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SEPARATION OF PARTITION INEQUALITIES

MOURAD BAIOU, FRANCISCO BARAHONA, axp ALI RIDHA MAHJOUB

Given a graph G = (V, E) with nonnegative weights x(e) for each edge e, a partition inequality is
of the form x(6(Si,...,Sp)) > ap+b. Here 6(Sy,...,Sp) denotes the multicut defined by a partition
Si,...,Sp of V. Partition inequalities arise as valid inequalities for optimization problems related
to k-connectivity. We give a polynomial algorithm for the associated separation problem. This is
based on an algorithm for finding the minimum of x(J(S,...,Sp)) — p that reduces to minimizing
a symmetric submodular function. This is handled with the recent algorithm of Queyranne. We
also survey some applications of partition inequalities.

1. Introduction. Let G=(V,E) be a graph with edge weights x(e) > 0 for all ec E.
Given a partition Si,...,S, of the node set V', we denote by 4(Si,...,S,) the set of edges
with endnodes in different sets of the partition. We use 6(S) instead of 4(S, V'\S) and we
use x(7') to denote >, ., x(e).

Given a and b, an inequality of the type

(1.1) X(5(S1,....8,)) > ap + b

is called a partition inequality.

Partition inequalities define the dominant of the spanning tree polytope, with a =1 and
b= —1; probably this is the most known case. As we shall see later, they arise as valid
inequalities or facets for optimization problems related to k-connectivity. In this paper we
study the separation problem: Given a vector x find a violated inequality (1.1), if there
is any. The separation problem is a key ingredient for being able to use these inequalities
inside a cutting plane algorithm.

If a < 0 and there is a partition with p>2 so that (1.1) is violated, we can collapse two
sets, then the left-hand side does not increase, and the right-hand side does not decrease.
So in this case one should only deal with p =2 and the problem can be solved by finding
a minimum cut.

We have to study the case a>0, and without loss of generality we can assume that
a=1. The problem with b < —1 seems to be easier than the case b>—1. The former
case had been studied by Cunningham (1985), he reduced it to O(|E|) minimum s — ¢
cut problems. Later it was shown in Barahona (1992) that it can be solved in O(|V])
minimum s — ¢ cut problems. In order to solve the latter case we had to study the
problem:

(1.2) minimize x(6(S1,...,S,)) — p

among all partitions with p >2. This problem is interesting in its own sake; it also
gives lower bounds for the k-cut problem that is NP-Hard. We develop a polynomial
algorithm for this case. This uses a recent algorithm of Queyranne (1995) for minimizing
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a symmetric submodular function. We show that the case »>—1 reduces to O(|V]*)
minimum s—¢ cut problems. This case uses the algorithm for the first case as a subroutine.

This paper is organized as follows. Sections 2 and 3 are devoted to the case b= —1.
Section 4 describes Cunningham’s approach to this same case. In §5 we show that prob-
lem (1.2) reduces to minimizing a certain submodular function. In §6 we show how
Queyranne’s algorithm for minimizing symmetric submodular functions applies to our
problem. In §7 we discuss some applications of these methods. In §8 we survey partition
inequalities.

2. The case b<—1. The first separation algorithm for this case was given by
Cunningham (1985); he reduced this to |E| minimum cut problems. We describe his
approach in §4. A reduction to |V| min-cut problems was given in Barahona (1992); we
present it here with slight modifications. We shall see that this problem is equivalent
to optimizing a linear function over a certain extended polymatroid. These concepts are
discussed in Grostchel et al. (1988) for instance. This problem can be solved with the
greedy algorithm used by Edmonds (1970). At each iteration, finding an inequality that
becomes tight is equivalent to finding a minimum s — ¢ cut in a certain network. We
present this method below, this will be used as a subroutine in the following sections.

Given a graph G =(V,E) the spanning tree polytope 7(G) is the convex hull of inci-
dence vectors of spanning trees of G, its dominant is the polyhedron P(G)=T(G)+ RE
obtained by adding the nonnegative orthant. It has been proved in Nash-Williams (1961)
and Tutte (1961) that P(G) is defined by

(2.1) x(6(V1,...,¥,)) > p—1 for every partition of V,
(2.2) x > 0.

Jinger and Pulleyblank (1995) have given an extended formulation for P(G) as follows.
Associate the variables x with the edges and the variables y with the nodes. The system

below defines a polyhedron whose projection onto the variables x is P(G). This will be
proved at the end of this section. The node r is an arbitrary element of V.

(2.3) x(3(S)) + y(S)>2 if r¢s, Sc,
(2.4) x(3(S) + y(S) >0 if res, sc,
(2.5) y(V)=0,

(2.6) x> 0.

So given a vector x>0 we can try to find a vector y such that (X, y) satisfies
(2.3)—(2.6), or prove that y does not exist.
Let

_[2-x(8(8)) if rés,
/8)= {3(5(S)) if res,

for ) £S C V. The function —f is submodular for intersecting pairs, i.e.,

S8+ A(T) < f(SUT)+ f(SNT),

for S£EDAT, S,TCV, SNT #0.
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We are going to solve
minimize (V)
(2.7) subject to
»(S)> f(S) for SCV.

Edmonds (1970) showed that the greedy algorithm solves this linear program. This
algorithm, which we present below, produces also an optimal solution of the dual problem.
We shall see that this gives a most violated partition inequality, if there is any. The dual
problem is

maximize Z zs f(S)

subject to

> fzsluest=1 forall ueV,

z>0.

(2.8)

Given a vector y satisfying (2.7), a set S is called tight if y(S)= f(S). The function
y(-)— f(+) is nonnegative and submodular for intersecting pairs. So if S and T are tight,
and SNT #(, then SNT and SUT are also tight.

We start with y(v;) =2 Vi, and decrease the value of each y(v;) until a set becomes
tight. We denote by % the family of tight sets with a positive dual variable. If we try to
add S to # and there is a set T € # with SNT #(), then we replace S and 7 by SUT.
This is also tight.

Let V' ={uv1,...,v,}. The algorithm follows:

Algorithm 1.
Step 0. Set y(v;)«2 fori=1,...,n; k—1; F 0.
Step 1. If vy belongs to a set in & go to step 3, otherwise
set & f(§) — §(S)=max{ f(S) — 7(S)| vx €S},
F(u) = 7o)+,
F —F U{S}.
Step 2. While there are two sets S and T in % with SNT #0 do
F —(F\{S, THUu{TuUS}.
Step 3.Set k«—k + 1, if kK <n go to Step 1, otherwise stop.

The vector y is built so it satisfies (2.7), the family & defines a partition of ¥ and
W(S)=f(S) for every S€ F. We set zg=1, if S€ ., and zZg =0 otherwise. We have

F)=> {3 [SeF}=> {fS)|SeF}=> {f(S)Es|SCV}.

This proves that y and z are optimal solutions.

If the value of the optimum is O then (%, y) satisfies (2.3), (2.4), and (2.5). In this
case we can pick any partition of V' into 14,...,V,, add the inequalities in (2.3), (2.4)
associated with the sets {V;}, and —y(V) > 0. We obtain a partition inequality. This
shows that x satisfies all the partition inequalities.

Now assume that the value of the optimum is greater than 0. Let zZ be a 0-1 vector that
satisfies the equations of (2.8), the family ¥ ={S|zs=1}={S,...,S,} gives a partition
of the set V' and

> (s =2p—1) = 2%(8(S1..... ),



246 M. BAIOU, F. BARAHONA, AND A. R. MAHJOUB

FIGURE 3.2. Structure of a cut

SO
1
5 2SS =(p—1) = F(S1,....5))).

Since z is an optimum of (2.8) it gives a most violated partition inequality. Because of
this we have a solution of the separation problem not only for 5= —1, but also for any
b<—1.

This procedure shows that (2.8) has an optimal integer solution, this is known as the
total dual integrality of (2.7). It also shows that ¥ satisfies (2.1)—(2.2) if and only if
there is a vector y such that (X, y) satisfies (2.3)—(2.6), so projecting the variables y in
(2.3)—(2.6), gives (2.1)—(2.2).

3. Finding tight sets. It remains to show how to compute the number o in Step 1.
Construct a directed graph D= (N, A), where N =V U {s,t} and A={(i, /), (j,i)|ij€EE} U
{(s,i),(i,t) | i € V}. Define

n(i) = y@i) for i€V, i#r,
n(r) = y(r) +2,
define capacities
c(s,i)=—n(i), c(i,t)=0 if n(i)<0, i#uv, i€V,
c(i,t)=n(i), c(s,i)=0 if y(ii)>0, iF#uv, i€V,
c(s,ve) =00, (g, 1) =n(vy),
c(i,j)y=c(j,i)=x(i,j) for ijeE.

LemMA 3.1. Suppose that {s} UT induces a cut separating s from t that has capacity
A; see Figure 3.2. Then

A+ {n@) [n(0)<0} =2 if ref,

W(T) +x(6(T))=
’ ’ {/1+Z{n(v)n(v)<0} if réT

Proor. Suppose that » € T. Then

A=Y {=n@)|ie T, ni)<0} + 3T+ Y _ {nG)|i€T, ni) >0},
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and

L4y {n() [n(v)<0} =2
= > {n@]ie T, n(i)<0} +%S(T) + Y _{nGi)|i€T, n(i) >0} -2

= W(T) + x(o(T)).
The case r ¢ T is analogous. []
Therefore, if  is the minimum capacity of a cut separating s from ¢, then the value
o is
2— = {n()|n(v)<0}.

Suppose now that we have solved problem (2.7), and that we add a new vertex to the
graph. We are going to show that resolving (2.7) takes just one min-cut calculation. This
will be used in the later sections.

Lemma 3.3. After solving problem (2.7), if we add a new vertex, it will take one
minimum cut calculation to resolve (2.7).

Proor. Suppose that y is the solution of (2.7), for the graph G =(V,FE). Suppose that
we add the vertex w. Define

I(u) = j(v) — F(wv),

for all ve ¥, and y(w)=2. It is easy to see that y satisfies the inequalities of (2.7), and
every set that was tight before will remain tight. Thus the only component that can be
modified by the greedy algorithm is y(w), this takes one minimum cut problem. [J

4. Cunningham’s approach. Cunningham (1985) used the method below for the case
b < —1. We present his method because it will be used in §5 to prove submodularity. Let
f be the rank function of the graphic matroid. It satisfies

(4.1) f(@)=0,
(4.2) fA) < f(B) if ACBCE,
(4.3) f(AUB) + f(ANB) < f(4)+ f(B) if 4,BCE.

Then he proposes to solve
maximize y(E)
subject to
y(R) < f(R) if RCE,

0<y<nx

4.4)

For ACE, let A_:E\A. We have

YE)=y(A) + y(4) < x(4) + f(4).

We apply the greedy algorithm to (4.4), cf. Edmonds (1970). Starting with a feasible
vector y, (for instance y=0), we increase one component until one inequality becomes
tight, then we continue with another component, and so on. Let y be the final vector.
Then for any e € E either y(e)=x(e) or e is in a tight set. An edge set is called tight if
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its corresponding inequality in (4.4) is tight. Let A4 be the union of the tight sets. This is
also tight, by submodularity. Notice that this time the tight sets do not have to intersect
as was required in §2. Thus

HE)= 7(4) + H(A) =x(4) + f(4).

This shows that the solution of (4.4) gives the minimum of

x(4) + f(4).

By taking 4 =0, we have that the minimum is at most n — 1. So it is equivalent to look
for the minimum of

X(A) + f(A) = (n = 1) =x(E) — (n = 1) + f(A) — x(4)

that is nonpositive.
For BCV, let y(B) be the set of edges with both endnodes in B. We need the following
lemma.

Lemma 4.5. It is enough to take sets R=7y(B) in (4.4).

Proor. Let R be a set of edges and consider

(4.6) y(R) < f(R).

Let r be the number of nodes covered by R and p the number of connected components
defined by R. Then f(R)=r — p. If p>1 then (4.6) can be obtained as the sum of
inequalities associated with the connected components. We can assume that p=1. Let
B be the set of nodes covered by R. If R # y(B), then (4.6) is implied by y(y(B)) <
fG(B)=f(R) and y >0. O

This lemma shows that A is the union of sets of type y(B). We are going to obtain the
minimum of

P
SIS = 1) = x((S))] + X(E) — (n — 1),

i=1

where p is the number of connected components in A.
Let us renumber the nodes so that 4 ={v|,v,,...}. By taking S,; = {v;} for v; ¢S;, 1 <
J < p, we have

x(0(S1,...,8)) — (k= 1),

where k=p+n—37 |S]

Applying the greedy algorithm to (4.4) would require |E| iterations. Each time finding
a tight set reduces to solving a min-cut problem, so this method requires |E| min-cut
problems, cf. Cunningham (1985).

5. The case b>—1. Now we study the general case. We shall see that it reduces to
minimizing a symmetric submodular function. The evaluation of this submodular function
will require the algorithm of §2.

We could not find a simple extension of the methods in the preceding sections to the
case b>—1. When we tried to modify them we would lose submodularity. Finally we
decide to study the problem

(5.1) minimize x(6(S1,...,Sp)) — p,

with p > 2. We call this the multicut problem.
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This is equivalent to minimize

(5.2) 9(8)=x(5(S)) — 2 + min{x(3s(T1,..., Tk)) — (k — )},
where S C V and {T;} is a partition of S. Notice that {7;} could be the trivial partition,
i.e., k = 1. In this section we use 55_(T1, ..., T}) to denote the set of edges between different

sets 7;. The resulting partition is S, Ty,..., Tk.
We want to prove that g is submodular. For that all we need is to prove that

(53) h(S)= min{x(85(T,...,Ti)) — (k — 1)}

is submodular (as a function of S). As we saw in §4, this is 1 —|S| plus the value of the
optimum of (4.4), where E =y(S).

So we have to consider (4.4) for E=9(S), E=y(T), E=y(SUT), and E=y(SNT).
Suppose that j was obtained after applying the greedy algorithm for £E=9(SNT). We
can extend j to a solution for E=y(SUT), denote this by y. Now denote by j the
vector obtained from j by setting to zero all components not in 7(S). We can extend g
to a solution for £ =17(S). We can proceed similarly for £=y(T). This shows that

WSUT)+h(SNT) < h(S)+ h(T).

The submodularity of % also follows from observing that 4 is one plus the Dilworth
truncation of x(6(S)) — 1. See Lovasz (1983) for a definition of this concept.

We have proved that the minimum of (5.1) can be obtained by minimizing the sub-
modular function g. Queyranne (1995) gave an algorithm that takes O(n*) evaluations of
f when this is submodular and symmetric. This means that f(S)= f(S) for all SC V.
Since g is not symmetric, we define ¢'(S§)=A(S)+ 1/2x((S)) and look for the minimum
of ¢"(S)=¢'(S)+¢'(S), for ) # S C V. It is clear that g’ is symmetric, and submodular
because it is the sum of submodular functions.

We have that

1
g'(S)= 7X(0(8)) +x(0s(Th,.... Ti)) — (k — 1)
for some partition of S, and
_ 1 _
g'(S)= 7¥(0(8)) +x(05(U1,.... U)) — (1 = 1)
for some partition of S. Then

g"(S):x(é(Tl,...,Tk,Ul,...,U;))—(k+l)+2.

Thus the minimum in (5.1) is equal to the minimum of ¢” minus 2.

6. Queyranne’s algorithm. For a symmetric submodular function f, Queyranne
(1995) gave the algorithm below. It generalizes the minimum cut algorithm of Nag-
amochi and Ibaraki (1992) as simplified by Stoer and Wagner (1994) and Frank (1994).
Following Queyranne’s notation we use S + u to denote SU {u}.

Algorithm A

Step 0. Start with Wy =0, i=0.

Step 1. For all u W; set k(u) = f(W; +u) — f(u). Let k(u;11) = min{k(u)}.
Step 2. Set Wiy «— Wi+ ujy1, set i < i+ 1. If i =n stop, otherwise go to Step 1.

He proved that
(6.1) f(u,)= min{f(S)|S separates u, and u,_},
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The next step is to identify u, and u,_;, apply Algorithm A, and continue until we are
left with two elements.
The proof of (6.1) relies on the lemma below.

LemMA 6.2. Queyranne (1995). For 1 <i<n-—1, y € V\W; and X CW;_,,
SV + f() < FVANX) + f(X + ).

If we apply this algorithm with a function f that is not symmetric, we obtain the
minimum of £(S)+ £(S); this follows from Lemma 6.2. In our case we should use the
function g’ defined in the last section.

Each application of Algorithm A requires O(n?) evaluations of f. Since Algorithm A
is used n — 1 times, we need O(n®) evaluations of f. In our case, one evaluation of the
function ¢’ would take O(n) min-cut problems, thus the straightforward implementation
of this method would require O(n*) min-cut problems. However each evaluation in Step 1
is of the type f(W;+ u) where f(W;) is already known. We have seen at the end of
§3 that this takes only one min-cut calculation. Thus the entire algorithm requires O(n*)
min-cut problems.

7. Related problems. Let us turn our attention to ratio objectives. The problem
x(6(S1,...,8p))
p—1

was studied in Cunningham (1985) and Cheng and Cunningham (1994). Chvatal (1973)
showed that the minimum of

minimize

b

x(é(SI, LR Sp))
P
is given by a minimum cut. Now consider

x(6(S1,...,8,)) +a
p+b

minimize R
where p + b>0, for p>1. Cunningham (1985) pointed out that his method could be
extended to the case b <a — 1. The general case can be solved using Dinkelbach’s al-
gorithm’ see Dinkelbach (1967), and problem (5.1) as follows. Given a partition {7;},
compute

:x(é(Tl,...,Tp))—l—a

A
p+b

5

and look for the minimum of
x(6(S1,...,8p)) +a—A(p+b).

If this minimum is negative replace {7;} by the new partition, otherwise stop. This pro-
cedure takes at most 7 iterations cf. Cunningham (1985).
Now consider the k-cut problem. We want to minimize

x(0(S1,---,5))

for a fixed value of k. Goldschmidt and Hochbaum (1994) gave an O(nkz) algorithm, and
they showed that it is NP-Hard if & is part of the input. Karger and Stein (1996) gave
an algorithm with expected running time O(n** log2 n).
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For any number 4>0 we can obtain a lower bound

(7.1) S(2) = min{x(8(S1.....5,)) — A p — )},

and then look for the maximum of f. This is a piecewise linear concave function with at
most n breakpoints, so this maximum is easy to find. Then for any value of /1 such that
the solution of (7.1) has p >k, we can obtain an upper bound by shrinking some sets in
the partition, notice that for large values of 4 we should have p > k. The details of this
and some computational experiments appear in Barahona (1996b).

8. Applications of partition inequalities. In this section we mention some of the
optimization problems that involve partition inequalities. In general they are useful to
deal with connectivity constraints. As mentioned before, the dominant of the spanning
tree polytope is defined by nonnegativity and

x(o(V,..., V) > p—1,

for every partition of V’, see Nash-Williams (1961) and Tutte (1961). These inequali-
ties have been used inside an algorithm for the Network Loading Problem in Barahona
(1996a).

Consider the problem of finding a minimum 2-edge connected spanning subgraph. The
inequalities below are valid for the associated polytope.

(8.1) x(0(S)) >2 for SCV,
(8.2) 0<x(e)<1 foralle.

In Mahjoub (1994) another family of valid inequalities was introduced as follows. Con-
sider a partition of V' into Vo, V1,...,¥,, and let F C (Vo) with |[F| =2k + 1. If we add
the inequalities

x(0(Vi)) =2, 1<i<p,
—x(e) > —1, e€F,
K(e)2 0, ecd(Vy)\F,
we obtain
2x(A) > 2p — 2k — 1,
where A =0(Vy,...,V,)\F. Dividing by 2 and rounding up the right-hand side we obtain
(8.3) x(A)>p—k

These are called F-partition inequalities. Notice that if |F| =2k, then inequality (8.3) is
implied by (8.1) and (8.2).

If the sets V;, 1 <i < p are singletons, then these are blossom inequalities for b-matching
and the separation problem can be solved with the algorithm of Padberg and Rao (1982).
We do not have a polynomial algorithm for the separation problem associated with F'-
partition inequalities: However if F is fixed, we can delete this set of edges and the
problem reduces to the case studied in §§2, 3, and 4.

For 2-connected subgraph problems, we are in the process of implementing a cutting
plane algorithm based on F-partitions. The results of this will be reported elsewhere.
Since the Travelling Salesman Polytope is a face of the 2-connected subgraph polytope,
inequalities (8.3) are also valid for the TSP. We found it interesting that we could solve
to optimality some small Travelling Salesman problems using only (8.1), (8.2), and (8.3).
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FIGURE 8.4. A fractional TSP solution

In Figure 8.4 we display a fractional vector obtained when solving a TSP with 51 nodes
from TSPLIB; cf. Reinelt (1991). We chose a set F' among the edges having the value
1 and found a violated partition inequality described below. The dashed lines indicate
fractional values, the solid lines indicate the value 1. We draw with bold lines the edges
in F. The nodes in the upper half belong to ¥V}, the other sets V; are drawn with ellipses
and circles. In this case the constraint is x(A) > 7, however the present vector gives 6.5
for the left-hand side. This fractional vector could also be cut with some of the well-
known comb inequalities. Whether F-partitions are useful for larger TSPs remains the
subject of further research.

In Grotschel et al. (1992b) they consider inequalities of the same type for a more
general model. Inequalities (8.3) have also been studied in Barahona and Mahjoub (1995).
Fonlupt and Mahjoub (1999) study the extreme points of the polytope P(G) defined by

(8.5) x(6(S))>2 for SCV,
(8.6) 1 >x>0.

They introduce the notion of critical noninteger extreme points of P(G). Roughly speak-
ing, a noninteger extreme point of P(G) is critical if the set of edges with fractional
values does not strictly contain the set of fractional edges of another extreme point of
P(G). They showed that any critical noninteger extreme point violates an inequality of
type (8.3), and this can be found in polynomial time.

Now consider minimum k-edge connected spanning subgraphs, for k>1. Grotschel
et al. (1992) introduced the constraints

kp

(8.7) X(5(V1,..., V) > [7] .

These are redundant if kp is even. Also in Grotschel et al. (1992b) they showed that the
separation problem for a more general type of partition inequalities is NP-Hard. Cutting
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plane algorithms along with computational results with these inequalities have been pre-
sented in Grotschel et al. (1992b) and Grotschel et al. (1995). They used heuristics for
the separation problem, and concluded that partition inequalities are very useful in this
context. They also pointed out the need for better separation routines. An approximation
for this is to minimize

kp

CURER AR

This can be done as in §5.
Chopra (1994) considers the minimum k-edge connected spanning subgraphs when
multiple copies of an edge may be used, and & is odd. An obvious system of inequalities is

(8.8) x(0(S)) >k for SCV,
(8.9) x>0

Then he introduces the following partition inequalities:

(8.10) x(6(V1,..., 1)) = [g—‘ p—1
for all partition Vi,...,}; of V' such that G(V;) is connected for i=1,..., p. These con-
straints are valid for the associated polyhedron P;(G) when the graph G is outerplanar
and k is odd. He showed that in this case, Py(G) is defined by (8.8), (8.9), and (8.10).
He also conjectured that this result remains true in the more general class of series-parallel
graphs. Recently Didi Biha and Mahjoub (1996) proved this conjecture as a consequence
of a more general result. They showed that (8.8), (8.9), and (8.10) define the k-edge
connected subgraph polytope for series-parallel graphs, for all k. The conjecture was also
proved independently by Chopra and Stoer (1996). Inequalities (8.10) can be separated
with the method of §5.

For k-node connected subgraphs the inequalities below have been presented in Grotschel
et al. (1992b). Let ZC V' be a node set with |Z| =¢ < k — 1. Let Vy,..., ] be a partition
of V\Z. Then the following inequalities are valid:

p—1 if k—t1=1,

x(6(7,.... %)) > _
(o(" 7)) {ﬂk gw k>
2
If k —t=1 they can be separated with the method of §2. If £k — ¢ is positive and even,
then they can be separated with the method of §5.
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