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Abstract 
 
This last decade, a new class of data structures named Scalable Distributed Data Structures (SDDSs), 
is appeared completely dedicated to a distributed environment. This type of data structures opened an 
important axis of research, considering that the data management in a transparent manner is 
fundamental in a computer network. All the existing methods are mainly based on Linear hashing 
(LH*) and Range-partitioning (RP*). In this paper, we propose a new method with the constraints of 
the SDDS. Our approach is an adaptation of the well known method Trie hashing(TH) for a 
distributed environment, i.e., a network of interconnected computers. The latter uses a digital tree 
(trie) as access function. Our major objective is the distribution of file buckets and the tree 
representing the hashing function. We have considered TH with the tree represented in compact form  
(CTH) because this option is probably more interesting for the reduction of  the message size  
circulating on the network. Contrary to the majority of the existing methods, the proposed one 
provides the order of distributed files, then facilitates both the range query operations and the ordered 
traversal of files. Moreover, the following properties make our method a promising opening towards a 
new class of SDDS : - preservation of the order of records, - works without multicast  - three bytes are 
sufficient to address a server, - the transfer of some bytes is enough for the update of the client trees. 
The access performances should exceed the ones of traditional files and some competitive scalable 
and distributed data structures. 
 
I. Introduction 
  
Current research is emphasized, more and more, on the manner to cooperate several microcomputers 
(network) in order to make them as powerful (or more) as a supercomputer and this thanks to their 
accumulated storage capacity and their parallel processing. Such a system is called multi-computers. A 
striking example is the one of the HP Labs with a few thousands of workstations. Traditional data 
structures do not suffice on the multi-computer so defined  because of the new following 
requirements: distributed and parallel processing, distributed RAMs, distributed disk files and 
scalability. Thus, it is necessary to find a data structure adequate to this new type of 'supercomputer'. 
 
This last decade a new class of data structures was born totally devoted for the multi computer. This 
class of data structures is baptized Scalable Distributed Data Structures (SDDSs). They are based on  a 
client/server architecture. The following properties characterize the SDDS :- Distribution of the file 
buckets on the servers (at a rate of one server per bucket), - No a main site, - No dialogue between the 
clients. Each client owns an image of the file. Then, the clients can make addressing errors.  They are 
updated using messages called Image Adjustment Messages (IAMs). The client image is updated 
gradually until obtaining the real image. 
 
Currently, there are two main classes of SDDS methods quite distinct : the ones which are based on 
LH and the ones on RP.  The SDDS which are defined on LH are methods which do not preserve the 
order of records. They use some information at the level of the clients for addressing the file usually 
distributed on several servers [Lit 93], [Lit 93a], [Lit 00].  The SDDS which are based on RP preserve 
the order of records. There are several variants : RP*N uses no index  and operates simply with 
multicast, RP*C uses a client index with limited multicast, RP*S uses a servers index with multicast 
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optionally. [Lit 93b], [Lit 94]. It was shown that the files SDDS could be faster and larger than the 
traditional files. 
 
Trie hashing [Lit 81] is one of the fastest access methods for the mono key, ordered and dynamic files.  
The technique uses a hashing function, which is variable and represented by a digital tree (trie) which 
grows and retracts according to the insertions and deletions.  At the time of its creation, the technique 
had known much successes.  Several works were devoted to it the ten years which followed its 
creation.  We can cite [Lom83], [Tor83], [Lit85], [LIT86], [Zeg87], [Oto87], [Zeg88], [Hid93], 
[Zeg94]. Why not to distribute  such a  powerful file structure? Such is our concern in this paper. 
 
There are several ways to represent the access function generated by TH in memory. The compact 
representations (CTH : Compact trie hashing) we have suggested before [Zeg88], [Zeg94] allow to 
double the files addressed by the standard representation (TH) for the same memory capacity.  
Moreover, for a distributed environment this option is probably more interesting, in particular for the 
transfer the tree parts from a site to another, considering this as a frequent operation in our schema. 
The idea of the compact representations is to represent the links in an implicit manner to the detriment 
of algorithms of maintenance slightly longer than those of the standard method. The method consumes 
only 3 bytes per file bucket, what makes possible to address some millions of records with a small 
memory capacity. 
 
In this paper, our main interest is the distribution of CTH  relatively to the properties of SDDS. We 
add symbol '*' for underlining the distributive character of the data structure. We will present the 
proposed schema and will show its validity. The results obtained show that the schema CTH* is 
promising for the following reasons : - the preservation of the order of records,  - works without 
multicast for all the operations, - three bytes are sufficient to address a server, - the transfer of some 
bytes is enough for the updating of  the trees at the level of the clients. 
 
The next sections in short:  II recalls CTH. III describes how the file buckets and the trie are 
distributed on several servers. IV presents the search and insert algorithms. V provides an illustration 
of the method and gives some properties of the proposed schema. In section VI, the range query 
operation is described. A simulation model is presented in section VII followed by some experimental 
results. Section VIII compares our method with the concurrent method Rp*S which use a B+-tree. In 
section IX, some variants are introduced. Finally, section X concludes the paper. 

 
II. Compact trie hashing   
 
We briefly present, in what follows, a scenario showing the construction mechanism of a CTH file by 
inserting the following keys : " a  ce  dx  ef  h  x  y  kx  fe  hx  hy  yya  yyb  yyc " 
Let us take a capacity of 4 keys per bucket. At the start, the tree is ‘|0’.  ‘| ‘ indicates the largest digit. 
This means that all the keys are mapped initially in bucket 0.  
 
1. Keys’ a’ , ‘ce’, ‘ dx’, and  ‘ef’ are inserted in bucket 0.   
The tree is :  |0  
The file (keys per bucket):  Bucket 0:  [ ‘a’ ‘ce’ ‘dx’ ‘ef’ ] 
 
2.Insert ‘ h’  
The search of key 'h' gives the address 0 .  As the bucket 0 is full, there is a collision. The maximal key of this 
bucket is  '|'.  Let us consider the ordered sequence "’a’  ‘ce’  ‘dx’  ‘ef’  ‘h’".  C (the middle key)  is 'dx' and 
C"(the last key) is 'h'.  The smallest prefix of digits which makes possible to distinguish C' from C'' is 'd'. It is 
called the sequence of division. The tree becomes d0|1.  All the keys lower or equal than 'd' stay on the bucket 0. 
The others are transferred in a new bucket. The file (keys per bucket) is then:  Bucket 0:  [ ‘a’ ‘ce’ ‘dx’ ]; Bucket 
1:  [‘ef’ ‘ h’ ] 
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1.  Insert ‘x’ and ‘y’  
As 'x' and 'y' are greater than 'd', the search operation gives the address 1. They are inserted in bucket 1 since 
this one can contain them. Bucket 1:  [‘ef’ ‘h’ ‘x’ ‘y’] 

 
4.  Insert ‘kx’ 
The search of  key ‘kx’ gives 1. Bucket 1 is full. There is thus a collision on this bucket. The sequence of division 
is ‘k’. The tree becomes d0k1|2. All the keys lower or equal than ‘k’ stay on the bucket 1. The others are 
transferred in a new bucket. The file (keys per bucket) is then :   
The file (keys per bucket):   Bucket 0: [ ‘a’ ‘ce’ ‘dx’ ] ; Bucket 1: [‘ ef’ ‘h’ ‘kx’ ] ; Bucket 2: [ ‘x’ ‘y’ ] 
 
5. Insert ‘fe’ 
The insertion of key 'fe' changes the bucket 1 as follows : Bucket 1: [ ‘ef’ ‘fe’ ‘h’ ‘kx’ ] 
 
6. Insert ‘hx’ 
The insertion of key ‘hx’ leads to a collision on bucket 1. The sequence of division is ‘h’. The tree 
becomes: d0h1k3|2. The keys of the sequence ‘ef’  ‘fe’  ‘h’  ‘hx’  ‘kx’ which are smaller than ‘h’ stay 
in bucket 1. The others migrate to the new bucket. The file (keys per bucket) is : Bucket 0: [ ‘a’ ‘ce’ 
‘dx’ ]; Bucket 1: [ ‘ef’ ‘fe’ ‘’h’ ‘hx’ ] ; Bucket 3: [ ‘kx’ ] ; Bucket 2: [‘ x’ ‘y’ ] 
 
7. Insert  ‘hy’ 
The search of  key 'hy' gives bucket 1. This undergoes thus a collision. The sequence of division is 'h_'. Digit 'h' 
already exists in the tree. Only digit '_' is added. The tree changes as follows: d0h_14k3|2. All the keys 
smaller than 'h-' remain in bucket 1. The others go towards a new bucket. The file  (keys per bucket) becomes : 
Bucket 0: [ ‘a’ ‘ce’ ‘dx’ ] ; Bucket 1: [ ‘ef’ ‘fe’ ‘h’ ] ;  Bucket 4: [ ‘hx’ ‘hy’ ] ; Bucket 3: [‘kx’] ; Bucket 2: [‘x’ 
‘y’ ] 
 
8. Insert’ yya’  ‘yyb’ 
The insertion of  keys ‘yya’ and ‘yyb’ changes bucket 2 as follows : 
Bucket 2: [ ‘x’ ‘y’ ‘yya’ ‘yyb’ ] 
 
9. Insert  ‘yyc’ 
The insertion of key ‘yyc’  causes a collision on bucket 2. The sequence of division is ‘yya’. None of the three 
digits exists in the tree.  The three digits are thus inserted with the creation of two Nil nodes and a new bucket. 
What gives the tree:  d0h_14k3yya25Nil|Nil . The file  (key per bucket) is altered as follows : 
Bucket 0: [ ‘a’ ‘ce’ ‘dx’ ] ; Bucket 1: [ ‘ef’ ‘fe’ ‘h’ ] ; Bucket 4: [ ‘hx’ ‘hy’ ] ; Bucket 3: [ ‘kx’ ] ; 
Bucket 2: [‘x’ ‘y’ ‘yya’ ] ; Bucket 5: [ ‘yyb’ ‘yyc’ ] 
 
Figure 1 gives the file ( buckets ) and the final tree generated by the method for the above example. & 
represents the Nil node which means that, for the meantime, no file bucket is allocated  for some path. 
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Fig1. File and tree in its internal and external representations. 
 
 
The buckets are at the level of the leaves.  The concatenation of the digits on a path of the tree 
represents the maximal key of the bucket appearing in the corresponding leaf. Thus, the representation 
corresponds to the preorder on this new tree.  In this representation, the digital tree is a sequence of 
internal and external nodes.  An internal node is a digit.  An external node is a pointer towards a 
bucket of the file.    
The buckets are ordered from the left towards the right. In the example: 0  1  4  3  2  5. 
 
We present in what follows the insert process. More details on the other operations can be found in 
[Zeg 94]. 

 
Insertion 

  
The process of an insertion can be defined as follows:   
Let us consider m the bucket to be split.    
Form the ordered sequence of the keys of this bucket with the key which caused the collision.   
Let it be C' the key of the middle of this sequence and C'' the last.     
Determine the smallest prefix Seq of digits in C' which makes possible to distinguish C' from C''. Let 
it C'0C'1.....  C'K  be this prefix and I the first digits of this prefix which already exist in the tree. 
 
The expansion of the tree is done as follows:   
Consider that Ind_d is the index in the tree of the first digit in the maximal key associated to the 
overloaded bucket  and Ind_m  the index of the overloaded bucket. 
 
 
 
 If I <> 0 
  If Cm is a prefix of Seq 
   Ind_d := Ind_m 
  Else 
       Ind_d := the index in the tree of the first different digit of Seq in Cm 
       Endif 
 Endif 
 
 Case K-I = 1 :  
  Replace m by M 
  Insert into the position Ind_d  the sequence C'k M 
 
 Case K-I > 1  : 
  Replace m by Nil 
  Insert into the position Ind_d the sequence C'i+1 C'i+2 .....C'k m M Nil1 Nil2 .....Nilk-I-2 

a 
ce 
dx 

ef 
fe 
h 

yyb 
yyc 

x 
y 
yya 

kx hx 
hy 

         0                 1                   2                  3                   4                  5 

c) File  
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In the  first case two nodes are added, in the second case 2(K-I) nodes. 
M being the next bucket to be allocated to the file. 
 
Many examples are in the scenario shown above. 
 
 
III. The concepts of Distributed Compact Trie Hashing (DCTH) 
 
At the level of each client there is a partial digital tree from which any operation on the file begins.   
At all moment, any client can enter in scene with an empty tree (| 0)   
During the search phase, common to all the operations, the tree is updated gradually until obtaining the 
real tree.  The process of updating the clients is described further.   
 
The Nil nodes at the level of the clients are represented by a negative server number, which means 
they reference  secondary intervals inside the server. 
 
At the level of each server there are:    
- A digital tree    
- A bucket containing the records of the file    
- A primary interval [Min, Max] 
- A list of secondary intervals 
 
The Nil nodes at the level of the servers exist and are of two types : those which are associated to 
secondary intervals and those which are added when a empty tree is generated for a server newly 
created. 
 

When a server bucket becomes full, it is split and then generates a new server. The digital tree of a 
server is extended to each division.  Thus, it keeps the trace of all the splits on this server. The primary 
intervals of the two servers are also updated. Rarely, one or more secondary intervals can be added in 
the overloaded server if the Nil nodes are created. The process of splitting is given further.   
The digital trees are represented in a preorder sequential form of the new tree as explained in the 
previous section. 
The expansion of the file is done through collisions.  At each collision, there is a distribution of the file 
(splitting of the server) on a logical server. The number of servers is conceptually infinite. The server 
can be determined in a static or dynamic way.  We can have several logical servers for the same 
physical server. 
 
The system is initialized with only server 0 with an empty bucket, the greater possible interval ]λ, Λ] 
as primary interval and with tree :  | 0 which maps server 0 for all keys. We suppose that λ is the 
smallest key and Λ is the largest one. Thus, Λ = ‘||||…’ and λ =’___…’ if ‘_’is the smallest digit and 
‘|’the greatest one. The trees at the level of the clients are initialized to  | 0. 
 
IV. Search and insertion operations. 
 
We organize this section as follows. The algorithm which transforms, from a tree of a given client, a 
key to a server address is first presented with a flowchart and comments. Hereafter, the updating 
algorithm is given with some examples. The insert process and the splitting algorithm will follow. We 
finish this section by underlying some properties of the proposed scheme. 
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 Transformation (Client , key ) to a server address 
 

The following figure (Fig. 2) gives the algorithm which transforms the pair (Client, Key) to a couple 
(Server, Rank). If Rank = 1, the result is the primary interval of server, otherwise the result is a 
secondary interval of server and Rank designates then its rank. 
 

 
 

Fig 2.  The transformation algorithm in CTH*. 
 

 
Comments 

 
A search emanating from a given client starts with the traversal of its local tree. A few servers can be 
traversed according to the following process in order to determine the correct one :   
 
1. Apply the Key! Server transformation algorithm on the client tree. Let it m be the server found and 
Cm its maximal key. 
 
2. If m < 0, it’s question of a secondary interval inside server m.  Two cases are to be considered : 
- The client tree is already updated by the current transformation and m' designates the server on which the 
updating  algorithm has been applied ( the old value of m). In this situation the result of the transformation is 
the couple (m', Rank ), Rank being the secondary interval associated to the Nil node which has been 
transferred to the client by the  updating algorithm ) 

- The client tree has not yet been  updated by the current transformation and therefore -m is the server which 
held the Nil node corresponding to the maximal key Cm. If there is in the tree of the server -m a server s' 
corresponding to Cm, this means that the Nil node has been replaced by a server and then the transformation 
process continues in this server s' (step 3 with m =s').  s' replaces then  -m at the level of the client.  In the case 
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where s' does not exist, this means that the Nil node has not been replaced and the result is the couple (-m, 
Rank). Rank is the secondary interval in the server -m having Cm as upper limit. 
 
3. If m >0, it’s question of a primary interval inside server m, then if the searched key is in the primary interval 
then the result is the couple  (m, 1).  
 
4. Otherwise, set m’=m, Apply the algorithm of client tree updating and restart from 1. 
 
 
 Client tree updating algorithm  
 
We begin by defining some terms from examples. Then, we present the algorithm followed by some 
examples.  
 
 Terminology 
 
The tree ‘a r 0 9 b 5 f g h 3 2 1’ holds  
- three subtrees of levels 0 : ‘a r 0 9’, ‘b 5’ and  ‘f g h 3 2 1’. 
- five subtrees of level 1 : ‘r 0’, ‘9’, ‘5’, ‘g h 3 2’ and ‘1’. 
- Three subtrees of level 2 : ‘0’, ‘h 3’ and ‘2’ 
- one subtree of level 3 : ‘3’. 
 
Each subtree consists of paths. For example ‘a r 0’ and ‘a 9’ are the paths of the subtree ‘a r 0 9’. 
A path consists of two parts : digit part and number path. 
If P is a path then Digit (P) represents its digit part and Number(P) represents its number part. 
Example: Digit(‘a r 0’) is ‘a r’ and Number (‘a r 0’) is 0. In others words, Digit(P) is the maximal key 
of bucket Number(P). 
 
 Algorithm 
 
We give in what follows, the global algorithm which adjusts the client tree according to the server 
tree.  
Let  Cm = C0C1...Ck be the maximal key of the searched bucket ( server m).  
(i) Determine in the client tree the number of internal nodes which precede m.  Let Ni be this number.   
Consider Ne : =  length(Cm) – Ni. Ne represents the number of digits that exist in the server tree. Ne 
is also equal to k+1 – Ni. 
(ii)Determine in the server tree all the paths b of sub trees of level Ne such as  Digits(b) + ‘|’ ≤ 
(CNeCNe+1,…Ck) + ‘|’ .  
(iii) Replace in the client tree (CNeCNe+1,…Ck)  m  by the paths b  Found 
 
The expression  (CNeCNe+1,…Ck)  is the null string if Ne > k. 
 
Note : In order to minimize the number of bytes to transfer from a server to a client, the steps (ii) and 
(iii) of the above algorithm are refined as follows : 
 
(ii)Determine in the server all the paths in the  subtrees of level Ne such as  Digits(b) + ‘|’  <  (CNeCNe+1,…Ck) + 
‘|’ .  
(iii) 
(a) Case where no path exists :  
Replace, in the client tree,  m by M, M being the external node of the first path in the server tree. 
(b) Case where at least one path exists :  
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Let  bLast  be the last path,  L the length of Digits(bLast) and M the external node of the  path  immediately to the 
right of bLast.   
(i)If  L≥ 2 Replace CNe ….CNe+L-2   by the paths b, otherwise insert the paths  b before  CNe. 
(ii)Replace m by M 
 
 Some examples 
 
Example 1  
Suppose we have a client with the following part of the tree :  …  q m 16 q c 41 36 35 r e … 
And suppose that the tree of server 41 is  q p h 41 238 q c 229 Nil  Nil 
Let us apply the updating algorithm on server 41.  
Ni = 2 ; Ne= 1 ; Cm=’qqc’ ; k = 2 
The subtrees of level Ne = 1 are  ‘p h 41 238’ ;  ‘q c 229 Nil’ 
The paths of subtrees of level Ne=1 less or equal to ‘qc’+’|’ are ‘ph’ + ‘|’  ,  ‘p’+’|’, ‘qc’+’|’  
There is replacement of ‘q c’ 41 by ‘p h 41 238 q c 229’ 
The client tree becomes …  q m 16 p h 41 238 q c 229 36 35 r e … 
 
Example 2 
Suppose we have a client with the following part of the tree :  … t b …    m 111 70 u f ... 
And suppose that the tree of server 70 is  t p 70 x 211 y 147 141  
Let us apply updating algorithm on server 70. 
Ni = 0 ; Ne= 1 ; Cm=’t’ ; k = 0 
The subtrees of level Ne = 1 are  ‘p 70’ ;  ‘x 211’ ; ‘y 147’ ; ‘141’ 
The paths of subtrees of level Ne=1 less or equal to ’|’ are ‘p’ + ‘|’  ,  ‘x’+’|’, ‘y’+’|’, ‘|’  
There is replacement of  70 by ‘p 70 x 211 y 147 141’ 
The client tree becomes … t b …    m 111 p 70 x 211 y 147 141 u f ... 
 
Example 3 
Suppose we have a client with the following part of the tree  … i g 3 u 33 18 j … 
And suppose that the tree of server 33 is  i t 33 u 64 Nil  
Let us apply updating algorithm on server 33. 
Ni = 1 ; Ne= 1 ; Cm=’iu’ ; k = 1 
The subtrees of level Ne = 1 are ‘t  33’ ;  ‘u  64’ ; ‘Nil’ 
The paths of subtrees of level Ne=1 less or equal to ’u|’ are ‘t’ + ‘|’  ,  ‘u’+’|’  
There is replacement of  ‘u 33’ by ‘t 33 u 64’ 
The client tree becomes … i g 3 t 33 u 64 18 j … 
 
 Insertion process 

 
Any insert operation begins with a phase of transformation (client, Key) ---> (m, Rank) 
 
If  Rank <> 1, it‘s question of a secondary interval inside server m 
(i) Transform  the secondary interval to a server newly created, N. 
(ii) Initialise  this server with a bucket consisting of the new key, an empty tree and the same interval that the 
one of secondary interval. The empty tree is generated from the upper limit of the secondary interval. 
(iii) Adjust the server tree by replacing Nil by N. 
(iv) Adjust the client tree by replacing Nil by N. 
 
if Rank = 1, it’s question of a primary interval inside server m. 
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(i) If Key is not in the server bucket  and the server is not full then insert simply Key in the server 
bucket.   
(ii) If Key is not in the server bucket and this one is full there is collision.  We split only the server 
tree.  
 
In what follows, we give firstly how the tree of the server is modified and secondly how the server is 
split with the eventual generation of secondary intervals. 
  
 
 Splitting process 
 
The process of splitting is as follows: 
 
- Form the ordered sequence consisted of  the records in the server bucket and the new record.  
- Determine the sequence of division Sq.     
- Split the server bucket into 2 according to Sq.     

- The old server m contains the keys  ≤ Sq.   
- Primary_Interval (m)  becomes  ] Inf (Primary_interval(m)),  Sq] 
- The new server M, contains the remainder.  Primary_interval(M)  is ]Sq, Sq-1 ] .   

- Eventually, generate the following secondary intervals 
 ]Sq-1, Sq-2] 
 ]Sq-2, Sq-3] 
 … 
 ]Sq-i, Sup(m)] 
- Modify the server tree according to the sequence of division as this is made in section II. 
 
The notation Sq-k designates the string Sq without the K last digits. 

 
A particular treatment is made when there is creation of Nil nodes in order to maintain the partition. 
We must generate a secondary interval to each Nil node. These secondary intervals can be kept in the 
split server. further,  a secondary interval becomes a server when a key is inserted in it. The number of 
secondary intervals is very weak compared to the number of  servers because the method CTH 
generates  5%  of Nil nodes on the average for the random insertions [LIT 85].  
 
 

Properties of the schema   
 
The following properties hold : 
- The schema is deterministic : all the operations are performed without multicast. 
- The primary and secondary intervals form a partition on the set of keys. 
- Each client tree recovers the whole partition. This means that from each client tree, we can have all the records 
of the file. 
- From server 0, we can built the real tree.  
- Let us consider S1,S2, …, Sn  the servers visited while transforming the pair (Client, Key) into a server. The 
updating algorithm of the client tree is then applied  (n-1) times. The two properties  hold : 
1) : For all  i > 1 : Inf (Primary_Interval(Si)) ≥ Sup(Primary_Interval(Si-1) 
2) : From a server, we can  retrieve all the servers which follow it in the partition. 
 
 
V. Illustration of the method 
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Figure 3 gives the  final states of the clients and servers after the insertion of  25 keys (strings) by the 
corresponding clients (4 clients):   
     
We suppose that the capacity of a bucket ( server ) is equal to 4. 
 
 

  
Fig3. Clients and servers 

 
 

Figure 3. shows 4 clients and 10 servers. Each client has its own access function represented by a digital tree. 
The file is distributed on 10 servers at a rate of one bucket per server. Each server has a primary interval 
indicating the set of the possible keys on this server, a digital tree keeping the trace of the splitting on this server 
and a bucket containing the keys inserted. A server can contain one or several secondary intervals. The client 
tree represents its image of the file. Thus,  for client 1, with digital trie f 0 h 4 k 2 m 5 | 1,  the set  of the keys is 
divided as follows: [λ, f] : 0 ; ]f, h] : 4 ; [h, k] : 2 ; ]k, m] :5, ]m, Λ] :1.  This client thus ‘sees’ only servers  0, 4, 
2, 5 and 1. For client 2, with the tree f 0 h 4 m 2 v 1 | 3, ‘sees’ servers 0, 4, 2, 1 and 3. None of the two partitions 
is the real partition of the file.  There are servers which are split ( 0, 1, 2 and 3) and others not yet. The servers 4, 
5, 6, 7, 8 and 9 hold empty trees. Notice that server 3 has a secondary interval. 
 
If Client 1 searches for key ‘egrc’, it finds server 1. Although the tree of client 1 does not reflect the real image 
of the file, client 2 has found the correct server since key ' egrc’  is in the primary interval of this latter. 
 
If client 1 searches for key ‘wsjo’, it finds first server 1. As the primary interval of server 1 does not cover this 
key, the client tree is updated according to the tree of server 1 and becomes f 0 h 4 k 2 m 5 q 1 v 8 | 3. The re 
application of CTH in this new tree gives now server 3 which is the correct. 
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Let us suppose now that client 1 wants to insert the key ' are'. The application of its tree (hashing function) to this 
key gives us server 1. As the bucket of server 1 is full,  a collision occurs on this server.  The collision is solved 
as follows:  we consider the ordered sequence formed of the keys of server 1 and of the new key, that is to say 
'are', ' bqsph’, ‘gfhxd', ' egrc', 'ektqnt'. Then, we determine the smallest sequence of digits which makes it 
possible to distinguish the key from the medium (‘dgfhxd’) and the last key (‘ektqnt’). It is thus 'd' this sequence. 
The tree of server 1 which is e 0 f 7 h 4 m 2 | 1 becomes d 0 e 10  f 7 h 4 m 2 | 1 . Server  10 is created with an 
empty tree (e 10) and with the primary interval ]d, e]. The keys are divided between servers  0 and 10 so that the 
keys strictly higher than 'd' migrate in the new server.  Thus after splitting, the keys 'are', ' bqsph’ and ' dgfhxd'  
remain in server 1 whereas the keys ' egrc' and 'ektqnt' go towards server 10.  
 
 
VI Range  query operation 
 
The range query operation consists in listing all the keys in a given interval. This can be achieved by two 
manners according  to the multicast can be used or not. If the multicast is used, the principle is simple. It suffices 
to send the request to all the servers. The servers concerned by the request respond to the client having 
formulated the request. If the multicast cannot be used, the following algorithm is proposed.   
It allows to make a parallel process. In fact, the client determines first from its tree all the servers which could 
contain the keys requested. Then, the servers simultaneously work to perform the operation.    
 
We suppose a client Client wants to determine all the keys in the interval [X, Y]. 
 
We begin by defining the module Scope(S) which recuperates all the keys visible from S by traversing all the 
descendant servers of S. This module is recursive and can be described as follows: 

 
The module Scope (Server) 
 
- Go to the server   
- List all the keys   ≤ Y   
- If it exists a key  ≥ Y then Stop   

 
- Proceed by a sequential traversal of the tree of server Server  using a local stack.   
   - When an internal node (digit) is met, it is stacked.   
  -  When an external node ( a server or Nil ) is met, the stack contains the maximal key associated to this 

external node ( concatenation of all the digits). If it is a server S, we make the recursive call Scope(S). Then 
make a pop operation on the stack. 
 
 
 
Range query algorithm 
 
We use the modules Scope(S) defined above and  Treat_Server (S, Cmax) defined as follows : 
Input :  
- S : a server. 
- Cmax : its maximal key according to the client tree having made the query. 
 

 
- Go to the server  S    
- List all the keys   ≤ Y   
- If it exists a key  ≥ Y then Stop   
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 - Traverse the tree of server S. For every server S’ different of S such as its maximal key is less 
or equal than Cmax do Scope(S’) 

 
Finally,  the range query operation is defined as follows : 
 
1- Apply the transformation algorithm on the client Client  to search key X. Let it M be the server found and Cm 
its maximal key. 
2- Initialize a stack with Cm. 
3- Traverse the client tree from node M as follows: 
When an internal node (digit) is met, it is stacked.   
When an external node is met, let it S be this external node and then Cm its maximal key. 
(i) if Cm ≤  Y then if S > 0, perform Treat_Server(S, Cm). Pop a digit from the stack and advance in the client 
tree( we make this in the cases : S > 0 and S < 0) 
(ii) if Cm > Y then stop 
 
In Figure 4, the client selects three servers S1, S2 and S3 with maximal keys Cmax1, Cmax2 and Cmax3 
respectively. It sends then three messages with these maximal keys towards the corresponding servers. Every 
server performs simultaneously the following operations :   
- sends to the client all the records in its bucket with keys in range [X, Y]   
- traverses its tree and performs Scope on all the servers with maximal keys less or equal than Y. The module Scope, 
applied on a given server, goes to all its descendants which send then all the records in their buckets with keys in 
range [X, Y]. Server trees are represented by segments. the solid parts represent all the paths such as Digit(path) 
less than Y. 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4.  Example showing the rang query process 
 

VII Simulation model and test  
 
We worked on only one machine and we used Delphi as programming language.  Our main objective 
is to test the validity of the method. Each client is materialized by a table which contains its tree.  The 
servers  are compared to the blocks of a file which evolves  in a linear way dynamically according to 
the collisions.  A server contains 4 fields:  bucket for the keys, local tree represented by a table, a 
primary interval and a list of secondary intervals. We considered a very small capacity of the buckets ( 
b=4).  That allows to have a great number of servers in order to test the validity of the suggested 

Server trees 

Server buckets 

Other servers 

Cmax1 Cmax3

Records
Records

Client
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schema and analyze some parameters.  We briefly give below some implementation considerations. 
Clients : We considered 4 clients which can address around 1000 servers. 
Servers : Each server is a simulated by a file block. The bucket capacity of a server is b = 4 keys.   
Expression 'Go to server' is traduced by a read operation.  
Operations : Construction of a data file with pairs ( Client, Key ). Clients are generated randomly in 
set { 1, 2, 3, 4 }. The articles are reduced to their keys. Keys are strings of characters which are 
generated also randomly. A run consists to insert n  pairs (client, key) from a data file. We can see the 
states of clients and servers at the end of a run. 
Verification : We wrote a program that allows to verify the validity of the proposed schema. A first 
run allows to search all the keys inserted by each client. The client trees are then updated. In a second 
run we notice no modification on the client tree. We  wrote also a program which verifies the validity 
of the tree after any replacement operation  on the client tree.  Another program verifies that the 
partition is maintained after each split of a server. 
Trace : We can follow the complete trace of the program, What allows us to see the mechanism of the  
construction of the trees and the distribution of the file on the servers. 
 
We give below a screen dump, some results and a curve showing the convergence of the client trees. 
  

 Screen Dump 

Figure 5. shows the states of some servers after the insertion of 3000 keys with a server bucket 
capacity equal to 4. 1064 servers are generated with a load factor of 70,49%.  
 
 

 
Fig.5 : Example of servers 

 
 
 Some results 
 
Figure 6 shows four tests with 500, 1000, 2000 and 3000 records inserted randomly. Algorithm A 
designates the updating algorithm described before.  
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Fig.6 : Some simulation results 

 
The load factor is the same that the other file structures (B-trees, RP, …) for random insertions, i.e. 70%. The 
number of messages to search or insert a record is close to a few messages. Only some nodes are transferred 
to update the trees of the clients when addressing errors occur.  
 
We observe a load factor close to 70%. The number of nodes transferred is about 4.5. The number of 
forwards is about 0.40. These results hold for any number of keys inserted. 
 
With b=50, we have the following results : 
 

Number of 
keys inserted 

10 000 20 000 30 000 

Load factor 67,11 69,56 72, 13 
Number of 
forwards 

0,10 0,09 0,10 

Number of 
nodes 
transferred 

2,40 2,54 2,47 

 
 
Of course, these results are affirmative for the meantime. They will be validated or adjusted in a real 
environment of test. Therefore, it would be necessary to develop a communication protocol for the proposed 
method in a network of computers. 
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Convergence of client trees 
 
We suppose a new client inserts 1000 keys already inserted. No record is inserted but the client tree is 
updated. Figure 7 shows the speed with which the client tree is updated during the insertions of  records.  
The tree evolves very quickly for the first insertions, then evolves more and more lesser when we 
progressively insert records. The tree becomes steady as soon as a certain number of records is reached. 
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Fig.7 Convergence of the client trees 

 
 

VIII. Variants of CTH 
 
 CTH* without server trees and without multicast  (. CTH*CT) 
 
At the level of each client there is a partial digital tree from which any operation starts on the file.   
At the level of each server there are a bucket containing the records of the file and an interval ]Min, Max]. 
There is a central server which contain the real tree.   
During the search phase, the client tree is updated gradually until obtaining the real tree.  The expansion of 
the file is done through collisions.  At each collision there is distribution of the file on a new logical server. 
The digital tree of the central server is extended to each division of a server.  It thus keeps the real tree.   
Compared with the method described previously, in this schema there is no tree at the level of the servers.  A 
particular server contains the real tree. With this manner, we avoid multicasting.  The algorithm of 
transformation (Client, Key) to server is depicted in figure 8. 

 
 

Fig8. The transformation algorithm in CTH*CT 
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 CTH* without server trees  (CTH*NST) 
 
It is the same schema as the one proposed, except that there is no tree at the level of the servers. If the key is 
not in the interval of the server, we use multicasting in order to find the correct server. The image of the 
client is then updated with the B algorithm.. The algorithm of transformation (Client, Key) to server is 
depicted in figure 9.: 
 

 
Fig9. The transformation algorithm in CTH*NST 

 
 
IX. Comparison with RP*S 
 
Among all the known SDDS, we were interested to the method RP*s. The two schemas are deterministic and 
preserve the order of records. By deterministic, we mean the possibility to perform the operations without the 
use of multicast.  Rp*S is comparable to the variant of CTH* with the tree centralized. If we cut the tree on 
several levels as this is made in the method 'multilevel trie hashing' [Lit 87], we obtain an organization 
similar to Rp*S. On the other hand, the basic version of CTH* described in this paper is superior to RP*S at 
several levels of comparison. 
 
Client : RP*s uses a table (Key, Server)  for the access to the servers. CTH* uses a compact digital tree. The 
two perform a sequential traversal but the advantage of CTH* resides in the fact that it doesn't stock the keys 
integrally. Three bytes are sufficient on average to address a server. It results an important gain of space 
compared to RP*s. 
Servers : RP*s uses two types of server:  data server and index server. CTH* uses only one type of server 
which contains a part of the index and a part of  data. This can avoid messages to access to data servers. 
Transformation (Client, Key) to server : RP*s traverses a table, CTH* a tree.  When an addressing error 
occurs, RP*s moves up the B+-tree and moves upward again until the leaf in order to find the correct server. 
Once the correct server is found, there is an adjustment of the client table. When an addressing error occurs, 
CTH* goes only to the downward servers of the server on which the error is appeared.  Therefore for CTH*, 
we don't have need to climb up the tree to recover the correct server. From the erroneous server, we can 
recover the correct server, while exploring only its descendants. CTH* adjusts the client tree by transferring 
only a few nodes from the server toward the client. For RP*s, there is adjustment only in some cases. In 
CTH*, there is always adjustment of the client tree. 
Convergence : More faster on CTH* that on RP*S because in CTH* there is transfer of a part of the tree that 
represents several couples (key, address). 
Insert operation : For RP*s, splitting operations imply more of work. Splitting can be in cascade (principle 
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of B-trees) and  therefore can cause the modification of several servers.  For CTH*, only one server is 
modified. The splitting algorithm is more simpler than the one of RP*s (B+ tree). It results an important gain 
in terms of the messages.   
Searching the next : RP*s can require to climb up and move downward in the B-tree, what risks to imply 
several messages.  For CTH*, in the worst case, the next is recovered in only one message. 
Query operation : For CTH*, from the client tree, we can do any query operation. From the client tree we 
can determine the potential servers. We send a parallel request to all these servers. Then, the search  
continues only in the descendants of these servers. This should be better than on RP*s. 
 
X. Conclusion 
 
The first SDDSs were primarily based on dynamic hashing with the works of W. Litwin which proposed a 
generalization of his well-known popular method ( LH ) [Lit81] to a distributed environment, more precisely 
for the multicomputers.  Thereafter, several variants of LH* have been proposed, each one allows to improve 
a certain aspect of the method. Although these SDDSs were shown very efficient, they present a major 
inconvenient which is the no preservation of the order of records. This can degrade the operations relative to 
the order of records. We proposed in this paper a generalization of another dynamic hashing method ( TH )as 
well known as LH to a distributed environment. 
   
Contrary to the majority of the existing methods, the proposed method provides the order of distributed files 
and then facilitates the range queries operations and the ordered traversal of files. Moreover, the following 
properties makes of our method a promising opening towards a new class of SDDS : - preservation of the 
order of records - works without multicast  -three bytes are sufficient to address a server, - the transfer of 
some bytes is enough for the update to the trees at the level of the clients. 
 
We focused our work mainly on the mechanism of construction and the range query operation.  It would be 
of course more complete to study the suppression operation.  Further work should concern the 
implementation of the communication protocol in order to test the method in a real network and proceed to 
deeper analysis of performance. 
 
A basic schema and two variants have been proposed. According to the application, one of the proposed 
schemas can be used : CTH* works without multicast. CTH*CT uses the real image of the tree indexing all 
the servers and thus works also without multicast. CTH*NST works with an intense use of multicast but does 
not use trees on  the servers. 
 
Further research should concern also many other variants as it was made in LH*. As example, It will be 
interesting to study the security problems.   
   
Now, the method is in its implementation phase under the Unix platform. It constitutes the  storage layer of 
the project ' ACT 21' [Zeg01] which consists to the realization of a parallel databases management system 
based on the concept of actors. 
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