNAL L8 1 ILS m
ES - External Schema
CS -~ Conceptual Schema
DS - Dependencies Schema
LEVEL
ILS - Internal logical

Ph S 1 Ph 5 2 Ph S n| PhS - Physical Schema

Figure 19 : General architecture of a multidatabase

mandpemant system

The level above the conceptual one is called external level. At this level, users
way define views of the MDB. in external schema may present an MDB as a single DB.
Users of such a view see then only one DB. An external schema may also present an
MDB as (to some extend different) MDB. Users of such a view see a collection of
DBs. We assume of course that one may formulate not only multidatabase queries,

but also mulbiview queries.

The level below the multidatabase level is called internal level. This level may
be constituted from two sublevels :

- the opticnal internal logical level,
- the physical level,

The internal logical level corresponds to the mapping(s) of one or more DBs from
the data model(s) within the multischema to some other data models. For instance,
from the relatlional data model to the CODASYL data model [ZANT9]. The latter
schemas may be the schemas of some preexisting DBs [MOUB1].

The physical level corresponds to the physical implementation of the MDE, The
corresponding schemas define the physical data structures of each DB and of the
dependencies schema if it exists. They also define the physical distribution if an
MDB encompasses several sites. The whole collectien of schemas corresponding to
the internal lewvel is called internal multischema.

Presently, there is no MDBMS that provides all the possibilities that we define
here and in what follows. Four prototype MDBMSs were implemented that provide the
main possibility i. e. simple multidatabase queries [GUES1], [KAB81]. [MOUB1],
{MOUB1al. Two of these systems are relational MDEM3s, two others are bibliograpnic
MDBMSz, An overview of three prototypes is given in the sec, 3.5.

SIRIUS Systems for Distributed Data Manugement 363

All other presently known systems are not MDBMSs in our sense. The goal of these
systems is to manaze a single DB defined by a global ¢r a conceptual schema. This
iz in particular the case of MULTIBASE system of [SMIB1]. The same is true for
MULTIBASE of CAP-30GETI software house. Probably the closest to cur idea of an
MDBMS 1s B¥ DDBMS [LINB1l. Tt would become an MDBM3 if one drops the requirement
for the global achema, modifies the concept of the site autonomy and introduces to
the architecture the concept of interdatabase dependencies.

3.4. MULTIDATABASE MANIPULATION LANGUAGE.

The commands of MALPHA language are designed on the one hand in order to be ALPHA
compatible, On the other hand, in order to reach the goal of on¢ command per
intentional multigatabase query (goal 2), at least for the types of MDBs revealed
by the case study. The commands are as follows :

1. CREATE, ADD, REMOVE DESTROY,
2. OPEN, CLOSE, GET, UPDATZ, PUT, DELETE.

The commands (1) allow to create or to restructure an MDB. The commands {2) allcw
to formulate multidatabase queries. An extensive discussion of all the commands
may be found in [LITB2]. Below, we will only show how OPEN, CLOSE, GET and UPDATE
commands satisfy the case study, mainly through examples,

3.4.1. Multidatabase queries.
3.4.1.1, Multidatabase opening and closing.

Example 3.4,

The command :

OPEN NIGHTLIFE

opens all DBs that of this MDB nc matter now many they are. Vice versa the
command :

CLOSE NIGHTLIFE

closes all DBs of NIGHTLIFE. Multidatabase OPEN and CLOSE may thus avoid to
formulate even very usual elementary commands.

One may alsoc selectively open or close some DBs of an MDB, In particular, one may
indicate in one command a list of DBs or MDBs to be opened or closed.

2.4.1.2. Multidatabase retrieval.

In order tc allow multidatabase retrieval, GET command in MALPHA provides the
following possibilities :

- one may refer to (multi)database names,

- these names may, in particular, prefix a relation name in order to render it
unique, as in the query (1),

- a relation name that is not prefixed is considered as referring to all relations
Wwith this name in all DBs that are opened when GET is issued,

- the result of a GET may be, as in ALPHA, a relation calied then (elementary)
workspace. However, it may also be a zet of relations, called workmultispace.

364 W. Litwin et al.

- RANGE declaration may be a semantic RANGE, that we explain further.

- one may use muiltidatabase standard functions that are a new type of standard
functions /COD70/. For instance as the ones in ex. 8 or NAME function in [LIT8Z].

& GET that leads to a set of relations may be consider as a set of GiETs called
subqueries. Each subquery results from a substitution of prefixed names to

unprefixed names or to variables. A4 subquery may be :

- irrelevant to DBs that names resulf from the substitution. 3Such a query either
query requires it in the predicate, let it be P, and P cannot be put into-the
disjunctive form :

P =P\ P2

where P1 requires exclusively the names within the DBs, An irrelevant query does
not create any result i. e. any workspace.

- relevant to these DBs. This may mean thalt the subguery 1s a relational query or
a simple maltidatabase query. The query may also reguire in P names that are not
within tne DBs, but P may then be put into the disjunctive form. P1 is then
considered as the predicate of tne subquery. Bach relevant subquery creates one
elementary workspace eventually empty.

3imilar principles are valid for UPDATE, PUT and DELETE commands.
Example 3,5,
1. Retrieve in MICHELIN all chinese restaurants.

OPEN MICHELIN
GET W (R} : (R.TYPE = 'CHINESE®) {2)
CLOSE MICHELIN

R iz an unprefixed relation name. However, since only one DB is opened, there is
only cne relation R. Therefore, there is no substitutions and the query leads to
the creation of an elementary workspace., The result of this guery is the one of
the same ALPHA query. Tnis is true any time one formulates in MALPHA an ALPHA
query and one opens only one DB.

2, Retrieve all the restaurants that are chinese for MICHELIN or for GAULT-M.

OPEN REST-GUIDES
GET W (R} : (R.TYPE = 'CHINESE')
CLOSE REST-GUIDES

This time we have !
R = (MICHELIN,R, GAULT-M,R)

Despite the same syntax, this GET acts therefore differently from (2). The
substitutions lead to two relevant subqueries. GET retrieves then in one command
two relations. It thus renders W a set of two elementary workspaces identified
respectively as W.MICHELIN and W.GAULT-M.

In this example, one could express the intentional query using two ALPHA queries.
MALPHA formulation is howaver easier in the sense of the geoal 2. First, it leads
to only one query with the same syntax. Next, this sole guery suffices in fact no
matter how many DBs refer to the restaurants named R, while ALPHA would
necessitate as many queries as there are DBs, 98¢

SIRIUS Systems for Distributed Data Managameant 356

Example 3.5.

Retrieve from RESTAURANTS and from CINEMAS the names and the phone numbers of the
restaurants and of the cinemas that are on CHAMPS ELYSEES street.

OPEN NIGHTLIFE
RANGE (R.RHAME, C.CNAME) X.Y

GET W (X.Y, X.TEL) : {X.STREET = *CHAMPS ELYSEES'}

The RANGE of this query is a semantic RANGE, The values of the variables X and Y
are the constants in parentheses. These constants typically are the names of
relations and of attributes to which refers an intentional multidatabase query.
Our interpretation of unprefixed names allowed to attain the goal (2} when a
multidatabase query refers to the same names in different DBs. Semantic RANGEs
extend this possibility teo different names.

Semantic RANGEs open the way to very pany useful multidatabase gqueries. In the
case of NIGHTLIFE one may, for instance, ask for :

- where to go for less than 100 FF,

~ is BRETAGNE a cinema or a restaurant,

- ete.

In the case of REST-GUIDES one may, in particular, ask for :

- any restaurant that is chinese for a guide,

- all the appreciations of the quality and of the average price of the restaurant
iLASSEREY,

- ete [LITB2].

Example 3.7.

Assume that a restaurant has only one telephone number. Retrieve (i)

MICHALIN RNAME, (ii) MICHELIN.AVPRICE, {(iii) GAULT-M.AVPRICE expressed, however,
in FF; for any restaurant recommended by MICHELIN and sucn that MICHELIN.AVPRICE
is smaller than GAULT-M,AVPRICE expressed in FF.

OPEN REST-GUIDES

X <=-\ GAULT-M.R.AVPRICE / 1Q0
RANGE MICHELIN.R Y

RANGE GAULT-M.R Z

GET W {Y.RNAME, Y.AVFRICE, G-AVPRICE <-- X) :
1 Z (Y.TEL = Z.TEL /\ Y.AVPRICE < Z.X)

In this query ¥ is, as we call it, a virtual attribute. The mapping means that the
value of X is the one of GAULT-M.R.AVPRICE divided by 100, in order to havs all
prices expressed in FF. The symbol ‘\f, means that the values and the name to
appear in the result are the cnes of X. The name however may be changed further,
in this case to G-AVPRICE. One could of course use only the name G-AVPRICE, but,
since shorter, ¥ is easier to manipulate. Vice versa, G-AVPRICE is better for the

result naming.

Example 3.8.

Retrieve from REST=GUIDES all restaurants that are chinese according to at least
one guide. Then, assume that to one value of (RNAME, STREET) corresponds one
restaurant for any DB (we recall that the correspondance between the keys of a
restaurant in different DBs is assumed to be unknown). Present the result of the
query in a manmner such that all data about one restaurant constitute only one
tuple.

356 W. Litwin et al,

OPEN REST-GUIDES

RANGE (R, REST) X

RANGE (RNAME, WAME) (RNAME)

RANGE (TEL, T#) (TEL)

GET W NORM1{(RNAME, STREET), ¥} : (X.TYPE = ' CHINESE?).

The deslired presentation 1s due to the usage of MALPHA standard function named
NORM1. If NORM1 was not applied the result of this GET would be a set of relations
where one restaurant would be described with as many tuples as there are guides
that recommend it. The formal description of NORM may be found in [LIT82].
Shortly speaking, NORM] produces cne tuple from all tuples that have the same
values of normalization key, (RNMAME, STREET) in this query. If some attributes are
functionally dependent on the normalization key and have the same name {(even if
this name results from a semantic RANGE only, as for TEL and RNAME in this query),
then only one attribute is created in the tuple for all of these attributes. In
occurrence, the result would be the set of relations as follows :

MICHELIN (R#, RNAME, STREET, TYPE, STARS, AVPRICE, TEL)
KLEBER (REST#, RNAME, STREET, TYPE, FORKS, T#, MEANPRICE, OWNER)
GAULT-M (R#, RVAME, STREET, QUAL, TEL, TYPE, AVPRICE, COMMENT)

MICHELIN-KLEBER (R#, RNAMZ, STREET, MICHELIN.TYPE, STARS, AVPRICE, THL,
REST#, KLEBER.TYPE, FORKS, MEANPRICE, OWWER)

MICHELIN=-GAULT-M (...,)

KLEBER=GAULT-M (,... }

MICHELIN-KLEBER-GAULT-M (MICHELIN,.R#, RNAME, STREET, MICHELIN.TYPE,
STARS, MICHELIN.AVPRICE, TEL, REST#, KLEBER.TYPE, FORKS, EANPRICE,
OWNER, GAUULT-M.R#, QUAL, GAULT-M.TYPE, GAULT-M.AVPRICE, COMMENT)

The first three relations contain the restaurants known only to ane of the DBs :
MICHELIN, then KLEBER, then GAULT-M. Then three relations contain the restaurants
known to a couple of Dis. Finally, the last relation contain the restaurants known
to all the DBs. Note that the number of guides that recommend a restaurant is a
meaningful information.

One may define a standard functicn similar to NORMT, let it be NORM? that would
work in the similar manner, except tnat it would produce one relation. Therefore,
typically, this relation would contain null values. One may also think about NORM3
that would also work in the similar manner but would create the attributes
corresponding to DB names eto,

3.4.1.3. Multidatabase update.

Example 3.3.

Update in MY-FAV-REST the number of stars of each restaurant that is '#%7 ip
MI-FAV-REST and ‘#%#" in MICHELIN and which key is not in MY-FAV-REST.TEST
relation. {Micnelin considers thus that these restaurants improved their quality
and the user wishes to update in consequence its personal DB, without however
changing nis own judgment when it exists).

OQPEN MICHELIN, MY-FAV-REST
RANGE MICHELIN,R X
RANGE MY-FAV-REST.R Y

SIRIUS Systems for Distributed Data Managemant 367

RANGE TEST Z

HOLD W (Y.R#, Y,3TARS) : (Y.R# = X.R# /\ Y.STARS = *#%' /\ X ,STARS =
waRty N T 7 (ZLAF = Y.R#))

W.STARS = YH#¥!

UPDATE W

Other, easy to formulate in MALPHA and of obvious practical interest,
multidatabase update queries are, for instance, the following querias :

- change In all DBs of REST-GUIDES the phone number 123 to 456 .

- do it for both REST-GUIBES and MY-FAV-REST.

- update STREET = ETOILE to CH-DE-GAULLE in all DBs of NIGHTLIFE, REST-GUIDES and
MY-FAV-RE3T.

- etec [LIT82].

3.5. PROTOTYPES.

3.5.1.7 MADSM system.

3.5.1.1. Overview.

MRDSY is a relational MDBMS that generalizes the commercial system MRDS, of
HONEYWELL. The aim of MRDSM is the study of sasiness of the generalization of a
relational DBM5 into an MDBMS. The first goal was to provide simple multidatabase
queries to DBs that are on the same site, As ex. 3.1 showed, this possibility
alone constitute a substantial benefit for users.

The implementation of such MDBMS revesled effectively very easy. It took few month
of student work. Same low cost should be expected for the analogous generalization
of other existing relational systems. This easiness was mainly due to the conecept
of work database that will be explained later.

3.5.1.2. Query lanpuage.

MRDS language is quite similar to SQL. MRDSM language is a generalization of this
language that allows :

- to use multidatabase names and lists of database names in OPEN command,

- to formulate RANGE on database names,

- to prefix relation names with the corresponding variables in a tuple RANGE.

Example 3,10.
The query (1) would be formulated as follows :

mre open nightlife;

-bd(x restaurant) (y cinema)
~range{rl x.r) (21 y.c)
=select rl.rname,cl.cname
~where ri,street=cl.street

CMDB

Roze de Tunis
5t. Severin

358 W. Litwin et al.

3.5.1.3. Query processing.

The algorithm for query processing works as (ollows :

1. MRDSM determines the names of databases that should be opened, Then, it
generates the corresponding OPEN commands of MADS and calls MRDS.

2. If the guery reveals an elementary one, i. e. the user nas formulated an MADS
query, then MRDSM calls MRD3 that processes the query as usually.

3. Else MRD3M :

- determines the relations that has to be extracted from each DB, using some
elementary (MRDS) gueries.

- produces the MRDS schema of a DB that would be a sel of these relations.

- asks MADS to create this DB that, initially, is empty. The DB constitutes the
workmultispace called work DB.

- asks MEDS to execute tne elementary queries. Tnen, asks to reinsert eacn result
{a workspace) into the corresponding relaticn in the work DB.

- asiks MRDS to perform the queries to the work DB that complete the execution of
the multidatabase query.

- typically, destroys the work DB and closes the other bBs.

The creation of work DB allows to perform by MRD3 relational operations that
should be otherwise reprogrammed. Such a cnolce would be a rather bad option,
sinee, first, it would represent much greater programming effort. Next, it would
probably be less performant. The reinsertion of tuples inte the work DB is in fact
not a waste of time, but it allows MRDS to create complex indexes, necessary in
order to speed up relational operations such as joins.

3.5.2. MUQUAPOL system.

MUQUAPQL is built on the top of POLYPHEME DDBMS. It allows users te formulate
multidatabase queries to DBs managed by the leccal machines and the global machine
of POLYPHEME [ADI8C]. The query language is a multidatabase extension of QUEL,
called QUELM, Users of QUELM may refer to database names, They may also refer to a
«ind of predeclared semantic RANGE, called equivalence dependency /KAB81/. The
dependency is defined by MDB administrator(s) and is stored in the dependencies
schemas. MUQUAPOL translate QUELM queries into relational algebra POLYPHEME
queries and, then, manages the query processing.

Example 3.17,

The query "retrieve from BEST-GUIDES the names and the average prices of all the
restaurants that are chinese for a guide", would be formulated as follows :

OPEN REST-GUIDES
HANGE OF X IS (EQUIV REST)

RETRIEVE (X.NAME, X.MEANPRICE)
WHERE (X.TYPE = ?CHINESE')

KLEBER.REST
NAME MEANPRICE

TONKIN 150

SIRIUS Systens for Distributed Data Managemant 360

TOUR DE JADR 220
MICHELIN.R

RAAME AVPRICE
TONKIN 176
SAIGON 100
GAULT-M. R

RNAME AVPRICE
TOUR DE JADE 240
TONKIN 160
CANARD LAQUE 130

The selection of atribute names is due to the eguivalency dependencies, declared
far tne atbributes with the same meaning. All prices are supposed to be in F¥.
Note the differences between the estimations for a restaurant. Note also that a
restaurant is not necessarily chinese for all the guldes,

3.5.3. MESSIDOR system.
3.5.3.1. Overview.

“ESSIDOR allows multidatabase retrieval from bibliographic databases. The
databases may be on different sites, as they may be all on one site (E3A,
QUESTEL,...). They may use different data manipulation languages (QUEST,
MISTRAL,...). Tne MESIDOR user may however use a single language called MESSIDOR

language. This language is very close to the Common Command 3et Language THEGTT/
recommended by European Communities as the standard language.

Presently, hundreds of bibliographic databases are available on the EURONET,
TRANSPAC and other network sites. However, the difficulties related to different
access procedurss, language neterogeneity and the work with several databases on
one-by-one basis discourage wost of potential users. Systems like MESSIDOR respond
to a strong user demand and should overcome the present annoying state-of-the-art.
Presently, no system similar to MESSIDOR is known.

MESSIDOR is implemented on MICRAL microcomputer. It is intended to be a personal
multidatabase system for users needing various bibliographic data. A site
considers the system as its usual terminal which means that no site scftware
modification is required. MESSIDOR may thus potentially be used with any database
server site,

3,5.3.2. Messidor language.

4 user searches documents during a session. 4 session is an interactive sequence
of MESSIDOR commands. The commands available for users are the following ones :

- BASE for the choice of databases for the session (multidatabase open).

- LIST for multidatabase display of dicticnaries of search terms.

- SELECT for multidatabase search terms selection.

- FIND for multidatabase selection of documents using directly typed search terms,
- COMBINE for multidatabase combining of selected sets of documents.

_ DISPLAY for multidatabase presentation of details of the selected document.s.

360 W. Litwin et al.

-~ HISTORY for the summary of the previous commands and results of the current
search session.

- LOCAL for monodatabase searching using a local language.
- GLOBAL for the return to the MESSIDOR language.
- HELP for explanations about MESSIDOR use.

Example 3.12.

BASE INSPEC, PASCAL
ALL DATABASES ARE OPENED

STEP 1
FIND KW = INFORMATION RETRIEVAL * NATURAL LANGUAGES
53 DOCUMENTS DISTRIBUTED AS FOLLOWS :
PASCAL 32
LNSPEC 21

STEP 2
FIND KW = LINGUISTICS
1534 DOCUMENTS DISTRIBUTED AS FOLLOWS :
PASCAL U405
INSPEC 4134

STEP 3
COMBINE 1/2
K5 DOCUMENTS DISTRIBUTED AS FOLLOWS :
PASCAL 30
INSPEC 15

STEP U
DISPLAY STEP = 3
(the documents are displayed and/or printed)

STEP 4
STOP
(MESSIDOR closes the databases and disconnects the sites).
In this sessicn the user works With databases INSPEC and PASCAL, '‘#' means ‘*and’,
COMBINE command eliminates from the set resulting the step 1 all documents indexed
with the search termms of the step 2.

More extensive discussion of MESSIDOR commands may be found in /MOUB1/.

3.5.3.3. System architecture.

MESSIDOR system is built up from the following main components :
(A) - the coordinator that manages all other components, user inteface and higher

level interface witn the sites.
(B} - the translators to local languages.

(C) - the telecommunication driver .

The components (A} and {B) are written in BASIC. (C) is written in Z80 assembler.

SIRIUS Systems for Distributed Data Managemaent m

3.6, CONCLUSIONS.

The database approach considers that data about a universe should constitute a
single database (DB). The multidatabase approach considers that data may also
constitute a collection of DBs. 1he general goal of the multidatabase approach is
to provide tools allowing to manage collsctions of DBs. One of the main goals are
languages allowing to formulate multidatabase queries. Another goal are tools
allowing to define interdatabase dependencies.

The multidatabase apprcach generalizes the database approach. In particular, the
concept of a multidatabase generalizes the one of a database. Also, the concept of
an MDBMS generalizes the one of a (D)DBMS. The concepts that render MALPHA &
multidatabase generalization of ALPHA, lead to analogous generalizations of QUEL,
SQL or any relational language. The practical consequénce 1z that one gains new
possibilities, without loosing any of those that resalt, or may result, froc the
present prineiples.

The work on the prototypes showed that to implement an MDBMS using existing
(DYDBEMSs may be an easy task. In our opinion, this weans thal new systems for data
management should henceforward be typically designed as MDBMSs. Thiz design should
be particularly useful when one has to manage 2 great number of DBs.

4. OVERALL CONCLUSIONS.

We have presented two approaches to bthe distributed data management problem. The
SIRIUS-DELTA approach provides tools to constitute a single database. The
multidatabase approach provides tools to constitute a multidatabase. The
prototypes that have been developped within the project prove the feasibility of
the corresponding industrial systems.

Even a glance on the present state~of-the-art shows that such systems will be
highly needed. The rapid development of local networks will soon render necessary
systems for the management of distributed enterprise data. The Videotex systems
such as PRESTEL (UK), TELETEL (France), TELIDON {(Canada) or COMPUSERY (USA) offer
already aceess to thousands of databases. Bibliographic database servers like
QUESTEL (France}, or networks, like EURONET, provide the access to hundreds of
heterogeneous bibliographic databases. Finally, the exponential grow of the park
of microcomputers, will soon isad to a very large number of personal databases.

The research in the project revealed large domains where the techniques for
distributed data management should apply. In particular, one may cite
multiprocessor systems such as SABRE [GARB1]. Alsc, this is the case of real-time
systems with strong resiliency constraints {LEL81]. Finally, the Open Systems
[I5082] will particularly need such techniques.

Among the research problems that are still open, one may clte the problem of tools
for the efficient management of heterogenecus data. An effort is also required in
the area of query decomposition. Fimally, cne should particularly investigate the
techniques for the management of a very large number of databases.

Note.
The project SIKIUS was airectea by Mr. J. Le Bihan, until 1982, then by W. Litwine

The coordination team also involved C. Hsculier, &. Gardarin ana G. 1e lann. The
project is supported by Agence de 1T Informatique (ADI).

362

[ABC82]

[ADIT78]

[ABTT8a]

[ADIBO]

[AFCT8]

[ANDBO]

[ANST5]

[BAES1]

[BDVED]

{B0G81]

[BOS78]

[BOUGS1]

[BOUB1a]

W. Litwin et al.

REFERENCES

F. Abchine, #.R.BA project: generalities for external and
coneeptual models for relational DDE,

These 3 cycle, Toulouse,

February 1982, 218 {in french).

M. Adiba, A relational model and an architecture for distri
buted databasss systems,

PhD thesis, Grenoble university,

September 1978 (in french).

M. Adiba,J.C. Chupin,A, Demolombe, G. Gardarin, J. Le Binan,
Issues in distributed data base management systems : a tacni
23l overview,

Procsedings of Yth VLDB,

September 1978, 39=110.

M. Adiba, J.M. Andrade, P. Decltre,F. Fernandez,G.T. Nguyen
POLYPHEME: an experience in distributed database system de
sign and implementation,

international symp. on distributed data bases, C. Delobel an
d W. Litwin (eds), North-Holland,

Maren 1980, 57-98.

Groupe AFCET-TTI bases de donnees reparties, Caracterisation
d un 3SGBUR,

Atelier du congres AFCET-ITI, Gif-sur-Yvette,

wovember 1978 (in french).

E. Andre, P. Decitre, Project Polypheme: the DEM distributed
execution monitor,

Proceedings of the international symposium on distributed
data bases, Versailles, France,

May 1980.

ANSI, ANSL/X3/SPARC study group on data base management sys
tens,

interim report, FDT, bulletin of ACM-SIGMOD, vol.T, no.2,
February 1975.

J.L Baer, G. Gardarin, C. Girault, C. Roucairol,The two-step
commitment protocol, modeling, specification and proof metho
dologle,

5 th international conference on software engenesering,
March 1381.

B. Del Vecchio, P. Penny, The PHLOX project: three databases
management systems for micro-computers,

Sigsmall symposium, .

September 1980, o s Leomfra_

G. Bogo, J.C. Chupin, Groupe SCOT CII-HB, Conception des ap

plications transactionnelles réparties,

Actes des journées de présentation des résultats du projet

SIRIUS,

Hovember 1981, 309-320 (in french).

P. BO3C, A, Chauffaut, Le systeme FRERES: contribution a la

cooperation de bases existantes, interrogation de fichiers

sur reseau de calculateurs heterogenes,

FnD thesis, university of Rennes,

1978 {in french).

J. Boudenant, P. Rolin, Modeling of the transaction distribu

tion algorithm in Sirius-Delta,

Symposium on distributed software and database system,

July 1981, 163-176.

J. Boudenant, Some solutions for distributed database recove

ry in SIRIUS-DELTA,

Distributed data sharing systems, North-nolland publication,

June 1981, 55-65.

[CALYB]

[CopTu]

[CODT1]

[cobty]

[cops2)]

[DANTT]

[DEM35]

[FER31]

[FER31a]

[FOR77]

[GARG1]

[GRATS]

{GUES1]

[Hamiv]

SIRIUS Systams for Distributed Data Managsment k [k]

J.¥. Calecn, Projet POLYPHEME. L’expresaion at la dégompogt
tlon de transactions dans un systeme de bases de donneas re
part.ies,

PnD thesisz, university of Grenoble,

1978 (in french).

E.F Codd, A relational model of data for large shared data
banks,)

CACM, vol.13, no.b,

June 1970, 377-337.

CODASYL, Data base task group of tne CODASYL,

ACM report, tew-York,

April 1971,

E.F. Codd, tHxtending the database relational model to captu
re more meaning,

CACM, vol.b, no.k,

June 1979.]

E.F. Coad, Relational database: 4 practical foundation for
productivity,

CACM, vol.25, nc.2,

February 1982.

Ng. X. Dang, G. Sergeant, Expression of parallelism and com
munication in distributed network processing,

Proceedings of the international confereace on parallel pro
cessing, Bellaire, Michigan,

1977. :))

R. Demolombe, Estimation of the number of tuples satisfying
a query expressed on predicate caleulus language,
Proceedings of the VLDB, “ontreal

October 1980, 55-63.

G. Ferran,listributed checkpoint In a distributed management
systen,

Real=time systems symposium,

December 1381.

A. Ferrier,P. Penny, PHLOXZ a server database management sys
tem in a distributed environmemt,

Symposium on Reliability in distributed software and databa
3e systems,

July 1981.

H. Foradick, R. Scnantz, R. Thomas, Operating systems for
aomputer netuorys,

2nd distributed processing workshop, Brown University, Rhode
Islands,

1977.) o

G. Gardarin and al., An introduction to SABRE: a multi-micro
processor database machine,

6th workshop on computer archictecture for non numerical pro
cessing,

June 1981,)
J.N. Gray, Notes on database operatingsystems, in operating
systems- an advanced course,

R. Bayer and al., Lecturs notes in computer science,Springer
Verlag 60,

1978, 394-481, .
5. Guemara, MAD3: Management system for one relational multi
database,

INRLA, SIRIUS report MOD-I-045,

September 1981, 53 (in french).

M. Hammer, D. Mcleod, On database management system architec
ture,

Lab. Por comp. science MIT, MIT/LCS/TM-141,

Uatober 19749, 35,

364

[1s3082]

[KABB1]

{LACS1]

{LEBB0]

[LED81]

[LEL77]

[LEL80]

[LEL81]

[LING1]

[LIT30]

[LIT81]

{LIT82]

[MOT81]

[MOUB?1]

[MOUB1a]

[NEGTT1

W. Litwin et &,

130, Information srocessing asystem - open systems interconns
xion,

LS0/TCeT7/3C15/07 18,

February 1982,

K. Kabbaj, MUJUAPOL: a distributed multidatabases management
3ystem,

INRIA, SIRIUS report HMoD-I-04Y,

November 1981, 50 (in french).

J. La Chimia, Cost evaluation of reguest in SIAIUS-DELTA,
SIRIUS report EVA-I-007,

October 1981.

J. Le Bisan, C. Esculier,G. Le Lann, W. Litwin, G. Gardarin,
5. Sedillot, L. Treille, & frenon nationwide project on dist
ributed data bases,

Proceeaings oth VLDB, Montreal,

October 1980, 75=85.

J.M, Le Dizes, Le projet SOPHIA : une base de donnees repar
ties d horaires de transport,

Actes des journfes de présentation des résultats du ohajet
SIRIUS,

November 1381, 257-262 (in frehch).

G. Le Lann, Introduction a 1’analyse des systemes multiréré
rentiels, ,

Thése dootorat d &tat, Univarsisé de Rennes,

May 1977 (french).

G. Le Lann, A distributad system for real-time transaction
processing,

IEEE computer, vol.ld, no.2,

February 81, 43-48,

G. Le Lann, SCORE : real-time distributed computing systems
for automated applications,

INRTA report GAL-I-001,

November 19481 (in french) .

B, Lindsay, Object naming and catalog management for distri
buted database manager,

2nd int. conf. on distributed computing systems,

April 1981, 31-40.

W. Litwin, & model for a distributed data base,

end ACM comp. exp. university of Laffayette,

February 1983,

W, Litwin, Logical mocel of a distributed data base,

2nd int. sem. on distributed sharing systers.R.P Van de Riet
W, Litwin (eds.), dorth-Holland,

June 1981, 173-207.

W. Litwin, £, Xabbaj, HMultidatabase approach to data nanage
ment,

INRIA research report SIRIUS MOD-I-0S0,

March 1982, 3.

A, Motro, P. Buneman, Constructing superviews,

Proceedings SIGMOD, Ann Arbor,

May 1381, 56=64,

C. Moulinoux, T, Faure, W. Litwin, MESSIDOR system,
Symposium on small systems, ACM STGSMALL,

October 1981, 130-135.

B. Moussaoui, A. Saint Upery, Cooperation between homgenous
doctumentary system in network environment,

Proceedings of IDT France,

May 1981, 53-62,

A.E. Negus, Standard commands for retrieval systenm,

Interim report of European Comrmuni ties,

May 1977.

[weu7y]

[NoU7Y)

[POLTY]

[ROBTT]

[RCST3]

(RC382]

LROT78]

[200781

[SERBGY

[3MI75]

[3MIB1]

[SPATB]

[ST077]

[TANST]

[THO8E]

[TOTT78]

L

SIRIUS Systerra for Distributed Data Managament 366

K.Js Nouhold, H. Biller,, POREL., A distributed datz base on
inhomogreneous aomputer network,

Procosdings of 3th VLDB,

1977 .

Niguyen Gia Toan, A dynamic distribution algorithm for rela
tional query interpretation over cooperating data bases,
USM3 report,

Grenoble 1979.

Groupe POLIPHEME, Final report of POLYPHEME project,

SIRIUS internal report, November 1979,

P. Robert, J.P. Verjus, Towards autonomous description of
synchronization modules,

Proceedings of the IFIP conference, 1977.

D.J. Rosenkrantz & al., System level concurrency contrel for
distributed database systems,

ACM Tods, vol.3, no.2,

June 1978, 175-198.,

J. Rosselin, 2000 avallable data banks: which to choose,
Temps Reel, no 30,

February 1982 (in french).

J.B. Hothnie, Distributed database management,

Proceedings of the 4th VLDB,

September 1978.

Computer Corporetion of America, SDD-1 technical reports,
Cambridze,

1978.

G. Sergeant, L. Treille, SER: a ayatem for dlstributed axecu
tion based on decentralized control technigues,

Proceedings of the ICCC, Atlanta,

1980.

Jo M. Smith , P. Y. Cnang, Optimazing tha performance of
relational algebra database interface,

Communication of the ACM, vol.18, no.10,

October 1975, 568-579.

J. M, Smith, P.A, Bernstein, U. Dayal, N. Goodman, T. Lander
sK. W, T Lin, E. Wong, Multibase integrating heterogeneous dis
tributed database systewms,

Proceedings AFIPS Chicago,

May 1381, 487-49G,

5. Spaccapietra, Problematical conception of distributed da
tabases management systems,

PhD thesis, Paris VI university,

November 1978 f{in french).

M.A Stonebraker, Distributed davabase version of INGRES,

2nd Berkley worshop on DDM and comp.networks,

May 1977.

K. Taraka, Y. Kambayashi, Databases into a distributed data
base,

Proceedings of 7th VLDB,

September 1981, 131-143.

R. Thomaa, Process structure alternatives: towards a distri
buted INGRES,

Int. symp. on distributed data bases,

C. Delobel and W. Litwin {eds.), North-Holland,

March 1980, 215-227,

K.C. Toth, 5.A. Mahmoud, J.5. Riordon, G. Sherif,

The ADD system: an architecture for distributed databases,
Proceedings of 4th VLDB,

September 1978, 4bH2-U71.

366

[TSI77]

[YAOTS]

[240975]

[ZURS1]

W. Litwin et al.

D.Tsichritzis, A. Klug, The ANSI/3PARC DBMS framework-report
of the study group on data base management systems,
Technical note 12, CSRG, university of Toronto,

July 1977.

3. B. Yao, Optimization of query evaluation algoritnms,

ACM Tods, vol.d, no.2,

June 1979, 133=155.

C. Zaniclo, Multimodel external schemas for Codasyl database
m-vagement systems,

IFIP TC-2 workshop conf. on data base architecture,

June 1979, 157-176,

G. Zurfluh, Le projet PLEX0S: presemtatlon de 1 appllcatlon
et des obgectlfs,

Actes des Journees de preseqtatlon des résulbats du projet
SIRIUS,

November 1981, 241-256 (in french).

