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Abstract This paper deals with the Knapsack Problemwith
conflicts, also known as the Disjunctively ConstrainedKnap-
sack Problem. The conflicts are represented by a graph
whose vertices are the items such that adjacent items can-
not be packed in the knapsack simultaneously. We consider
a classical formulation for the problem, study the polytope
associated with this formulation and investigate the facial
aspect of its basic constraints. We then present new families
of valid inequalities and describe necessary and sufficient
conditions for these inequalities to be facet defining. We also
devise separation routines for these inequalities. Using these
results, we develop a Branch-and-Cut algorithm for the prob-
lem. An extensive computational study is also presented.
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1 Introduction

In this paper,we consider a variant of the 0–1Knapsack Prob-
lem, where some items are incompatible with others, and
cannot then be packed simultaneously in the knapsack. We
are given a knapsack of capacity c, a set V = {1, 2, . . . , n}
of items, and a graph of conflicts between some items G =
(V, E). For each edge (i, j) ∈ E , items i and j are incompat-
ible. With each item i ∈ V is associated a nonnegative profit
pi and a nonnegative weight wi . The Disjunctively Con-
strained Knapsack Problem (DCKP) consists in determining
a maximum-profit set of compatible items to be packed in
the knapsack.

The DCKP is an NP-hard combinatorial optimization
problem since it is a combination of two NP-hard combi-
natorial optimization problems. Indeed, when no conflicts
between items exist (i.e., E = ∅), the problem reduces to
a 0–1 Knapsack Problem (0–1 KP) which is known to be
NP-hard Martello and Toth (1990). When the knapsack con-
straint is omitted, the problem is the maximum independent
set which is known to be NP-hard as well Garey and Johnson
(1979). For some special classes of conflict graphs, the prob-
lem becomes easier. For example, in Pferschy and Schauer
(2009), Pferschy and Schauer present pseudo-polynomial
algorithms to solve the DCKP for two special classes of
graphs, namely graphs of bounded tree-width and chordal
graphs.

The DCKP is relatively a recent variant of the Knapsack
Problem that has been firstly introduced by Yamada et al.
(2002). Yamada et al. (2002) present a heuristic method as
well as an implicit enumeration algorithm together with an
interval reduction method in order to solve the DCKP to
optimality.

Later, more focus has been given to the problem. Heuris-
tic and exact resolution approaches have been proposed.
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Senisuka et al. (2005) present an exact algorithm to solve
the DCKP. The algorithm combines Lagrangian relaxation
techniques with the pegging test for ordinary knapsacks
which helps reducing significantly the problem size. The
approach proves to be efficient in solving huge instances of
the DCKP in a reasonable time of computation. In parallel,
Hifi andMichrafy (2007) propose several versions of an exact
algorithm for the DCKP, based on a reduction procedure
combined with a Branch-and-Bound algorithm. A further
exact approach has been proposed by Bettinelli et al. (2014)
who present an efficient Branch-and-Bound algorithm using
a combination of several upper bounding procedures as well
as a variety of branching strategies.

Along with the exact methods and due to the difficulty of
the problem, many heuristic methods have been proposed in
the literature. These have, in general, provided good results in
a reasonable amount of time. Different meta-heuristics have
been, in this context, used to solve efficiently the DCKP.
These include local branching algorithms Hifi et al. (2009);
Akeb et al. (2011), a version of Scatter Search Hifi and
Otmani (2011), a parallel large neighborhood search-based
heuristic Hifi et al. (2014), and recently a guided neighbor-
hood search Hifi et al. (2015).

In some cases, the DCKP appears as a subproblem of
a more general one. Sadykov and Vanderbeck (2013) pro-
pose a Branch-and-Price algorithm to solve the Bin Packing
Problem with conflicts and prove that the associated pricing
subproblem is nothing but a DCKP. The authors propose a
dynamic programming algorithm for the DCKP when the
conflict graph is an interval graph. They develop a Depth-
First-Search Branch-and-Bound approach when the conflict
graph has no special structure.

To the best of our knowledge, our work constitutes the
first contribution considering the polyhedral aspect of the
DCKP. The only works presenting close polyhedral studies
are those dealing with the 0–1 knapsack polyhedron (see
Balas 1975; Balas and Zemel 1978; Weismantel 1997), and
polyhedra related to some variants of the Knapsack Problem
(seeAtamtürk andNarayanan 2009;Boyd 1993; Farias Jr and
Nemhauser 2003;Hanafi andGlover 2007; Zeng andRichard
2011), along with the ones dealing with the independent set
polyhedron Nemhauser and Trotter (1974).

This paper is organized as follows. In the next section, we
state the classical Integer Linear Programming (ILP) formu-
lation used in the literature tomodel the DCKP andwe define
the associatedpolytope and study the facial aspect of the basic
constraints. In Sect. 3, we describe some valid inequalities
and give necessary conditions and sufficient conditions for
these inequalities to be facet defining. In Sect. 4, we devise
separation algorithms for these inequalities and describe our
Branch-and-Cut algorithm. In Sect. 5, we present an exten-
sive computational study. Some concluding remarks and
indications for future work are given in Sect. 6.

2 Formulation and polyhedral analysis

A natural and compact Integer Linear Programming formu-
lation for the DCKP makes use of a set of binary variables xi
associated with items i ∈ V , taking value 1 if item i is packed
in the knapsack, and 0 otherwise. The DCKP is equivalent to
the following program:

max
∑

i∈V
pi xi (1)

∑

i∈V
wi xi ≤ c (2)

xi + x j ≤ 1 for all e = (i, j) ∈ E (3)

0 ≤ xi ≤ 1 for all i ∈ V, (4)

xi ∈ {0, 1} for all i ∈ V, (5)

where (1) denotes the objective function, (2) represents the
knapsack capacity constraint inequality, (3) are the disjunc-
tive constraint inequalities, and (4) and (5) are the trivial and
integrality constraints, respectively.

In the sequel, and w.l.o.g., we will assume that the set of
edges E is composed of two subsets Ed and Ec, i.e., E =
Ed ∪ Ec, where Ed is the set of edges representing conflicts
due to the disjunction constraints (3), and Ec is the set of
edges representing conflicts due to the capacity constraint (2).
In other words, for all e = (i, j) ∈ Ec, wi + w j > c, that is
i and j form a cover.
We will also assume that wi ≤ c for all i ∈ V , that is any
single item induces a solution for the problem.

Denote by DCKP(G) the polytope associated with the
DCKP, that is the convex hull of the incidence vectors of
all its solutions, i.e.,

DCKP(G) = conv
{
x ∈ {0, 1}n : x satisfies (2)−(5)

}
.

A solution S ⊆ V of DCKP will be represented by the set
of items retained to be packed in the knapsack and that are
not in conflict. That is to say, the incidence vector of S, x S is
such that x Si = 1 if i ∈ S and x Si = 0 otherwise, satisfies the
DCKP constraints.

We first state the following preliminary result.

Theorem 1 DCKP(G) is full dimensional.

Proof Consider the solutions of DCKP S0, S1, . . . , Sn
defined as follows, S0 = ∅, Si = {i}, for all i ∈ V . Clearly
x S0 , x S1 , . . . , x Sn are n + 1 affinely independent points of
DCKP(G). Consequently, dim(DCKP(G)) = n. ��

Having established the dimension of DCKP(G), next, we
will characterize when the trivial and disjunctive inequalities
define facets.

Theorem 2 xk ≥ 0 defines a facet of DCKP(G).
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Proof Let S0 = ∅, and for all i ∈ V \ {k}, Si = {i}. These
constitute n = |V | solutions of DCKP whose incidence vec-
tors satisfy xk = 0 and are affinely independent. ��
Theorem 3 xk ≤ 1 defines a facet of DCKP(G) if and only
if for all i ∈ V \ {k}, (i, k) /∈ E.

Proof Assume that there is an item i0 ∈ V such that (i0, k) ∈
E , i.e., xk + xi0 ≤ 1. Since this inequality dominates xk ≤ 1,
the latter cannot be facet defining.

Now, suppose that (i, k) /∈ E for all i ∈ V \ {k}. Consider
the solutions S1, . . . , Sk, . . . , Sn of DCKP defined by Sk =
{k}, and for all i ∈ V \{k}, Si = {i, k}. These form n solutions
of DCKP whose incidence vectors satisfy xk = 1 and are
affinely independent. ��
Theorem 4 For (k,m) ∈ E, xk + xm ≤ 1 defines a facet
of DCKP(G) if and only if for all i ∈ V \ {k,m}, i is not in
conflict with at least one of the two items k and m.

Proof Assume that there exists an item i∗ ∈ V in conflict
with both k and m. In this case, we can pack in the knapsack
at most one item among k, m and i∗. This implies that the
inequality xk + xm + xi∗ ≤ 1 is satisfied by every solution of
the problem. Since this inequality dominates xk + xm ≤ 1,
the latter cannot define a facet.

Assume now that for all i ∈ V \ {k,m}, i is not in conflict
with at least one of the items k and m. Let Uk,m = {i ∈
V \ {k,m} : (i, k) /∈ E , and, (i,m) /∈ E} be the set of
items that are not in conflict neither with k nor with m. Let
Uk = {i ∈ V \ {k,m} : (i, k) /∈ E , and, (i,m) ∈ E} be the
set of items that are not in conflict with k but in conflict with
m, and Um = {i ∈ V \ {k,m} : (i,m) /∈ E , and, (i, k) ∈ E}
the set of items that are not in conflict with m but in conflict
with k.

Consider the solutions Sk = {k}, Sm = {m}, Si = {k, i}
for all i ∈ Uk ∪ Uk,m , S j = {m, j} for all j ∈ Um . Clearly,
these sets constitute a family of n solutions of the problem,
whose incidence vectors satisfy the equation xk + xm = 1.
Moreover, as illustrated in Fig. 1, these vectors are affinely
independent. ��

Along with the basic constraints of the formulation,
we have identified new families of valid inequalities for
DCKP(G). These will be presented in the next section.

3 Valid inequalities

As mentioned previously, the DCKP can be seen as a combi-
nation of two classical problems, namely the knapsack and
the independent set problems. Therefore, valid inequalities
for these problems have helped us to determine families of
valid inequalities for the DCKP.
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0

Fig. 1 Solutions incidence matrix

3.1 Clique inequalities

Given a graph G = (V, E), a clique of G is a subset of
vertices K ⊂ V such that every two distinct vertices are
adjacent.
A clique is said to be maximal if it is not strictly contained
in another clique.

If K is a clique ofG, then all the vertices of K are pairwise
in conflict. This implies that one can pack atmost one element
from K in the knapsack; therefore, the following inequality
is valid for DCKP(G).

∑

i∈K
xi ≤ 1. (6)

Theorem 5 Inequality (6) defines a facet of DCKP(G) if and
only if K is maximal.

Proof If K is notmaximal, then there is an element j ∈ V \K
such that K ′ = K ∪ { j} is a clique. Therefore, ∑i∈K ′ xi =∑

i∈K xi + x j ≤ 1 is valid for DCKP(G). Since this inequal-
ity dominates (6), the latter cannot define a facet.

Now suppose K is maximal. Then for every item j ∈
V \K , there is an item j ′ ∈ K such that ( j, j ′) /∈ E . Consider
the sets Si = {i} for all i ∈ K , and S j = { j, j ′} for all
j ∈ V \ K , where j ′ ∈ K is an item of K not adjacent
to j . It is clear that these sets are solutions of the DCKP.
Moreover, their incidence vectors satisfy (6) with equality
and are affinely independent. ��

3.2 Cover inequalities

A cover for theDCKP is a setC of items such that
∑

i∈C wi >

c. Clearly, a cover cannot be packed in the knapsack. Hence,
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the following inequalities are valid for the DCKP(G)

∑

i∈C
xi ≤ |C | − 1 for all C ∈ C (7)

where C is the set of the covers of the DCKP instance.
Inequalities (7) will be called cover inequalities.
A cover C is called minimal if

∑

i∈C\{ j}
wi ≤ c for all j ∈ C.

The following theorem characterizes the covers that may
induce facets for DCKP(G). For this, note that if a cover is
not minimal, then it contains a proper subset which is a cover.
Moreover, this set may consist of two elements i, j such that
(i, j) ∈ E , that is to say i and j are either in conflict or form
a cover.

Theorem 6 A cover inequality (7), induced by a cover C,
defines a facet for DCKP(G) if and only if

(1) C is minimal,
(2) for all j ∈ V \C, w j < w j∗ = max{w j : j ∈ C},
(3) every item j ∈ V \C is not in conflict with more than

one item of C, and if j is in conflict with item j ′ of C,
then (C\{ j ′}) ∪ { j} is not a cover.

Proof Necessity

(1) If C is not minimal, then a proper subset C̃ of C is a
cover. Hence,

∑

i∈C̃
xi ≤ |C̃| − 1 (8)

is valid for DCKP(G). By summing inequality (8)
together with xi ≤ 1 for all i ∈ C\C̃ , we obtain (7).
Since C\C̃ 
= ∅, inequality (7) is a linear combination
of valid inequalities and thus it cannot define a facet.

(2) If there exists an item j ∈ V \C such that w j ≥ w j∗ ,
then the inequality

∑

i∈C
xi + x j ≤ |C | − 1 (9)

is also valid for DCKP(G). In fact, item j cannot be
packed with |C |−1 items of C . However, inequality (7)
is redundant with respect to (9) and x j ≥ 0. It cannot,
therefore, define a facet.

(3) If an item j of V \C is in conflict with two items i1,
i2 of C, then any solution of DCKP containing j can-
not contain more than |C | − 2 elements from C. Hence,
its incidence vector cannot satisfy inequality (7) with

equality. This implies that inequality (7) is equivalent to
x j ≥ 0. Since (7) is not a positive multiple of x j ≥ 0, it
cannot be facet defining. Also, if an item j of V \C is in
conflict with an item j ′ and (C \ { j ′}) ∪ { j} is a cover,
then it follows, along the same way, that inequality (7)
is equivalent to x j ≥ 0 and cannot hence define a facet.

Sufficiency

Suppose that Conditions (1) − −(3) are all satisfied. Let
ax ≤ α denote inequality (7), and let us suppose there is a
facet defining inequality bx ≤ β of DCKP(G) such that {x ∈
DCKP(G) | ax = α} ⊆ {x ∈ DCKP(G) | bx = β}. We will
show that b = ρa.

By (1), it follows that any set Q ⊂ C such that |Q| =
|C |−1 is a solution of DCKP. Let i, j ∈ C , and consider the
solutions

S1 = C\{i}, S2 = C\{ j}.

As axS1 = axS2 = α, we have that bxS1 = bxS2 . This
yields bi = b j . As i and j are arbitrary in C, it follows that
all the bi ’s are the same in C, and thus

bi = ρ for all i ∈ C for some ρ ∈ R. (10)

Now let j ∈ V \C . By (2) we have that w j < w j∗ , and by
3) j is in conflict with at most one element of C . Suppose,
for instance, that j is in conflict with an element, say j ′,
of C. Consider the set S = (C\{ j ′}) ∪ { j}. By 3), S is a
solution of DCKP. Moreover, we have that axS = α, and
hence bxS = β. As S\{ j} = C\{ j ′} is also a solution of the
problem and axS\{ j} = α, we have bxS\{ j} = β. But this
implies that b j = bxS − bxS\{ j} = 0. If j is not in conflict
with any item of C , as by (2), w j < w j∗ , (C\{ j∗}) ∪ { j} is
a solution of DCKP. And, similarly, it follows that b j = 0.
Thus, we obtain that b j = 0 for all j ∈ V \C . This together
with (10) yields b = ρa, and the proof is complete. ��

Balas (1975), Hammer et al. (1975) and Wolsey (1975)
observed that when C is minimal the cover inequalities (7)
are the strongest. Balas (1975) proposes a way to strengthen
the cover inequalities. Let w∗ = max

j∈C w j , and consider the

extension E(C) = C ∪ { j ∈ V \ C : w j ≥ w∗}. Then, a
valid inequality for the DCKP(G) called the Extended Cover
Inequality (ECI) is given by

∑

j∈E(C)

x j ≤ |C | − 1. (11)

Balas (1975) and Wolsey (1975) also showed that, given
a minimal cover C, there exists at least one facet defining
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Lifted Cover Inequality having the following form:

∑

j∈C
x j +

∑

j∈V \C
α j x j ≤ |C | − 1, (12)

where α j ≥ 0 for all j ∈ V \ C .
Inequalities (12) can be obtained by a sequential lifting

from inequalities (11). This means that the lifting coef-
ficients α j , j ∈ V \C , are computed one by one in a
given order. Suppose that V \C = { j1, . . . , jt }, and that
α j1 , . . . , α jt−1 are computed, that is to say the inequality∑

j∈C x j + ∑t−1
i=1 α ji x ji ≤ |C | − 1 is valid for KP. In

order to determine coefficient α jt , one can compute α0 =
max{∑ j∈C x j + ∑t−1

i=1 α ji x ji : x solution of KP, x jt = 1},
and set α jt = |C |−1−α0. The coefficients α ji , i = 1, . . . , t
depend on the order in which they are computed.

As it appears, the computation of each coefficient α j

requires the resolution of a KP. Zemel (1989) showed that
given a fixed cover C and a fixed sequence of lifting, the
lifting coefficients can be computed in O(n|C |).

Gu et al. (1998) referred to inequalities (12) as Simple
Lifted Cover Inequality. This has been later generalized by
Van Roy and Wolsey (1987) who derived the General Lifted
Cover Inequality of the form

∑

j∈C\D
x j +

∑

j∈V \C
α j x j +

∑

j∈D
β j x j ≤ |C \ D|+

∑

j∈D
β j −1,

(13)

where C is a cover, D ⊂ C , α j ≥ 0 for all j ∈ V \C , and
β j ≥ 0 for all j ∈ D.

As for inequalities (12), inequalities (13) can be obtained
from (11) by a sequential lifting. For more details on lifting
techniques in combinatorial optimization, one can refer to
Wolsey and Nemhauser (1999).

We will follow Gu et al. (1998) in referring to the com-
putation of the lifting coefficients α and β as up-lifting and
down-lifting, respectively.

3.3 Odd-cycle and hypercycle inequalities

A cycle in a graph is a sequence v1, e1, v2, . . . , vk, ek, v1 of
nodes and edges such that ei = (vi , vi+1), i = 1, . . . , k − 1
and ek = (vk, v1). We will also denote a cycle C by its
sequence of nodes and write C = (v1, . . . , vk). A cycle of k
nodes is said of length k. A cycle is said to be even (odd) if
its length is even (odd). A chord of a cycle is an edge joining
two non-consecutive nodes of the cycle. A cycle is called
simple if its nodes v1, . . . , vk are all different.
Odd cycles induce valid inequalities for the independent set
problem and hence for the DCKP(G). Consider a cycle C of

G where nodes are 1, . . . , k with k odd. Then the inequalities

xi + xi+1 ≤ 1, for all i = 1, . . . , k,

where the indices are takenmodulo k, are valid forDCKP(G).
By summing these inequalities, dividing by 2 and rounding
down the right-hand side, we obtain the inequality

∑

i∈C
xi ≤ k − 1

2
, (14)

which is valid for DCKP(G). Inequalities of type (14) are
called Odd-Cycle Inequalities. Inequalities (14) may define
facets for DCKP(G). A necessary condition for inequal-
ity (14) to be facet defining is that the cycleC does not contain
a chord. If C contains a chord (i0, j0), i0 < j0, then one of
the cycles C1 = (1, . . . i0, j0, . . . , k) and C2 = (i0, . . . , j0),
say C1, is odd. It is not hard to see that (14) can be obtained
as a linear combination of the odd-cycle inequality induced
by C1 and the disjunctive inequalities xi0+l + xi0+l+1 ≤ 1,
l = 1, . . . , j0 − 2. Inequalities (14) can be strengthened by
the so-called lifted odd-cycle inequalities to be facet defin-
ing for the independent set polytope Nemhauser and Trotter
(1974) and the DCKP(G) as well.

In what follows, we are going to introduce a more general
class of valid inequalities for the DCKP(G). For this, let us
first give an example.
Consider the DCKP given by the system

(P1)

⎧
⎨

⎩

5x1 + 4x2 + 3x3 + 5x4 + 2x5 ≤ 11,
x1 + x4 ≤ 1,
x4 + x5 ≤ 1.

Observe that C1 = {1, 2, 3} and C2 = {2, 3, 4} are covers.
Thus, the following inequalities are valid for DCKP(G),

x1 + x2 + x3 ≤ 2,

x2 + x3 + x4 ≤ 2.

By summing these inequalities together with x1+x4 ≤ 1, we
obtain the inequality 2(x1 + x2 + x3 + x4) ≤ 5. By dividing
by 2 and rounding down the right-hand side, we obtain that

x1 + x2 + x3 + x4 ≤ 2 (15)

is valid for DCKP(G). Moreover, (15) defines a facet. In
fact, it is easy to see that the sets S1 = {1, 2}, S2 = {1, 3},
S3 = {2, 3}, S4 = {3, 4}, S5 = {3, 4, 5} are solutions of the
problem. Moreover, their incidence vectors satisfy (15) with
equality and are affinely independent.
In what follows, we are going to show this as a special
case of a more general class of facets. This will be pre-
sented within the framework of hypergraphs. Given a finite
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set V = {v1, . . . , vn}, a hypergraph H on V is a family
E = {E1, E2, . . . , Em} of subsets of V such that

Ei 
= ∅ for i = 1, . . . ,m,
m⋃

i=1

Ei = V .

The elements v1, . . . , vn of V are called nodes, and the
sets E1, . . . , Em are called hyperedges. A hypergraph H =
(V,E) is said to be simple if no hyperedge is strictly con-
tained in another hyperedge, that is to say Ei 
⊂ E j for
all Ei , E j ∈ E. A graph without loops is a hypergraph
where each hyperedge consists of exactly two nodes. Given
a hypergraph H = (V,E), a hypercycle is a sequence
(v1, E1, v2, . . . , vk, Ek, v1) with {vi , vi+1} ⊆ Ei , for i =
1, . . . , k, where the indices are modulo k. Note that the Ei ’s
may not be all different. Also note that the Ei ’s may contain
nodes different from v1, . . . , vk . A cycle in a graph corre-
sponds to the case where |Ei | = 2 for i = 1, . . . , k. Now
consider the DCKP along with the corresponding conflict
graphG = (V, E), and let us associatewith it the hypergraph
H = (V,E)where E is the set of minimal covers of the prob-
lem togetherwith the sets {i, j} such that (i, j) ∈ E , i.e., i and
j are in conflict. Also as a cover, which contains two items in
conflict may be considered as a non-minimal cover, we will
suppose w.l.o.g., that no hyperedge strictly contains an edge
of E . In other words, the hyperedges will correspond to the
covers C such that C\{i} is a solution of DCKP(G) for all
i ∈ C . The hypergraph H = (V,E), associatedwith problem
(P1) above, is depicted in Fig. 2. Here V = {1, 2, 3, 4, 5} and
E contains the hyperedges E1 = {1, 2, 3}, E2 = {2, 3, 4},
E3 = {1, 4}, and E4 = {4, 5}.

Now consider a hypercycle of H = (V,E) whose hyper-
edges are E1, . . . , Ek . Let W = ⋃k

i=1 Ei . Let W ′ ⊆ W be a
subset of W such that every node of W ′ appears in exactly q
hyperedges among E1, . . . , Ek . For every j ∈ W\W ′ let ρ j

be the number of hyperedges, among E1, . . . , Ek , to which
j belongs.

1 3

E1

2

4 5

E3 E2

E4

Fig. 2 The hypergraph associated with (P1)

Suppose that ρ j < q for all j ∈ W\W ′ and
k∑

i=1
(|Ei | − 1) +

∑
j∈W\W ′

(q − ρ j ) is not a multiple of q. Now consider the

following valid cover inequalities

∑

j∈Ei

x j ≤ |Ei | − 1 for all i = 1, . . . , k,

(q − ρ j )x j ≤ q − ρ j for all j ∈ W\W ′.

By summing these inequalities, we obtain the inequality

q

(
∑

i∈W
xi

)
≤

k∑

i=1

(|Ei | − 1) +
∑

j∈W\W ′
(q − ρ j ).

As the right-hand side of the above inequality is not amultiple
of q, by dividing by q and rounding down the right-hand
side of the resulting inequality, we obtain the following valid
inequality

∑

i∈W
xi ≤

⎢⎢⎢⎢⎢⎢⎢⎣

k∑
i=1

|Ei | + ∑
j∈W\W ′

(q − ρ j ) − k

q

⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Since each node ofW ′ is in q Ei ’s and each node j ofW\W ′
is in ρ j Ei ’s, we have that

∑k
i=1 |Ei |+∑

j∈W\W ′(q−ρ j ) =
q|W |.
Hence, inequality (16) can be written as

∑

i∈W
xi ≤ |W | −

⌈
k

q

⌉
. (17)

Inequalities of type (17) will be called Hypercycle Inequali-
ties.

Remark 1 Any solution T of DCKP whose incidence vector

satisfies (17) with equality is such that |W\T | =
⌈
k

q

⌉
and

W\T coversE = {E1, . . . , Ek}. Otherwise, one of the covers
would be included in W ∩ T , which is not possible.

In order to illustrate the hypercycle inequalities, consider
the problem (P1) given above. Consider the hypercy-
cle (1, E1, 3, E2, 4, E3, 1) whose hyperedges are E1 =
{1, 2, 3}, E2 = {2, 3, 4}, E3 = {1, 4}. Observe that every
node i of E1 ∪ E2 ∪ E3 belongs to exactly two sets among
E1, E2, E3. So here W = {1, 2, 3, 4}, k = 3, q = 2 and
W ′ = W . The corresponding hypercycle inequality (16) is
nothing but inequality (15).
Now suppose that in (P1), items 2 and 4 are also in conflict.
Thus, E2 = {2, 3, 4} is no more hyperedge of the associated
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hypergraph and must then be replaced by E ′
2 = {2, 4}. Con-

sider the hypercycle whose hyperedges are E1, E ′
2, E3. Here

we have W = {1, 2, 3, 4}, k = 3, q = 2, W ′ = {1, 2, 4},
ρ = 1. We still obtain inequality (15).

Observe that inequality (15) is an extended cover inequal-
ity obtained from cover {1, 2, 3}. However, the hypercycle
inequalities may be different from the extended and lifted
cover inequalities as shown in the following example. Con-
sider the problem

(P2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + 4x2 + 3x3 + x4 + x5 + x6 + x7 ≤ 7,
x4 + x5 ≤ 1,
x4 + x6 ≤ 1,
x1 + x5 ≤ 1,
x1 + x6 ≤ 1.

Clearly, the sets E1 = {1, 2, 3}, E2 = {2, 3, 4}, E3 =
{2, 3, 5} are minimal covers for (P2). Consider the hypercy-
cle in the related hypergraph, induced by the hyperedges E1,
E2, E3 together with E4 = {1, 6}, E5 = {1, 5}, E6 = {4, 5},
E7 = {4, 6}. Here we have W = {1, 2, 3, 4, 5, 6}, k = 7,
q = 3, W ′ = {1, 2, 3, 6}, ρ4 = 1, ρ6 = 2. The correspond-
ing hypercycle inequality is given by

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3.

This is different from an extended and a lifted cover inequal-
ity. Moreover, this inequality is facet defining for the associ-
ated DCKP(G).

As a further example, consider the DCKP whose con-
straints are

x1 + 2x2 + 3x3 + x4 ≤ 5,

x1 + x4 ≤ 1.

By considering the hypercycle induced by the hyperedges
{1, 2, 3}, {2, 3, 4} and {1, 4} of the related hypergraph, we
obtain the inequality

x1 + x2 + x3 + x4 ≤ 2.

which is valid and facet defining for the associated polytope.
Let us remark that odd-cycle inequalities (14), obtained from
the conflict graph G, are nothing but the hypercycle inequal-
ities when the hyperedges are all edges of G.

We have the following result which gives necessary and
sufficient conditions for a hypercycle inequality to be facet
defining.

Theorem 7 A hypercycle inequality (17) defines a facet of
DCKP(G) if and only if the following hold.

(1) For every node j ∈ V \W, there is a set S ⊂ W of

⌈
k

q

⌉

items which covers the hyperedges E1, …, Ek and such
that (W\S) ∪ { j} is not a cover.

(2) There are |W | sets S1, …, S|W | ⊂ W which cover E1,

…, Ek such that |Si | =
⌈
k

q

⌉
, and Ti = W\Si is not a

cover for i = 1, . . . , |W | and xS1 , …, x S|W | are affinely
independent. (Note that two items i, j such that (i, j) ∈ E
are considered as a cover and any set containing a cover
is a cover).

(3) k is not a multiple of q.

Proof Necessity

(1) Suppose that for some j ∈ V \W , any set S ⊂ W of

⌈
k

q

⌉

items that covers E1, . . . , Ek is such that (W\S) ∪ { j}
is a cover. By Remark 1, it then follows that j cannot
belong to any solution of the problem whose incidence
vector satisfies (17) with equality. This implies that (17)
is equivalent to the inequality x j ≥ 0. Since (17) is not a
positive multiple of x j ≥ 0 and DCKP(G) is full dimen-
sional, this implies that (17) does not define a facet.

(2) First of all, observe that the incidence vectors of subsets

S1, …, Sl of W with |Si | =
⌈
k

q

⌉
for i = 1, . . . , l are

affinely independent if andonly if the incidencevectors of
the sets T1,…, Tl where Ti = W\Si , for i = 1, . . . , l, are
affinely independent. Suppose that the statement does not
hold. By Remark 1 and the observation above, it follows
that there do not exist sufficiently many (|V |) solutions
of the problem whose incidence vectors satisfy (17) with
equality and are affinely independent. Hence, (17) cannot
define a facet.

(3) If k is a multiple of q, then clearly, (17) can be obtained
as a linear combination of valid inequalities of DCKP(G)
and cannot, thus, be facet defining.

Sufficiency:

Suppose that 1)-3) hold. Let us denote (17) by ax ≤ α and
let bx ≤ β be a facet defining inequality of DCKP(G) such
that {x ∈DCKP(G) | ax = α} ⊆ {x ∈DCKP(G) | bx = β}.
We will show that b = ρa for some ρ ∈ R.

By (2), it follows that the sets Ti = W\Si , i = 1, . . . , |W |,
are solutions of the DCKP. Moreover, as x S1 , …, x S|W | are
affinely independent, it follows that xT1 , …, xT|W | so are. Let
A be the square matrix whose columns are xT1 , …, xT|W | .
As these vectors are affinely independent and are so linearly
independent since they do not contain the zero vector, we
have that A is non-singular. Moreover, as |Ti | = |W | − � K

q �
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for all i = 1, . . . , |W | it follows that system

λA = (β, . . . , β)

has a unique solution given by λi = β

|W |−
⌈
k

q

⌉ , for all

i = 1, . . . , |W |.
As T1, . . . , T|W | are such that axTi = α for i =

1, . . . , |W |, and thus bxTi = β for i = 1, . . . , |W |, it fol-
lows that bi = β

|W |−
⌈
k

q

⌉ = ρ for i = 1, . . . , |W |. Now let j

be an element of V \W . By 1) there is S ⊂ W with S =
⌈
k

q

⌉

which covers E1, . . . , Ek and such that T = (W\S) ∪ { j} is
not a cover. Thus, T \{ j} and T are both solutions of DCKP.
As axT \{ j} = axT = α, and hence bxT \{ j} = bxT = β, it
follows that b j = 0. Altogether we have that

bi = ρ for all i ∈ W,

bi = 0 for all i ∈ V \W.

Thus, b = ρa, and the proof is complete. ��
In what follows, we characterize a special case in which

inequality (17) may define a facet.

Theorem 8 Consider a hypercycle (v1, E1, v2, . . . , vk,

Ek, v1) in H and suppose that E1, . . . , Ek are distinct
sets, and v1, . . . , vk are distinct nodes. Then inequality (17)
defines a facet of DCKP(G) if the following hold.

(1) Each node belongs to atmost two sets among E1, . . . , Ek

(that is to say q = 2).
(2) k is odd.
(3) For any set S = {v, vi+2, . . . , vi+2l} where v ∈ Ei and

l is such that k = 2l + 1, the set W\S does not contain
a cover. Here the indices are taken modulo k.

(4) For every j ∈ V \W, there is a set S among those intro-
duced in (3) such that (W\S) ∪ { j} is not a cover.

Proof First remark that from1), it follows that any set S ⊂ W
of the form {v, vi+2, . . . , vi+2l}, where v ∈ Ei , covers all the
hyperedges E1, . . . , Ek . Moreover by 3), the complementary
set W\S in W induces a solution of DCKP.

Now as before, let us denote (17) by ax ≤ α and let
bx ≤ β be facet defining inequality such that {x ∈DCKP(G)
| ax = α} ⊆ {x ∈ DCKP(G) | bx = β}. We will show that
b = ρa for some ρ ∈ R.

Consider the sets

W1 = W\S1 with S1 = {v1, v3, . . . , vk},
W2 = W1\S2 with S2 = {v2, v3, . . . , vk}.

It is not hard to see that W1 and W2 are solutions of DCKP
such that axW1 = axW2 = α. Thus, bxW1 = bxW2 = β,
implying that bv1 = bv2 . As nodes v1, . . . , vk play similar
roles, by symmetry, it follows that

bvi = bv j = ρ for all i, j ∈ {1, . . . , k}. (18)

Now let v be a node of E1 different from v1. We have that
W3 = (W1\{v}) ∪ {v1} is also a solution of DCKP with
axW3 = α. Hence, bxW3 = β. As bxW1 = β, this yields
bv = bv1 . Since v is arbitrary in E1, it follows that bv = ρ

for all v ∈ E1. And by (18), we obtain that bv = ρ for all
v ∈ W .

To complete the proof, using 4), we can show in a similar
way as in Theorem 6. that b j = 0 for all j ∈ V \W . Hence,
b = ρa. ��

Note that the solutions to the DCKP induce an indepen-
dence systemwhose circuits are precisely theminimal covers
(see Schrijver 2002 for basic notions on the independence
systems). Euler et al. (1987) introduce a generalization of
the odd-cycle inequalities to independence systems. These
more general inequalities have a structure different from that
of (17), and, in some cases, can be seen as a special case
of (17).

Inwhat follows, we present new families of valid inequali-
ties that combine the knapsack and independent set problems
structures.

3.4 Clique-cover inequalities

Proposition 1 Let C be a cover of V and K ⊂ V a clique.
Let C∗ ⊂ C such that |C∗| = |K |, and suppose that for all
i ∈ C∗, there exists a unique item j ∈ K that is in conflict
with i . Then the following inequality

∑

i∈K
xi +

∑

j∈C∗
x j ≤

⌊ |C | + |K |
2

⌋
, (19)

is valid for the DCKP(G).

Proof The inequality is obtained by a Chvátal-Gomory pro-
cedure. We have

x(K ) ≤ 1,

xi + x j ≤ 1, for all i ∈ C∗, j ∈ K

x(C) ≤ |C | − 1,

−xl ≤ 0, for all l ∈ C \ C∗

Inequalities (19) are obtained by adding the previous inequal-
ities, dividing by 2, and then rounding down the right-hand
side. ��
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3.5 Clique-cover partition inequalities

Proposition 2 Consider a clique K ⊂ V and let K1,

K2, . . . , Kr (r is even) be a partition of K , i.e., ∪i Ki = K,
and Ki ∩ K j = ∅ for all i 
= j . Consider a subset of items
T ∈ V such that for all i = 1, 2, . . . , r , T ∪ Ki is a cover.
Then the inequality

x(K ) + r

2
x(T ) ≤

⌊r |T | + |K | − r + 1

2

⌋
, (20)

is valid for the DCKP(G).

Proof The inequality is obtained by a Chvátal-Gomory pro-
cedure. We have

x(K ) ≤ 1,

x(T ) + x(Ki ) ≤ |T | + |Ki | − 1, for all i = 1, 2, . . . , r.

Inequalities (20) are obtained by adding the previous inequal-
ities, dividing by 2, and then rounding down the right-hand
side. ��

In the following section, we devise a Branch-and-Cut for
the DCKP based on the polyhedral results given before.

4 Branch-and-cut algorithm

The Branch-and-Cut algorithm alternates a cutting plane
phase and a branching phase. During the cutting plane
phase, we add, if there exist, violated inequalities. This
is known as the separation process. In our Branch-and-
Cut algorithm, we devise separation routines for the valid
inequalities (6), (11), (12), and (14). Depending on the class
of valid inequalities, we devise heuristic or exact procedures
of separation.

Moreover, taking advantage of the close relationship with
the classical KP, we develop a greedy heuristic allowing us
to have an initial feasible solution for the DCKP.

4.1 Initial solution and preprocessing

In order to have an initial lower bound, we generate a feasible
solution for the DCKP using the greedy heuristic given in
Algorithm 1. The idea of this heuristic is the following. We
first start by sorting items j ∈ {1, . . . , n} in a decreasing
order of

p j
w j+|V j | , where V j represents the set of items that

are in conflict with item j . Note that the fraction used for
sorting the items refers to the classical

p j
w j

of the KP, but
also includes the item’s degree in the conflict graph. That is
to say, it is more interesting to begin with items having the
less conflicts in order to pack more items in the knapsack
during the subsequent iterations. Once the items are sorted,

we put the first in the knapsack and automatically delete all
its neighbors in the conflict graph. This process continues
while the knapsack capacity is not violated.

Algorithm 1: Initial solution using greedy heuristic
Data: (G, p, w)

Result: An initial solution for the DCKP
1 Let x be a vector;
2 for j ∈ V do
3 x j = −1;

4 Set Δ = c, F = V ;
/* Δ denotes the current knapsack capacity

*/
/* F is the set of nodes that can be added

to the current solution */
5 while F 
= ∅ do
6 let i = argmax{ p j

w j+|V j | : j ∈ F};
7 if wi ≤ Δ then
8 xi = 1, Δ = Δ − wi , F = F \ Vi ;
9 for j ∈ Vi do

10 x j = 0;

11 else
12 xi = 0, F = F \ {i};
13 return solution x ;

4.2 Separation routines

Let x̄ ∈ R
n be the current fractional solution to be cut, that is

the optimal solution of the linear relaxation of the ILP given
by (1)–(5). Separating a valid inequality consists in finding
one or more inequalities that are violated by x̄ , or show that
such inequality does not exist.

In what follows, we describe separation routines for the
valid inequalities (6), (11), (12), and (14).

4.2.1 Clique inequalities separation

Clique inequalities (6) represent an interesting family of valid
inequalities that are easily generated. For this reason, we
choose to generate a set of valid clique inequalities within
the first linear relaxation of the Branch-and-Cut tree’s root
node. We hence solve the linear relaxation of the ILP given
by (21).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
∑

i∈V pi xi∑
i∈Vwi xi ≤ c∑
j∈K x j ≤ 1 for all K ∈ K,

xi + x j ≤ 1 for all (i, j)∈E : {i, j} � K , for all K ∈K,

xi ∈ {0, 1} for all i ∈ V,

(21)

where K is a family of cliques.
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Since identifying the whole set of cliques is NP-hard, we
choose to generate a set of cliquesK using a heuristicmethod.
To this end, we used the greedy Algorithm 2.

Let K = ∅ be the set of cliques that we are looking for,
and consider K = ∅ that initially denotes an empty clique.
For each item, say i , in V , we iterate the following. We first
put i in K . Then, we add to K an item j in conflict with i
such that |V j | is maximum. After that, among all the other
nodes, we add the one that is universal to items in K (i.e., that
is to say adjacent to all the items of K ), and with a maximum
degree in G. The process is repeated until no more universal
node can be added. At the end, if |K | > 2, we obtain a clique
K that we add to the family of cliques K.

Algorithm 2: Clique generation heuristic
Data: (G, p, w)

Result: A set of cliques
1 Let K = ∅ denote the set of cliques;
2 for i = 1 to n do
3 Let K = {i};
4 Set F = V \ i ;
5 while F 
= ∅ do
6 let j = argmax{|Vl | : l ∈ F};
7 if ( j, l) ∈ E for all l ∈ K then
8 K = K

⋃{ j};
9 F = F \ { j};

10 if |K | > 2 and K /∈ K then
11 K = K⋃{K };
12 return the set of cliques K ;

Concerning now the separation phase, we decided to
apply, with slight modifications, a simple greedy heuristic
presented byNemhauser and Sigismondi (1992) for the inde-
pendent set problem. The idea of the heuristic is detailed in
Algorithm 3 and can be described as follows. We choose
a vertex, say j , of maximum weight regarding x̄ , and set
K = { j}. Then we iterate the following process. Determine,
if it exists, a maximum-weight vertex according to x̄ , say t ,
from all the vertices that are universal to K (i.e., t is adjacent
to every vertex in K ). Add t to K and repeat the procedure
until no more universal vertex can be found. If |K | > 2 and
x̄(K ) > 1, then the K -Clique inequality is violated. The
whole process is then iterated for another initial vertex j
until either we find a violated inequality or a maximum num-
ber of iterations is reached. In our algorithm, we generate, if
possible, only one violated clique inequality per iteration.

4.2.2 Odd-cycle inequalities separation

The separation problemof the odd-cycle inequalities (14) can
be solved exactly in polynomial time as it has been shown by
Grötschel et al. (2012). The separation procedure is described

Algorithm 3: Separation of the Clique inequalities
Data: Fractional Solution x̄
Result: A violated clique inequality

1 Sort items in V such that x̄ j ≥ x̄ j+1 for all j ∈ V ;
2 Let i = 1 ; stop = f alse ;
3 while i < n and stop=false do
4 Let K = {i};
5 Set F = V \ {i};
6 while F 
= ∅ do
7 let j = argmax{x̄l : l ∈ F};
8 if ( j, l) ∈ E for all l ∈ K then
9 K = K

⋃{ j};
10 F = F \ { j};
11 if |K | > 2 and

∑
j∈K x̄ j > 1 then

12 stop = true;

13 return the violated Clique inequality K ;

in Mahjoub (2010). Consider the current fractional solution
x̄ . Consider e = (i, j) ∈ E and let ze = 1 − x̄i − x̄ j . It is
clear that, since x̄ satisfies (3) and (4), ze ≥ 0 for all e ∈ E .
Using this, inequalities (14) can be written as

∑

e∈C
ze ≥ 1 for all C odd cycle of G. (22)

As a consequence, separating inequalities (14) with respect
to x̄ reduces to separating inequalities (22) with respect to z,
and this can be ensured as follows. Consider graph G and let
ze be the weight of edge e for all e ∈ E . In order to separate
inequalities (22), one has to look for aminimum-weight cycle
in a graph with nonnegative weights. This problem can be
solved in polynomial time. To this end, consider the bipartite
graph G̃ = (V ′ ∪ V ′′, Ẽ) obtained from G in the following
way : for each vertex v ∈ V , consider two vertices v′ ∈ V ′
and v′′ ∈ V ′′, and for each edge (u, v) consider two edges
(u′, v′′) ∈ Ẽ and (u′′, v′) ∈ Ẽ with the same weight z̃u′v′′ =
z̃u′′v′ = zuv . Obviously, looking for a minimum-weight odd
cycle in G with respect to z going through a vertex v is
nothing but determining a minimum-weight path in G̃ with
respect to z̃ between v′and v′′. Since z̃ ≥ 0, this can be done
in polynomial time, using for instance Dijkstra’s algorithm.
At the end of this step, we have (if it exists) a minimum-
weight cycle in G, say C . If

∑
e∈C ze < 1, then a violated

odd-cycle inequality is detected.

4.2.3 Hypercycle inequalities separation

In what follows, we will describe a heuristic for separat-
ing the hypercycle inequalities. First, note that a hypercycle
inequality (17) can also be written as

∑

i∈W
(1 − xi ) ≥

⌈
k

q

⌉
.
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The heuristic works as follows. First, we generate a
set of minimal covers {E1, . . . , Er } where |Ei | ≥ 3, for
i = 1, . . . , r . Let E′ = {E1, . . . , Er , Er+1, . . . , Es}, where
Er+1, . . . , Es are all the edges of the conflict graph G. Let
U = ⋃s

i=1 Ei .
Then we construct a bipartite graph Γ = (U ∪E′, F) whose
nodes on the left are the nodes in U , and the nodes on the
right correspond to the elements of E′. The set F of edges in
Γ is defined as follows. We consider an edge between a node
u of U and a set Ei of E′ if u ∈ Ei . We associate with each
Ei the weight

∑
j∈Ei

(1 − x̄ j ). We associate to the nodes of
U the weight zero. Each path in Γ between a node u and a
set Ek , such that u ∈ Ek , is a hypercycle in the hypergraph
H = (V,E). Remark that since Γ is bipartite each path
alternates between the nodes of U and the sets of E′. The
heuristic will compute a minimum weight path between u
and Eh for all Eh , h = 1, . . . , s and u ∈ Eh . Each computed
path induces a hypercycle inequality for which we determine

the corresponding q. If theweight of this path is<

⌈
k

q

⌉
, then

the corresponding hypercycle inequality is violated by x̄ .
In our Branch-and-Cut algorithm, such inequalities were

not quite efficient in the resolution. In fact, separating the
hypercycle inequalities generally takes huge time, and in the
majority of the cases we did not succeed to find a violated
inequality. For this reason, we decided to not include them
in the separation process.

4.2.4 Cover inequalities separation

We now turn our attention to the cover inequalities. The
separation algorithm of the cover inequalities (7) is an NP-
hard problem Klabjan et al. (1998), and it seems to be
the same for the extended cover inequalities (11). Crowder
et al. (1983) show that the separation problem associated
with cover inequalities is equivalent to the following 0–1
knapsack-like problem:

⎧
⎨

⎩

min
∑

j∈V (1 − x̄ j )y j∑
j∈V w j y j > c
y j ∈ {0, 1} ∀ j ∈ V,

(23)

where y j is a binary variable taking 1 if j is to be inserted
into the coverC , and 0 otherwise. A cover inequality is hence
violated when the optimal solution of (23), say y∗, has an
objective value less than 1. In this case, the cover C = { j ∈
V : y∗

j = 1} yields a violated cover inequality.
In order to speed up the separation, Crowder et al. (1983)

proposed a heuristic method that runs in O(n log(n)). This
consists in inserting items into C in a non-decreasing order
regarding

1−x̄ j
w j

until a cover is obtained.
Now, concerning the extended cover inequalities (ECI)

(11), Gabrel and Minoux (2002) proposed an exact separa-

tion which reduces to the resolution of a sequence of 0–1
knapsack-like problems. In our algorithm, we choose to sep-
arate these inequalities using a heuristic algorithm inspired
from the ones proposed by Kaparis and Letchford (2010b).
This heuristic is described in Algorithm 4. We first begin by
sorting items in a non-decreasing order of

1−x̄ j
w j

and store

them in a list L . We also initialize the cover C∗ to the empty
set andw∗ to the capacity of the knapsack c. We then remove
an item from the head of the sorted list L . If itsweight is larger
than w∗, then we ignore it; otherwise, we insert it in C∗. If
C∗ is a minimal cover, then we try to extend it to obtain a
violated extended cover inequality. If the obtained extended
cover inequality is not violated, we delete the heaviest items
from C∗, form a new extended cover inequality induced by
C∗, and check again whether this inequality is violated or
not. The whole process is then iterated until either a violated
ECI is found or the list L is totally explored.

Algorithm 4: Separation of the Extended Cover
Data: Fractional Solution x̄
Result: Violated Extended Cover inequality

1 Sort items j ∈ V such that
1−x̄ j
w j

≤ 1−x̄ j+1
w j+1

;

2 Let L = V with order;
3 Let C∗ = ∅ and w∗ = c;
4 Set stop = f alse;
5 while L 
= ∅ and stop=false do
6 Let i = L[0];
7 L = L \ {i};
8 if wi < w∗ then
9 C∗ = C∗ ⋃{i};

10 if C∗ is cover then
11 if the ECI corresponding to C∗ is violated then
12 stop = true;

13 else
14 Set w∗ = max

j∈C∗ w j ;

15 C∗ = C∗ \ { j ∈ C∗ : w j =?w∗} ;

16 return the violated Extended Cover inequality EC I ;

Along with the extended cover inequalities, we also sep-
arate the Simple Lifted Cover inequalities (12). To this end,
we devise the routine described in Algorithm 5.

We first begin by forming a cover C , then making the
cover C minimal. We consider then two subsets of C , i.e., F
and R, corresponding to the subsets of elements of C hav-
ing x̄ j > 0 and x̄ j = 0, respectively. Steps 9 and 11 of the
Algorithm 6 refer to the up-lifting phase for the two subsets
F and R. This corresponds to calculating the α coefficients
for inequalities (12) given in Algorithm 6. Note that in Algo-
rithm 6, one has to solve a knapsack problem. In our case, we
use a greedy heuristic to this end. We first begin by sorting
items in a non-increasing order of zi

wi
, where zi = 1 if item

i ∈ C , and zi = αi otherwise. We then pack the sorted items
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in the knapsack while the corresponding capacity constraint
is not violated.

For a deep description of the covers inequalities separa-
tions, the reader is referred to Kaparis and Letchford (2008,
2010a, b).

Algorithm 5:Separation of the LiftedCover inequalities
Data: A fractional solution x̄
Result: A violated Lifted Cover inequality

1 Sort items j ∈ V such that
1−x̄ j
w j

≤ 1−x̄ j+1
w j+1

;

2 Let C = ∅, j = 1 and Δ = c;
3 while j < n and Δ > 0 do
4 C = C

⋃{ j};
5 Δ = Δ − w j ;
6 j = j + 1;

7 Make the cover minimal: delete elements from C ;
8 Let F = { j ∈ C : x̄ j > 0};
9 Let R = { j ∈ C : x̄ j = 0};

10 Up-lifting in F ;
11 If the resulting inequality is not violated, stop;
12 Up-lifting in R;
13 return The violated Lifted Cover inequality;

Algorithm 6: The Up-lifting procedure
Data: A cover inequality
Result: The lifting coefficients α j , j ∈ V \ C

1 Let j1, . . . , jr be an ordering of V \ C ;
2 Set t = 1;

3 Consider the valid inequality
t−1∑
i=1

α ji x ji + ∑
j∈C x j ≤ |C | − 1;

/* Solve the following knapsack problem */

4 ζt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
t−1∑
i=1

α ji x ji + ∑
j∈C x j ,

s.t.
t−1∑
i=1

w ji x ji + ∑
j∈C w j x j ≤ c − w jt ,

x ∈ {0, 1}|C |+t−1.

5 Set α jt = |C | − 1 − ζt ;
6 Stop if t = r ;
7 return The lifting coefficients α j , j ∈ V \ C ;

Using the previous polyhedral analysis and the devised
separation algorithms, we propose a Branch-and-Cut algo-
rithm to solve the DCKP. An experimental study is held on a
set of problem instances. This will be presented in the next
section.

5 Computational results

The Branch-and-Cut algorithm is implemented in C++ and
tested on Bi-Xeon quad-core E5507 2.27GHz with 8Go of
RAM, running under Linux. We use CPLEX 12.5 as a linear
solver.

Problem instances are generated using David Pisinger’s
instance generator (used in Pisinger (1999) and Martello
et al. (1997), see http://www.diku.dk/~pisinger/codes.html)
and following the generated instances by Hifi and Michrafy
(2007) and Yamada et al. (2002). We tested two kind
of instances: uncorrelated and strongly correlated. For the
uncorrelated instances, items’ weights and profits are ran-
domly generated from 1 to 100. Concerning the strongly
correlated ones, items’ weights are randomly generated from
1 to 100, and each profit pi = wi + 10 for i = 1, . . . , n. We
tested three groups of instances containing 100–1000 items.

The knapsack capacity for each group of instances is cal-
culated using the formula proposed by David Pisinger:

c = l × ∑
j∈V w j

S + 1
,

where l and S are fixed parameters. We set S to 1000,
and l to 5 and 10, respectively. Concerning the disjunctive
aspect, conflicts between items are randomly generated and
the density η of the conflict graph G takes, as in Hifi and
Michrafy (2007) andYamada et al. (2002), the following val-
ues η = 0.005, 0.007, 0.009, 0.010, and 0.020. Moreover,
we set a time limit to 10,800 s.

In order to evaluate the performance of our Branch-and-
Cut algorithm, we compare our results to the results given by
running Cplex on the original formulation for the DCKP, i.e.,
ILP (1)–(5), without taking into account the valid inequali-
ties. Note that we also disable the valid inequalities generated
by default by Cplex, in order to be able to compare it with
the Branch-and-Cut. Recall that in our Branch-and-Cut algo-
rithm we separated the valid inequalities (6), (14), (11)
and (12). After testing different order of separation, we
chose to separate the valid inequalities in the following order,
which proved to be the most effective. We first separate the
cliques (6), then the simple lifted cover inequalities (12),
then the extended cover inequalities (11), and finally the odd
cycles (14).

The results are reported in Tables 1, 2, 3 and 4. The
three first columns of each table represent the instance main
characteristics. Then the 8 following columns report results
corresponding to the Branch-and-Cut algorithm. Finally, the
remaining 4 columns give the results obtained by running
Cplex.
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Entries of the tables are the following
n : Number of items
m : Number of edges in G (disjunction constraints)
η : Conflict graph density
Nodes : Number of nodes in the Branch-and-Cut tree
Gap-final : Relative error between the best lower bound and

the best upper bound
Gap-root : Relative error between the best lower bound and

the upper bound at the root
ECI : Number of generated Extended Cover

Inequalities
LCI : Number of generated Lifted Cover Inequalities
Cliques : Number of generated cliques inequalities
OddCycles : Number of generated odd-cycle inequalities
CPU : Total time of execution (in seconds)

The value of Gap-final is used to analyze the efficiency
of the algorithm. When it is equal to 0, this means that
the instance is solved to optimality. The value of Gap-root
points the quality of the linear relaxation at the root node
of the Branch-and-Cut tree before branching compared to
the best lower bound obtained at the end. Note also that the
number of disjunctive constraints, i.e. m, is linked to the con-
flict graph’s order and density through the following formula
m = η

n(n−1)
2 .

In total, we tested the Branch-and-Cut algorithm and
Cplex over 170 instances. These can be classified to easy,
medium, and hard instances. The difficulty of an instance
highly depends on the number of items n, the number of
disjunctive constraints m, and parameter l which is directly
impacting the value of the knapsack capacity (c.f., the capac-
ity formula given above). The higher the values of n and m
are, the harder the instance is. We also note that instances
with capacities calculated with l = 10 are a bit harder than
those with l = 5.

For the group of easy instances, our algorithm was able
to solve to optimality the instances within a small amount
of time. In fact, for 61 instances we reached optimality with
less than 300 s. Medium instances took much more time to
be solved to optimality (8 instances), and hard ones reached
the time limit without having an optimal solution. Within the
group of hard instances, we find some “soft” instances for
which we obtained a final gap less than or equal to 10% (23
instances). Strongly hard ones reached, however, important
and sometimes huge values of final gaps, showing hence the
hardness of the tested instances.

Based on the results of the four tables, we can conclude
that ourBranch-and-Cut algorithmoutperformsCplex results
for almost all the instances. In fact, applying the Branch-and-
Cut algorithm, we have been able to reduce the gap values for
all the instances. Our gaps at the root are always better than
those of Cplex, which proves the efficiency of the generated
valid inequalities to have a tightened linear relaxation. These
valid inequalities were in fact extremely crucial in improving

the resolution of hard instances. In fact, for instances with
more than 600 items, ourBranch-and-Cut algorithmprovides
acceptable values of gaps for which Cplex reached very huge
values. Our algorithm was also able to solve to optimality
instances that Cplex could not solve within the time limit.
Consider Table 1 and take for instance the instance with n =
500, and η = 0.1 that Cplex could not solve and got a final
gap equal to 6.84%. The same instance has been solved to
optimality by the Branch-and-Cut algorithm in around 4080
s. The same case happened for the instance with n = 300
and η = 0.2 and the instance with n = 400 and η = 0.07 in
Table 2. We also notice that compared to Cplex results, the
use of the Branch-and-Cut algorithm implies a reduction of
the CPU time as well as the tree size (given by the number
of nodes).

Through the experimental results, we also note that our
Branch-and-Cut algorithm was performant, being able to
guarantee optimality for 69 instances over 170 in general
hard instances. Nine instances have been solved to optimal-
ity at the root node of the Branch-and-Cut tree (5 for Cplex),
and for 68 instances we have a very interesting gap at the root
not exceeding 10% (47 instances solved by Cplex have a root
gap less than 10%). This proves that we succeed in tightening
the DCKP linear relaxation using our valid inequalities.

As it has been mentioned above, we separate 4 families
of valid inequalities, i.e., the cliques, the odd cycles, the
extended and the lifted covers. Based on experimentations,
we can see that the number of generated inequalities of each
family depends on the group of instance. For almost all the
instances, we notice that the number of generated odd-cycle
inequalities is themost important, reachingmore than 10,000
for somehard instances. For the other families of inequalities,
we generate a reasonable number. Moreover, as said before,
the number of generated inequalities of each family of valid
inequality directly depends on the instance. For example,
when the instances are of small size (i.e., regarding n andm),
we generate very small number of cliques and odd cycles.
This is obvious because for such instances the graph of con-
flict is sparse. As much as the instance becomes bigger, we
generate more andmore cliques and odd cycles since the cor-
responding conflict graph becomes denser. Obviously, there
is a very close relationship between the different families of
valid inequalities, namely the cliques and odd cycles, and the
properties related to the conflict graph (perfect, tree, claw-
free,...). In fact, the conflict graph structure plays a prominent
role in determining which families are more likely to appear
and be effective in strengthening the linear relaxation of the
problem. Recall that, in our case, conflicts between items
are randomly generated, which means the structure of the
conflict graph is not particular, and that the number of gen-
erated cliques and odd cycles depends only on the density of
the conflict graph. For the two families of cover inequalities,
i.e., the extended and the lifted ones, we remark that the gen-
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Table 1 Uncorrelated instances with l = 5

Instance Branch-and-Cut Cplex

n m η Nodes Gap-final Gap-root ECI LCI Cliques OddCycles CPU Nodes Gap-final Gap-root CPU

100 247 0.05 1 0.00 0.00 0 0 0 0 0.01 1 0.00 0.44 0.00

100 346 0.07 1 0.00 0.00 0 0 0 0 0.01 1 0.00 0.15 0.00

100 445 0.09 3 0.00 0.38 2 0 0 0 0.02 15 0.00 0.38 0.01

100 495 0.1 1 0.00 0.00 0 0 0 0 0.01 4 0.00 0.01 0.01

100 990 0.2 7 0.00 3.18 6 2 1 1 0.06 16 0.00 17.72 0.04

200 995 0.05 10 0.00 0.28 8 6 0 0 0.09 49 0.00 0.12 0.03

200 1393 0.07 17 0.00 0.38 3 1 0 0 0.14 58 0.00 0.43 0.11

200 1791 0.09 14 0.00 0.63 20 9 0 0 0.17 141 0.00 0.53 0.12

200 1990 0.1 36 0.00 2.13 39 24 0 0 0.45 283 0.00 2.59 0.94

200 3980 0.2 110 0.00 18.09 19 8 20 21 3.81 422 0.00 33.80 7.65

300 2242 0.05 8 0.00 0.43 4 1 0 0 0.32 115 0.00 0.30 0.40

300 3139 0.07 8 0.00 1.58 2 1 0 0 0.59 62 0.00 2.35 0.89

300 4036 0.09 26 0.00 3.02 11 1 2 2 1.23 198 0.00 8.77 3.16

300 4485 0.1 112 0.00 7.12 37 13 4 11 4.99 518 0.00 14.18 12.09

300 8970 0.2 1306 0.00 26.10 0 0 54 129 140.91 13,241 0.00 48.19 558.21

400 3990 0.05 14 0.00 0.44 1 1 0 0 0.94 313 0.00 1.40 2.84

400 5586 0.07 100 0.00 4.52 33 16 4 14 6.65 919 0.00 11.20 28.65

400 7182 0.09 252 0.00 8.77 9 3 4 53 24.89 1516 0.00 19.73 67.11

400 7980 0.1 2261 0.00 17.03 23 12 36 432 255.46 21,615 0.00 30.49 1050.50

400 15,960 0.2 50,751 5.75 41.33 0 0 358 3799 10,800 170,337 17.34 87.68 10,800

500 6237 0.05 290 0.00 6.17 73 31 3 17 16.32 1020 0.00 9.48 21.58

500 8732 0.07 28,346 0.00 17.62 100 43 44 2307 5799.25 168,568 3.86 30.27 10,800

500 11,227 0.09 3100 0.00 15.48 40 15 32 596 613.15 76203 0.00 31.35 4590.42

500 12,475 0.1 17,556 0.00 19.57 18 6 86 2358 4079.55 184,684 6.84 39.46 10,800

500 24,950 0.2 36,773 29.85 58.99 0 0 240 708 10,800 109,854 64.38 134.75 10,800

600 8985 0.05 831 0.00 8.15 90 30 5 72 78.0089 4437 0.00 13.47 287.31

600 12,579 0.07 28,346 0.00 17.62 100 43 44 2307 6541.56 168,568 3.86 30.24 10,800

600 16,173 0.09 43,234 10.95 27.15 18 4 107 4475 10,800 148,353 18.64 47.61 10,800

600 17,970 0.1 38,137 10.43 26.74 58 15 131 3803 10,800 136,759 19.68 52.53 10,800

700 12,232 0.05 15,951 0.00 13.20 103 50 16 2312 4566.04 162,692 4.20 21.44 10,800

700 17,125 0.07 36,071 10.06 21.87 50 22 64 2823 10,800 142,310 23.77 45.31 10,800

700 22,018 0.09 29,930 25.87 39.93 0 0 111 1954 10,800 107,643 48.35 76.12 10,800

700 24,465 0.1 24,776 27.34 42.61 0 0 131 1884 10,800 104,920 57.51 88.33 10,800

800 15,980 0.05 37,207 3.21 14.08 22 7 20 2230 10,800 128,724 10.42 26.25 10,800

800 22,372 0.07 26,240 10.54 22.20 1 1 60 1455 10,800 119,280 33.74 54.37 10,800

800 28,764 0.09 25,021 36.23 48.65 0 0 116 1911 10,800 93,559 68.94 97.86 10,800

800 31,960 0.1 20,355 35.76 49.45 1 1 125 1221 10,800 88,836 75.37 104.47 10,800

900 20,227 0.05 23,988 9.81 19.18 24 10 26 7120 10,800 112,276 24.14 39.16 10,800

900 28,318 0.07 21,564 26.19 36.37 2 2 97 3921 10,800 86,910 47.92 68.59 10,800

900 36,409 0.09 16,757 45.39 56.89 0 0 198 3285 10,800 79,646 79.33 102.33 10,800

900 40,455 0.1 15,846 61.45 74.10 0 0 205 2387 10,800 64,479 89.26 117.31 10,800

1000 24,975 0.05 25,249 16.39 23.85 14 5 48 1730 10,800 92,720 34.58 48.10 10,800

1000 34,965 0.07 19,158 36.82 46.04 11 8 88 1020 10,800 76,146 67.85 85.60 10,800

1000 44,955 0.09 15,140 63.56 73.01 0 0 134 831 10,800 66,315 98.10 121.46 10,800

1000 49,950 0.1 1,, 919 68.67 77.48 0 0 102 505 10,800 65,025 107.04 133.64 10,800
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Table 2 Uncorrelated instances with l = 10

Instance Branch-and-Cut Cplex

n m η Nodes Gap-final Gap-root ECI LCI Cliques OddCycles CPU Nodes Gap-final Gap-root CPU

100 247 0.05 2 0.00 0.25 0 0 0 0 0.01 162 0.00 0.38 0.04

100 346 0.07 6 0.00 0.23 2 0 0 0 0.03 84 0.00 0.35 0.06

100 445 0.09 1 0.00 0.21 0 0 0 0 0.01 1 0.00 0.21 0.00

100 495 0.1 28 0.00 2.67 15 9 0 1 0.09 132 0.00 2.52 0.06

100 990 0.2 21 0.00 7.54 1 0 6 5 0.26 89 0.00 15.55 0.63

200 995 0.05 26 0.00 0.21 23 12 0 0 0.19 194 0.00 0.28 0.17

200 1393 0.07 41 0.00 2.47 29 17 0 3 0.50 269 0.00 3.63 1.03

200 1791 0.09 39 0.00 3.92 16 6 4 9 0.79 283 0.00 9.95 1.98

200 1990 0.1 64 0.00 6.00 49 22 1 14 1.38 384 0.00 12.93 4.90

200 3980 0.2 146 0.00 16.24 0 0 21 16 8.66 3017 0.00 47.04 67.53

300 2242 0.05 67 0.00 3.27 50 17 0 6 2.48 505 0.00 6.40 4.39

300 3139 0.07 390 0.00 9.32 49 26 2 105 17.68 2586 0.00 18.65 69.10

300 4036 0.09 310 0.00 8.68 3 2 11 40 21.53 3774 0.00 20.82 138.75

300 4485 0.1 2062 0.00 16.38 7 4 21 383 156.28 32,615 0.00 32.77 906.14

300 8970 0.2 39,341 0.00 44.85 0 0 299 1044 6154.42 311,652 40.67 116.01 10,800

400 3990 0.05 3797 0.00 11.25 52 29 1 426 253.40 22,268 0.00 18.07 510.46

400 5586 0.07 23,940 0.00 16.46 4 3 31 4749 3765.15 284,901 2.87 29.19 10,800

400 7182 0.09 47,050 6.52 24.05 2 0 88 7614 10,800 325,979 15.92 50.07 10,800

400 7980 0.1 47,956 13.32 30.72 0 0 146 8014 10,800 316,780 32.17 68.91 10,800

400 15, 960 0.2 40,904 57.82 92.60 0 0 168 271 10,800 180,179 102.62 187.73 10,800

500 6237 0.05 37,444 1.81 14.24 27 12 14 7752 10,800 277,193 5.73 23.10 10,800

500 8732 0.07 35,359 20.37 31.85 4 1 87 6615 10,800 175,741 42.21 64.95 10,800

500 11,227 0.09 38,454 26.27 41.75 0 0 168 6988 10,800 212,334 54.22 84.63 10,800

500 12,475 0.1 40,261 22.43 36.39 0 0 176 5058 10,800 197,321 49.97 80.33 10,800

500 24,950 0.2 22,229 90.82 117.51 0 0 34 46 10,800 104,919 160.28 233.28 10,800

600 8985 0.05 37,375 11.41 21.55 18 6 21 8370 10,800 208,657 20.60 37.24 10,800

600 12,579 0.07 33,158 12.41 22.55 4 1 83 6257 10,800 158,181 84.05 112.11 10,800

600 16,173 0.09 30,552 48.96 61.92 0 0 195 3965 10,800 158,181 84.05 113.38 10,800

600 17,970 0.1 28,568 46.42 59.91 0 0 173 2863 10,800 149,536 88.22 121.42 10,800

700 12,232 0.05 30,753 24.64 33.38 0 0 46 7367 10,800 164,053 42.56 59.41 10,800

700 17,125 0.07 26,705 51.52 62.70 0 0 134 4059 10,800 145,868 94.21 119.66 10,800

700 22,018 0.09 23,008 65.76 78.09 0 0 136 1604 10,800 115,391 124.06 155.46 10,800

700 24,465 0.1 19,870 67.19 80.44 0 0 143 931 10,800 117,491 125.22 160.55 10,800

800 15,980 0.05 26,084 34.27 42.32 0 0 43 3961 10,800 87,782 61.82 77.17 10,800

800 22,372 0.07 21,315 58.37 66.90 0 0 121 3379 10,800 115,179 96.29 118.57 10,800

800 28,764 0.09 16,461 89.70 100.96 0 0 117 1107 10,800 99,850 128.93 158.44 10,800

800 31,960 0.1 14,684 99.92 110.54 0 0 93 422 10,800 46,248 156.40 184.32 10,800

900 20,227 0.05 22,181 45.59 52.07 0 0 65 6990 10,800 109,889 72.45 87.06 10,800

900 28,318 0.07 16,465 68.35 77.12 0 0 115 3653 10,800 106,975 126.86 151.24 10,800

900 36,409 0.09 12,159 94.10 102.07 0 0 93 709 10,800 93,020 165.11 196.53 10,800

900 40,455 0.1 10,045 124.00 134.93 0 0 57 177 10,800 83,209 183.76 219.44 10,800

erated number depends not only on the size of the instance,
but also on its type and capacity (and hence parameter l). In
general, the number of generated cover inequalities is more
important for the strongly correlated instances (Tables 3, 4)
compared to the uncorrelated ones (Tables 1, 2). It is clearly
bigger for instances with l = 5 than for those with l = 10,

since capacities for the second group is bigger. We also note
that for huge instances, (more than 500 items, l = 10), we are
no more able to generate extended and lifted cover inequali-
ties. This is obvious for these families of inequalities. Recall
that in order to separate these inequalities, we use a heuristic
method solving a knapsack or a knapsack-like problem with
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Table 3 Strongly correlated instances with l = 5

Instance Branch-and-Cut Cplex

n m η Nodes Gap-final Gap-root ECI LCI Cliques OddCycles CPU Nodes Gap-final Gap-root CPU

100 247 0.05 16 0.00 0.00 25 0 0 0 0.05 4 0.00 0.00 0.01

100 346 0.07 92 0.00 0.00 120 7 0 0 0.25 5 0.00 0.00 0.01

100 445 0.09 197 0.00 0.00 254 4 0 0 1.16 5 0.00 0.00 0.01

100 495 0.1 540 0.00 0.00 377 4 0 1 2.14 2334 0.00 2.18 0.46

200 995 0.05 1 0.00 0.23 0 0 0 1 0.08 193 0.00 0.23 0.36

200 1393 0.07 1 0.00 0.95 1 1 0 0 0.07 1198 0.00 1.12 2.22

200 1791 0.09 293 0.00 1.82 474 47 2 2 6.79 1678 0.00 2.61 4.30

200 1990 0.1 1501 0.00 2.60 2412 238 5 12 88.38 3172 0.00 5.50 8.39

300 2242 0.05 39 0.00 0.84 17 0 1 4 1.98 179 0.00 2.19 2.19

300 3139 0.07 1449 0.00 2.13 1955 150 1 28 91.91 4145 0.00 3.64 23.67

300 4036 0.09 1483 0.00 4.41 850 112 16 262 112.55 4018 0.00 7.07 70.41

300 4485 0.1 2092 0.00 5.35 203 32 19 529 181.97 6752 0.00 8.83 149.99

400 3990 0.05 445 0.00 2.49 123 16 0 48 37.30 3081 0.00 4.17 70.31

400 5586 0.07 33137 0.19 5.32 10, 767 1839 17 4630 10,800 153,887 0.00 8.06 3883.62

400 7182 0.09 17,804 0.00 6.00 680 171 45 3103 3321.01 136,735 0.00 9.62 5594.97

400 7980 0.1 56,196 1.63 7.02 136 24 116 5885 10,800 293,983 3.05 13.14 10,800

500 6237 0.05 42,994 1.29 5.41 946 152 6 5418 10,800 330,593 1.16 7.47 10,800

500 8732 0.07 47,034 2.65 6.79 269 59 51 6021 10,800 271,224 4.28 11.69 10,800

500 11,227 0.09 41,337 5.76 9.82 97 33 121 7676 10,800 223,641 9.54 17.92 10,800

500 12,475 0.1 45,661 6.51 11.35 70 11 204 6804 10,800 182,486 10.00 18.64 10,800

600 8985 0.05 41,001 2.11 5.55 59 2 14 6469 10,800.1 218,199 3.66 9.10 10,800

600 12,579 0.07 37,767 6.22 9.40 49 19 65 7524 10,800 177060 9.33 15.53 10,800

600 16,173 0.09 33,690 8.91 11.81 135 50 171 4753 10,800 149,776 14.59 21.36 10,800

600 17,970 0.1 33,574 11.90 15.17 99 53 212 4414 10,800 132,624 16.52 23.84 10,800

700 12,232 0.05 29,680 5.58 8.48 138 48 29 10522 10,800 187,259 8.13 12.91 10,800

700 17,125 0.07 28,335 8.53 11.27 15 11 113 9328 10,800 152,268 13.77 19.76 10,800

700 22,018 0.09 27,815 13.39 16.18 53 20 286 6416 10,800 115,993 20.17 26.11 10,800

700 24,465 0.1 24,943 13.81 16.65 105 38 245 4295 10,800 108,295 21.04 27.81 10,800

800 15,980 0.05 26,222 6.88 9.15 139 36 41 8577 10,800 138, 085 10.75 15.47 10,800

800 22,372 0.07 27,344 12.06 14.43 59 18 144 5868 10,800 113,199 18.23 23.28 10,800

800 28,764 0.09 23,309 14.48 16.77 21 6 203 3394 10,800 97,043 22.44 28.59 10,800

800 31,960 0.1 19,067 15.67 17.84 26 11 235 2127 10,800 83,675 24.30 30.98 10,800

900 20,227 0.05 28,333 9.60 11.57 128 31 42 3270 10,800 119,317 15.79 19.97 10,800

900 28,318 0.07 20,497 13.56 15.54 14 6 116 1670 10,800 72,385 22.12 26.75 10,800

900 36,409 0.09 15,899 16.70 18.60 36 5 156 1036 10,800 81,174 26.76 32.29 10,800

900 40,455 0.1 14,142 18.34 20.33 2 2 132 593 10,800 79,987 30.07 36.30 10,800

1000 24,975 0.05 23,104 10.40 12.12 149 56 70 3462 10,800 103,098 17.87 21.63 10,800

1000 34,965 0.07 15,789 15.65 17.33 19 5 117 1369 10,800 85,208 26.02 30.59 10,800

1000 44,955 0.09 10,999 19.13 20.81 0 0 89 289 10,800 68,456 28.87 34.12 10,800

1000 49,950 0.1 10,606 20.49 22.24 0 0 78 169 10,800 70,896 35.42 41.44 10,800

a greedy algorithm. The bigger the instance is, the looser
the quality of solution of the knapsack subproblem is. Con-
sequently, it would be interesting if we could improve the
separation of these families for huge-sized instances.

All the arguments above show that our Branch-and-Cut
algorithm is efficient for solving the DCKP. Note, how-
ever, that for one instance (see Table 3, instance n = 400,

η = 0.07), Cplex was able to reach optimality but not the
Branch-and-Cut algorithm. Our algorithm has oddly a better
gap at the root than Cplex’s one (5.32% for the Branch-and-
Cut, 8.06% for Cplex), and it was very near to optimality
(final gap equal to 0.19%). This is mainly due to the number
of generated extended covers and lifted covers inequalities
which reach 10,767 and 1839, respectively. At this stage, one
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Table 4 Strongly correlated instances with l = 10

Instance Branch-and-Cut Cplex

n m η Nodes Gap-final Gap-root ECI LCI Cliques OddCycles CPU Nodes Gap-final Gap-root CPU

100 247 0.05 20 0.00 0.00 22 0 0 0 0.06 4 0.00 0.00 0.01

100 346 0.07 1 0.00 0.00 0 0 0 0 0.01 8 0.00 0.00 0.01

100 445 0.09 7 0.00 0.51 12 0 0 0 0.07 49 0.00 0.52 0.05

100 495 0.1 1 0.00 0.09 0 0 0 0 0.01 44 0.00 0.38 0.04

100 990 0.2 540 0.00 4.83 131 63 3 26 3.458 1084 0.00 9.76 2.67

200 995 0.05 602 0.00 0.00 851 45 0 0 11.7535 1864 0.00 0.94 3.37

200 1393 0.07 406 0.00 1.41 425 67 1 7 10.1888 745 0.00 2.63 5.45

200 1791 0.09 32 0.00 1.56 0 0 4 9 1.1102 462 0.00 2.78 6.74

200 1990 0.1 1212 0.00 3.76 49 19 11 544 56.71 13889 0.00 8.40 163.13

200 3980 0.2 77,721 1.15 8.58 17 14 493 6890 10,800 464,451 0.00 18.97 6103.17

300 2242 0.05 368 0.00 1.75 160 27 0 92 24.5311 2636 0.00 3.07 56.25

300 3139 0.07 12,515 0.00 3.53 89 30 17 2645 1301.46 249,704 0.00 6.60 5536.75

300 4036 0.09 48,336 2.06 5.51 24 8 69 10473 10,800 516,532 2.44 9.66 10,800

300 4485 0.1 52,848 3.73 7.58 40 27 110 10769 10,800 651,610 4.24 12.50 10,800

300 8970 0.2 84,625 7.35 11.84 0 0 423 2263 10,800 462,214 12.46 25.38 10,800

400 3990 0.05 38,856 0.54 3.31 200 74 5 7687 10,800 408,974 0.92 5.72 10,800

400 5586 0.07 53,857 3.05 5.49 19 15 45 7349 10,800 355,690 4.77 10.29 10,800

400 7182 0.09 46,274 5.96 8.57 51 29 175 9010 10,800 293,740 8.13 14.07 10,800

400 7980 0.1 50,873 7.11 9.94 36 26 215 7448 10,800 436,858 11.44 18.90 10,800

400 15960 0.2 49,995 17.92 21.77 0 0 261 497 10,800 257,266 39.20 51.82 10,800

500 6237 0.05 33,807 4.07 6.08 33 15 17 10591 10,800 262,019 6.12 9.82 10,800

500 8732 0.07 35,345 6.89 8.98 2 1 99 11190 10,800 230,617 12.00 16.60 10,800

500 11,227 0.09 40,450 9.73 12.10 17 6 266 8008 10,800 197,699 16.04 21.42 10,800

500 12,475 0.1 41,819 10.52 12.83 0 0 310 3924 10,800 290,677 15.33 21.26 10,800

500 24,950 0.2 26,664 42.59 45.51 0 0 89 108 10,800 177,213 74.63 86.61 10,800

600 8985 0.05 29,370 7.07 8.72 3 2 29 10856 10,800 238,654 10.14 13.70 10,800

600 12,579 0.07 33,348 9.02 10.67 0 0 157 7229 10,800 168,148 16.13 20.17 10,800

600 16,173 0.09 30,007 11.82 13.63 7 7 250 3003 10,800 144,996 20.18 24.92 10,800

600 17,970 0.1 31,490 13.85 15.65 0 0 285 2741 10,800 144,860 26.06 31.36 10,800

700 12,232 0.05 30,179 8.77 10.24 9 5 61 10400 10,800 116,826 15.07 17.82 10,800

700 17,125 0.07 26,342 11.82 13.29 0 0 137 4035 10,800 137,211 20.80 24.59 10,800

700 22,018 0.09 21,134 14.43 15.91 0 0 192 2088 10,800 126,935 38.85 43.94 10,800

700 24,465 0.1 19,815 18.24 19.76 0 0 166 900 10,800 117,362 44.34 50.05 10,800

800 15,980 0.05 25,185 9.69 10.72 0 0 81 8884 10,800 143,579 14.24 16.87 10,800

800 22,372 0.07 21,294 12.58 13.72 0 0 161 2194 10,800 113,037 35.22 38.77 10,800

800 28,764 0.009 16,209 21.37 22.51 0 0 112 680 10,800 97,300 58.42 63.17 10,800

800 31,960 0.1 14,099 31.41 32.73 0 0 76 433 10,800 76,526 63.01 67.62 10,800

900 20,227 0.05 22,524 9.76 10.78 0 0 79 5713 10,800 135,516 20.35 23.01 10,800

900 28,318 0.07 15,758 14.33 15.41 0 0 104 1057 10,800 97,675 56.58 60.41 10,800

900 36,409 0.09 11,056 20.99 22.18 0 0 63 392 10,800 81,766 71.63 76.61 10,800

900 40,455 0.1 8778 47.66 48.94 0 0 43 248 10,800 65,160 97.34 103.02 10,800

1000 24,975 0.05 17,449 13.29 14.24 0 0 60 2260 10,800 450,14 31.13 33.40 10,800

1000 34,965 0.07 10,494 21.41 22.36 0 0 44 283 10,800 86,958 61.63 65.47 10,800

1000 44,955 0.09 7764 42.61 43.85 0 0 41 244 10,800 27818 94.41 98.37 10,800

1000 49,950 0.1 6318 58.12 59.05 0 0 13 110 10,800 67937 123.33 129.66 10,800
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can think first in improving the separation procedures that we
are using, and second in devising an efficient primal heuristic
that can help us pruning some uninteresting branches of the
Branch-and-Cut tree.

6 Concluding remarks

In this paper, we studied a variant of the Knapsack Prob-
lem, that is when some of the items are in conflict with some
others. We presented a 0–1 ILP formulation for the prob-
lem and study the associated polytope. New families of valid
inequalities are then identified. A facial study of the basic
and valid inequalities is held. We then discussed the sepa-
ration problem of the valid inequalities and used the whole
study to develop a Branch-and-Cut algorithm. Experimen-
tal results show that the Branch-and-Cut algorithm performs
well compared to Cplex, mainly for hard instances. However,
as pointed for some cases, it would be interesting to boost our
Branch-and-Cut algorithm, first by improving our separation
procedures and second by devising efficient primal heuris-
tics. This can indeed help prune uninteresting branches of the
Branch-and-Cut tree and accelerate the resolution mainly for
hard instances.

It would also be interesting to use the results obtained in
this work in order to study some extensions of the DCKP.
A possible extension consists in imposing an order for the
selection of items. One can also think of other variations
extending the problem for more than one dimension, i.e., the
Bi-dimensional (or Multi-dimensional) Disjunctively Con-
strainedKnapsack Problem. Another stimulating perspective
would be to extend the provided theoretical results to several
other problems for which the DCKP appears as a subprob-
lem, such as the Bin Packing Problem with conflicts.
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