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Abstract—A star forest is a collection of vertex-disjoint trees
of depth at most 1, and its size is the number of leaves in all
its components. A spanning star forest of a given graph G is a
spanning subgraph of G that is also star forest. The spanning
star forest problem (SSFP for short) [10] is to find maximum size
spanning star forest of given graph. Let define some graph G =
(V,E), to every star forest we associate a vector xF . xF (e) = 1
if e ∈ F and xF (e) = 0 otherwise. xF is the incident vector
of spanning star forest F . The convex hull of all spanning star
forest incident vectors is called a spanning star forest polytope,
denoted SFP (G). In this paper we are mainly interested on
complete characterization of SFP (G).

INTRODUCTION

Let G = (V,E) be an undirected graph. A star is a graph
in which some vertex is incident with every edge of the graph
(i.e. a graph of diameter at most 2). In particular, a single
vertex is also a star. A star forest is a graph in which each
component is star. Given a connected graph G in which the
edges may be weighted positively. A spanning star forest of
G is subgraph of G which is star forest spanning the vertices
of G. Note that the spanning star forest can contain isolated
vertices. The size of spanning star forest F of G is defined to
be the number of edges of F if G is unweighted and the total
weight if the edges of F if G is weighted. We are interested
in the problem of finding a maximum weight spanning star
forest in G. As we can take isolated vertices, any maximum
weight star forest can be extended without additional weight
to a spanning star forest. Hence, without loss of generality, we
shall focus on the problem of finding a Maximum Weight Star
Forest MWSFP .

MWSFP is NP -hard already for the case G unweighted.
In fact, in this case since G is connected, for any maximum
size spanning star forest F of G, we can see that F does
not contain any isolated vertex. Hence, for each star of F we
designate the center of the star as the vertex of degree strictly
greater than one or any of the vertices if the star is an edge. A
dominating set of a graph is a subset of the vertices such that
every other vertex adjacent to a vertex in the dominating set.
Observe that in a spanning star forest solution, each vertex is
either a center or adjacent to a center. Hence a set of centers
form a dominating set of the graph. The size of the maximum
spanning star forest is thus, the number of vertices minus the
size of the minimum dominating set. Consequently, computing
the maximum spanning star forest of a graph is NP -hard
because computing the minimum dominating set is NP -hard.

The spanning star forest problem has found applications in

computational biology. Nguyen et al. in [10] use the spanning
star forest problem to give an algorithm for the problem of
aligning multiple genomic sequences, which is a basic bio-
informatics task in comparative genomics. The spanning star
forest problem and its directed version have found applications
in the comparison of phylogenetic trees [10].

Little is known about the mathematical formulation even less
polyhedral investigations of the problem MWSFP . The first
work is given by Nguyen in [11], where an integer formulation
for MWSFP is given. He also, investigates the facet structure
of the problem. In the same paper [11], a complete description
of the problem MWSFP when the graph is a tree is given.

Let us introduce the notations that will be used in the paper.

Let G = (V,E) be a simple graph, where |V | = n and
|E| = m. The line graph of G is the graph L(G) = (V ′, E′)
whose vertices are the edges of G and two vertices of L(G) are
adjacent if and only if their corresponding edges are incident in
G. For x ∈ Rm, given any F ⊆ E, let x(F ) denote

∑
e∈F xe.

For x ∈ Rn, given a set S ⊆ V , let x(S) denote
∑

v∈S xv .
Given a set of vertices S , we denote by E(S) the set of edges
with both ends belonging to S. Let v ∈ V , the neighborhood
of v denoted by N(v) is the vertex set consisting of v and
the vertices which are adjacent to v. Let P4 (respectively C3 )
denote the set of the simple paths (resp. cycles ) of length 3 in
G. A tree is a connected graph with no cycle. A star is a tree
with a diameter at most 2. A star forest is a graph whose each
connected component is a star, or equivalently, a star forest is
a graph without paths and cycles of length 3. With any star
forest F , we associate an incident vector xF ∈ Rm defined by

xFe =

{
1 if e ∈ F,
0 otherwise.

Let SFP (G) be the convex hull of the incidence vectors of all
star forests of G. Nguyen in [11] gives the following integer
formulation for SFP (G):

0 ≤ xe ≤ 1 for all e ∈ E (1)
x(P ) ≤ 2 for all P ∈ P4 (2)

x(E(C)) ≤ 2 for all C ∈ C3 (3)
x is integer (4)

The inequalities (1) are called trivial inequalities. The inequal-
ities (2) called 3-path inequalities dismiss the 3−paths. The
inequalities (3) called 3-cycles inequalities discard the 3-cycles
in the forest.

In this paper we rely on work of Nguyen and relationship of
the spanning star forest polytope with dominating set polytope978-1-4799-6773-5/14/$31.00 c©2014 IEEE
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[5] to give a complete description of SFP (G) when G is a
cycle. In section 2 introduce a new facet defining inequalities
for SFP (G). We prove that these inequalities, called the
matching-cycle inequalities, can be separated in polynomial
time. In section 3 we prove the complete description of
SFP (G) when G is cycle. In section 4 we give linear time
algorithm for MWSFP when G is a cycle. The last section
is devoted to an extended formulation based on the algorithm
given in the precedent section.

I. NEW FACET DEFINING INEQUALITIES AND SEPARATION

In [11] Nguyen introduce a facet defining inequality to the
SFP (G) which is called cycle inequality. It is given as
follows:

x(E(C)) ≤ b2|C|
3
c (5)

where |C| ≥ 4 and |C| is not multiple of 3.

In what follows, we introduce a large class of facet-defining
inequalities for SFP (G) called matching-cycle inequalities.
Let us introduce some notations that are necessary to formulate
this class of inequalities.

Let C = {1, 2, . . . , n′} a cycle with n′ vertices 1, 2, . . . n′

numbered clockwise and n′ edges ei = (i, i + 1) for i =
1, . . . , n′ − 1, and en′ = (n′, 1). Let C be the collection
of all cycles C in G. We denote by C(u, v) the set of the
edges between u and v in the clockwise sens. Let W =
{w1, w2, . . . , wp} ⊆ W be a subset of p vertices with p odd
and p ≥ 3, where |C(wj + 1, wj+1)| = 3kj with kj ≥ 1 for
j = 1 . . . p. Let W be the collection of all the vertex subsets
W defined above. Let mj = (wj , wj +1) for j = 1, . . . , p and
let EW = {m1,m2, . . . ,mp}.
Then we define the matching-cycle inequalities as follows:

x(E(C))+x(EW ) ≤ 2

p−1∑
i=0

ki+b
3p

2
c, ∀C ∈ C,∀W ∈ W (6)

Consider SF (G) = {F ⊂ E : maximal star forest of G},
where a maximal star forest is a star forest that cannot be
extended by adding one more edge.

Let aTx ≤ α be a valid inequality for SFP (G) , note by SFa

the star forests tight respectively to α, SFa = {F ∈ SF (G) :
aTxF = α}.
Remark 1. Let F ∗ ∈ SF (G) and mi,mi+1 ∈ M , if F ∗
contains mi,mi+1 then

• If F ∗ contains mi+1 and mi+1−1, then the star forest
F ∗ can include up to 2ki edges in C(wi + 1, wi+1)

• If F ∗ contains at most one of the edges {mi +
1,mi+1 − 1} then F ∗ includes at most 2ki − 1 edges
in C(wi + 1, wi+1)

Proof: Because we have |C(wi +1, wi+1)| = 3ki, we can
partition C(wi+1, wi+1) into ki 3-paths. Suppose that mi and
mi+1 are taken.

(i) If we take the edges mi + 1 and mi+1 − 1 then for
each 3-path, we can take the first and the third (last)
edges. By this way we form a saturated star forest in

C(wi, wi+1+1), that makes the possibility to take 2ki
edges in C(wi + 1, wi+1).

(ii) If we take at most one edge between mi + 1 and
mi+1−1, suppose we take wi +1, then to form a star
forest in C(wi +1, wi+1−1) we can take the first and
the third edges of each 3-path in C(wi, wi+1) without
taking the last edge (mi+1−1) of the last 3-path. Then
we can take 2(ki−1) + 1 = 2ki−1. We get the same
thing if we suppose to take mi+1−1 in the same way.

From this remark we elaborate some conditions must be
verified by a star forest which verify (6) at equality.

Lemma 1. The star forest tight with the inequality (6) may be
organized as follows

(a) Choose some edge ml ∈ Ew and form p−1
2 pairs

(mi,mi+1) for all i = (l + 1), i = (l + 3), . . . , i =
(l + p− 2).

(b) For each pair (mi,mi+1) we have F ∗ ∩C(wi, wi+1)
includes the two edges of Ew, mi and mi+1 and 2ki
edges in C(wi + 1, wi+1 − 1).

(c) For the p−1
2 − 1 pairs (mj ,mj+1) , where j 6= l, j 6=

l−1 and j 6= i for i = l+1, i = l+3, . . . , i = l+p−2,
we have F ∗ ∩C(wj , wj+1) includes 2kj − 1 edges in
C(wi + 1, wi+1 − 1)

(d) For the edges in C(wl−1, wl) and C(wl, wl+1)
(i) If ml ∈ F ∗ then F ∗ ∩ C(wl−1 + 1, wl − 1)

contains 2kl−1 − 1 edges and F ∗ ∩ C(wl +
1, wl+1 − 1) contains 2kl − 1.

(ii) If ml 6= F ∗ then F ∗∩C(wl−1+1, wl−1) con-
tains 2kl−1 edges and F ∗∩C(wl+1, wl+1−1)
contains 2kl edges.

Proof: Let F ′ be a star forest tight with the inequality (6)
not organized as (a)

Now we can prove the following result.

Theorem 2. The matching-cycle inequalities (6) define a facet
for the SFP (G) for p odd.

Proof: First we give the proof of validity of (6) for the
SFP (G). Because the validity of 3-path inequality for the
SFP (G), and by denoting P (mi) the 3-path with mi as a
middle edge, we have the following:

x(mi) ≤ 1

x(P (mi)) ≤ 2

x(P (mi + 3t+ 1)) ≤ 2 ∀t = 0, . . . , ki − 1.

x(P (mi + 3t+ 3)) ≤ 2 ∀t = 0, . . . , ki − 1.

for i = 1, . . . , p.
by summing these constraints, we get:

4
∑
e∈M

x(e) + 2
∑

e∈E(C)\M

x(e) ≤ 2

p∑
i=1

2ki + 3p. (7)

As p is odd, by dividing the constraint (7) by two and rounding
to the integer lower value we obtain the validity of (6) ( by
Chvatal-Gomory cut).
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Consider ax ≤ α, valid inequality to the polytope SFP (G)
that is verified at equality by the same star forest verifying (6)
at equality.

Let Fa the set of star forests those are tight with ax ≤ α and
(6) in the same time. let Fa ∈ Fa by 1 we have

• If ml ∈ Fa

Then Fa∩C(wl +1, wl+1) includes 2kl−1 edges and
Fa ∩ C(wl−1 + 1, wl) includes 2kl−1 − 1 edges.
By fixing all edges of the forest Fa not in C(wl +
1, wl+1) and construct other star forests by the shift
of the two edges of Fa in C(wl+1, wl+1). (shifting is
possible because Fa∩C(wl+1, wl+1) includes 2kl−1
edges). we obtain these equalities:

a(ml + 1) = a(ml + 2)

a(ml + 3) = a(ml + t) for all t = 4, . . . , 3kl − 1

a(ml + 3kl) = a(ml+1 + 1)

By fixing all edges of the forest Fa not in C(wl−1 +
1, wl) and construct other star forests by the shift of
the two edges of Fa in C(wl−1 + 1, wl)

a(ml − 1) = a(ml − 2)

a(ml − 3) = a(ml − t) for all t = 4, . . . , 3kl−1 − 1

a(ml − 3kl−1) = a(ml−1 − 1)

by applying the same construction to all edges of EW

we obtain these equalities for all l ∈ {1, 2; . . . , p}
By considering C(wl + 1, wl+1) according to ml+1

we have:

a(ml+1 − 1) = a(ml+1 − 2)

a(ml+1 − 3) = a(ml+1 − t) for all t = 4, . . . , 3kl−1 − 1

we knew that : ml+1 − t = ml + (kl − t) for all
t = 1, . . . , kl
then:

a(ml + 1) = a(ml + t) = ak0 for allt = 2, . . . , 3kl

al0 = al+1
0

and this is true for all l ∈ {1, 2, . . . , p}
Let F l

a the forests those contain ml then aTxF
l
a = α

because Fa∩C(wl + 1, wl+1) includes 2kl−1 edges)
we can choose F l

a without the edges ml+1 and ml−1

• If ml /∈ Fa

Fa ∩ C(wl + 1, wl+1) includes 2kl edges and Fa ∩
C(wl−1 + 1, wl includes 2kl−1 edges.
Let F l̄

a the forest which don’t contain ml then we can
choose F l̄

a = F l
a \ml ∪ {ml + 1,ml − 1}

Then we have:

a(ml) = a(ml + 1) + a(ml − 1) = ak0 + al−1
0 = 2al0

We summarize:

a(mi) = 2a0 for all i = 1, . . . , p

a(e) = a0 for all e ∈ C \M

Now we have to calculate α. Consider a star forest F ∗ ∈ Fa

containing all edges of EW , then we have:

α = aTxF
∗

=

p−1∑
i=0

2ki × a0 − [
p− 1

2
− 1 + 2]a0 + p(2a0)

= (2

p−1∑
i=0

ki + b3p
2
c)× a0

By fixing a0 = 0 we obtain a(e) = 0 for all e ∈ E. We
conclude that aTx ≤ α is equivalent to (6), proving (6) defines
a facet for the star forest polytope.

Theorem 3. The matching-cycle inequalities (6) can be sep-
arated in polynomial time.

Proof: Note that |C(wi+1, wi+1)| = 3ki for i = 1, . . . , p,
we can get the following.

Let e = uv ∈ E(C), consider y(u, v) = 1 − x(u) for all
u ∈ C.

Consider a cycle C = (1, 2, . . . , n) on a W =
{w1, . . . , wp}. (|wi, wi+1|) = 3ki. let define x(e) = 1 if
v ∈ D and x(e) = 0 otherwise. where D is the dominating
set.

Let define y as follows, for all e ∈ E(C), e = uv. y(uv) =
1− x(u) for all u ∈ C.

By replacing y(uv) = 1− x(u) in (6) by 1− x(u) we get

x(C) + x(W ) ≥
p∑

i=1

ki + dp
2
e

It is known from (6) that (I) is separated in polynomial
time.

A. Complete description of SFP (G) when G is a cycle

Lemma 4. Any extreme point of SFP (G) which verify (6) at
equality is a maximal star forest.

Proof:

Suppose that there is a star forest which is not a maximal
and which verify (6) at equality. Let ax ≤ α the inequality
representing(6). It means that axF = α. Or F is not maximum,
it exist e ∈ E such us F ∪ {e′} = F ′ form a star forest in C.
Thus x(e′) 6= 0, x(F ′) = x(F ) + x(e′). Or axF

′ ≤ α , then
axF + x(e′) ≤ α By supposition axF = α we get x(e′) ≤ 0
which is a contradiction.

An edge dominating set EDS of a graph is subset of edges
such that every other edge is adjacent to an edge in EDS. The
following lemma establishes the link between edge dominating
sets and maximal star forests in a cycle.

Lemma 5. The complimentary of a maximal star forest F in
C is an edge dominating set and vice versa.
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Proof:

Let F ⊆ E be a spanning star forest in G, and consider F̄
its complementary edge-set. We proceed by Contradiction, we
suppose that F̄ is not an edge dominating set. Suppose that
there is an edge in F such that, it is not dominated by no edge
in F̄ , then it must be bordered by two edges in F , thus form
by this way a path of length 3 in F . This contradict the fact
that a star forest don’t admit 3-paths and 3-cycles.

Given a cycle C, we denote by L(C) its line graph. Note that
L(C) is also a cycle. We have the following:

Lemma 6. Any edge dominating set in C is a dominating set
in L(C) and vice versa.

Proof: It is known that a cycle C is isomorphic to its
line graph L(C). An edge in C became a vertex in L(C)
and a vertex in C became an edge in L(C). then if a edge
e dominates a set of edges M in E(C) then l(e) which
is the vertex representing e in L(C) dominates the vertices
representing the edges M ⊆ E(C) in L(C).

In the other hand, Bouchakour et al. [5] have shown that,

Theorem 7. [5] When the graph G is a cycle C, the complete
description of dominating set polytope is given by the following
system:

0 ≤ x(v) ≤ 1 for all v ∈ V (8)
x(N(u)) ≥ 1 for all u ∈ V (9)

x(C) ≥ d|C|
3
e (10)

x(C) + x(W ) ≥
p−1∑
i=0

ki + dp
2
e for all W ∈ W (11)

Remark 2. When a graph G is cycle, the edge dominating
set polytope EDSP (G) is characterized completely by the
following system:

0 ≤ x(e) ≤ 1 for all e ∈ E (12)
x(P ) ≥ 1 for all P ∈ P4 (13)

x(E(C)) ≥ d|E(C)|
3
e (14)

x(E(C)) + x(EW ) ≥
p−1∑
i=0

ki + dp
2
e for all W ∈ W(15)

Proof: For each edge e ∈ E(C), it correspond a vertex
v ∈ L(C) such that: x(e)C = y(v)L(C). By replacing x(e)
for all e ∈ E(C) by y(v) where v is the corresponding vertex
to e in the line graph L(G). We obtain the system defined by
the inequalities 8-11 which define complete characterization
of dominating set when G is a cycle ( from theorem 7).

Based on these results, we prove that,

Theorem 8. When G is cycle, SFP (G) is completely de-
scribed by the trivial inequalities (1), the 3-path inequalities
(2), the cycle inequalities (5) and the matching-cycle inequal-
ities (6).

Proof: The proof can be derived from Lemmas 4, 5, 6 and
Theorem 7. By lemma 5 the complement of an edge dominat-
ing set is spanning star forest. In cycle C, let x(e) = 1− z(e)
for all e ∈ E(C). By replacing x(e) by 1 − z(e) in the
system defined by 1, 2, 5 and 6; we obtain the system which
characterize the edge dominating set,this is true when the graph
is cycle.

B. A linear time algorithm for MWSFP when G is a cycle

To the best of our knowledge, there exists a polynomial
time algorithm given in [10] to solve MWSP only for the
case when G is a tree. In this section, we will give a linear
time algorithm solving MWSP when G is a cycle.

Let us suppose that the vertices of C is numbered from 1 to
n and the edges ei of weight ci is the edge between i and
i+ 1 for i = 1, . . . , n− 1. In particular, the edge en of weight
cn is the edge between n and 1. We transform the MWSFP
in G into 6 problems of finding a longest path problem in
some acyclic graph G′. First, we built a graph G′ = (X ′, A′)
from G. For an edge i ∈ G we create in G′ four vertices
i−2, i−1, i1, i2 called the clones of i. The arcs are created as
follows: for every vertex 1 ≥ i ≤ n− 1 in G, there are :

• an arc (i−2, (i+ 1)1) of cost ci,

• an arc (i−1, (i+1)1) of cost ci, an arc (i−1, (i+1)−2)
of cost 0,

• an arc (i1, (i + 1)2) of cost ci, an arc (i1, (i + 1)−1

of cost 0, And finally, an arc (i2, (i+ 1)−1) of cost 0.

We prove the following.

Proposition 1. There is at most two successive arcs with the
same color in an s− t- path in G′ = (X ′, A′)

Proof: In the digraph G′ = (X ′, A′) as it is defined, a
vertex ix express that there is |x| red arcs if x is negative and
x blue arcs if the x is positive. Or by definition of the network
N we have the following possibilities:

• x = −2 then the vertex i−2 is preceded by x = 2 red
edges. And, from x = −2 the unique possibility to
achieve is x = 1 or the color of the edge in this case
is blue.

• x = −1 then the vertex i−1 is preceded by x = 1 red
edge. And, from x = −1 there is two possibilities.
Either achieve x = 1 or the color of the edge in this
case is blue. Or x = −2 in this case the color of the
edge is red, then the next edge must be blue. This is the
case, because from x = −2 we have one possibility,
it is to achieve x = 1 and the arc is blue.

• x = 2 then the vertex i2 is preceded by x = 2 blue
edges. And, from x = 2 the unique possibility to
achieve is x = −1 or the color of the edge in this
case is red.

• x = 1 then the vertex i1 is preceded by x = 1 red
edge. And, from x = 1 there is two possibilities.
Either achieve x = −1 , the color of the edge in this
case is red. Or achieve x = 2 in this case the color
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of the edge is blue, then the next edge must be blue.
This is the case, because from x = 2 we have one
possibility, it is to achieve x = −1 and the arc is red.

It means that there is no three successive edges with the same
color (neither in red nor in blue)

Lemma 9. A non zero cost arcs of a path from 1x to nx in
G′ form a spanning star forest in G

Proof: By corresponding each vertex ix in G′ to a vertex
i in G and each non zero arc (ix, jy) in the path in G′ by a
blue edge ij in G. Because there is at most 2 successive arcs
with the same cost (zero or non zero)) this reflect the same to
the graph G thus we obtain at most 2 successive edges with
the same color. By this the edge set obtained verify the 3- path
inequalities and if we affect to a blue edge a value 1 and to
the red edge a value 2. Thus the edge set as it is defined verify
the integer formulation of star forest.

Remark 3. All maximal star forest in G correspond to one of
the following:

1. The non zero cost arcs of a path from 1−2 to n−1 in
G′.

2. The non zero cost arcs of a path from 1−1 to n1 in
G′.

3. The non zero cost arcs of a path from 1−1 to n2 in
G′.

4. The non zero cost arcs of a path from 11 to n−1 in
G′ + the arc (n, 1).

5. The non zero cost arcs of a path from 11 to n−2 in
G′ + the arc (n, 1).

6. The non zero cost arcs of a path from 11 to n2 in G′
+ the arc (n, 1).

Theorem 10. The problem of finding a maximum weight star
forest in G is equivalent to find 6 longest paths from 1x to ny
in G′ with several values of x, y where x, y ∈ {−2,−1, 1, 2}.
This can be done obviously in linear time.

Proof: Each longest paths from 1x to ny in graph G′

define a spanning star forest in G due to lemma 9.

Suppose that we have a maximum spanning star forest F ∗
in G (G is a cycle). Assign to each edge in F ∗ a color blue
and to th edge not in F ∗ a color red. If we denote by i an edge
by i(i + 1) where i = 1, . . . n ,consider n + 1 = 1. From a
graph G we construct a directed graph G′ as it is constructed
above. Then we choose a path from 1x to ny respecting the
colors of edges in G :

• If the edge is blue we choose one of arcs ixiy with
x ≤ y.

• If the edge is red we choose an arc ixiy with x ≥ y

Hence a simple algorithm to find a maximum weight star
forest in G is to find 6 longest paths from 1x to nx as specified
in remark 3. This can be done obviously in linear time.

II. AN EXTENDED FORMULATION

In the following section we are interested on extended for-
mulation of the star forest Polytope. An extended formulation

was given by Baiou et al. [2] via facility location polytope.
This formulation with an exponential number of constraints
due to the g-odd cycle inequalities. A compact formulation
means the formulation defined with a polynomial number
of variables and polynomial number of constraints. In what
follows , we are interested in such formulation for star forest
polytope. To do so we define the following graph.

First, we built a graph G′ from G as its defined in the
precedent section. We obtain a graph with vertices ix where
x ∈ {−2,−1, 1, 2}.

Secondly, we construct a digraph G” = (X”, A”) by
duplicate the resulting digraph G′ = (X ′, A′) on 6 copies. The
vertex in G” is denoted by ijx where 1 ≤ i ≤ n, 1 ≤ j ≤ 6
and x ∈ −2,−1, 1, 2. The set of arc A” = ∪j∈{1,2,3,4,5,6}Aj

Finally construct a network N(X,A) by adding a source s and
a sink t to G” = (V ”, A”). for all 1 ≤ j ≤ 6 add a those arcs
by this way:

• an arc (s, 11
−2) of cost 0, an arc (n1

−1, t) of cost 0,

• an arc (s, 12
−1) of cost 0, an arc (n2

1, t) of cost 0,

• an arc (s, 13
−1) of cost 0, an arc (n3

2, t) of cost 0,

• an arc (s, 14
1) of cost C1, an arc (n4

−1, t) of cost Cn,

• an arc (s, 15
1) of cost C1, an arc (n5

−2, t) of cost Cn,

• an arc (s, 16
2) of cost C1, an arc (n6

1, t) of cost Cn,

In fact the construction of network N(X,A) simulates the
construction of a star forest in G from the vertex 1 and in the
clockwise size to the vertex n. This construction is done by
giving a color red to the edges withe cost 0 and blue to the
edges with a cost ci ( red mean the edge is not in the star
forest and blue means that the edge is in the star forest). Then
the vertex ijx express the fact that there are |x| red edges prior
to ij if x is negative and there are x blue edge (edges) prior
to ij if x is positive.

Let N = (X,A) be a a network and let a vertex set S ⊆ X .
We denote by δ+(S) the set of arcs of D with a tail in S and
head in X \S and by δ−(S) the set of arcs of D with a head
in S and tail in X \ S. we write δ+(v) (δ−(v)) instead of
δ+({v}) (δ−({v}))

It turns then to find the longest path between s and t. This is
the solution of the following system.

max
∑

φji (16)

φ(δ+(ijx))− Φ(δ−(ijx)) = 0∀ijx ∈ X (17)
φ(δ−(s)) = 1 (18)
φ(δ+(t)) = 1 (19)

φ(a) ≥ 0∀a ∈ A (20)

The graph as it is constructed above is acyclic, and because
system above is totally unimodular, the solution of the system
given above is integer. This formulation is an s − t-path
extended formulation for the star forest polytope.

The set of all s − t flows of value 1 in network N =
(X,A) defines a polyhedron Q that we call flow polyhedron.
the extreme point of the polyhedron define an s-t path.
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We say that the flow polyhedron Q is a flow-based ex-
tension of a given polytope P in Rd if there exist a linear
projection π : RA −→ Rd such that π(Q) = P .

Let N = (X,A) be a network where ijx is vertex in X
those are the clones of a vertex i, and A is the set of edges.
For ease of notation we denote by ijxy = ijx(i + 1)jy the the
arc between ijx and ijy in N , and by i the edge between i and
i+ 1 in G.

Let L the edge set of st-path in N Let φL ∈ {0, 1}|A| be
the characteristic vector of an st-path L in N and define an
extreme point of the st-flow polyhedron.

φL(ijxy) =

{
1 if ijxy ∈ L,
0 otherwise. Then the projection π :

RA −→ Rd

φL 7−→ z then π(φL(ijxy)) = z(i) where

z(i) =

{
1 if ∃ an arc ijxy ∈ L, with x < y
0 otherwise.

An edge i in G take the same color (blue or red) with an arc
ijxy in a path L of N . the arc ijxy take a color blue if x < y
and red if x > y. z(i) = 1) means the edge i take a color blue
, the same color of an arc ijxy

Let P ⊆ Rn polytope with |E| vertices.

P = Projx{(z, φ) ∈ R|E|×R|A|; z(i) =
∑

j

∑
xy φ(ijxy)}

Theorem 11. The system (17)-(20) defines an extended for-
mulation for the star forest polytope SFP (G) when the graph
G is cycle.

Proof: An extrem point of the system (17)-(20) define an
characteristic vector of an st-path in N . Or each st-path in
N = (X,A) is a succession of blue (non zero cost) and red
(zero cost) arcs. By construction of the network N and by
proposition 1, there is no two successive edge with the same
color. By projecting the st-path of N = (X,A) on blue edges
in G we obtain a spanning star forest in G.

Let z̄(i) = 1− z(i)
Let P̄ ⊆ Rn polytope with |E| vertices.

P̄ = Projz̄{(z̄, φ) ∈ R|E|×R|A|; z̄(i) =
∑

j

∑
xy φ(ijxy)}

Theorem 12. The system (17)-(20) defines an extended for-
mulation for edge dominating polytope.

Proof: By projecting the st-path of N on the red edge of
G, we obtain an edge dominating set.

It is proved in section 2 that the complementary of star
forest in cycle is an edge dominating set. Or a red edge in G
means the edge is not in a star forest. Because G is cycle, red
edges define an edge dominating set.

Because a cycle is isomorphic to its line graph, the edge
dominating set polytope is an edge formulation of dominating
set then we have the following.

Corollary 1. The system (17)-(20) define an extended formu-
lation for vertex dominating set.

III. CONCLUSION

The aim of this work is to give a polynomial time complete
description of star forest polytope in graph. We have estab-
lished a relationship between star forest and dominating set in
cycle which lead to a new facet defining inequality (matching-
cycle inequality) and a complete description of SFP (G) when
G is a cycle. Then we have given a linear time algorithm
to solve MWSFP which allows us to give a flow-based
extended formulation to MWSFP on a cycle.
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