
A Strongly Polynomial Time Algorithm

for Multicriteria Global Minimum Cuts

Hassene Aissi1, A. Ridha Mahjoub1, S. Thomas McCormick2,
and Maurice Queyranne2

1 PSL, Université Paris-Dauphine, LAMSADE, France
{aissi,mahjoub}@lamsade.dauphine.fr

2 Sauder School of Business, University of British Columbia, Canada
{tom.mccormick,maurice.queyranne}@sauder.ubc.ca

Abstract. We investigate the bicriteria global minimum cut problem
where each edge is evaluated by two nonnegative cost functions. The
parametric complexity of such a problem is the number of linear seg-
ments in the parametric curve when we take all convex combinations of
the criteria. We prove that the parametric complexity of the global mini-
mum cut problem is O(|V |3). As a consequence, we show that the number
of non-dominated points is O(|V |7) and give the first strongly polyno-
mial time algorithm to compute these points. These results improve on
significantly the super-polynomial bound on the parametric complexity
given by Mulmuley [11], and the pseudo-polynomial time algorithm of
Armon and Zwick [1] to solve this bicriteria problem. We extend some
of these results to arbitrary cost functions and more than two criteria,
and to global minimum cuts in hypergraphs.

1 Introduction

We consider the multicriteria version of the global minimum cut problem in
undirected graphs. This problem is extensively studied in combinatorial opti-
mization since many practical problems in, e.g., communications and electrical
networks, contain it as a subproblem [1]. Let G = (V,E) be an undirected graph,
and c1, . . . , ck : E → R+ be k nonnegative cost functions, or criteria, defined
on its edges. A cut C of G is a subset C ⊆ V such that ∅ �= C �= V , and it
contains the set of edges δ(C) with exactly one end in C. The cost of cut C
w.r.t. criterion j is cj(C) ≡ cj(δ(C)). We would like a cut that simultaneously
minimizes all criteria, but such a solution usually does not exist.

Therefore, we focus on Pareto optimal solutions, i.e., solutions that cannot be
improved upon in any criterion without degrading another criterion. Each cut C
is associated with its criteria vector (or point) y(C) = (c1(C), . . . , ck(C)) in the
criteria space R

k. Let Y = {y(C) : ∅ �= C ⊂ V } be the set of all criteria points
associated with cuts (note that different cuts might give rise to the same criteria
point). Given points y(C), y(C′) ∈ Y , y(C′) dominates y(C) if y(C′)i � y(C)i,
for all i = 1, . . . , k, and y(C′)j < y(C)j for at least one j. If there exists no

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 25–36, 2014.
c© Springer International Publishing Switzerland 2014

26 H. Aissi et al.

y(C′) ∈ Y that dominates y(C), then y(C) is non-dominated. Let YND be the
set of non-dominated points in Y .

A vector of multipliers μ ∈ R
k forms a convex combination if μ ≥ 0 and∑k

i=1 μi = 1; the set of all such multipliers is the simplex Sk. Given y(C′) ∈ YND,

if there exists μ ∈ Sk such that C′ ∈ argminC{
∑k

i=1 μic
i(C) : ∅ �= C ⊂ V } then

y(C ′) is called a Supported Non-Dominated (SND) point. The non-dominated
points that are not SND points are called Unsupported Non-Dominated (UND)
points. By “solving” a multicriteria discrete optimization problem we mean gen-
erating all SND and UND points.

The computation of SND points is related to the field of parametric optimiza-
tion. The function f : Sk
→ R defined by f(μ) = minC{

∑k
i=1 μic

i(C) : ∅ �= C ⊂
V } is piecewise linear and concave; the facets of its graph correspond to SND
points [3]. The parametric complexity of a multicriteria problem is the maximum
number of facets. Our main interest here is to study the parametric complexity
of global minimum cut, mainly for the case where k = 2.

A natural subproblem of parametric minimum cut is solving single-criterion
(ordinary) minimum cut, e.g., for some fixed value of μ. The fastest deterministic
algorithms for this problem run in O(|E| · |V | + |V |2 log |V |) time (Nagamochi
and Ibaraki [13] and Stoer and Wagner [19]). The fastest randomized algorithm
runs in O(|E| log3 |V |) time (Karger [7]). These algorithms are faster than mini-
mum s–t-cut algorithms that are based on network flows. See [14] for a detailed
treatment of graph connectivity problems.

The multicriteria versions of several combinatorial optimization problems has
been extensively studied (see Ehrgott [3]). These problems are often intractable
in the sense that the cardinality of the set of (supported) non-dominated points
grows exponentially in the input size. Furthermore, it is often hard even to verify
if a given point is non-dominated. Multicriteria global minimum cut is an excep-
tion to the above intractability results. Indeed, Armon and Zwick [1] show that
the decision version of the global multicriteria problem can be solved in polyno-
mial time. The proof relies on the fact that the single-criterion global minimum
cut problem has at most a strongly polynomial number of near-optimal solu-
tions. More precisely, given α � 1, a cut is called α-approximate if its cost is less
than α times the minimum. Karger and Stein [8] show that there are O(|V |2α)
α-approximate cuts, and they give a randomized algorithm for finding them
in Õ(|V |2α) time. Nagamochi et al. [16] give a deterministic algorithm to find
them in O(|E||V |2α) time, and they prove that there are O(|V |2) 4

3 -approximate
cuts. Henzinger and Williamson [4] improve on this result by proving that there
are O(|V |2) 3

2 -approximate cuts; they also show that 3
2 is the largest possible

approximation factor α for which there exist O(|V |2) α-approximate cuts.
For multicriteria global minimum cut, Armon and Zwick [1] used the result of

[8] to give a pseudo-polynomial time algorithm to compute all the non-dominated
points. Carstensen [2] shows that the parametric complexity of the s–t minimum
cut problem is exponential for one parameter. Mulmuley [11] gives a simpler
proof of this result, and studies the parametric complexity of the global minimum
cut problem for k = 2. He considers the case where i) cost functions c1 and

A Strongly Poly. Time Algo. for Multicriteria Global Min. Cuts 27

c2 may be negative, ii) the parametric edge costs are positive and iii) the bit
size of the values of c1 and c2 are at most a polynomial in |V |. And he shows
in Theorem 3.10 that the parametric complexity is polynomial in this case.
However, if iii) is relaxed, the proof of his theorem implies that the parametric
complexity is O(|V |19 log |V | logCmax), where Cmax is the maximum cost over
all edges. This is surprising since the parametric function f is the minimum of
the parametric functions of O(|V |) minimum s–t cut problems (by fixing s and
letting t vary over the other nodes), each of which could have an exponential
number of breakpoints.

In this paper we give a much smaller, strongly polynomial upper bound on the
parametric complexity of minimum cut, which leads to a strongly polynomial
time algorithm for parametric global minimum cut, and hence a strongly polyno-
mial time algorithm for the multicriteria version. In Section 2 we study in detail
the bicriteria case, k = 2. In Section 3 we consider extensions, including arbitrary
cost functions and more than two criteria, and global cuts in hypergraphs.

2 Complexity and Algorithms for k = 2

2.1 Parametric Complexity of the Global Min Cut Problem

We are given a graph G = (V,E), and two nonnegative cost functions c1, c2 :
E → R+. For μ ∈ [0, 1], define the parametric cost function cμ = μc1+(1−μ)c2.
Let S(G) denote the set of cuts which are optimal solutions for some μ ∈ [0, 1].
Our main result is a O(|V |3) upper bound on S(G). For every cut X ∈ S(G),
let I(G,X) denote the largest sub-interval of [0, 1] such that X is optimal for all
μ ∈ I(G,X).

Theorem 1 Assume that μc1(X) + (1 − μ)c2(X) > 0 for every X ∈ S(G) and
μ ∈ I(G,X). Then the parametric complexity of the global min cut problem is
O(|V |3).
The proof of Theorem 1 is non-constructive and relies on the following def-
initions. Let H = (W,F) denote a graph (which may be a subgraph of G);
c1, c2 : F → R+ two nonnegative edge cost functions; and X a cut in H .

If lines μc1(X) + (1 − μ)c2(X) and μc1(F)
|W | + (1−μ)c2(F)

|W | intersect in [0, 1], let

INT (H,X) ∈ [0, 1] denote their intersection point. For optimal X ∈ S(H), let
I ′(H,X) ⊆ I(H,X) be a maximal subinterval satisfying

μc1(F)

|W | +
(1− μ)c2(F)

|W | � μc1(X) + (1− μ)c2(X), for every μ ∈ I ′(H,X). (1)

Note that I ′(H,X) might be empty. Let S�(H) denote the set of optimal solu-
tions satisfying (1); S�(H) might also be empty.

28 H. Aissi et al.

The set of solutions S(H) \ S�(H) can be partitioned into three subsets:

1. S<
1 (H) = {X ∈ S(H) \ S�(H): I(H,X) ⊆ [0, INT(H,X)]},

2. S<
2 (H) = {X ∈ S(H) \ S�(H): I(H,X) ⊆ [INT(H,X), 1]},

3. S<
3 (H) = {X ∈ S(H) \ S�(H): function μc1(X) + (1 − μ)c2(X) is below

μc1(F)
|W | + (1−μ)c2(F)

|W | in [0, 1]}.
Figure 1 depicts an example of function f having six facets associated to

optimal solutions S(H) = {X1, . . . , X6}. Parametric function μc1(F)
|W | + (1−μ)c2(F)

|W |
intersects the facets of f corresponding to X2 and X4. For X4, for instance, we
have I(H,X4) = [μ1, μ3], INT (H,X4) = μ2, and I ′(H,X4) = [μ1, μ2]. However,
for X3 we have I(H,X3) = I ′(H,X3). Here we have, S�(H) = {X2, X3, X4},
S<
1 (H) = {X1}, S<

2 (H) = {X5, X6} and S<
3 (H) = ∅.

μ

μc1 + (1 − μ)c2

X1

X2

X3
X4

X5

X6

0 1μ1 μ2 μ3

µc1(F)
|W | + (1−µ)c2(F)

|W |

Fig. 1. Functions f(µ) and µc1(F)
|W | + (1−µ)c2(F)

|W |

The proof of Theorem 1 uses the following lemma, whose proof is omitted.

Lemma 1 |S�(H)| = O(|W |2).
Proof. (of Theorem 1)

It suffices by Lemma 1 to give an upper bound on the cardinality of S<
1 (G)∪

S<
2 (G)∪S<

3 (G). We focus on S0 = S<
2 (G)∪S<

3 (G) and show that its cardinality
is O(|V 3|). Set S<

1 (G) can be handled similarly. Assume that we have an oracle
O that computes S(H) for any graph H .

In what follows we proceed in two steps in order to show that |S0| � O(|V |3).
We will show that there exist two subsets S and S ′ such that S0 ⊆ S ∪ S ′, and
O(|S|) � |V |3 and O(|S ′|) � |V |. This is a consequence of Algorithms 1 and 2
given below.

Figure 2 depicts the behavior of Algorithm 1. In each iteration r of this al-
gorithm, an edge with large c1-cost is contracted. Let Gr = (Vr, Er) denote the
resulting graph obtained at iteration r. Note that the loops that arise by the
contractions are kept in Gr. The idea is to have |Er| = |Er−1|− 1, and to ensure
that c1(Er) is not too small in comparison with c1(Er−1).

A Strongly Poly. Time Algo. for Multicriteria Global Min. Cuts 29

Consider the first iteration of the repeat loop. We will show next that once
an edge is contracted in Step 4, S0 is partitioned into S�(G1), S<

1 (G1) and
S<
2 (G1) ∪ S<

3 (G1). By Lemma 1, we know that |S�(G1)| � O(|V1|2). We will
show that the cardinality of S<

1 (G1) ∩ S0 is also O(|V1|2).

Lemma 1

Lemma 1

Lemma 1

Claim 1

Claim 1

Claim 1

G0 = G

G1

Gr∗−1

Gr∗

S0 = S<
2 (G0) ∪ S<

3 (G0)

S1 = (S<
2 (G1) ∪ S<

3 (G1)) ∩ S0S�(G1) ∩ S0

O(|V1|2)
S<
1 (G1) ∩ S0

O(|V1|2)

S2 = (S<
2 (G2) ∪ S<

3 (G2)) ∩ S1S�(G2) ∩ S1

O(|V2|2)
S<
1 (G2) ∩ S1

O(|V2|2)

Sr∗−1 = (S<
2 (Gr∗−1) ∪ S<

3 (Gr∗−1)) ∩ Sr∗−2

S�(Gr∗) ∩ Sr∗−1

O(|Vr∗ |2)
S′ = (S<

2 (Gr∗) ∪ S<
3 (Gr∗)) ∩ Sr∗−1 S<

1 (Gr∗) ∩ Sr∗−1

O(|Vr∗ |2)

G2

Fig. 2. The behavior of Algorithm 1

An upper bound on the cardinality of the remaining set S1 = (S<
2 (G1) ∪

S<
3 (G1)) ∩ S0 will be computed recursively. The algorithm keeps contracting

edges until either the residual graph only contains two nodes or the cost c1(e)

of every non-loop edge e is not in
[
c1(Er)
|Vr | , c

1(Er)
2

]
. Let r∗ denote the number

of iterations of Algorithm 1. The algorithm returns the cardinality of the set
S = (S0 ∩ (S�(G1) ∪ S<

1 (G1))) ∪ · · · ∪ (Sr∗−1 ∩ (S�(Gr∗) ∪ S<
1 (Gr∗))). If the

last graph Gr∗ contains more than two nodes, then additional work needs to
be done in order to give an upper bound on the cardinality of the set S ′ =
(S<

2 (Gr∗) ∪ S<
3 (Gr∗)) ∩ Sr∗−1.

The following claim establishes a relation between S0 and intermediate sets
S(Gr), S<

1 (Gr), S<
2 (Gr) and S<

3 (Gr) generated by the algorithm (proof omitted).

Claim 1. For iteration r, we have

S0 ⊆ (Sr−1 ∩ (S<
2 (Gr) ∪ S<

3 (Gr))) ∪ (∪r
l=1(Sl−1 ∩ (S�(Gl) ∪ S<

1 (Gl)))), (2)

and

|S0| � |Sr−1 ∩ (S<
2 (Gr) ∪ S<

3 (Gr))|+O(r|V |2). (3)

30 H. Aissi et al.

Algorithm 1.

1: let E0 ← E, V0 ← V , G0 ← G, r ← 0, S ← ∅, S0 ← S<
2 (G0) ∪ S<

3 (G0), test ←
true

2: repeat

3: if there exists a non-loop edge e = (u, v) ∈ Er such that c1(Er)
|Vr | � c1(e) � c1(Er)

2

then
4: contract e
5: r ← r + 1
6: denote by Gr = (Vr, Er) the resulting graph such that Vr = (Vr−1 \ {u, v}) ∪

{w} where w is the node obtained by merging u and v, and Er = Er−1 \ {e}
(the loops are kept)

7: apply oracle O for Gr and compute S(Gr)
8: denote by Sr = (S<

2 (Gr) ∪ S<
3 (Gr)) ∩ Sr−1

9: S ← S⋃
((S�(Gr) ∪ S<

1 (Gr)) ∩ Sr−1)
10: else
11: test ← false
12: end if
13: until |Vr| = 2 or test = false
14: Output: |S|

Observe that, in general, the bound given in (3) is not tight since sets Sr−1 ∩
(S�(Gr) ∪ S<

1 (Gr)) might not be disjoint.
At the end of Algorithm 1, three cases may happen. First, if Gr∗ contains

only two nodes, then by Claim 1, we have |S0| � |S| + 1 � O(|V |3). Next,
if c1(e) < c1(Er∗)

|Vr∗ | for all non-loop edge e ∈ Er∗ , then the problem reduces to

computing an upper bound for |S ′|. Here we can show that |S ′| � |Vr∗ |
2 . Finally,

if both previous cases do not hold, then there exist a non-loop edge ē ∈ Er∗ such

that c1(ē) > c1(Er∗)
2 and c1(e) < c1(Er∗)

|Vr∗ | for all non-loop edges e ∈ Er∗ \ {ē}.
This case can be handled in a similar way as the previous one. Therefore, we
only focus in the rest of the proof on the second case.

Algorithm 2. (Gr∗)

1: E′
0 ← Er∗ , V

′
0 ← Vr∗ , G

′
0 ← Gr∗ , r ← 0,

2: while |V ′
r | > 2 do

3: choose an edge e = (u, v) ∈ E′
r with probability c1(e)

c1(E′
r)

4: if e is not a loop then
5: contract e and remove it from the residual graph
6: r ← r + 1
7: denote by G′

r = (V ′
r , E

′
r) the graph such that V ′

r = (V ′
r−1 \{u, v})∪{w} where

w is a node obtained from merging u and v, and E′
r = E′

r−1 \ {e} (the loops
are kept)

8: end if
9: end while
10: return the unique cut

A Strongly Poly. Time Algo. for Multicriteria Global Min. Cuts 31

For this purpose, it is sufficient to show that |S<
2 (Gr∗)∪S<

3 (Gr∗)| � |Vr∗ |
2 . This

is done using Algorithm 2 based on probabilistic arguments similar to Karger’s
algorithm [6].

Algorithm 2 has as input graphGr∗ provided by Algorithm 1. In each iteration
r, the current graph is denoted by G′

r = (V ′
r , E

′
r) and the algorithm randomly

chooses an edge e with probability c1(e)
c1(E′

r)
. If e is a non-loop edge, then it is

contracted. This process continues until the last graph only contains two nodes.
Then the algorithm returns the unique cut in this graph. By hypothesis, μc1(X)+
(1 − μ)c2(X) > 0 for every X ∈ S(G) and μ ∈ I(G,X). Thus c1(E′

r) > 0
for r � Vr∗−2 and the probability of edge selection is always defined. As in
Algorithm 1, loops resulting from contractions are not removed from residual
graphs. However, by contrast to [6,7], Algorithm 2 has a pseudo-polynomial
expected running time.

Claim 2. Algorithm 2 has a pseudo-polynomial expected running time.

Proof. Given an integer r ∈ {1, . . . , |Vr∗ | − 2}, let Nr denote a random variable
defining the number of iterations of the while loop separating two consecutive
contraction operations, say the rth and r + 1st, and let N be a random variable
defining the total number of iterations of the algorithm. We have E(N) = |Vr∗ |−
2 +

∑|Vr∗ |−2
l=1 E(Nl). Let Ēr denote the set of loops in the current graph G′

r.

Nr is a geometric random variable with parameter pr =

∑
e∈E′

r\Ēr
c1(e)

c1(E′
r)

. Thus

E(Nr) =
1
pr

� c1(E′
r) � c1(E) and E(N) � (|Vr∗ | − 2)(1 + c1(E)). �

Claim 3. Algorithm 2 returns any solution in S<
2 (Gr∗) ∪ S<

3 (Gr∗) with proba-
bility at least 2

|Vr∗ | .

Proof. Consider any solution X ∈ S<
2 (Gr∗) ∪ S<

3 (Gr∗). Algorithm 2 returns X
only if none of its edges has been contracted. Therefore, no error occurs if a
loop is selected. In the rest of the proof, we only focus on iterations of the while
loop where a non-loop edge is chosen. Suppose that r edges not in X have been
contracted through the algorithm. Since loops are not removed, |E′

r| = |E′
r−1|−1.

The probability that an edge from X is selected in the r + 1th contraction

operation is c1(X)
c1(E′

r)
� c1(E′

0)
|V ′

0 |c1(E′
r)
. Since c1(e) <

c1(E′
0)

|V ′
0 | for every non-loop edge

e ∈ E′
0, it follows that c

1(E′
r) � c1(E′

0)(1 − r
|V ′

0 |). Therefore, the probability for

error is at most 1
|V ′

0 |−r , and the probability that no edge of X is chosen after the

r+1th contraction operation is at least
|V ′

0 |−r−1
|V ′

0 |−r . Hence, the probability that no

edge from X is never chosen (after |V ′
0 | − 2 contraction operations) is at least

|V ′
0 |−1
|V ′

0 | · |V ′
0 |−2

|V ′
0 |−1 · |V ′

0 |−3
|V ′

0 |−2 · · · 23 = 2
|V ′

0 | =
2

|Vr∗ | . �

Since the probability that a cut in S<
2 (Gr∗)∪S<

3 (Gr∗) survives all the contraction
operations is at least 2

|Vr∗ | , and that no two cuts can survive simultaneously, it

follows that |S<
2 (Gr∗) ∪ S<

3 (Gr∗)| � |Vr∗ |
2 . Therefore, |S0| � O(|V |3).

Using a similar argument, we can also show that |S<
1 (G)| is O(|V |3), and the

proof is complete. �

32 H. Aissi et al.

As a consequence of Theorem 1, we will show that the number of non-
dominated points is also strongly polynomial.

Corollary 1 The number of SND and UND points of the global minimum cut
problem are O(|V |5) and O(|V |7), respectively.
Proof. As it is proved in [6,8], the number of optimal solutions of the global
minimum cut problem is O(|V |2). Thus, the bound on the number of SND points
follows from combining this result and Theorem 1.

Now consider two SND points X1, X2. Suppose that they are optimal for some
μ = μ1. Let X3 be a UND point dominated by a convex combination of X1 and
X2. W.l.o.g., suppose that c1(X1) < c1(X2) and c2(X2) < c2(X1). We then have
c1(X3) < c1(X2) and c2(X3) < c2(X1). Therefore,

μ1c
1(X3) + (1 − μ1)c

2(X3) < μ1c
1(X2) + (1− μ1)c

2(X1)

� μ1c
1(X2) + (1− μ1)c

2(X2) + μ1c
1(X1)+

(1− μ1)c
2(X1).

Thus, X3 is a 2-approximate solution for μ = μ1. The bound on the number
of UND points follows from [6] and Theorem 1. �

2.2 Efficient Algorithms for f and the Non-dominated Points Set

We are in the single-parameter case (k = 2; the full paper shows how to ex-
tend these algorithms for k > 2), and we want to compute f for all μ ∈ [0, 1].
Our strongly polynomial algorithm is based on the Discrete Newton Algorithm
[10,18]. For a fixed μ1 ∈ [0, 1], using a cactus representation of minimum cuts [15]
we compute optimal cuts X∗

+(μ1) and X∗
−(μ1) at μ1 such that X∗

+(μ1) (X
∗
−(μ1))

is the optimal cut X whose line μ1c
1(X)+ (1−μ1)c

2(X) has the largest (small-
est) slope among all optimal cuts at μ1. Let Steepest

+(μ1) and Steepest−(μ1) be
the lines associated with X∗

+(μ1) and X∗
−(μ1). Consider Algorithm 3.

Algorithm 3. Discrete Newton method

1: L ← {[0, 1]}, B ← ∅
2: while L �= ∅ do
3: choose an interval [µ1, µ2] ∈ L and compute Steepest−(µ1) and Steepest+(µ2)
4: compute µ3 ∈ [µ1, µ2] corresponding to the intersection of Steepest−(µ1) and

Steepest+(µ2)
5: if minC{µ3c

1(C) + (1 − µ3)c
2(C) : ∅ �= C �= V } = µ3c

1(X∗
−(µ1)) + (1 −

µ3)c
2(X∗

−(µ1)) = µ3c
1(X∗

+(µ2)) + (1− µ3)c
2(X∗

+(µ2)) then
6: L ← L \ {[µ1, µ2]} and B ← B ∪ {µ3}
7: else
8: L ← L \ {[µ1, µ2]} ∪ {[µ1, µ3] , [µ3, µ2]}
9: end if
10: end while
11: Return B

A Strongly Poly. Time Algo. for Multicriteria Global Min. Cuts 33

Algorithm 3 manages a list L of unexplored intervals containing at least
one breakpoint and a list B of breakpoints. In each iteration the algorithm
chooses an interval [μ1, μ2] ∈ L and computes μ3 as the intersection of the
lines Steepest−(μ1) and Steepest+(μ2). It is clear that these lines are part of the
function f . If the condition in Step 5 holds, then μ3 is the unique breakpoint in
[μ1, μ2] and so we can fathom [μ1, μ2] and add μ3 to B. Otherwise, [μ1, μ3] and
[μ3, μ2], each contains at least one breakpoint, and [μ1, μ2] is replaced by them.
Using this, we obtain the following.

Proposition 1 Algorithm 3 has O(|E||V |4 + |V |5 log |V |) running time.

Proof. For any facet of function f , Algorithm 3 computes a global minimum cut
and finds a cactus representation for at most three values: the two extremities and
an intermediate value. Therefore, the total number of iterations is at most twice
the number of facets. A cactus representation can be obtained in time O(|E||V |+
|V |2 log |V |) [15] and a global minimum cut can be computed in the same time
complexity [13]. Therefore, the time complexity follows by Theorem 1. �
Since the time required to compute UND points dominates that of SND points,
we have:

Proposition 2 The time required to compute all the non-dominated points of
the global minimum cut problem is O(|E||V |7).
Proof. Computing all the 2-approximate solutions can be performed in time
O(|E||V |4) [16]. The result follows by combining this and Theorem 1. �

3 Extensions

3.1 Parametric Complexity with More Than Two Criteria
and Arbitrary Cost Functions

First, suppose we are given a graph G = (V,E), and two cost functions c1, c2 :
E → R. Here we allow some cost components to be negative. For μ ∈ R define the
parametric edge costs fμ(e) = μc1e+ c2e. We suppose that there exists an interval
[α, β] where all fμ(e) are positive. Here Lemma 1 and Step 3 of Algorithm 2 are
no longer applicable and thus, Theorem 1 does hold in this case. Using ideas
in [11] and avoiding unnecessary subdivisions of the interval [α, β], we obtain
a strongly polynomial bound. The next result is also non-constructive (proof
omitted).

Theorem 2 Assume that the parametric edge costs fμ(e) are positive for all
μ ∈ [α, β]. The parametric complexity of the global min cut problem is O(|E|2|V |2
log |V |).
It is natural to wonder if Theorem 3 could be extended to a constant number
of parameters at least equal to two. More precisely, we are given k � 3 cost
functions c1, . . . , ck : E → R. For μ = (μ1, μ2) ∈ R

k−1, define the parametric

34 H. Aissi et al.

edge costs fμ(e) =
∑k−1

i=1 μic
i
e+ cke for e ∈ E. Assume that there exists an hyper-

rectangle I = [α1, β1] × · · · × [αk−1, βk−1] such that fμ(e) are positive for all
μ ∈ I and e ∈ E. The next result shows that the parametric complexity is again
strongly polynomial in this case (proof omitted).

Theorem 3 Assume that the parametric edge costs fμ(e) are positive for all μ ∈
I. Then the parametric complexity of the global min cut problem is O(|E|k|V |2
logk−1 |V |).

3.2 Hypergraphs

We consider finite hypergraphs H = (V,E), where V is a finite set of nodes and
each edge e ∈ E is a subset of V . Hypergraph H is rank -ρ if every edge in H
has cardinality at most ρ (e.g., a graph is a rank-ρ hypergraph for every ρ ≥ 2).

A cut C in H = (V,E) is any nontrivial node subset, i.e., satisfying ∅ �= C ⊂
V . Let Δ(C) = {e ∈ E : e ∩ C �= ∅ �= e \ C} denote the set of edges crossed by
the cut C. Given nonnegative edge costs c(e) ≥ 0 (e ∈ E), let c(F) =

∑
e∈F c(e)

be the total cost of all edges in subset F ⊆ E, and let c(C) ≡ c(Δ(C)) denote
the total cost of all the edges crossed by the cut C ⊂ V . Further define c(H) =
minC{c(C) : ∅ �= C ⊂ V } as the minimum cost of a cut in H . There exist
polynomial time algorithms for finding a minimum cost cut in a hypergraph,
see [9,12,17].

The technique used to derive an upper bound on the parametric complexity
can be generalized to hypergraphs. In order to extend Lemma 1 to hypergraphs,
we now bound the number of approximate cuts in hypergraphs.

Theorem 4 For any fixed integer ρ ≥ 2 and scalar α ≥ 1, and rank-ρ hyper-
graph H = (V,E) with nonnegative edge costs c and positive minimum cut cost,

the number of cuts C with cost c(C) ≤ α c(H) is O
(
|V |B(ρ,α)

)
where

B(ρ, α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if ρ ≤ 3 and α < 3
2 ;

2α if ρ ≤ 3 and α ≥ 3
2 ;

ρ
2 + 2

3 if ρ ≥ 4 and α < 3
2 ;(

ρ
2 + 2

3

)
α otherwise, i.e., if ρ ≥ 4 and α ≥ 3

2 .

Proof. W.l.o.g., assume that every edge e ∈ E has cardinality |e| ≥ 2 (since edges
e with |e| ≤ 1 are not crossed by any cut). We prove the result by approximating
the minimum cut problem in hypergraph H = (V,E) with edge costs c by the
minimum cut problem in the complete graph K(V) = (V,EK(V)) with edge
costs c′, whereby each edge e ∈ E is replaced by a clique on the nodes in e,
where each edge in the clique has cost ce/(|e| − 1), i.e., by letting

c′i,j =
∑

e∈E:{i,j}⊆e

ce
|e| − 1

for all {i, j} ∈ EK(V).

In particular, every cardinality-2 edge e = {i, j} ∈ E contributes its full cost ce
to c′i,j , and thus to the cost c′(C) of every cut C in K(V) that crosses it. Note

A Strongly Poly. Time Algo. for Multicriteria Global Min. Cuts 35

also that every cardinality-3 edge e ∈ E that is crossed by cut C has two of its
nodes on one side of the cut and the other node on the other side, and thus also
contributes its exact cost 2(ce/2) = ce to c′(C). Therefore (as it is well known,
e.g., Ihler et al. [5]), when ρ ≤ 3 this transformation is exact, i.e., c′(C) = c(C)
for every cut C. The first two cases in the definition of B(ρ, α) then follow from
Henzinger and Williamson [4] and Karger and Stein [8], respectively.

Now assume that ρ ≥ 4. A cut C that crosses an edge e ∈ E with cardinality
|e| ≥ 4 crosses at least |e| − 1 edges in the clique K(e) (when exactly one node
of e is on one side of the cut), and at most |e|2/4 such edges (when half the
nodes of e are on either side). Thus every edge e ∈ E crossed by C contributes

at least ce and at most (|e|2/4) ce
|e|−1 ≤ ρ2/4

ρ−1 ce to the cost c′(C). Therefore,

c(C) ≤ c′(C) ≤ ρ2/4

ρ− 1
c(C) =

(
ρ

4
+

1

4

(

1 +
1

ρ− 1

))

c(C) ≤ β(ρ) c(C),

where β(ρ) = ρ
4 + 1

3 and the last inequality follows from ρ ≥ 4. Let C′ denote
a minimum cut for (K(V), c′). If C is an α-optimal cut for (H, c), i.e., c(C) ≤
α c(H), we have

c′(C) ≤ β(ρ) c(C) ≤ β(ρ)α c(H) ≤ β(ρ)α c(C ′) ≤ β(ρ)α c′(C′),

implying that C is a
(
β(ρ)α

)
-optimal cut for (K(V), c′). Then the last two cases

in the definition of B(ρ, α) again follow from Henzinger and Williamson [4] and
Karger and Stein [8], respectively. �
Theorem 5 For any fixed scalar ρ ≥ 2, let H = (V,E) be a rank-ρ hypergraph
with nonnegative edge costs c and c1, c2 : E → R+ two nonnegative cost functions
defined on its edges. Assume that the edge costs fμ(e) = μc1e + (1− μ)c2e, for all
e ∈ E, are functions of a parameter 0 � μ � 1, and μc1(X)+(1−μ)c2(X) > 0 for
any X ∈ S(G) and μ ∈ I(G,X). The parametric complexity of global minimum

cut is O
(|V |B(ρ, 32)+1

)
.

Proof. The proof is an adaptation of that of Theorem 1 to hypergraphs. By
Theorem 4 and Lemma 1, we have S�(H) � O

(|V |B(ρ, 32)
)
. Now one can extend

Algorithm 1 to hypergraphs, by contracting hyperedges instead of edges, and
obtain that (2) holds in this case and (3) extends to

|S0| � |Sr−1 ∩ (S<
2 (Gr) ∪ S<

3 (Gr))|+O(r|V |B(ρ, 32)). (4)

Similarly, still three cases have to be considered. If Gr∗ contains only two

nodes, then by (4) we have |S0| � O(|V |B(ρ, 32)+1). If c1(e) < c1(Er∗)
|Vr∗ | for all e ∈

Er∗ , then the problem reduces to computing an upper bound for |S ′|. Algorithm 2

and Claims 2-3 apply in this case and yield |S ′| � |Vr∗ |
2 . Therefore by (4), we have

|S0| � O(|V |B(ρ, 32)+1). Finally, the case where there exists a non-loop hyperedge

ē ∈ Er∗ such that c1(ē) > c1(Er∗)
2 (and c1(e) < c1(Er∗)

|Vr∗ | for all non-loop hyperedge

e ∈ Er∗ \ {ē}) can be handled in a similar way as the previous one. Therefore,
the result follows. �

36 H. Aissi et al.

References

1. Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46(1),
15–26 (2006)

2. Carstensen, P.: Complexity of some parametric integer and network programming
problems. Mathematical Programming 26, 64–75 (1983)

3. Ehrgott, M.: Multicriteria Optimization. Springer (2005)
4. Henzinger, M., Williamson, D.P.: On the number of small cuts in a graph. Infor-

mation Processing Letters 59(1), 41–44 (1996)
5. Ihler, E., Wagner, D., Wagner, F.: Modeling hypergraphs by graphs with the same

mincut properties. Information Processing Letters 45(4), 171–175 (1993)
6. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-

cut algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 21–30 (1993)

7. Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM 47(1), 46–76
(2000)

8. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. Journal of
the ACM 43(4), 601–640 (1996)

9. Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Freie Univ.,
Fachbereich Mathematik (1996)

10. McCormick, S.T., Ervolina, T.R.: Computing maximum mean cuts. Discrete Ap-
plied Math 52, 53–70 (1994)

11. Mulmuley, K.: Lower bounds in a parallel model without bit operations. SIAM
Journal on Computing 28(4), 1460–1509 (1999)

12. Mak, W.K., Wong, D.F.: A fast hypergraph min-cut algorithm for circuit parti-
tioning. Integration, the VLSI Journal 30(1), 1–11 (2000)

13. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and ca-
pacitated graphs. SIAM Journal on Discrete Mathematics 5(1), 54–66 (1992)

14. Nagamochi, H., Ibaraki, T.: Algorithmic aspects of graph connectivity. Cambridge
University Press (2008)

15. Nagamochi, H., Nakamura, S., Ishii, T.: Constructing a cactus for minimum cuts of
a graph in O(mn+ n2 log n) time and O(m) space. Inst. Electron. Inform. Comm.
Eng. Trans. Inform. Systems, 179–185 (2003)

16. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in undirected
networks. SIAM Journal of Discrete Mathematics 10, 469–481 (1997)

17. Queyranne, M.: Minimizing symmetric submodular functions. Mathematical
Programming 82(1-2), 3–12 (1998)

18. Radzik, T.: Newton’s Method for Fractional Combinatorial Optimization. In: Pro-
ceedings of IEEE Annual Symp. of Foundations of Computer Science, pp. 659–669
(1992)

19. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM 44(4),
585–591 (1997)

	A Strongly Polynomial Time Algorithmfor Multicriteria Global Minimum Cuts
	1 Introduction
	2 Complexity and Algorithms for k = 2
	2.1 Parametric Complexity of the Global Min Cut Problem
	2.2 Efficient Algorithms for f and the Non-dominated Points Set

	3 Extensions
	3.1 Parametric Complexity with More Than Two Criteriaand Arbitrary Cost Functions
	3.2 Hypergraphs

	References

