
LH* | A Scalable, Distributed Data

Structure

Witold Litwin

Universit�e Paris 9 Dauphine

and

Marie-Anne Neimat

Hewlett-Packard Laboratories

and

Donovan A. Schneider

Red Brick Systems

We present a scalable distributed data structure called LH*. LH* generalizes Linear Hashing (LH)

to distributed RAM and disk �les. An LH* �le can be created from records with primary keys,

or objects with OIDs, provided by any number of distributed and autonomous clients. It does

not require a central directory, and grows gracefully, through splits of one bucket at a time, to

virtually any number of servers. The number of messages per random insertion is one in general,

and three in the worst case, regardless of the �le size. The number of messages per key search is

two in general, and four in the worst case. The �le supports parallel operations, e.g., hash joins

and scans. Performing a parallel operation on a �le ofM buckets costs at most 2M +1 messages,

and between 1 and O(log2M) rounds of messages.

We �rst describe the basic LH* scheme where a coordinator site manages bucket splits, and

splits a bucket every time a collision occurs. We show that the average load factor of an LH*

�le is 65{70% regardless of �le size, and bucket capacity. We then enhance the scheme with

load control, performed at no additional message cost. The average load factor then increases to

80{95%. These values are about that of LH, but the load factor for LH* varies more.

We next de�ne LH* schemes without a coordinator. We show that insert and search costs are

the same as for the basic scheme. The splitting cost decreases on the average, but becomes more

variable, as cascading splits are needed to prevent �le overload. Next, we briey describe two

variants of splitting policy, using parallel splits and presplitting that should enhance performance

for high-performance applications.

All together, we show that LH* �les can e�ciently scale to �les that are orders of magnitude

larger in size that single-site �les. LH* �les that reside in main memory may also be much faster

than single-site disk �les. Finally, LH* �les can be more e�cient than any distributed �le with a

centralized directory, or a static parallel or distributed hash �le.

Categories and Subject Descriptors: D.4.3 [Software Engineering]: File Systems Management

Witold Litwin's work was done while the author was visiting HP Laboratories. Donovan Schnei-

der's work was done while the author was at HP Laboratories.

Authors' addresses: Witold Litwin: Universit�e Paris 9 Dauphine, Place du Marechal de Lattre De

Tassigny, 75775 Paris Cedex 16, France, email: <litwin@etud.dauphine.fr>; Marie-Anne Neimat:

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California, 94304, USA, email:

<neimat@hpl.hp.com>; Donovan A. Schneider: Red Brick Systems, 485 Alberto Way, Los Gatos,

California, 95032, USA, email: <donovan@redbrick.com>.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

speci�c permission.

cACM

2 �

| distributed �le systems; H.2.2 [Database Management]: Physical Design | access methods;

H.2.2 [Database Management]: Systems | distributed systems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: data structures, distributed access methods, extensible hash-

ing, linear hashing

1. INTRODUCTION

The general trend in computer applications is towards online processing. More and

more applications are mission critical and require fast analysis of unpredictably

large amounts of incoming data. The traditional architecture is to deal with data

through a single processor and its main (RAM) memory with disk as secondary

storage. Recent architectures attempt to bene�t from distributed or parallel pro-

cessing, using multiprocessor machines with a local RAM per processor, and/or

distributed processing on a number of sites. Finally, client/server architectures are

widely used to provide specialized services in shared servers.

The trend towards distribution and parallelism is due to several factors. The

main one is that whatever capabilities a single processor or site could have, a pool

of sites can provide more resources and power. A second factor is the existence

of high speed links. The evolution is rather spectacular: 10 Mb/sec (Megabits

per second) Ethernet links are common, 100 Mb/sec FDDI or TCNS are in mass

production [Gallant 1992; Byte 1992] and 100 Mb-1Gb/sec links are coming, e.g.,

Ultranet, HIPPI, or Data Highways. Similar speed cannot be achieved using mag-

netic or optical disks. It becomes more e�cient to use the RAM of another processor

than to use a local disk. Clearly, distributed RAM �les will allow a database sys-

tem to perform operations that were not feasible in practice within the classical

database architecture.

Furthermore, it is common to �nd in an organization hundreds, or even thousands

of interconnected sites (processors), with dozens of megabytes (MB) of RAM per

site, and even more of disk space. This allows for distributed RAM �les reaching

gigabytes (GB). E�ciently harnessing the power of these large distributed systems

is an important open research problem [Vaskevitch 1994; DeWitt and Gray 1992].

The bottom line is that whatever the possibilities of a site or processor, distributed

processing can o�er much more [Tanenbaum 1995].

However, distributed processing should be applied wisely, and this may be di�-

cult. A frequent problem is that, while the use of too many sites may deteriorate

performance, the best number of sites to use is either unknown in advance or can

evolve during processing. Given a client/server architecture, we are interested in

methods for gracefully adjusting the number of servers, i.e., the number of sites or

processors involved. We present a solution for the following context.

There are several client sites (clients) sharing a �le F . The clients insert ob-

jects given OIDs (primary keys), search for objects (usually given OIDs), or delete

objects. The nature of objects is unimportant here. F is stored on server sites

(servers). Clients and servers are whole machines that are nodes of a network,

or processors with local RAM within a multiprocessor machine. A client can also

� 3

be a server. A client does not know about other clients. Each server provides a

storage space for objects of F , called a bucket. A server can send objects to other

servers. The number of objects incoming for storage is unpredictable, and can be

much larger than what a bucket can accommodate. The number of interconnected

servers can be large, e.g., 10{100,000. The pool can o�er many gigabytes of RAM,

perhaps terabytes, and even more of disk space. The problem is to �nd data struc-

tures that e�ciently use the servers. We are interested in structures that meet the

following constraints:

(1) A �le expands to new servers gracefully, and only when servers already used

are e�ciently loaded.

(2) There is no master site that object address computations must go through, e.g.,

to access a centralized directory.

(3) The �le access and maintenance primitives, e.g., search, insertion, split, etc.,

never require atomic updates to multiple clients.

Constraint (2) is useful for many reasons. In particular, the resulting data struc-

ture is potentially more e�cient in terms of messages needed to manipulate it, and

more reliable. The size of a centralized directory could be a problem for creating

a very large distributed �le. Constraint (3) is vital in a distributed environment

as multiple, autonomous clients may never even be simultaneously available. We

call a structure that meets these constraints an Scalable Distributed Data Structure

(SDDS). It is a new challenge to design an SDDS, as constraint (2) precludes clas-

sical data structures modi�ed in a trivial way. For instance, an extendible hash �le

with the directory on one site and data on other sites is not an SDDS structure.

To make an SDDS e�cient, one should minimize the messages exchanged through

the network, while maximizing the load factor. Below we describe an SDDS called

LH*. LH* is a generalization of Linear Hashing (LH) [Litwin 1980]. LH, and

its numerous variants, e.g. [Salzberg 1988; Samet 1989], were designed for a single

site, or for a multiprocessor machine with shared memory [Severance, Pramanik,

and Wolberg 1990]. LH* can accommodate any number of clients and servers, and

allows the �le to extend to any number of sites with the following properties:

|the �le can grow to practically any size, with the load factor about constant,

typically between 65{95% depending on �le parameters,

|an insertion usually requires one message, three in the worst case,

|a retrieval of an object given its OID usually requires two messages, four in the

worst case,

|a parallel operation on a �le of M buckets, costs at most 2M + 1 messages, and

between 1 and O(log2M) rounds of messages.

This performance cannot be achieved by a distributed data structure using a

centralized directory or a master site.

LH* is especially useful for very large �les and/or �les where the distribution of

objects over several sites is advantageous for exploiting parallelism. A bucket of an

LH* �le can also be a whole centralized �le, e.g., a disk LH �le. It therefore becomes

possible to create e�cient scalable �les that grow to sizes orders of magnitude larger

than any single-site �le could.

4 �

The basic algorithm for LH* was de�ned in [Litwin, Neimat and Schneider 1993].

This article describes the algorithm in more depth. First, it discusses more features

| parallel queries in particular. It also reports more extensive performance studies

that con�rm the excellent performance for much larger �les. The basic algorithm is

also enhanced with an algorithm for load control. This results in a higher load factor

than that of LH* without load control. The load control algorithms proposed for

LH could not be applied to LH* because they would lead to a prohibitive messaging

cost. An algorithm speci�c to LH* is reported that is based on estimating the load

factor of the �le on the basis of the load of a single bucket. While this principle

naturally leads to some inaccuracy, its basic advantage is that the load control is

obtained at no additional message cost. The algorithm is proved e�cient through

extensive simulations as reported in this article.

A basic property of LH* as described in [Litwin, Neimat and Schneider 1993]

is that splits and merges are managed by a special site called the split coordina-

tor (SC). The existence of an SC has advantages, but it also has drawbacks, e.g.,

the need for sending messages between buckets and the SC, and the vulnerability

to failure. In this article, we de�ne variants of LH* without any SC. Such vari-

ants require load control and some modi�cations to the splitting policy as de�ned

in [Litwin, Neimat and Schneider 1993] because uncontrolled splitting could lead to

unlimited �le overload. The article proposes several strategies for splits in an LH*

�le without SC. They di�er with respect to the conditions under which the next

split should occur. The analysis shows the superiority of one of the strategies.

We also outline some variants of LH* that can be combined with any feature

discussed earlier. One variant, called parallel splits, should increase throughput on

fast networks, and under high insertion rates. Another variant, called presplitting,

based on recursive LH [Ramamohanarao and Sacks-Davis 1984] may provide similar

advantage, and allows for more autonomous splitting at each site. The drawback is

that the strict bound on the worst case key search length does not hold. However,

the expected deterioration should typically be negligible.

Section 2 contains a brief overview of Linear Hashing. Section 3 presents the basic

LH* algorithm and in Section 4 its performance is analyzed. Section 5 describes

several variants, including LH* without a coordinator, parallel splits and presplits.

Related work is presented in Section 6. Section 7 concludes the article. A brief

de�nition of common terms is included in Appendix A.

2. LINEAR HASHING

LH is a hashing method for extensible disk or RAM �les that grow or shrink dy-

namically with no deterioration in space utilization or access time. We describe

this method only briey as the full description is widely available in the litera-

ture [Litwin 1980; Enbody and Du 1988; Salzberg 1988; Samet 1989] The �les are

organized into buckets (pages) on a disk [Litwin 1980], or in RAM [Larson 1988].

Basically, an LH �le is a collection of buckets, addressable through a directoryless

pair of hashing functions hi and hi+1; i = 0; 1; 2::: The function hi hashes (pri-

mary) keys on N � 2i addresses; N being the initial number of buckets, N � 1. An

example of such functions are the popular division modulo x functions, especially:

hi(C) ! C mod N � 2i

� 5

251

(c)(b)(a)

321

215

153

10

32

216

n=0

h1 1h

n=0

153

216

321

32

10

h0

32 153

145

h1h

(d) insert of 7 caused split of bucket 1; keys 360 and 18 inserted.

2 2h

n=1

12 321 6

216 215 10

251

i=1i=0 i=1

(d)

25110145

h2 2h h2 2h

n=0

12 321 6 215

32 153 18 7

360

216

i=2

(a) original file w/153 causing a collision at bucket 0.

(b) after split of bucket 0 and inserts of 251 and 215.

(c) insert of 145 causes collision and split of bucket 0; 6 and 12 inserted.

Fig. 1. Linear Hashing.

2.1 File expansion

Under insertions, the �le gracefully expands through the splitting of one bucket at

a time into two buckets. Figure 1 illustrates this process using functions hi above,

for N = 1 and a bucket capacity of 4. A function hi is linearly replaced with hi+1
when existing bucket capacities are exceeded. A special value n, called pointer, is

used to determine which function, hi or hi+1, should apply to a key (OID). The

value of n grows one by one with the �le expansion (more precisely it grows from

0 to N � 1, then from 0 to 2N � 1, etc.). It indicates the next bucket to split and

it is always the leftmost bucket with hi.

6 �

A split is due to the replacement of hi with hi+1, and is done one bucket at a

time. Typically, each split moves half of the objects in bucket n to a new address

that is always n + N � 2i. At some point, hi+1 replaces hi for all current buckets.

In this case, hi+2 is created, i i+1, and the whole process continues for the new

value of i. It can continue in practice inde�nitely. The result is an almost constant

access and memory load performance, regardless of the number of insertions. This

property is unique to LH schemes. The access performance stays close to one disk

access for successful and unsuccessful searches alike [Litwin 1980].

2.2 Split control

A split can be performed whenever a collision occurs. Such splits are called uncon-

trolled. The load factor is then about 65 { 69%, depending on the bucket capacity.

Some applications, however, require a higher load. One way to achieve this goal is

to monitor the load factor, and to perform a split not only when a collision occurs,

but also when the load factor is above some threshold t. Such splits are called

controlled. At the expense of a slight deterioration of access performance, the

split control allows for a higher load factor, in practice equal to t. The threshold

should be t > 0:70, it can even reach 95%.

2.3 Addressing

The LH algorithm for hashing a key C, i.e., computing the bucket address a to use

for C, where a = 0; 1; 2; :::; is as follows:

a hi(C); (A1)

if a < n then a hi+1(C);

The index i or i+ 1 �nally used for a bucket is called the bucket level. The value

i + 1 is called the �le level.

2.4 File contraction

Deletions in an LH �le can trigger bucket merging. This operation is the inverse to

bucket splitting. The pointer n moves backward by one address, i.e., n n � 1,

and if n < 0 then i i� 1 and n 2i � 1. Bucket n merges with the last bucket

in the �le and the space for the last bucket is freed.

The merging should occur when the load factor of the �le becomes too low.

Hence bucket merging requires some load control, e.g., through comparison to a

threshold t0. If splits are not controlled, t0 should be about 50{60%. In the case of

load control, t0 can be higher, even up to t0 = t. This setting allows for the best

stability of the load factor. However, it is rarely suitable in practice. It can lead to

a continuous split/merge alternation concerning a few or even a single bucket. It is

probably better to give up some load factor stability and allow for t0 < t, by a few

percentage points. A di�erence of 5-10% is reasonable.

3. OVERVIEW OF LH*

3.1 File expansion

We describe here the basic LH* scheme. For ease of discussion, each bucket is

assumed at a di�erent server (see Figure 2). Each bucket retains its bucket level

(9 or 10 in Fig. 2) in its header. Buckets are in RAM, although they could be on

� 7

disk as well. The internal organization of a bucket is not of interest here as it is

local to a site and implementation dependent. Overows are basically assumed to

be handled as for an LH bucket, e.g., chained in additional dynamically allocated

storage as in [Litwin 1980; Larson 1988]. (An overow and a collision occur when

a bucket with capacity b contains b or more records and receives a request to insert

a new record.) Buckets (and servers) are numbered 0; 1; :::, where the number is

the bucket address. These logical addresses are mapped to statically or dynamically

allocated server addresses, as discussed in Section 3.5.

An LH* �le expands as an LH �le. Initially, the �le consists of bucket 0 only,

the pointer value is n = 0, and h0 applies. Thus, addressing based on (A1) uses

the values n = 0 and i = 0. When bucket 0 overows, it splits, bucket 1 is created,

and h1 is used. Addressing through (A1) now uses the values n = 0 and i = 1.

At the next collision, bucket 0 splits again, the pointer moves to bucket 1, and h2
starts to be used, as shown previously. Addressing through (A1) now uses n = 1

and i = 1, etc. In Figure 2, the �le has evolved such that i = 9 and n = 80. The

last split of bucket 0 created bucket 512 and further splits expanded the LH* �le

to 592 servers.

3.2 Addressing

...

............

client 1

10

n’ = 5

server 80 server 512

i’ = 6

client 2

n’ = 0

i’ = 2

client m

n’ = 31

i’ = 9

server 0

10

server 1

10 9 10

server 583

10

n = 80

server 591

Fig. 2. Principle of LH*.

3.2.1 Overview. Objects of an LH* �le are manipulated by clients. A client

usually inserts an object identi�ed with its key, or searches for a key. A client can

also perform deletions or parallel searches as we address later. There can be any

number of clients, as shown in Figure 2.

LH is based on the traditional assumption that all address computations use the

correct values of i and n. Under SDDS constraints, this assumption cannot be

satis�ed when there are multiple clients. A master site is needed, or n and i values

8 �

need to be replicated. The latter choice implies that all clients should atomically

receive a message with a new value of n with each split. Neither option is attractive.

LH* principles are di�erent in that they do not require all clients to have a

consistent view of i and n. The �rst principle is that every address calculation

starts with a step called client address calculation. In this step, the client applies

(A1) to its local parameters, n0 and i0, which are the client's view of n and i, but are

not necessarily equal to the actual n and i of the �le. The initial values are always

n0 = 0 and i0 = 0; they are updated only after the client performs a manipulation.

Thus, each client has its own image of the �le that can di�er from the �le, and from

images of other clients. The actual (global) n and i values are typically unknown to

a client, they evolve through the action of all the clients. Even if n0 equaled n the

last time a client performed a manipulation, it could happen that splits occurred

in the meantime and n > n0 or i > i0.

Figure 2 illustrates this principle. Each client has values of n0 and i0 it used for

its previous access. The image of client 1 is de�ned through i0 = 6 and n0 = 5. For

this client, the �le has only 69 buckets. Client 2 perceives the �le as even smaller,

with only 4 buckets. Finally, client m sees a �le with 543 buckets. None of these

perceptions is accurate, as the actual �le grew to 592 buckets.

A client inserting or retrieving a key C may calculate an address that is di�erent

from the actual one, i.e., the address that would result from using n and i. In

Figure 2, each client calculates a di�erent address for C = 583. Applying (A1)

with its n0 and i0, client 1 �nds a = 7, client 2 computes a = 3, and client m

calculates a = 71. None of these addresses is the actual one, i.e., 583. The whole

situation could not happen in an LH �le.

A client may then make an addressing error, i.e., it may send a key to an incorrect

bucket. Hence, the second principle of LH* is that every server performs its own

server address calculation. A server receiving a key, �rst veri�es whether its bucket

should be the recipient. If not, the server calculates the new address and forwards

the key there. If the �le shrinks, a server may occasionally send a key to a bucket

that does not exist any more; we delay the discussion of this case to Section 3.4.

The recipient of the forwarded key checks again, and perhaps resends the key. We

will show that the third recipient must be the �nal one. In other words, in the

worst case, there are two forwarding messages, or three buckets visited.

Finally, the third principle of LH* is that the client that made an addressing

error gets back an image adjustment message (IAM). This message contains the

level of the bucket the client �rst addressed, e.g., in Figure 2, buckets 0{79 and

512{591 are at level 10 while buckets 80{511 are at level 9. The client executes the

client adjustment algorithm which updates n0 and i0, thus getting the client's image

closer to the actual �le. The typical result is that clients make very few addressing

errors, and there are few forwarding messages, regardless of the evolution of the

�le. The cost of adjusting the image is negligible, the IAMs being infrequent and

the adjustment algorithm fast.

We now describe these three steps of the LH* address calculation in detail.

3.2.2 Client address calculation. This is simply done using (A1) with n0 and i0

of the client. Let a0 denote the resulting address.

a0 hi0(C); (A10)

� 9

if a0 < n0 then a0 hi0+1(C);

(A10) can generate an incorrect address, i.e., a0 might not equal the a that algo-

rithm (A1) computes, but it can also generate the correct one, i.e. a0 = a. Figure 3

illustrates both cases. The actual �le is shown in Figure 3a with i = 4 and n = 7.

Thus, buckets 0{6 are at level 5, buckets 7{15 are at level 4, and buckets 16{22 are

at level 5. Two clients, Figures 3b{c, perceive the �le as having i0 = 3 and n0 = 3.

The client in Figure 3d has a still di�erent image: i0 = 3 and n0 = 4.

Figure 3b illustrates the insertion of key C = 7. Despite the inaccurate image,

the client sends the key to the right bucket, i.e., bucket 7, as (A1) would yield the

same result. Hence, there is no adjusting message (IAM), and the client stays with

the same image. In contrast, the insertion of 15 by the client in Figure 3c, leads to

an addressing error, that is, a0 = 7 while a = 15. A new image of the �le results

from the adjustment algorithm (explained in Section 3.2.4). Finally, the client in

Figure 3d also makes an addressing error since it sends key 20 to bucket 4, while it

should have gone to bucket 20. It ends up with yet another adjusted image.

3.2.3 Server address calculation. No address calculated by (A10) can be beyond

the �le address space, as long as there was no bucket merging. (This assumption is

relaxed in Section 3.4.) Thus, every key sent by a client of an LH* �le is received

by a server having a bucket of the �le, although it can be an incorrect bucket.

To check whether it should be the actual recipient, each bucket in an LH* �le

retains its level, let it be j; j = i or j = i + 1. In LH* �les, values of n are

unknown to servers so they cannot use (A1). Instead, a server (with address a)

recalculates C's address, noted below as a0, through the following algorithm:

a0 hj(C); (A2)

if a0 6= a then

a00 hj�1(C)

if a00 > a and a00 < a0 then a0 a00;

If the result is a = a0, then the server is the correct recipient and it performs the

client's query. Otherwise, it forwards the query to bucket a0. Server a0 reapplies

(A2) using its local values of j and a. It can happen that C is resent again. But

then, it has to be the last forwarding for C.

Indeed, consider that the �le uses a typical network, e.g., Ethernet, under nor-

mal circumstances where messages are not unreasonably delayed [Abeysundara and

Kamal 1991]. More speci�cally, assume that bucket a processes a forwarding mes-

sage m1, and then processes a split message m2. Message m1 should �nish being

processed at its target bucket before m2 �nishes being processed at bucket a (note

that the processing of a split operation, following the reception of a split message

requires in fact several messages, while the reception of a forwarding message us-

ing Algorithm A2 should be very fast). Key C is forwarded from a bucket a with

level hi or hi+1. When it is processed at the target bucket a0, this bucket still has

level hi+1 at most. It may reach level hi+2, only after all the buckets between and

including a and a0 undergo a split. This process should normally involve many

messages and hence should be much longer than it takes to process one message.

The following proposition holds then for LH* �les:

10 �

Proposition 3.1. Algorithm (A2) �nds the address of every key C sent through

(A10), and C is forwarded at most twice
1
.

The following examples facilitate the perception of the proposition, and of its

proof, immediately afterwards. Note that the rationale in forwarding using j� 1 is

that the forwarding using j could send a key beyond the �le.

n=7, i=4

0 6 7 15 16 22

0 3 7 10

7

0 3 7 10

7(b)

(a)

n’=3, i’=3, C=7

(c,d) - image adjustments

n’=3, i’=3

10730

15

0 15

15(c)

n’=3, i’=3, C=15 n’=0, i’=4

0 4 7 11 0 5 16 20

20(d)

n’=5, i’=4

j = 4 j = 5

j = 4

j = 4 j = 4 j = 4

j = 4 j = 4

j = 4 j = 4

j = 5

j = 4

n’=4, i’=3, C=20

20

j = 3

j = 3

j = 3 j = 5 j = 5j = 4

j = 3

(a) - actual file

(b) - inaccurate image, but no addressing error

Fig. 3. Images of an LH* File.

1Unless the LH* �le has only a few buckets of very small capacity and the �le undergoes heavy

insertions [Vingralek, Breitbart, and Weikum 1994].

� 11

Example 1. Consider a client with n0 = 0 and i0 = 0, i.e. in the initial state,

inserting key C where C = 7. Assume that the LH* �le is as the LH �le in Figure 1c

with n = 1. Then, C is at �rst sent to bucket 0 (using A10), as by the way, would

any other key inserted by this client. The calculation using (A2) at bucket 0 yields

initially a0 = 3, which means that C should be resent. If it were resent to bucket

hj(C), bucket 3, in our case, it would end up beyond the �le. The calculation of a00

and the test through the second if statement prevents such a situation. It therefore

sends key 7 to bucket 1. The calculation at bucket 1 leads to a0 = 1, and the key

is inserted there, as it should be according to (A1).

Assume now that n = 0 and i = 2 for this �le, as shown in Figure 1d. Consider

the same client and the same key. The client sends key 7 to bucket 0, where it is

resent to bucket 1, as previously. However, the calculation 7 mod 4 at bucket 1

now yields a0 = 3. The test of a00 leads to keeping the value of a0 at 3, and the key

is forwarded to bucket 3. Since the level of bucket 1 is 2, the level of bucket 3 must

be 2 as well. The execution of (A2) at this bucket leads to a0 = 3, and the key is

inserted there. Again, this is the right address, as (A1) leads to the same result.

In the �le in Figure 3, keys 15 and 20 are forwarded once.

Proof. (Proposition 3.1.)

Let a be the address of the bucket receiving C from the client. a is the actual

address for C and there are no forwards i� a = a0 = hj(C). Otherwise, let a00 =

hj�1(C). Then, either (i) n � a < 2i, or (ii) a < n or a � 2i. Let it be case

(i), then j = i (See Figure 4). It can happen that a00 6= a, consider then that the

i
2
i-1

2

j=i-1

i
+n2

n

case(ii) case(ii)

case(i)

j=i+1

j=i

j=i+1

Fig. 4. Addressing regions.

forward to a00 occurs. If a00 6= a, then, i0 < j � 1, a00 > a, the level j(a00) is j = i,

and a00 = hj(a00)�1(C). Then, either a00 = a0 = hi(C), or a
00 < a0. In the former

case a00 is the address for C, otherwise let us consider the forward to a0. Then,

j(a0) = i, and a0 is the address of C. Hence, there are two forwards at most in case

(i).

Let us now assume case (ii), so j = i + 1, and we must have a00 � a. If a00 > a,

then C is forwarded to bucket a00. Then, j(a00) = i, or j(a00) = i + 1. In the latter

case, hj(a00)(C) = a00, so a00 is the address for C. Otherwise, a00 = hj(a00)�1(C), and

it can happen that a0 = a00, in which case a00 is the address for C. Otherwise, it

12 �

can only be that a0 > a00, a0 � 2i, hence j(a0) = i+ 1, and a0 is the address for C.

Thus, C is forwarded at most twice in case (ii).

(A2) implements the proof reasoning. The �rst and second lines of the algorithm

check whether the current bucket is the address for C. The third and fourth lines

trigger the forward to a00, if a00 > a.

3.2.4 Client image adjustment. In case of an addressing error by the client, one

of the servers participating in the forwarding process sends back to the client an

IAM containing the level j of the bucket a where the client sent the key. The client

then updates i0 and n0. The goal is to get i0 and n0 closer to i and n so as to

maximize the number of keys for which (A10) provides the correct bucket address.

The LH* algorithm for updating i0 and n0 when an addressing error occurs is as

follows. a is the address where key C was sent by the client, j is the level of the

bucket at server a (j is included in the IAM).

1. i0 j � 1, n0 a+ 1; (A3)

2. if n0 � 2i
0

then n0 0, i0 i0 + 1;

Initially, i0 = 0 and n0 = 0 for each client. Figures 3c-d illustrate the evolution

of images implied by (A3). After the image adjustment through Step 1, the client

sees the �le as with n0 = a+1 and with k buckets, k � a, with �le level j� 1. Step

2 takes care of the pointer revolving back to zero. The whole guess can of course be

inaccurate, as in both Figures 3c-d. However, the client view of the �le gets closer

to the true state of the �le, thus resulting in fewer addressing errors. Furthermore,

any new addressing errors result in the client's view getting closer to the true state

of the �le.

If all clients cease inserting objects, (A3) makes every n0 converge to n. The

convergence is not deterministic, but rather only probabilistic, i.e., the probability

that eventually n0 = n increases with the number of searches. If there are insertions,

then there are intermittent or even permanent gaps between n0 and n, because of

the evolution of n. A rarely active client makes more errors, as the gap is usually

wider, and errors are more likely. Note that an intermittent gap exists during

insertions even if there is a single client of the LH* �le, unlike that of an LH �le

undergoing the same sequence of insertions.

Example 2. Consider Figure 3c. Before the adjustment, an addressing error

could occur for every bucket in the client's image of the �le, i.e., buckets 0{10, as

for every such bucket the actual level was di�erent from the considered one. The

insertion of key 15 leads to a new perception | a �le with level 4 for every bucket.

This image di�ers from the actual �le only at buckets 0{6. No addressing error

can occur anymore for a key sent by the client to a bucket in the range 7{15. This

should typically decrease the probability of addressing errors for this client.

For the client in Figure 3d, the insertion of key 20 leads to an image that is

accurate everywhere but at two buckets: 5 and 6. Hence the probability of an

addressing error becomes even smaller than in Figure 3c.

Consider that the client from Figure 3c subsequently searches for a key whose

address is in the range 1{6. Every such search leading to an adjustment can only

decrease the number of buckets with the level perceived as 4, instead of the actual

level 5. The remaining buckets must be rightmost in the range. For instance, the

� 13

search for key 21 will lead to a new image, where only the level of bucket 6 remains

incorrect. Under the uniform hashing assumption, the probability of an addressing

error will become almost negligible (1/32 exactly). Finally, the insertion of a key

such as 22 would make the image exact, unless insertions expanded the �le further

in the meantime.

3.3 Splitting

As stated in Section 3.1, an LH* �le expands as an LH �le, through the linear

movement of the pointer and splitting of each bucket n. The values of n and i

can be maintained at a site that becomes the split coordinator (SC), e.g., server

0. As for LH, the splitting can be uncontrolled, i.e., for each collision, or it can be

controlled, i.e., performed for some but not all collisions.

3.3.1 Uncontrolled splitting. For uncontrolled splits, the split coordinator re-

ceives a message from each site that undergoes a collision. A collision message

triggers the coordinator's message \you split" to site n, and triggers the LH calcu-

lation of new values for n and i by the SC using:

n n+ 1; (A4)

if n � 2i then n 0, i i + 1;

Server n (with bucket level j) which receives the message to split:

(a) creates bucket n+ 2j with level j + 1,

(b) splits bucket n applying hj+1 (qualifying objects are sent to bucket

n+ 2j),

(c) updates j j + 1,

(d) commits the split to the coordinator.

Step (d) allows the SC to serialize the visibility of splits. This is necessary for

the correctness of the image adjustment algorithm. If splits were visible to a client

out of sequence, the client could compute a bucket address using an n that would

be, for some period of time, beyond the �le.

3.3.2 Controlled splitting. To control the splits as for LH, it would be necessary

to send a message to the SC for every insertion and deletion. This would make

the SC a hot-spot and would increase the number of messages, and hence is not

acceptable. A practical split control algorithm should require only a few, possibly

no additional messages. No such algorithm can therefore achieve the same stability

of load factor as for LH. The following algorithm provides nevertheless e�cient

load control, as will be shown in Section 4. It has the interesting property of

not requiring any additional messages between the buckets and SC. Several other

strategies for load control are possible and are discussed in Section 5.

Load control strategy for LH*. Let bucket s be the bucket that undergoes the

collision, b be the capacity of bucket s, where b is the same for all buckets in the

�le, x the number of objects in this bucket, and let d be d = x=b. Let t be some

threshold given to SC, typically in the range [0:7� 1:0].

1. Bucket s sends a collision message to SC which includes x. (A5)

2. SC sets d = x=b and then sets d d � 2, if s < n or s � 2i.

14 �

3. SC computes the formula: �0 (2i � d)=(2i + n)

4. If �0 > t, the SC causes bucket n to split. Otherwise no split takes

place.

s

(a)n

(b)
n

x

d

n 2^i - n n

Fig. 5. File load. (a) actual (b) estimated.

Figure 5 illustrates the rationale for this strategy. If each hi hashes uniformly

then all buckets using the same functions are loaded to about the same level. As

hi+1 hashes on twice as many addresses as hi, one can further consider that buckets

that already underwent a split with hi+1 are basically half loaded. In Step 2 and

Step 3, the SC considers that every bucket's load factor is either (1) d or d=2 or (2)

d or 2d. It then attempts to maintain this estimate as close as possible to threshold

t.

3.4 File contraction

The load control can allow an LH* �le to shrink under deletions, as was possible for

LH �les. This can be done through a strategy similar to the one above. Namely,

when the load estimate calculated by SC drops under some threshold, SC sends a

message to bucket n�1 instructing it to merge with the corresponding bucket, and

SC updates the value of n and i accordingly. As a result, the �le has one fewer

bucket, and the unused storage space is returned to the system.

As one should not generate messages to clients at each merge, a client of a

shrinking �le can address a bucket that does not exist anymore, i.e., with the

address beyond the current �le address space. To carry an insertion or a search to

the right bucket, one solution is for the server to send an adjustment message to

the client to downgrade its n0 or i0 in consequence. To completely avoid further

addressing errors beyond the �le, a sure bet is for the client to set n0 and i0 to zero,

as bucket 0 is the last to disappear. Server 0 will then forward the key correctly

� 15

using (A2), and the client's image will be adjusted using (A3) as in the case of �le

expansion.

Other strategies may sometimes prove more e�cient. For instance, if merges are

relatively infrequent with respect to inserts and searches, then it should be more

e�cient to re-address the query to the address corresponding to j � 1, where j is

the level that the nonexistent bucket should have, i.e., j = i0 or j = i0 + 1. This

strategy would usually avoid the forwarding(s) of the �rst one. However, we will

not address this subject in more depth. Shrinking �les are seldom used in practice,

and their addressing e�ciency is not critical.

Finally, as already shown for LH �les, and generally for any dynamic data struc-

tures based on bucket splitting and merging, it is preferable that the �le not split

and merge the last buckets cyclically under short sequences of inserts and deletes.

To avoid this phenomenon, one should choose t0 to be at least 10% less than t.

3.5 Allocation of sites

The bucket addresses a above are logical addresses to be translated to actual ad-

dresses s of the sites on which the �le might expand. The translation should be

performed in the same way by all the clients and servers of a �le. The solution of

a centralized name server being precluded, there are two approaches:

(1) the set of sites that �les can use is known in advance and de�ned using a static

table. This could be the case of a local net in a company, or of processors in a

multiprocessor computer.

(2) the set of sites is de�ned for each �le by a dynamic table that can become

arbitrarily large, perhaps encompassing the entire INTERNET.

One solution for case (1) is to have at each site a table T (a); a = 0; 1; :::;M 0; with

addresses of all available servers. Table T may actually be the addressing table of

the networking system linking the sites. A few kilobyte table at each site should

allow an LH* �le to grow over hundreds or thousands of sites, i.e., all sites of a

company or all processors in a supercomputer. Such a �le can easily attain gigabytes

in RAM, or terabytes on disk. If ever needed, T of a few megabytes should su�ce

for all INTERNET addresses, and a �le of yet unimaginable size.

The most obvious strategy for assigning a site s to address a in a �le is s = T (a).

However this strategy might not be the best for load balancing. The site T (0)

might become most loaded, since it is used by all the �les. One may obtain better

balancing through randomization. For instance, assuming that each �le gets a

unique number F when created, e.g., a time stamp, the value F + a may be used

as a basis for some hashing h over [0;M 0], i.e., s(a) = T (h(F + a)). If some servers

can handle more buckets than others, then more elaborate strategies may prove

preferable.

One advantage of case (2), i.e., of a dynamic table, is better management of

the space for the table. A more important advantage, though, is that sites for new

buckets can be chosen dynamically and autonomously by buckets undergoing splits,

e.g., through a contract net protocol. One simple solution for case (2) is then as

follows.

A server informed to split creates a new bucket on the site of its choice. After

performing the split, it sends the new address to the coordinator. Then, when a

16 �

client is noti�ed of an addressing error with an image adjustment message, it sends

i0 and n0 to the coordinator, which replies with the addresses not known to the

client.

The coordinator will not become a hot spot, since, as will be shown, the number

of addressing errors is typically small. Furthermore, the client is not blocked while

waiting for the new addresses, it simply uses its existing image. The coordinator

will need storage for all the addresses. Every other server only needs storage for

the addresses of buckets it has created, i.e., for j addresses at most.

It is also possible to solve case (2) without the messages between clients and

the coordinator, and in fact without any additional messages. Consider again that

every bucket that splits sends the address of the new bucket to the coordinator.

The coordinator then sends (within the split message to bucket n) the addresses

that were created since the last split of bucket n. These addresses will be of buckets

[n+ 2j�2 + 1; n + 2j�1]. The latter address will be chosen by bucket n, and sent

later to the coordinator. Bucket n sends all of its addresses to bucket n+2j�1 when

it is being created. On the other hand, every bucket sends all the addresses it has

within each image adjustment message. The price of this solution with respect to

the previous one is more space needed at each server, i.e., for n + 2j�1 addresses,

and also longer image adjustment messages. However, it should usually be a minor

problem in practice.

It can be observed that with this approach, the client may receive many addresses

it already has. To send only the addresses new for the client, the server should know

i0 and n0. These values should then be enclosed within the the initial message to the

servers, or the server can prompt the client for these values in the image adjustment

message.

3.6 Parallel queries

A parallel query Q to an LH* �le F is an operation which is sent by a client in

parallel to selected, or all buckets of F , and whose executions at each bucket are

mutually independent. Examples of parallel queries include a selection of objects

from some or from every bucket according to some predicate, an update of such

objects, a search for equal keys in every bucket to perform a parallel hash equijoin,

a range search in every bucket, etc. A parallel query to selected buckets may result

from some previous step, eliminating some speci�c buckets, for example, during an

ordered traversal of the �le. Parallel queries to all the buckets are more typical,

and we restrict our attention to these queries, unless we state otherwise.

An LH* bucket replies to Q only if Q requests so. By default, the only reply is

objects found if Q requests a search. Hence a parallel search may trigger between

zero and as many messages as there are buckets in the �le. Q may on the other

hand ask for a reply from every bucket, e.g., even if there is no object found, to

be sure that all buckets completed the search, or for an acknowledgement of every

update operation. Such queries may be useful, e.g., in unreliable environments or

for special operations, e.g., commitment, but should be rare, and are basically not

considered in more depth in what follows.

A particularity of LH* is that a client might not know the extent of the �le.

Rather, it only knows the extent of its �le image. If a bucket in an image was split

after the last image adjustment, then the o�spring of this bucket should get Q as

� 17

well. By the same token, Q should reach o�spring of o�spring, etc.

Support for parallel queries is a major advantage of LH* over LH. Similar oper-

ations on an LH �le usually require sequential searches in the �le that take orders

of magnitude longer to complete. Two basic possibilities for sending out a paral-

lel query are to broadcast (or multicast) the message, or to send a collection of

point-to-point messages to the target buckets.

3.6.1 Broadcast/Multicast messages. The Ethernet protocol supports broadcast

and multicast over sites on the same segment, as do many other popular network

protocols [Abeysundara and Kamal 1991]. On an Ethernet segment, a broadcast

(multicast) message takes the same amount of time to be delivered to all the con-

trollers as does a point-to-point message. Ethernet can also support broadcast and

multicast over sites on di�erent segments, forming some local domain, provided the

routers connecting the segments route such messages. This may not be the case,

and is always limited to a well-delimited domain to avoid ooding too many sites

or for security reasons. A broadcast message routed to another segment becomes

another broadcast message.

The use of broadcast or multicast messages is possible for LH*. Although clients

do not know the actual extent of the �le, let it be F , every client of an LH* �le may

know the superset of sites with buckets of F . These are especially the sites with

addresses in the static table T , dealt with in the previous subsection. The sites can

be within a single segment, or on di�erent segments of a local domain supporting

broadcast and multicast. The multicast address can be preloaded for all and only

sites in table T , as this set of sites is known in advance. The parallel query, let it

be Q is then broadcast (multicast) at least to all sites in T . It is delivered to all

LH* servers. Servers with buckets of F process Q, and send a reply to the client if

the client so requested. The servers that do not have a bucket of F , and of course

the sites where there is no LH* server at all, do not process Q nor do they send a

reply.

The situation may be similar in the case of a dynamic table. It may be also di�er-

ent. If all of the servers in the dynamic table belong to the same broadcast domain,

processing is performed as described above. If a �le crosses multiple domains, the

buckets whose splits crossed a domain must forward all broadcast messages.

It is to be noted that the use of multicast or broadcast, even if available, is not

recommended for LH* with exact match queries unless the servers are underutilized.

If the servers are already CPU bound, then each multicast/broadcast message will

consume some of the CPU bandwidth of each server even if the server is not to

handle the request. This will result in reduced throughput.

3.6.2 Point-to-point messages. LH* clients can use point-to-point messages if

broadcast or multicast messages cannot be used. The client �rst sends Q using

point-to-point messages to all the buckets in its image of F . As in the case of

multicast messages, the client includes i0 and n0 in each message. Every bucket

retains Q for processing and also forwards the message to each of its o�spring

beyond the client image. These o�spring process the query, and forward the message

to their o�spring, if any, etc.

This strategy clearly allows the query to reach every bucket in F . The remaining

problems are to guarantee (i) that every bucket gets the message only once, (ii) that

18 �

no buckets other than those in F get the message, and (iii) that for best performance

the servers do not need to communicate with the coordinator. Requirement (iii) can

clearly be satis�ed if one uses an allocation algorithm as described in the previous

subsection. The following algorithm for parallel query propagation at each server

meets the other requirements.

LH* parallel query propagation. Consider that the client sent Q to every bucket

in its image. Let bucket a be the bucket receiving a message containing Q. The

initial values of a are all the addresses within the client's image. Every message

also carries a variable called message level, noted j0 . The initial value of j0 in a

message to bucket a is the level of a in the client's image, i.e., j0 = i0+1 for a < n0

or a � 2i
0

, otherwise j0 = i0. Bucket a (with �le level j) then sends the query to

each of its o�spring using the following algorithm.

while j0 < j do: (A6)

j0 j0 + 1;

forward (Q; j0) to bucket a+ 2j
0
�1;

endwhile

Proof. (LH* parallel query propagation.)

Every bucket a in the client's image receives Q from the client. The algorithm

makes every bucket a forward Q in parallel in one round to all the o�spring that it

had created through its splits since the client's image was last adjusted. Every such

o�spring is beyond the client's image. The successive message levels are values of

i+1 that had been used for these splits. Hence every o�spring that was created by

a bucket within the image gets Q, and gets it exactly once. The received message

level is also the initial value of the level of the o�spring that was created through

the corresponding split. As every o�spring that receives a forwarded message, and

was split since the client's image was last adjusted, resends the message to all its

o�spring, etc., every bucket beyond the client's image gets the message, and gets

it exactly once. As the last j0 used for every bucket is j0 = j, and for every bucket

the level j is also i+1 of the last split function used, no message is sent to a bucket

beyond F . Hence the algorithm meets the discussed requirements (i) and (ii).

3.6.3 Image adjustment. The result of a parallel query Q can also be used for

the client's image adjustment. It can even be done at no additional message cost.

It su�ces that Q lead to some replies, and that every corresponding reply message

carry the actual level j of the bucket it came from. Let then j0 be the highest

j returned by a bucket replying to Q. And, let a0 be the highest bucket address

returning j0 such that a0 < 2j
0
�1 and a000 be the highest bucket address returning

j0 such that a000 � 2j
0
�1. Note that a0 or a000 may be the empty set. The following

algorithm executed by the client, if at least one result comes back, adjusts the image

such that the extent of image is at most that of the actual �le F , as for Algorithm

(A3).

LH* parallel query image adjustment algorithm

1. i0 j0 � 1; (A7)

2. If both a0 and a000 are non-empty then n0 max(a0+1; a000+1�2i
0

);

else if a0 is non-empty then n0 a0 + 1;

� 19

else if a000 is non-empty then n0 a000 + 1� 2i
0

;

3. If n0 � 2i
0

then n0 0; i0 i0 + 1;

Proof. (LH* parallel query image adjustment algorithm.)

Addresses of results of Q returned to the client are seen here as a sampling of F 's

address space. The proof follows an examination of the di�erent sampling cases.

(1) Consider that two di�erent values of j are returned. j0 is then set to the

greater value (i + 1), as de�ned above. Step 1 of algorithm A7 will then set i0 to

j0 � 1, which is the correct value (i). Since at least one bucket returned a level of

j = i + 1, a0 or a000 (or both) must be non-empty. Step 2 examines all three cases

and sets the value of n0 accordingly. Since Step 2 can not set n0 to a value greater

than the true n, the condition in Step 3 will never be true.

(2) All buckets reply with the same j. The client can not determine the true

level of the �le since it can not determine whether the buckets are at level j = i+1

or j = i. Let us �rst consider the case where all buckets return level j = i + 1.

In this case, Step 1 will set i0 = i, which is the correct value. Step 2 will then set

n0 exactly as it did for case (1) where two di�erent values of j were returned, and

Step 3 will again have no e�ect. However, the case where all buckets return level

j = i is slightly more complicated. In this case, Step 1 will set i0 = i � 1, which is

one less than the true level of the �le. a0 and a000 will then be calculated using this

value of i0 and Step 2 will set n0 accordingly. However, in this case n0 may be set

to a value beyond the end of the client's image (but still below the true value of

the �le). In this case, Step 3 will increase the client's �le level by 1 and reset the

pointer to 0. This new image must still be less than or equal to the true state of

the �le.

How well the image gets adjusted depends obviously on the number of buckets

that send back a reply. Assuming that addresses of these buckets are random, the

more buckets reply the more likely it is that n0 is set close to, or equal to n.

4. PERFORMANCE ANALYSIS OF LH*

In all the analysis in this section, and as usual for hash �les, we assume that the

hash functions used do hash the keys uniformly. In the case of LH*, it means

speci�cally, as for LH, that with every hi, the probability of hashing a key to any

address is 1=2i [Litwin 1980]. It is well known that distributions other than a

uniform one may a�ect �le performance [Knuth 1973], theoretically even hashing

all the keys to a single address. The usual solution is to change the hash functions,

e.g., as discussed for LH schemes in [Litwin 1980].

4.1 Basic features

The load factor x=bM , where x is the number of insertions, b is the bucket capacity

in number of objects it can contain, and M is the current number of buckets, is the

same as for LH when doing uncontrolled splits. It is thus around 65{70%.

The basic measure of access performance of LH* is the number of messages to

complete a search or an insertion. A message here is a message to the networking

system, we ignore the fact that it can result in several messages. For a random

search for a value of C, assuming no address mismatch, two messages su�ce (one

to send C, and one to get back information associated with C). This is a minimum

20 �

for any method and is impossible to attain if a master directory site is necessary,

since three messages are then needed. In the worst case for LH*, two additional

forwarding messages are needed, i.e., a search needs at most four messages. We will

see later in this section that the average case is around two messages and is hence

better than any approach based on a master directory.

For a random insertion, the object reaches its bucket in one or, at most, three

messages. Again, the best case is better than for a scheme with a master site,

where two messages are needed. The bad cases should be infrequent, making the

average performance close to one message. This is con�rmed by simulation results

in the next section. Globally, these values mean that LH* insertions are generally

two times faster than for any scheme with a central directory2! In practice, a

centralized scheme could also incur delays due to congestion at the directory site.

An insertion may also trigger a message to the split coordinator to initiate a

split. This will occur on every bucket overow. A split costs additional messages

but these messages do not slow insertions. They can be performed asynchronously,

are rare for a typical b, and the corresponding costs are marginal with respect to

the averages.

The cost of initiating a parallel operation depends on the cases discussed in the

previous section. If broadcast messages are available, then it may cost only one

message to initiate a parallel operation if table T is used, or two messages, in two

rounds, if it goes through the split coordinator. If only point-to-point messages

are possible and assuming that M is the number of buckets in the �le, then the

cost is either M + 1 messages in two rounds, or M messages and between 1 and

i � i0 + 2 rounds. In the second case, the number of messages to initiate a parallel

operation is the smallest possible, and is independent of the state of the client. The

number of rounds is the smallest possible, i.e., one round of messages, when the

client perception of the �le is accurate, i.e., i = i0 and n = n0 . Only less active

clients require more rounds, but still the corresponding penalty is only O(log2M).

The cost of sending to a client the result of a parallel operation selecting xp
objects is min(M;xp) messages. Hence the total cost of a parallel operation is at

most 2M +1 messages. We do not discuss parallel operations further in this paper.

Simulation modeling of LH*

We constructed a simulation model of LH* to gather performance results that were

not amenable to direct analysis. Speci�cally, we wanted to ascertain performance

in the average cases for �le creation and searching, the expected load factor of �les,

the expected rate of convergence of a client view of a �le, performance of rarely

active clients, and the marginal costs of constructing a �le. We show that average

case performance is very close to the best case for insert and retrieve operations,

that load factors can be e�ectively controlled, that clients incur few addressing

errors before converging to the correct view of the �le, that performance for very

inactive clients is still quite good, and that �le growth is a relatively smooth and

inexpensive process.

We �rst describe the simulation model and then report the detailed results of the

2Even if insertions require an acknowledgment message to the client, LH* is expected to be 33%

faster.

� 21

performance analysis. The simulator used the CSIM simulation package [Schwet-

man 1990].

The logical model of the simulator contains the following components. The clients

model users of the LH* �le which insert and retrieve keys, the servers each manage

a single bucket of the �le, the split coordinator controls the evolution of the �le, and

the network manager provides the intercommunication. More detailed behavior of

each of these components is described below.

We assume a shared-nothing multiprocessor environment [Stonebraker 1986] where

each node has a CPU and a large amount of local memory. Each server (and hence

bucket) is mapped to a separate processing node, as is each client. The split coor-

dinator shares the processor with bucket 0.

4.2 Simulation components

Clients: Clients typically act in three phases: a series of random keys are

inserted into an empty �le, the client's view of the �le is cleared, i.e., i0 and n0 are

set to 0, and �nally, some randomly selected keys are retrieved.

In our implementation, a client may or may not receive an acknowledgement

message for each insert command. If acknowledgements are required, a minimum

of two messages is necessary to insert a key into a �le | the original insert request

from the client to a server and a status reply. If an addressing error occurs in the

processing of such an insert, the adjustment message (IAM) is piggybacked onto the

client reply. If acknowledgments are not required, a server sends the IAM directly

to the client. In the case of retrieves, IAMs are always piggybacked onto the client

reply. In any case, a client uses the information in the IAM to update its view of

the �le (using Algorithm A3 in Section 3.2.4).

Servers: Each bucket in an LH* �le is managed by a distinct server. Servers

execute algorithm (A2) to determine whether they should process an operation

or forward it to a di�erent server. If forwarding is required, an IAM is sent to

the client unless it is possible to piggyback it onto the client reply (as explained

above). Upon receipt of a split message from the split coordinator, a server sends

an init message to create a new bucket of the �le and then scans all the objects

in its local bucket and transfers those that rehash to the new bucket. This step

may require multiple messages if the number of objects exceeds the network packet

size. However, in our simulations, bucket splits require a single message to transfer

records during the split as we abstract away network-dependent details. We are

also modeling a single-user environment where network tra�c becomes irrelevant.

When the transfer of objects is completed, a commit message is sent back to the

coordinator to signify the completion of the bucket split.

Split coordinator: The split coordinator controls �le evolution using either

uncontrolled splitting or controlled splitting (see Section 3.3). The actual ow of

messages required to split a bucket is shown in Figure 6. As shown by the �gure, at

least four messages are required for each bucket split. Furthermore, the coordinator

only allows a single bucket at a time to be undergoing a split operation. All collision

noti�cation messages received from servers while a split is in progress are queued

for later processing. In Section 5.2, we describe how to relax this constraint.

The split coordinator is the only centralized component in the system. This

should not be a performance problem, though, because the tra�c into and out of

22 �

j
n+2

Bucket

n

Coordinator

BucketBucket

Insert

3. Init

c

2. Split

Objects

1. Collision

4. Commit

Split

Fig. 6. Splitting of bucket n via split coordinator.

this entity is not signi�cant, even if the �le is growing rapidly. Thus, this component

will not become a hot spot. For increased fault-tolerance, it would be relatively

easy to replicate this activity. Nevertheless, we describe a variant in Section 5.1

that does not require a split coordinator.

Network manager: A common network interlinks the servers, clients, and

the split coordinator. The network is restricted to one active transmission and

uses a �rst-come, �rst-served (FCFS) protocol. Only point-to-point messages are

supported.

4.3 Simulation results

In the simulation experiments, bucket capacities range from 50 to 10,000 objects.

Buckets are managed in main-memory data structures. Clients insert from 10,000

to 1,000,000 randomly generated objects when building a �le. Given the range of

bucket capacities, this results in �les where the number of buckets ranges from 20

to over 20,000. Clients typically retrieve 1,000 randomly selected objects.

4.3.1 Performance of �le creation and search. Figure 7 shows the total number

of messages per insert, the number of addressing errors per insert, and the number

of messages associated with bucket splits required to build LH* �les with bucket

capacities ranging from 50 to 1000 objects. Three di�erent �les were constructed,

with the number of objects varying from 10,000 to 1,000,000. Inserts did not require

acknowledgements.

The leftmost graph in Figure 7 shows the total cost in messages per insert. That

is, it includes the original insert messages from the client to the server, forwarding

messages from server to server, IAMs from servers back to the client, and all the

messages associated with bucket splits. The curves con�rm our performance pre-

dictions in Section 3. Namely that performance is better for �les with larger bucket

capacities, and insert performance is very close to the best possible | one message

per insertion. The �gure shows that the di�erence is about 15% for small bucket

� 23

0 250 500 750 1000
Bucket capacity

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Msgs per Insert

 10,000 inserts
 100,000 inserts
1,000,000 inserts

0 250 500 750 1000
0.000

0.002

0.004

0.006

0.008

0.010
AddrErrs per insert

0 250 500 750 1000
0.00

0.05

0.10

0.15

0.20

0.25

Split msgs per insert

Fig. 7. Performance of �le creation.

capacities and is under 5% for modest sized buckets, e.g., b > 200.

The middle graph in Figure 7 shows the relative contribution of messages asso-

ciated with addressing errors (forwarding messages and IAMs) to the total number

of messages. As is shown, these messages account for very little overhead; for larger

bucket sizes the overhead is under 0.2%. Finally, the rightmost graph shows the

contribution of messages associated with bucket splits. These curves show that

split-related messages account for almost all the overhead associated with inserting

objects. However, since bucket splits occur asynchronously and hence are not ac-

counted for in the latency of an insert, from the point of view of the client the cost

of an insert is only one message in practice.

Table I presents a more detailed picture of the curves in Figure 7 for 1,000,000

inserts and for bucket capacities ranging from 50 to 10,000. In addition to the

average messages per insert (Ave.Msgs) it includes the number of addressing errors

incurred for the inserts during �le creation (AddrErrs). As is shown, the number

of addressing errors is very small, even when the bucket capacity is small.

The column Ave.Msgs-ack in Table I shows the average number of messages

per insert when the status of each insert operation has to be returned to the client.

For example, this might be a requirement for clients that need stronger guarantees

on the success of their updates. As is shown, these numbers are almost exactly one

24 �

Bucket Build Perf. Search Perf. No. of

Capacity AddrErrs Ave.Msgs Ave.Msgs-ack Ave.Msgs Buckets

50 1623 1.134 2.133 2.001 32791

250 1010 1.034 2.033 2.008 8070

500 771 1.018 2.017 2.008 4036

1000 558 1.009 2.009 2.008 2039

10000 78 1.001 2.001 2.006 128

Table I. File build and search performance (1000K inserts, 1K retrieves).

greater than the previous case where inserts are not acknowledged. The reason for

being slightly less than one is that IAMs are piggybacked onto acknowledgement

messages to the client.

The column Search Perf shows the average performance of a client retriev-

ing random keys from the �les. For each bucket capacity the client �rst inserted

1,000,000 random keys. It then reset its view of the �le to empty and retrieved

1,000 keys. This entire process was repeated 30 times and the results were aver-

aged. As the table shows, it requires just over two messages to retrieve an object,

regardless of the capacity of the buckets. These values are very close to the best

possible of two messages per retrieval, with the di�erences being under 1%.

Finally, it should be noted that this excellent performance is maintained for �les

with large numbers of buckets. For example, with a bucket capacity of 50, the �le

consisted of 32791 buckets, on the average.

4.3.2 Performance of client image adjustment. In this set of experiments we were

interested in determining how e�ciently a read-only client, starting with a view of

the �le as empty, obtains a true view of the �le. That is, how e�cient is the client

image adjustment algorithm (A3)? Two metrics are of interest: the number of

times the client sends the retrieval query to the wrong server (and hence made an

addressing error and subsequently received an IAM) before its image converges to

the true state of the �le, and the total number of objects retrieved before conver-

gence is reached. For each experiment, each data point was calculated by building

a �le with the required number of buckets, clearing the client's image of the �le,

and retrieving objects until the client image adjustment algorithm converges. This

was repeated thirty times and the results were averaged.

These two metrics are shown graphically in Figure 8 for a �le that grows from 128

to 1024 buckets, i.e., through three revolutions of the split pointer 3. As expected,

the lower curve shows that a client makes relatively few addressing errors before

its view of the �le converges to the true state. Also, as expected, the number of

addressing errors increases slightly with the number of buckets. One may observe

that the average number of addressing errors is between 1 and log2 of the number

of buckets. This is intuitive, because, on average, upon receiving an IAM in re-

sponse to an addressing error, the image adjustment algorithm halves the number

of buckets that the client may address incorrectly. Although no formal calculus is

known at present for values of n other than n = 1 or n = 0, these cases are clearly

3For this set of experiments, the results are independent of bucket capacity, but, note for the sake

of completeness that b was set to 250.

� 25

128 256 384 512 640 768 896 1024
Number of buckets

0

2

4

6

8

10

A
dd

rE
rr

or
s

un
til

 c
on

ve
rg

en
ce

128 256 384 512 640 768 896 1024
0

500

1000

1500

2000

R
et

rie
ve

s
un

til
 c

on
ve

rg
en

ce

Fig. 8. Performance of client convergence algorithm.

the extreme values for the number of addressing errors.

The case of n = 1 is the best; in the �gure this corresponds to the number of

buckets being 129, 257 or 513. Whenever the pointer has this value, the �le has

buckets 0 andM �1 with level i+1 and all other buckets with level i. A new client

with i0 = 0 has to address bucket 0. Thus, the �rst IAM carries the value i + 1.

The image adjustment algorithm will then return the image that exactly matches

the actual state of the �le. Hence, any time n = 1, the client's image of the �le

converges to the actual state after the client makes its �rst addressing error. This

is exactly what the �gure shows.

The case of n = 0 is the worst case (number of buckets is 128, 256 or 512 in

the �gure). Let us consider that the �le level is i, so the �le has M = 2i buckets.

Consider that hi hashes uniformly. Then, all values of a are equally likely. On the

average, the second error will occur on bucket a = M=4. Hence, n0 will be set to

M=4 + 1. After the adjustment, the next error will occur at one of the buckets in

the range [M=4 + 1;M=2� 1]. On the average, it will be the bucket (3=8)M which

will cause n0 = 3M=8 + 1. By the same reasoning, the next error will occur on the

bucket 7M=16, etc. On the average, there will be at most log2M addressing errors

until the image reaches the actual �le state. This is also what appears in the �gure.

The total number of addressing errors increases by one message every time the �le

26 �

doubles. It remains therefore quite low.

31

31

Possible addressing error

Visible to client

Initially
i’=0, n’=0

i’=4, n’=1

i’=4, n’=9

i’=4, n’=13

i’=4, n’=15

0

0

0

0

0 15

15

15

15

31

31

31

1

9

13

16

24

28

i=5, n=0

Fig. 9. A model of average convergence for a 32 bucket �le.

As an example of the convergence process when n = 0, consider Figure 9. In this

example, the �le consists of M = 32 buckets, i = 5, and each server has j = 5. The

client initially starts with a client image i0 = n0 = 0. Given its image, the client

can only address bucket 0 and thus it can only make an addressing error to bucket

0. Upon making the �rst addressing error, the client updates its image to i0 = 4

and n0 = 1; it now \sees" the �le as having 17 buckets. Given this image of the

�le, it can only make an addressing error at buckets 1{15. With the assumption

of uniformity, the next error will occur at bucket 8. This will trigger the client to

update its view to i0 = 4 and n0 = 9 and hence view the �le as having 25 buckets.

It can then make its next addressing error in the buckets 9{15, only. Assuming

uniformity, this will be to bucket 12, thereby causing the client to set i0 = 4 and

n0 = 13 and hence seeing a �le of 29 buckets. The next addressing error will then

occur for bucket 14. Finally, the next (and last) addressing error to bucket 15

triggers the client to update its image to i0 = 5 and n0 = 0 and thereby converges.

The intermediate values of n lead to results somewhere between the extremes.

When n increases from n = 1, the portion of the �le where addressing errors can

occur also increases. For n = 2, the number will increase clearly to 2. For n = 4,

it will be 3, etc. thus increasing towards the upper bound of log2M . Again this

pattern can be observed on the �gure, among the random noise.

The upper graph in Figure 8 demonstrates that a client retrieves many objects

without incurring addressing errors even though the client's view of the �le is in-

accurate. For example, for the period where the �le doubled from 512 buckets to

1024 buckets, the average number of objects retrieved was roughly 1000. Since the

� 27

average number of addressing errors for this same evolution of the �le varied from

approximately 6 to 8, it is clear that a client makes few addressing errors even when

it has an imperfect view of the �le.

These results hold for any bucket capacity. The performance of the client image

adjustment algorithm is only dependent on the number of buckets in the �le.

10000 100000 1000000
0.4

0.6

0.8

1.0

1.2
Threshold = 1.0

10000 100000 1000000
0.4

0.6

0.8

1.0

1.2
Threshold = 0.8

10000 100000 1000000
0.4

0.6

0.8

1.0

1.2
Uncontrolled Splitting

10000 100000 1000000
Number of Inserts

0.4

0.6

0.8

1.0

1.2

Lo
ad

 F
ac

to
r

O
bs

er
ve

d

Threshold = 0.9

Bucket Capacity = 50

Bucket Capacity = 250

Bucket Capacity = 1000

Fig. 10. Load control with split coordinator.

4.3.3 Load factors of LH*. Figure 10 shows the simulated evolution of load factor

� in an LH* �le undergoing up to 1,000,000 insertions and Figure 11 shows the

same data grouped by bucket capacity rather than by threshold. The results are

with load control and without load control (uncontrolled splitting), for various

bucket capacities b and thresholds t. They demonstrate that an LH* �le is typically

e�ciently loaded even without load control. If the load is controlled, it can further

improve.

The correspondence between the actual load factor �, and the �le parameters b

and t is less straightforward than for LH. In LH, for t in the range of 0.7 to 0.9,

the graph of � can simply be a horizontal line � = t, i.e., the control can be tight

enough to assure a constant load factor. The basic reason for the more variant

shapes of � in LH* is that the coordinator only uses an estimate of the actual

28 �

10000 100000 1000000
0.4

0.6

0.8

1.0

1.2
Bucket Capacity = 10000

10000 100000 1000000
0.4

0.6

0.8

1.0

1.2
Bucket Capacity = 250

10000 100000 1000000
0.4

0.6

0.8

1.0

1.2
Bucket Capacity = 50

10000 100000 1000000
Number of Inserts

0.4

0.6

0.8

1.0

1.2

Lo
ad

 F
ac

to
r

O
bs

er
ve

d

Bucket Capacity = 1000

Uncontrolled Splitting

Threshold = 0.8

Threshold = 0.9

Threshold = 1.0

Fig. 11. Load control with split coordinator grouped by capacity.

load factor. For LH, the actual value of load factor can be computed. A similar

approach in LH* would lead to an additional message per insertion, i.e., to a rarely

practical approach.

Speci�cally, the curves lead to the following conclusions:

|The evolution of � without load control, is (of course) that of LH. Its characteris-

tics are well known, both through simulations and analytical models, e.g., [Litwin

1980; Larson 1980]. The curves tend to be periodical in log scale. One oscillation

corresponds to one full revolution of the pointer n, i.e., to the doubling of the

�le size. In the �gure, the �le increases 100 times, to 1,000,000 objects. This

size is probably larger than most existing �les. It is nevertheless also clear from

the �gures and con�rmed by the analytical models, that the curves would remain

similar for any �le size, simply with more periods.

|The average value of every � (as measured over one period in stable state, i.e.,

after a larger number of insertions) is somewhere within 60{70% for uncontrolled

splitting. This is typical of other schemes for dynamic �les, e.g. LH, extensible

hashing, or B-trees. The highest load occurs every time n = 0. The amplitude

of a period increases with b, towards almost 50% for large b's. This pattern is

also common. Larger buckets have a tendency to �ll up simultaneously. The

� 29

probability of a collision is then close to one, leading to about simultaneous

splitting by a few insertions, and to the drop of � to almost 50%.

|The curves corresponding to the load control show results for thresholds t = 0:8,

0.9 and 1.0. Every t improves � for every b in the studied range, as compared to

uncontrolled splitting. For every number of insertions, and every curve, a higher

t leads to a higher load. The average load factor and the minimum load factor

improve therefore as well. For b = 50, t = 0:8 improves the minimal load from

52% to 63%, i.e., by about 10%, and the average from 62% to 68%. The threshold

t = 1:0 leads to a minimum of about 75%, and to an average of almost 80%, i.e.,

to improvements of order 20%. For b = 1000, the choice of t = 0:8, moves the

minimum of � from 50% to over 70%, and the average increases to about 75%.

The choice of t = 1:0 moves the whole curve into the range 90{95%.

|In general, for a given b, increasing t leads to the minima increasing more than

the maxima increases with respect to the uncontrolled splitting case. This is a

desirable e�ect, as it improves the independence of � from the �le state. The

maxima move up more for smaller b's. For b = 1000 and t � 0:9 the part of every

curve where � > t, i.e., around each peak, coincides with the uncontrolled one.

The load control thus cuts very e�ectively the underload of uncontrolled splitting,

while it almost does not a�ect the �le during the phases of the load higher than

t. In particular, the higher t is, the lesser is the common part, as the load control

starts blocking splits earlier (for smaller n's). In almost every case, the maxima

remain under 100%. For large b's and t = 1:0, the whole phenomenon leads to

an excellent almost constant load factor of about 90{95%, as for LH.

|Every choice of threshold in the range studied leads to the load factor usually

under t, and lower than for LH. The load control appears also more e�ective for

larger buckets as the average values and the minima are higher and closer to the

threshold. Again, this is hardly a surprise. As for LH, it is also clear that the

load factor will remain as in the �gures, under any number of insertions into the

�le.

All things considered, the studied values of t appear to be practical. However,

the exact correspondence between �, t, and b does not seem simple to assess. As

long as there is no analytical model, to obtain the desired minimal and average

load factor, it is probably best to guess the corresponding values of t and b from

the simulation results in our �gures.

4.3.4 Performance of less active clients. In this section, we analyze the perfor-

mance of LH* when two clients are concurrently accessing a �le. Speci�cally, we

are interested in the case where one client is signi�cantly less active than the other.

The expectation is that a less active client makes more addressing errors than an

active client since the �le may evolve between accesses by the lazy client.

In these experiments, the two clients are synchronized such that the fast client

inserts k objects for every object inserted by the slow client (k is referred to as the

Insert Ratio). The fast client inserts either 100,000 or 1,000,000 objects. Thus,

with an insert ratio of 100 to 1, the slow client only inserts 1,000 or 10,000 objects,

respectively. Performance is reported as the number of messages required per insert

for each client. Note that this metric does not include messages associated with

30 �

Insert b=50, 100K ins. b=1000, 100K ins. b=50, 1M ins. b=1000, 1M ins.

Ratio fast slow fast slow fast slow fast slow

1:1 2.005 2.005 2.001 2.001 2.002 2.002 2.001 2.001

10:1 2.005 2.016 2.001 2.004 2.002 2.005 2.001 2.002

100:1 2.005 2.065 2.001 2.027 2.002 2.018 2.001 2.009

1000:1 2.005 2.200 2.001 2.140 2.002 2.058 2.001 2.046

Table II. Performance with two clients.

bucket splits since these messages typically take place in the \background" and

hence a client does not directly \see" them. Also note that all inserts required an

acknowledgement and hence the best case performance is two messages per insert.

The results are summarized in Table II for LH* �les with a capacity of 50 and

1000 objects at each bucket and for insert ratios varying from 1:1 to 1000:1. As the

table shows, for all experiments the performance of the slow client degrades as it is

made progressively slower. This occurs because the inserts by the fast client expand

the �le thus causing the slow client's view of the �le to become outdated. This

then results in the less active client experiencing an increased number of addressing

errors. However, it should be noted that performance is still quite acceptable for

even extremely slow clients. For example, for an insert ratio of 1000 to 1 and small

bucket capacities (b = 50), the slow client degraded less than 10% as compared to

that of the fast client.

0 50 100
1000X Inserts

0.0

1.0

2.0

3.0

A
ve

. n
um

be
r

of
 m

es
sa

ge
s

Bucket Capacity = 50

0 50 100
1000X Inserts

0.0

1.0

2.0

3.0
Bucket Capacity = 1000

Fig. 12. Marginal costs of �le creation using uncontrolled splitting.

� 31

4.3.5 Analysis of marginal costs during �le growth. Many �le access methods

incur high costs at some points during �le evolution. For example, in extendible

hashing, the doubling of the directory is a very costly operation. In this set of

experiments, we show that the performance of LH* �les is relatively stable over

their lifetime.

The experiments entailed populating LH* �les with 100,000 random objects and

measuring performance after every 1000 inserts. For example, the total number of

messages required for each of the �rst 1000 inserts was gathered and averaged. The

next batch of 1000 inserts was similarly measured. All inserts were acknowledged

to the client and the the split coordinator used the uncontrolled splitting policy.

Figure 12 shows the averages of each of the batch averages for the total message costs

for LH* �les with bucket capacities of 50 and 1000, respectively. As these graphs

show, performance is relatively stable over the evolution of the �les, especially for

�les with large bucket capacities. The small spikes that do occur are related to the

splitting of buckets but, as the average number of messages stays between 2.0 and

2.5, client performance is not signi�cantly a�ected.

5. VARIANTS OF LH*

In Section 3, the basic scheme for LH* was described. In this section, we describe

two main variants. The �rst variant describes how to eliminate the split coordinator

and the second describes how to perform splits out of order. Within the �rst variant,

we describe, and evaluate through simulations, several strategies for controlling �le

load without a split coordinator. For the second variant we describe two separate

means of performing splits out of order. These variants are not mutually exclusive.

5.1 LH* without the coordinator

The basic function of the coordinator in LH* is to decide when to split a bucket

and which bucket is to be split. It also serves implicitly as the communication

channel between the buckets that randomly undergo collisions, and those that lin-

early split. A potential drawback of having a coordinator is that it may fail. Other

drawbacks are that every collision costs one message to the coordinator, and every

split costs two messages to the coordinator. Thus, variants without a coordinator

are attractive.

In this section, we describe schemes for performing uncontrolled splitting and

controlled splitting without a coordinator. In all schemes, the value of the split

pointer n becomes the current position of a token; n = 0 initially. When bucket

n splits, it passes the token to the next bucket, that is bucket n + 1 or bucket 0,

according to the LH pointer evolution scheme (bucket (n+ 1) mod 2i to be exact).

We assume here that bucket n always knows the physical address of the bucket to

which the token should be forwarded. Only growing �les are considered, the case

of shrinking �les is easy to infer.

We do not report the e�ect of dispensing with the coordinator on overall message

cost. As seen from Figures 7 and 12, reporting a reduction in number of messages

due to splits would have been hard to discern.

5.1.1 Uncontrolled splitting. With uncontrolled splitting, bucket n (the holder of

the token) examines its load, let it be d, whenever it receives an insertion or when

32 �

it �rst receives the token. If d > b, i.e., a collision has occurred, the bucket splits,

and forwards the token to the next bucket, which then becomes bucket n. This

bucket similarly checks whether its load is above capacity, and, if so, splits and

forwards the token to the next bucket. The splitting stops at the �rst bucket where

d � b.

With respect to the splitting principles of LH and LH* described in Sections 2

and 3, respectively, this scheme introduces cascading splits. This feature is intended

to prevent the �le from becoming overloaded. Without cascading splits one can

expect the �le to be overloaded since the pointer does not move forward at every

collision where d > b as was the case with LH or previous versions of LH*. Instead,

a collision on precisely bucket n, the token holder, has to occur. This is a much less

frequent event. A cascade is necessary to clean overows that have accumulated.

Note that it is even more important when there is no coordinator to properly

choose the hashing functions. With a good hash function, it is very unlikely for

insertions to avoid the bucket with the token for a long while. If such an unlikely

event does occur, the �le will get in a bad state. However, cascading splits would

remedy the situation when the bucket overows eventually. But, most importantly,

the hashing functions should be replaced with functions that hash uniformly.

Performance of uncontrolled splitting. The necessity of split cascades is demon-

strated in Figure 13. In this �gure, 1,000,000 keys were inserted into �les with

bucket capacities ranging from 50 to 1000 records. The leftmost graph shows the

�le load resulting from a policy of no split cascades. Note that a y-axis value of 1.0

indicates that the �le is loaded to 100% capacity. As the graph shows, the �le is

grossly overloaded, and the load is increasing rapidly for smaller bucket capacities.

Even for larger buckets, e.g., b=1000, the �le is sometimes overloaded and the load

is growing, although it is hard to see given the scale of the �gure. The rightmost

graph shows the load of uncontrolled splitting with split cascades. As these curves

show, the �le is no longer grossly overloaded. However, the �le is still overloaded

for small buckets and the variance in the load is high. The load is even growing

slightly with inserts despite the cascades.

This no-coordinator algorithm coupled with an uncontrolled splitting policy in-

troduces a random delay in the splitting of bucket n, with respect to the same

insertions and the corresponding coordinator-based algorithm. The evolution of

the load factor is less smooth, i.e., with higher variance of load among buckets,

and higher average overall load, than for the same policy with the coordinator

(see Figure 10). The di�erence should be acceptable for large buckets, let us say

b > 250, and uniform hashing. Indeed, the larger the bucket, the lower the variance

in bucket load, for the same �le level i. It is also more likely that if a collision

occurred at some bucket a other than n, after relatively few insertions it will also

occur at bucket n.

5.1.2 Controlled splitting. In Section 4, it was shown that a controlled splitting

strategy, i.e., load control, signi�cantly outperformed uncontrolled splitting with

respect to the average load and the variance in the load. In this section, we present

and evaluate several strategies for controlling the load without the use of a coordi-

nator.

When the �le is created, a threshold t is de�ned for load control. As will appear

� 33

10000 100000 1000000
Number of Inserts

0

5

10

15

Lo
ad

 F
ac

to
r

Without cascades

10000 100000 1000000
Number of Inserts

0.4

0.6

0.8

1.0

1.2

1.4

1.6

With cascades

Bucket capacity = 50
Bucket capacity = 250
Bucket capacity = 1000

Fig. 13. File load for uncontrolled splitting|with and without split cascades.

later, one should set t to a value 0:7 < t < 1:0. The basic scheme, let us call

it S1, is that bucket n (the holder of the token) examines its load d whenever it

receives an insertion or when it �rst receives the token. In the former case, the

bucket tests whether d > b, i.e., a collision occurs. If so, the bucket inputs its load

d to the estimate �0 of the overall load factor that it computes using Algorithm

A5 in Section 3.3.2, exactly as occurred in the case with the split coordinator. If

�0 > t, the bucket splits and forwards the token to the next bucket. When a bucket

receives the token, it immediately inputs its load to estimate �0. If it exceeds t, the

bucket splits and forwards the token. The splitting stops at the bucket where the

test of �0 �nds �0 � t.

Through the setting of t < 1, the load control has a capability to lower the load

factor through cascading splits even if there is no collision at successive buckets.

This capability will be justi�ed soon. The lower the value of t, the longer the

expected length of a cascade. Setting t close to 0.5 can clearly lead to long cascades,

e.g., even all 2i buckets may split in one pass. As each split lowers the load factor of

a bucket, or creates an empty bucket, the length of every cascade is �nite, provided

of course t > 0.

On the other hand, observe that the average length of the sequence of insertions

per bucket between successive splits increases with the �le. This phenomenon did

not exist for LH or for LH* with the coordinator. The �le load factor can remain

bounded, and under 100%, only if splits make su�cient room to absorb such a

sequence of objects, on the average. This is one more rationale for introducing

cascading splits, as a tool to increase the number of splits when the �le grows. The

34 �

larger the �le, the more likely it is that if a collision occurs at bucket n, it already

occurred at the next bucket as well. This is also the rationale for the capability of

the load control to lower the load factor through cascades and t < 1, i.e., even if

there are no collisions at successive buckets.

In the basic scheme, S1, a cascade can only start when bucket n undergoes a

collision. This tends to delay the triggering of a splitting cascade. It also means

that by the time bucket n undergoes a collision, many of the buckets that follow it

are ready to split as well. Thus, splitting cascades tend to be withheld longer than

necessary, and once started, they tend to be long and several of them are likely to

occur one after the other. Following these successive splitting cascades, the load of

the �le is likely to drop low enough so that splits do not occur for a while. This

causes a wider variance in load than with the coordinator-based algorithm. An

additional concern may be that longer and closely triggered cascades may saturate

the network.

One solution is to limit the length of a cascade to at most a few buckets. This

would avoid a sharp drop in the load factor, when n increases from n = 0, making its

convergence towards t more amortized. Another way is to split the �rst bucket of a

cascade earlier, i.e., when the estimate of �le load reaches t, instead of waiting until

the bucket load reaches b and the estimated �le load reaches t. The corresponding

strategy, which we call S10, should allow for a more uniform (at) load factor, with

a value close to t, regardless of n.

On the other hand, one may observe that bucket load d acts in S1 as an estimate

of an overall load of buckets that did not split yet during the current trip of the

token. An underloaded bucket can stop splitting, leading to a longer cascade later.

Also, the estimate is naturally less accurate for smaller buckets. A solution is to

replace d with an average d0 calculated over several recently split buckets. One may

expect that the �le evolution will be more smooth, with lower peaks of load factor

and less variant length of cascades. One way to do it at no additional message cost

is to piggyback the current length of the cascade and the current d0 onto the token.

The bucket receiving the token can then update d0 using its own d value and decide

whether to split. It does not seem worthwhile to keep averages from one cascade

to another, as these values should typically be rapidly outdated.

The idea of averaging bucket loads leads to two more strategies corresponding

to S1 and S10 except for the use of d0 instead of d. We call them S2 and S20.

As each scheme, while removing some drawback, also introduces some additional

complexity, the basic question is when are the corresponding tradeo�s worthwhile

in practice.

Performance analysis. Figure 14 shows simulations of �le load factors for strate-

gies S1, S10, S2 and S20 for bucket capacities b of 1000 and 50 and threshold t = 0:8.

Each �le underwent 1,000,000 insertions. As in Section 4.3, the keys used to build

the �le were randomly generated. The curves con�rm the expectations. Speci�cally,

for a large b, in this case b = 1000:

|The averaging does not have practical importance as S1 and S2 perform almost

identically, and S10 works about identically to S20.

|Strategies S1 and S2 exhibit periodic peaks of load factor reaching 100%. The

peaks correspond to n = 0. The peaks in load are resorbed after relatively few

� 35

10000 100000 1000000
Number of inserts

0.7

0.9

1.1

1.3

1.5

Lo
ad

 fa
ct

or

S1’
S2’

10000 100000 1000000
0.7

0.9

1.1

1.3

1.5

S2
S2’

10000 100000 1000000
0.7

0.9

1.1

1.3

1.5

Bucket Capacity = 1000

S1
S1’

10000 100000 1000000
Number of inserts

0.7

0.9

1.1

1.3

1.5 S1’
S2’

10000 100000 1000000
0.7

0.9

1.1

1.3

1.5
S2
S2’

10000 100000 1000000
0.7

0.9

1.1

1.3

1.5

Bucket Capacity = 50

S1
S1’

Fig. 14. Load control without split coordinator (b=1000 and b=50, t=0.8).

insertions, as was expected. Afterwards, the load factor remains within a few

percent of the threshold value.

|Strategies S10 and S20 lead to a load factor that is within a few percent of the

threshold value all the time.

|Neither the average, nor the peak load factor visibly grows with insertions. The

curve for S1 can give an impression of slight growth, but a closer look on the right

half shows that it is on the average at (gradient is zero). This half corresponds

in fact to 90% of the insertions because of the logarithmic scale.

For smaller b values, in this case b = 50:

|The curves present visibly higher variance, as expected. They are also in general

above the threshold. This is true for both peak values that now can reach 150%

and for average values that are between 90% and 110%.

|The averaging is more e�ective. Strategies S2 and S20 are clearly better than S1

and S10. Peaks of S1 reach 130{150%, while S2 is typically under 130%. Similarly,

S10 oscillates between 90 and 130%, typically around 110%, while S20 is typically

between 80 and 100%.

36 �

3 4 5 6 7 8 9 10 11 12 13 14
0.0

10.0

20.0

30.0

40.0
av

e
ca

sc
ad

e
le

n
(%

)

b=50

S1
S1’
S2
S2’

3 4 5 6 7 8 9 10
0.0

10.0

20.0

30.0

40.0
b=1000

number of buckets (power of 2)

Fig. 15. Length of cascades (b=50 and b=1000, t=0.8).

Figure 15 shows data on cascading splits corresponding to the curves in Figure 14.

The x-axis shows the number of buckets in the �le (in powers of 2). The y-axis

shows the average cascade length expressed as a percentage of the current �le size.

The average cascade length is calculated for each doubling of the �le and plotted.

For example, the data point for S20 marked in the �gure (y=2.5%, x=7) means

that, on the average, each cascade covered 2.5% of the �le as the �le doubled from

26 to 27 buckets.

The results in Figure 15 match the intuition. A comparison of the two graphs

shows that cascades tend to be longer for smaller buckets (b=50). For such buck-

ets, the cascades are longer for strategies S1 and S2, which wait until an overow

has occurred before splitting, as compared to S10 and S20, respectively, which start

splitting when the threshold is reached. Furthermore, they are longer for the strate-

gies S2 and S20 that average the bucket load to decide on further splits. Whenever

a cascade occurs, several splits are performed, instead of always a single split at

a time for schemes with the coordinator. However, as the �gures show, a cascade

a�ects a small fraction of the �le for all the strategies, especially for larger buckets.

It is also interesting to compare the �le load for S20 to those in Figure 10 (t = 0:8)

for the system with load control using a split coordinator. For small buckets, e.g.,

b = 50, the maximum load using the SC was always under the threshold, with an

� 37

average load of approximately 70%. Without the split coordinator, and for the

same bucket capacity, the minimum load for S20 was at the threshold, with the

average around 90% and the maximum exceeding 110% at times. The results for

S20 are even better for larger bucket capacities. At b = 1000, the �le load varies very

little from the threshold. In contrast, the load with the SC is much more variant,

with the maximum reaching 100% and the minimumdropping below the threshold.

Thus, overall the �le load can be controlled as well as, or better, by an algorithm

that does not require a split coordinator. This surprising result is explained by the

fact that S20 utilizes split cascades and load averaging for maintaining �le load.

In conclusion, the performance analysis shows that for larger buckets all four

strategies perform about equally well. For small buckets, strategies S2 and S20 are

preferable. All things considered, S20 appears the most practical.

5.2 Concurrent splits

For all variants of LH* we have discussed, it was assumed that the next split starts

only when the previous one terminates. Such sequential splitting guarantees that

no client that gets an error message from bucket m, sends a key to a bucket that

should be created by a split of bucket m�k, but was not. The client getting j from

m, will indeed infer that the level of bucket m � k is also j. It could then send a

key to bucket m� k+ 2j�1. This bucket must exist if every split of a bucket m� k

must be terminated before the split of bucket m.

A coordinator using sequential splitting does not send a split message to bucket

n+ 1 as long as it has not received a message from bucket n informing it that the

split has �nished. Similarly, in the variant without a coordinator, bucket n does

not forward the token to bucket n+ 1 until it �nishes its split. It may nevertheless

be faster to perform splits concurrently, i.e., to start the next split without waiting

for the previous one to �nish. In theory, the time to perform k concurrent splits

can be reduced by a factor of k. In practice, this is only possible if the network has

su�cient bandwidth.

It is possible to enhance LH* for concurrent splits. Assume that the �le has

a committed split pointer (token) in addition to the regular split pointer (token),

considered up to now. The regular pointer is used as before to determine the

next bucket to split. The committed split pointer trails the regular pointer. When

bucket n starts splitting, the regular pointer moves forward, i.e., the n value is set to

n n+1. The regular split pointer moves to the next bucket any time a new split

is started. The other pointer moves forward only when a split is �nished, making

the split committed. A client is informed of the new level i + 1 (through IAMs) of

the bucket only for committed splits. Buckets with splits yet uncommitted send

out the old level i. Hence, no client can get j = i + 1 if it could get j < i+ 1 for a

previous bucket. Whatever the client's adjusted image is, all buckets in the image

must exist, as for basic LH*.

For a scheme with a coordinator, the existence of two pointers means that the

bucket that got a split message has to get an additional commit message. The mes-

sage can be sent by the coordinator, or directly by the previous bucket. Similarly,

in the variant without the coordinator, there has to be two tokens, and also one

more message per split. The price for faster splitting is thus a slight slow down

of every split. Thus, the insertion rate has to be high enough to make concurrent

38 �

splitting worthwhile.

What such conditions exactly are remain to be determined. In general, however,

it is easy to see that concurrent splitting is naturally more interesting for variants

without coordinators using cascading splits. It is particularly worthwhile then to use

an allocation strategy putting buckets n and n+1 on di�erent segments of a network.

Concurrent splitting can be interesting for buckets on the same segment when the

CPU time to perform a split dominates the corresponding network transfer time,

and high insertion rates should be achieved. If the network is comparatively much

slower or lacks su�cient bandwidth, concurrent splitting on the same segment may

not be e�ective. Not only may throughput not increase, but it may decrease. On

a typical 10 Mb/sec Ethernet more collisions may occur, leading to retransmission

of some packets at best, and to network thrashing at worst.

Presplitting. The idea in concurrent splits is that the split of bucket n + k can

start before that of bucket n has �nished. One can extend it further, assuming

that a split of any bucket m can start and �nish before it becomes bucket n. The

splits are only committed in sequence of the movement of split pointer n, to avoid

the problem discussed previously for concurrent splits. This principle is called

presplitting.

Presplitting works as follows. For simplicity, we assume the existence of the

coordinator, as the extrapolation to the variant without it is straightforward. Every

bucket m has two levels, noted j and j0, with j0 = j if the bucket has not presplit.

Assume that bucket m, where m 6= n, with j0 = j overows. As usual, it noti�es

the coordinator of the collision. However, it now sets j0 j0 + 1 and splits using

hj0 , despite the fact that m 6= n, i.e., it is not its turn to split. A new bucket m0

is created, exactly as it would be created if m was m = n and the split using hj+1
was used. Levels j and j0 of bucket m0 are set to the updated value of j0 of bucket

m. The whole operation is a presplit.

From this point on, i.e., as long as j0 > j, bucket m noti�es the coordinator

that a collision occurred for every insert it gets, although usually it still has excess

capacity since half of its keys moved to bucket m0 during the presplit. This policy

allows the coordinator to keep the same pace of the pointer movement as it would

have without presplits. If bucket m experiences a true collision, it again presplits.

A collision can also occur on bucket m0, triggering a presplit. In either case, the

new bucket m00 is created with levels j and j0 set to the updated level of j0 of the

presplitting bucket. When the pointer n comes to a presplit bucket m, the bucket

simply sets j to j j + 1. If j = j0, then the split has \caught up" with the

corresponding presplit(s) and the bucket no longer reports insertions as collisions

until its capacity is again exceeded.

The addressing principles of LH* are modi�ed as follows. If bucket m gets a key

c and �nds that it should be the addressee (using j in algorithm A2), it still needs

to check j0. If j0 > j, bucket m recomputes the address hi(c) using successively

i = j + 1; j + 2; ::: until either hi(c) > m or i > j0. The former case means that c

should be forwarded because of presplitting. The bucket resends c accordingly, and

tags the message as being a forwarding due to a presplit. The recipient performs a

similar address calculation, and either retains c or forwards it again. The forward-

ing process must obviously terminate. The �nal bucket processes the query, but

� 39

given the tag, it does not send an IAM to the client. Hence, presplitting remains

transparent to the client.

Presplitting without a coordinator and without load control works similarly. In

contrast, load control, with and without a coordinator, has to be rethought if pres-

plitting is used. The problem arises because presplitting allocates buckets without

the knowledge of the coordinator, or of bucket n with the token, making the corre-

sponding load estimate void. One way to control the load is to hold a presplit until

bucket m overows to some level. This level would be a function of j and m. The

de�nition of this function is an open problem.

Presplits should reduce the time and messaging cost to perform a cascade, as

many of the buckets may already have presplit. On the other hand, the presence of

presplit buckets will likely deteriorate access performance. More forwarding mes-

sages per search or insert may be needed, and the corresponding number becomes

unbound in the worst case.

However, the deterioration in access performance should not be a problem in

practice. On the one hand, strategies could be designed to accelerate the pointer

(or token) in order to prevent too many presplits. Such strategies could be similar

to those for load control, although with the goal of controlling access performance.

On the other hand, one can observe that presplitting borrows many ideas from

Recursive Linear Hashing [Ramamohanarao and Sacks-Davis 1984], which in turn

borrows the idea of immediate splitting of overowing buckets from extendible

hashing [Fagin et al. 1979]. The performance analysis in [Ramamohanarao and

Sacks-Davis 1984] makes likely the conjecture that the average access performance

should deteriorate only slightly, even without load control. The performance anal-

ysis speci�c to presplitting remains to be done.

6. RELATED WORK

In a distributed �le system (DFS), the �les should reside at di�erent sites, and

the distribution of the �les, with respect to remote access and storage, should

be transparent to the users [Levy and Silberschatz 1990]. Various approaches,

categorized in Figure 16 have been proposed towards this goal. In most DFSs, each

�le resides entirely on a site. Historically, this idea was the �rst to appear, and it

is currently present in major commercial systems, NFS, and AFS in particular. Its

obvious limitation is that �le storage and access performance scalability is poor, as

it is bound by the limits of the �le site.

A natural evolution is then to distribute a �le over multiple sites. This idea led

�rst to the class of DFSs referred to as static partitioning schemes in Figure 16.

With these schemes, some criterion is used to distribute records of a �le over a num-

ber of sites. Once the distribution is established, the distribution criterion and the

number of sites remain static, for the life of the �le, even if updates to the �le render

both of these parameters sub-optimal. To change either requires redistributing the

�le and removing the old copy. Examples of such schemes are round-robin [Terra-

data 1988] where records of a �le are evenly distributed by rotating through the

nodes when records are inserted; hashed-declustering [Kitsuregawa, Tanaka, and

Moto-Oka 1984] where records are assigned to nodes based on a hashing func-

tion; and range-partitioning [DeWitt et al. 1986] where key values are divided into

ranges and di�erent ranges are assigned to di�erent nodes. With static partitioning

40 �

DFSs

Single-site files

transparent access

with remote,

Static

server sites

Multi-site files

update

Eager

and atomic

 of file

parameters at

all client and

Lazy update of

file paramaters

at individual

sites on a

need-to-know

basis

ally

partitioned

Dynamically

partitioned files files

Fig. 16. Typology of Distributed File Systems.

schemes, the declustering criterion does not change over time and hence updating

a directory or declustering function is not required.

To overcome the obvious limitations of the static schemes, e.g., to allow a �le

to expand over more sites than initially allocated, dynamic partitioning schemes

started appearing. To our knowledge, the �rst such scheme is DLH [Severance,

Pramanik, and Wolberg 1990]. This scheme was designed to take advantage of

tightly-coupled multiprocessors with shared-memory. In DLH, the �le is in RAM,

and the �le parameters are cached in the local memory of each processor. The

caches are refreshed selectively when addressing errors occur, and through atomic

updates to all the memories at some points during �le evolution. DLH �les are

shown impressively e�cient for high rates of insertions compared to LH.

A scheme that requires atomic updates to multiple sites, can be advantageous for

performance in a tightly-coupled environment. However, it precludes a distributed

�le from scaling beyond a small number of sites. SDDSs were proposed to circum-

vent this constraint [Litwin, Neimat and Schneider 1993], LH* being the initial

scheme to prove the feasibility of such an approach. Since that time, several other

SDDSs based on hashing have been proposed. One such algorithm is Distributed

Dynamic Hashing (DDH) [Devine 1993]. The main idea, with respect to LH*, is

that DDH allows greater splitting autonomy by immediately splitting overowing

buckets. DDH uses the Dynamic Hashing (DH) of [Larson 1978] as its kernel algo-

rithm. In DH, the dynamic hashing function is a trie. The level i basically means

that the rightmost i bits of the key, or of hashed key (pseudo-key), are used as the

logical address of the key. The hashing logically consists of the traversal of the trie

from the root, which always points to bucket 0, to some leaf with level i, which

points to the actual bucket where the key should be.

Unlike DH, though, in DDH the actual trie is not maintained. Instead, every

client has an image trie that it builds through IAMs. A new client always sends a

� 41

key to bucket 0. As with LH*, a key incorrectly sent to a server is forwarded to

the correct server. Bucket 0 forwards it to bucket 1 if the split using h1 would do

so, otherwise it applies h2 and perhaps forwards it to bucket 2, etc. The process

continues until the correct bucket is reached. As in LH*, every bucket keeps in its

header the level i of the most recent hashing function used.

The basic versions of LH* and DDH have about the same load factor. The main

advantage of DDH is that no bucket needs to store overow records, as buckets

split immediately. Hence there is no need for a split coordinator in DDH. This also

leads to slightly better access performance for a client with an image reecting the

actual state of the �le. This holds even with respect to LH* with presplitting, as

presplits are not visible to clients. In contrast, it requires the storage for the trie

on the client, which should be in practice on the order of kilobytes. Also, the key

forwarding can require more messages in DDH. For a new client, it is order of log I,

where I denotes the maximal length of the trie, i.e., the max i. See [Devine 1993] for

the corresponding simulation results that show that if new clients are unlikely, the

average access performance of DDH is close to that of LH* under random searches

and inserts.

The recent work of [Vingralek, Breitbart, and Weikum 1994] also de�nes an

SDDS. It extends LH* and DDH to more e�ciently control the load of a �le. The

goal is to limit the number of servers to the smallest possible, while still maintaining

good access performance. This is accomplished by a more exible load-balancing

strategy. The �le advisor in [Vingralek, Breitbart, and Weikum 1994] attempts to

control server load as opposed to bucket load. This is enabled by having servers

manage many small buckets and by allowing the advisor to migrate buckets from

one server to another. Furthermore, the split operation applies to a server, i.e., all

buckets on the server are split. This out-of-order splitting necessitates maintaining

an address table (as in DDH) to map a bucket to its server and to keep track of each

bucket's level. Finally, the �le advisor has a more elaborate model of �le load than

in LH*. When it receives a collision message, it estimates the number of keys that

were received by the other non-overloaded servers in order to estimate the overall

load.

7. CONCLUSION

We have shown that LH* is an e�cient, scalable, distributed data structure (SDDS).

The analysis showed that it takes one message in the best case and three messages

in the worst case to insert an object into an LH* �le using the basic scheme.

Correspondingly, it requires two messages to retrieve an object by its key in the best

case and four in the worst case. The simulations showed that average performance is

very close to optimal for both insert and retrieve requests. Hence, the performance

of any algorithms that use a centralized directory has to be worse than the average

performance of LH*.

LH* was also shown to have excellent performance even when a client's view of

the �le parameters is not up to date. LH* quickly adjusts incorrect client views of

�le parameters until they converge to the correct view.

We have further analyzed several variants of the basic LH* scheme. The �rst of

these demonstrates the feasibility of LH* without any centralized control. The other

variants, concurrent splits and presplits, provide techniques to increase throughput

42 �

and to more quickly adapt to data skew. The analyses have shown that all the

schemes should perform e�ciently for large, million-record �les. Altogether, LH*

appears especially e�cient in its use of interconnected RAMs and should have

numerous applications: very large distributed object stores, network �le systems,

content-addressable memories [Gallant 1992], parallel hash joins [Amin, Schneider,

and Singh 1994], and, in general, for next generation databases. Operations that

were impossible in practice for a centralized database may become feasible with

LH*.

There are many areas of further research for LH*. The evaluation of an actual

implementation is necessary. For example, we ignored the internal organization

of LH* buckets. As buckets can be several megabytes large, their organization

has performance implications. One attractive idea is that of buckets of di�erent

size, depending on bucket address. Similarly, the problem of handling messages

at a server was not elaborated, the assumption being that messages are queued

and serviced in their arrival order. For applications where di�erent requests may

have di�erent priorities, or where contention is high, this scheme may need to be

modi�ed.

One should also investigate other SDDSs, e.g., based on other dynamic hashing

schemes [Enbody and Du 1988; Salzberg 1988; Samet 1989]. SDDSs preserving a

lexicographic order are also of great potential for improving the processing of range

queries, as shown by the �rst studies in [Litwin, Neimat and Schneider 1994; Kroll

and Widmayer 1994].

ACKNOWLEDGMENTS

We would like to thank Julien Levy for performing the thousands of simulations

necessary for this work. We also thank the anonymous referees for their valuable

comments, which helped us improve the paper.

REFERENCES

B.W. Abeysundara and A.E. Kamal. High-speed local area networks and their performance: A

survey. ACM Computing Surveys, 23(2), June 1991.

M. B. Amin, D. A. Schneider, and V. Singh. An adaptive, load balancing parallel join algorithm.

6th International Conference on Management of Data, Bangalore, India, December, 1994.

The fastest LAN alive. Byte, pages 70{74, June 1992.

R. Devine. Design and implementation of DDH: A distributed dynamic hashing algorithm. In

Proc. of the 4th Intl. Conf. on Foundations of Data Organization and Algorithms (FODO),

1993.

D. DeWitt and J. Gray. Parallel Database Systems: The future of high performance database

systems. Communications of the ACM, 35(6), June 1992.

D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Muralikrishna. GAMMA: A

high performance dataow database machine. In Proc. of VLDB, August 1986.

R. Enbody and H. Du. Dynamic hashing systems. ACM Computing Surveys, 20(2), June 1988.

R. Fagin, J. Nievergelt, N. Peppenger, and H.R. Strong. Extendible Hashing{A Fast Access

Method for Dynamic Files. ACM Transactions on Database Systems, 4(3):315{344, 1979.

J. Gallant. FDDI routers and bridges create niche for memories. In EDN, April 1992.

D.E. Knuth. The Art of Computer Programming. Reading, MA: Addison-Wesley, 1973.

M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Architecture and performance of relational

algebra machine GRACE. In Proc. of the Intl. Conf. on Parallel Processing, Chicago,

1984.

� 43

B. Kroll and P. Widmayer. Distributing a search tree among a growing number of processors.

In Proc. of ACM-SIGMOD, May 1994.

P.A. Larson. Dynamic hashing. BIT, pages 184{201, 1978.

P.A. Larson. Linear hashing with partial expansions. In Proc. of VLDB, 1980.

P.A. Larson. Dynamic hash tables. Communications of the ACM, 31(4):446{57, April 1988.

W. Litwin. Linear hashing: A new tool for �le and table addressing. In Proc. of VLDB, Mon-

treal, Canada, 1980. Reprinted in Reading in Database Systems. M. Stonebraker ed., Mor-

gan Kaufmann, 2nd ed., 1995.

W. Litwin, M.-A. Neimat, and D. A. Schneider. LH*|linear hashing for distributed �les. In

Proc. of ACM-SIGMOD, May 1993.

W. Litwin, M.-A. Neimat, and D. Schneider. RP*: A family of order-preserving scalable dis-

tributed data structures. In Proc. of VLDB, September 1994.

E. Levy and A. Silberschatz.Distributed �le systems: Concepts and examples.ACM Computing

Surveys, 22(4), December 1990.

K. Ramamohanarao and R. Sacks-Davis. Recursive linear hashing. ACM Transactions on

Database Systems, 9(3):369{391, 1984.

B. Salzberg. File Structures. Prentice Hall, 1988.

H. Samet. The design and analysis of spatial data structures. Addison Wesley, 1989.

Herb Schwetman. Csim reference manual (revision 14). Technical report ACT-ST-252-87, Rev.

14, MCC, March 1990.

C. Severance, S. Pramanik, and P. Wolberg. Distributed linear hashing and parallel projection

in main memory databases. In Proc. of VLDB, 1990.

M. Stonebraker. The case for shared nothing. Database Engineering, 9(1), 1986.

Tanenbaum. Distributed Operating Systems. Prentice Hall 1995.

DBC/1012 data base computer concepts and facilities. Teradata Document C02-001-05, Tera-

data Corporation, 1988.

D. Vaskevitch. Database in crisis and transition: A technical agenda for the year 2001. In Proc.

of ACM-SIGMOD, May 1994.

R. Vingralek, Y. Breitbart, and G. Weikum. Distributed �le organization with scalable

cost/performance. In Proc. of ACM-SIGMOD, May 1994.

APPENDIX A. DEFINITION OF TERMS

term description typical value

i �le level initially 0, increases monotonically

i0 client's view of i 0 | i

n split pointer 0 to 2i � 1

n0 client's view of n 0 | n

M total no. of buckets (servers) in �le 2i + n

a a server's address [0; 1;2; :::;M � 1]

j servers' �le level for local bucket i or i+ 1

C key value random; 0 | 1,000,000

hi series of hash functions C mod N � 2i

� actual load factor of �le 0.6 | 1.0

�0 estimated load factor of �le

param description typical value

b bucket capacity (objects per bucket) 50|10,000

t requested load factor of �le 0.7|1.0

N initial no. of buckets in �le 1

