
A Branch-and-Cut Algorithm for the k -Edge Connected
Subgraph Problem

F. Bendali, I. Diarrassouba, and A. R. Mahjoub
Laboratoire LIMOS, CNRS UMR 6158, Université Blaise Pascal–Clermont II, Complexe Scientifique des
Cézeaux, 63177 Aubière Cedex, France

M. Didi Biha
Laboratoire d’Analyse Non Linéaire et Géométrie, Université d’Avignon, 339, Chemin des Meinajariès,
84911 Avignon Cedex 9, France

J. Mailfert
Laboratoire LIMOS, CNRS UMR 6158, Université d’Auvergne, 49 Bd François Mitterand,
63000 Clermont-Ferrand, France

In this article, we consider the k -edge connected sub-
graph problem from a polyhedral point of view. We
introduce further classes of valid inequalities for the
associated polytope and describe sufficient conditions
for these inequalities to be facet defining. We also devise
separation routines for these inequalities and discuss
some reduction operations that can be used in a prepro-
cessing phase for the separation. Using these results,
we develop a Branch-and-Cut algorithm and present
some computational results. © 2009 Wiley Periodicals, Inc.
NETWORKS, Vol. 55(1), 13–32 2010

Keywords: k-edge connected graph; polytope; facet; separation;
reduction operations; branch-and-cut

1. INTRODUCTION

One of the main concerns when designing telecommunica-
tion networks is to compute network topologies that provide
a sufficient degree of survivability. Survivable networks must
satisfy some connectivity requirements that is, networks that
are still functional after the failure of certain links. As pointed
out in [31] (see also [29]), the topology that seems to be very
efficient (and needed in practice) is the uniform topology, that
is to say that corresponding to networks that survive after the
failure of k − 1 or fewer edges, for some k ≥ 2. The two-
connected topology (k = 2) provides an adequate level of

Received November 2006; accepted June 2008
Correspondence to: A. R. Mahjoub; e-mail: mahjoub@lamsade.dauphine.fr;
Laboratoire LAMSADE, Université Paris-Dauphine, Place du Maréchal de
Lattre de Tassigny, 75775, Paris 16, France
DOI 10.1002/net.20310
Published online 6 March 2009 in Wiley InterScience (www.interscience.
wiley.com).
© 2009 Wiley Periodicals, Inc.

survivability since most failure usually can be repaired rel-
atively quickly. However, for many applications, it may be
necessary to provide a higher level of connectivity. In this
article, we consider this variant of the survivable network
design problem.

A graph G = (V , E) is called k-edge connected (where
k is a positive integer) if for every pair of nodes i, j ∈ V ,
there are at least k edge-disjoint paths between i and j. Given
a graph G = (V , E) and a weight function w on E that asso-
ciates with an edge e ∈ E the weight w(e) ∈ R, the k-edge
connected subgraph problem (kECSP for short) is to find a
k-edge connected spanning subgraph H = (V , F) of G such
that

∑
e∈F w(e) is minimum.

The kECSP is NP-hard for k ≥ 2 ([21]). When k = 1, the
kECSP is nothing but the minimum spanning tree problem
and can be solved in polynomial time. The kECSP has been
extensively studied when k = 2 [4, 18, 20, 29–34]. It has,
however, received little attention when k ≥ 3.

In this article, we consider the k-edge connected subgraph
problem from a polyhedral point of view. We introduce fur-
ther classes of valid inequalities for the associated polytope
and describe sufficient conditions for these inequalities to be
facet defining. We also devise separation heuristics for these
inequalities and discuss some reduction operations that can
be used in a preprocessing phase for the separation. Using
these results, we develop a Branch-and-Cut algorithm and
present some computational results.

We will denote a graph by G = (V , E) where V is the
node set and E is the edge set. Given a graph G = (V , E)

and an edge subset F ⊆ E, the 0-1 vector xF ∈ R
E such that

xF(e) = 1 if e ∈ F and xF(e) = 0 if e ∈ E \ F is called the
incidence vector of F. Let kECSP(G) be the convex hull of

NETWORKS—2010—DOI 10.1002/net

the incidence vectors of the k-edge connected subgraphs of
G, i.e.,

kECSP(G) = conv{xF ∈ R
E | F ⊆ E and

(V , F) is k-edge connected subgraph of G}.
The kECSP(G) is called the k-edge connected subgraph
polytope of G.

Let G = (V , E) be a graph. Given w : E → R and F
a subset of E, w(F) will denote

∑
e∈F w(e). For W ⊆ V ,

we let W̄ = V \ W . If W ⊂ V is a node subset of G, then
the set of edges that have only one node in W is called a
cut and denoted by δ(W). We will write δ(v) for δ({v}). If
xF is the incidence vector of the edge set F of a k-edge con-
nected spanning subgraph of G, then xF satisfies the following
inequalities:

x(e) ≥ 0 for all e ∈ E, (1.1)

x(e) ≤ 1 for all e ∈ E, (1.2)

x(δ(W)) ≥ k for all W ⊂ V , W �= V , W �= ∅. (1.3)

Conversely, any integer solution of the system defined by
inequalities (1.1)–(1.3) is the incidence vector of the edge
set of a k-edge connected subgraph of G. Constraints (1.1)
and (1.2) are called trivial inequalities and constraints (1.3)
are called cut inequalities. We will denote by P(G, k) the
polytope given by inequalities (1.1)–(1.3).

The kECSP has been studied by Grötschel and Monma
[24] and Grötschel et al. [25, 26] within the framework of a
more general survivability model. In particular, Grötschel and
Monma [24] studied the dimension of the polytope associated
with that model and some basic facets. It follows from their
results that kECSP is full dimensional if G is (k + 1)-edge
connected. In [25], Grötschel et al. studied further polyhedral
aspects of that model. They also devised cutting plane algo-
rithms and presented some computational results. A complete
survey of that model and related network design problems can
be found in [29].

In [7], Chopra studies the k-edge connected subgraph
problem for k odd when multiple copies of an edge may
be used. In particular, he characterizes the associated polyhe-
dron for outerplanar graphs (a graph is outerplanar if it can be
drawn in the plane as a cycle with noncrossing chords). This
polyhedron has been previously studied by Cornuéjols et al.
[8]. They showed that if a graph is series-parallel [a graph
is series-parallel if it can be obtained from a single edge by
iterative application of the two operations: (i) addition of a
parallel edge and (ii) subdivision of an edge] and k = 2, then
the polyhedron is completely described by the nonnegativity
and cut inequalities. In [14], Didi Biha and Mahjoub give a
complete description of kECSP(G) for all k when G is series-
parallel. In particular, they show that if G is series-parallel and
k is even, then kECSP(G) = P(G, k). Didi Biha and Mahjoub
study in [16] the extreme points of P(G, k). They introduce
an ordering on the fractional extreme points of P(G, k) and
describe some structural properties of the minimal extreme

points with respect to that ordering. Using these results, they
give sufficient conditions for P(G, k) to be integral.

Much work has been done on 2ECSP(G). In [3], Baïou
and Mahjoub study the Steiner two-edge connected sub-
graph polytope. This has been generalized by Didi Biha
and Mahjoub [15] to the Steiner k-edge connected subgraph
polytope for k even. Mahjoub [32] introduces a general
class of valid inequalities for 2ECSP(G). Boyd and Hao
[6] describe a class of “comb inequalities” which are valid
for 2ECSP(G). This class and that introduced by Mahjoub
[32] are special cases of a more general class of inequali-
ties given by Grötschel et al. [25] for the general survivable
network polytope. In [4], Barahona and Mahjoub character-
ize the polytope 2ECSP(G) for the class of Halin graphs.
Kerivin et al. [30] describe a general class of valid inequali-
ties for 2ECSP(G) that generalizes the so-called F-partition
inequalities [32]. They also develop a Branch-and-Cut algo-
rithm for the 2ECSP, based on these inequalities and the
trivial and cut inequalities. In [5], Bienstock et al. describe
structural properties of the optimal solution of kECSP when
the weight function satisfies the triangle inequalities (i.e.,
w(e1) ≤ w(e2) + w(e3) for every three edges e1, e2, e3

defining a triangle). In particular, they show that every node
of a minimum weight k-edge connected subgraph has degree
k or k+1. This generalizes results given by Monma et al. [34]
for the case when k = 2. In [9, 10], Coullard et al. study the
Steiner two-node connected subgraph problem. They devise
in [9] a linear time algorithm for this problem on some spe-
cial classes of graphs. Moreover in [10], they characterize the
dominant of the polytope associated with this problem on the
graphs which do not have K4 (the wheel on four nodes) as a
minor. In [19], Fonlupt and Naddef characterize the class of
graphs for which the system given by inequalities (1.1) and
(1.3), when k = 2, defines the convex hull of the incidence
vectors of the tours of G (a tour is a cycle going at least once
through each node. Here a cycle can use the same node or the
same edge more than once).

The article is organized as follows. In the following
section, we introduce some classes of valid inequalities and
describe sufficient conditions for these inequalities to be facet
defining. In Section 3, we discuss some graph reduction oper-
ations. In Section 4, we describe separation routines for the
inequalities described in Section 2 and develop a Branch-and-
Cut algorithm for the kECSP. Our computational results are
presented in Section 5, and finally some concluding remarks
are given in Section 6. Some of the proofs of section 2 are
given in an appendix.

In the rest of this section we give more definitions and
notations. The graphs we consider are finite, undirected, loop-
less, and connected. Given a graph G = (V , E), if e ∈ E is
an edge with endnodes u and v, we also write uv to denote
e. Given a node subset W , the cut δ(W) is said to be proper
if |W | ≥ 2 and |V \ W | ≥ 2. If W and W ′ are two dis-
joint subsets of V , [W , W ′] will denote the set of edges of
G having one endnode in W and the other one in W ′. If
π = (V1, . . . , Vp), p ≥ 2, is a partition of V , then we denote
by δ(π) the set of edges having their endnodes in different

14 NETWORKS—2010—DOI 10.1002/net

sets. We may also write δ(V1, . . . , Vp) for δ(π). Note that for
W ⊂ V , δ(W) = δ(W , W̄). In the notation, we will specifiy
the graph as a subscript (that is, we will write δG(W), δG(π),
δG(V1, . . . , Vp)) whenever the considered graphs may not be
clearly deduced from the context.

For all F ⊆ E, V(F) will denote the set of nodes incident
to the edges of F. For W ⊂ V , we denote by E(W) the set of
edges of G having both endnodes in W and G[W] the subgraph
induced by W . Given an edge e = uv ∈ E, contracting
e consists in deleting e, identifying the nodes u and v and
in preserving all adjacencies. Contracting a node subset W
consists in identifying all the nodes of W and preserving the
adjacencies. Given a partition π = (V1, . . . , Vp), p ≥ 2,
we will denote by Gπ the subgraph induced by π , that is,
the graph obtained from G by contracting the sets Vi, for i =
1, . . . , p. Note that the edge set of Gπ is the set δ(V1, . . . , Vp).
Given a solution x̄ ∈ P(G, k), an inequality ax ≥ α is said to
be tight for x̄ if ax̄ = α.

2. FACETS OF k ECSP(G)

In this section, we present three classes of valid inequali-
ties for kECSP(G). We describe some conditions for these
inequalities to be facet defining. But first, we give the
following lemmas, which will be frequently used in this
section.

Lemma 2.1. If an inequality ax ≥ α is different from the
trivial inequalities and defines a facet of kECSP(G), then
a(e) ≥ 0 for all e ∈ E and α > 0.

Proof. Suppose that a(e) < 0 for some edge e ∈ E. As
ax ≥ α is different from the trivial inequality x(e) ≤ 1, there
must exist a solution F ⊆ E of the kECSP which does not
contain e and such that axF = α. Let F ′ = F∪{e}. Obviously,
F ′ also induces a solution of the kECSP. However, as a(e) <

0, we have that axF ′ = axF + a(e) < α, contradiction.
In consequence, a(e) ≥ 0 for all e ∈ E. Moreover, as

ax ≥ α is facet defining, one should have a(f) > 0 for at
least one edge f of E. As ax ≥ α is different from x(f) ≥ 0,
there exists a solution F̃ of the kECSP which contains f and
such that axF̃ = α. This yields α > 0. ■

Lemma 2.2. Let G = (V , E) be a k-edge connected graph
and e0 = u0v0 be an edge of G such that every cut δ(U) of G
containing e0, except eventually δ(u0), is such that |δ(U)| ≥
k + 1. If G′ is a graph obtained from G by deleting e0 and
adding an edge f incident to u0, then G′ is k-edge connected.

Proof. Let δG′(U ′) be a cut of G′. If δG′(U ′) does not
separate u0 and v0, then, as G is k-edge connected, we have
that |δG′(U ′)| ≥ k. If this is not the case and U ′ �= {u0}, then
δG(U ′) contains at least k +1 edges and hence |δG′(U ′)| ≥ k.
Finally, if U ′ = {u0}, as G is k-edge connected and δG′(u0) =
(δG(u0) \ {e0}) ∪ {f }, we have that |δG′(u0)| ≥ k. ■

FIG. 1. An odd path configuration with k = 3 and p even.

2.1. Odd Path Inequalities

Let G = (V , E) be a (k + 1)-edge connected graph and
π = (W1, W2, V1, . . . , V2p) a partition of V with p ≥ 2. Let
I1 = {4r, 4r + 1, r = 1, . . . ,

⌈ p
2

⌉ − 1} and I2 = {2, . . . , 2p −
1} \ I1. We say that π induces an odd path configuration if

1. |[Vi, Wj]| = k − 1 for (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}),
2. |[W1, W2]| ≤ k − 1,
3. δ(Vi) = [Vi, W1] ∪ [Vi−1, Vi] ∪ [Vi, Vi+1] (respectively

δ(Vi) = [Vi, W2] ∪ [Vi−1, Vi] ∪ [Vi, Vi+1]) if i ∈ I1

(respectively i ∈ I2),
4. δ(V1) = [W1, V1] ∪ [V1, V2] and δ(V2p) = [W1, V2p] ∪

[V2p−1, V2p] (respectively δ(V2p) = [W2, V2p] ∪
[V2p−1, V2p]) if p is even (respectively odd) (see Fig. 1
for k = 3 and p even).

Note that by conditions 3 and 4, we have that [Vl, Vt] =
∅ for all l, t ∈ {1, . . . , 2p} and |l − t| > 1. Let
C = ⋃2p−1

i=1 [Vi, Vi+1]. Thus C can be seen as an odd path
of extremities V1 and V2p in the graph Gπ . With an odd path
configuration we associate the inequality

x(C) ≥ p. (2.1)

Inequalities of type (2.1) will be called odd path inequal-
ities. We have the following.

Theorem 2.1. Inequality (2.1) is valid for kECSP(G).

Proof. As |[Vi, Wj]| = k − 1 and x(δ(Vi)) ≥ k is valid
for kECSP(G), for (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}), we have

x([V2s−1, V2s]) + x([V2s, V2s+1]) ≥ 1 for s = 1, . . . , p − 1,
(2.2)

x([V2s, V2s+1])+x([V2s+1, V2s+2]) ≥ 1 for s = 1, . . . , p − 1.
(2.3)

By multiplying each inequality (2.2) (respectively
inequality (2.3)) corresponding to s ∈ {1, . . . , p − 1} by p−s

p
(respectively s

p) and summing these inequalities, we obtain

∑
i∈I

x([Vi, Vi+1]) +
∑
i∈Ī

p − 1

p
x([Vi, Vi+1]) ≥ p − 1, (2.4)

NETWORKS—2010—DOI 10.1002/net 15

where I = {2, 4, 6, . . . , 2p − 2} and Ī = {1, . . . , 2p − 1} \ I .
By considering the cut inequality induced by W1 ∪ V1 ∪

(
⋃

i∈I1
Vi) (respectively W1 ∪ V1 ∪ (

⋃
i∈I1

Vi) ∪ V2p) if p is
odd (respectively even) we have

x([W1, W2]) +
∑
i∈Ī

x([Vi, Vi+1]) ≥ k.

As |[W1, W2]| ≤ k − 1, it follows that

1

p

∑
i∈Ī

x([Vi, Vi+1]) ≥ 1

p
. (2.5)

By summing inequalities (2.4) and (2.5) and rounding up
the right hand side, we get inequality (2.1). ■

In what follows, we describe necessary conditions for
inequality (2.1) to be facet defining. For this, we first give
a technical lemma.

Lemma 2.3. Let π = (W1, W2, V1, . . . , V2p), p ≥ 2, be a
partition of V which induces an odd path configuration and
F a solution of the kECSP. Let Vr , . . . , Vs, with 2 ≤ r < s ≤
2p − 1, be a sequence of node sets of π . Then F must contain
at least � s−r+1

2 � edges from C.

Proof. As |[W1, Vi]| = k − 1 for all i ∈ {r, . . . , s} ∩ I1

and |[W2, Vi]| = k−1 for all i ∈ {r, . . . , s}∩I2, F must contain
at least one edge from each set δ(Vi)∩C, i ∈ {r, . . . , s}. Thus
the statement follows. ■

Theorem 2.2. Inequality (2.1) defines a facet for kECSP(G)
only if

(a) [V1, W1] �= ∅ and [V2p, W1] �= ∅ (respectively
[V2p, W2] �= ∅) if p is even (respectively odd),

(b) [Vi, Vi+1] �= ∅ for i = 1, . . . , 2p − 1.

Proof.
(a) Suppose for instance that p is even and [V1, W1] = ∅ (the

proof is similar if either [V2p, W1] = ∅ or p is odd and
[V2p, W2] = ∅). By contracting the sets V1, V2, W2, we
obtain a smaller odd path configuration with 2p elements.
Let

x(C′) ≥ p − 1 (2.6)

be the corresponding odd path inequality. As δ(V2) =
[V1, V2] ∪ [V2, V3] ∪ [V2, W2] and |[V2, W2]| = k − 1, by
the cut constraint on V2, we have that

x([V1, V2]) + x([V2, V3]) ≥ 1 (2.7)

is valid for kECSP(G). By adding (2.6) and (2.7), we
get x(C) ≥ p, which implies that (2.1) cannot be facet
defining.

(b) Suppose that [Vi, Vi+1] = ∅ for some i ∈ {1, . . . , 2p − 1}.
We will show in the followining that any solution F of the

kECSP whose the incidence vector xF satisfies (2.1) with
equality, intersects [Vi−1, Vi] in exactly one edge. To this
end, we will distinguish two cases.

Case 1. i, i + 1 ∈ I1 (the proof is similar if i, i + 1 ∈
I2). By Lemma 2.3 the edge set F ′ = F ∩ C must cover
the node sets V2, . . . , Vi−2 by at least � i−3

2 � edges and the

sets Vi+1, . . . V2p−1 by at least � 2p−i−1
2 � edges. As i, i + 1 ∈

I1, and then i is even, F ′ must use, in consequence, at least
(i

2 − 1) + (p − i
2) = p − 1 edges from C \ [Vi−1, Vi]. As

δ(Vi) = [Vi−1, Vi] ∪ [Vi, W1] and |[Vi, W1]| = k − 1, F
contains at least one edge from [Vi−1, Vi]. As xF satisfies
(2.1) with equality, it follows that F contains exactly one
edge from [Vi−1, Vi].

Case 2. i ∈ I1 and i+1 ∈ I2 (the proof is similar if i ∈ I2 and
i+1 ∈ I1). First note that in this case i is odd. By Lemma 2.3,
F must cover the node sets V2, . . . , Vi−2 by at least � i−3

2 � =
i−3

2 edges from C and the node sets Vi+1, . . . V2p−1 by at

least � 2p−i−1
2 � = 2p−i−1

2 edges from C. Hence F uses at

least i−3
2 + 2p−i−1

2 = p−2 edges from C. Moreover, observe
that if exactly p − 2 edges of C are used by F, then these
edges should be between consecutive node sets of the form
[V2s, V2s+1], with s ∈ {1, . . . , p − 1} \ { i−1

2 }. However, in
this case, to satisfy the cut inequality induced by the node
set W1 ∪ (

⋃
r∈I1

Vr) ∪ V2p (respectively W1 ∪ (
⋃

r∈I1
Vr))

if p is even (respectively odd), F must contain at least one
more edge from C \ [Vi−1, Vi] between two consecutive sets
of the form [V2s−1, V2s], with s ∈ {1, . . . , p − 1} \ { i−1

2 }.
In consequence, F contains at least p − 1 edges from C \
[Vi−1, Vi]. As |F ∩ [Vi−1, Vi]| ≥ 1 and xF satisfies (2.1) with
equality, we then have that |F ∩ [Vi−1, Vi]| = 1.

In consequence, for any solution F ⊆ E of the kECSP, if
xF satisfies (2.1) with equality, it also satisfies the equation
x(δ(Vi)) = k. As kECSP(G) is full dimensionnal and (2.1) is
not a positive multiple of x(δ(Vi)) ≥ k, (2.1) cannot define a
facet. ■

Now we give sufficient conditions for inequality (2.1) to
be facet defining. For this, let us denote by � the set of edges
of G which are not in C, that is, � = E \ C. Moreover, if
[Vi, Vi+1] �= ∅, we let ei denote a fixed edge of [Vi, Vi+1], for
i = 1, . . . , 2p − 1.

Theorem 2.3. Inequality (2.1) defines a facet for kECSP(G)

if the following hold.

1. Condition (b) of Theorem 2.2 holds,
2. The subgraphs G[W1], G[W2] and G[Vi], for i =

1, . . . , 2p, are (k + 1)-edge connected,
3. |[W1, W2]| = k − 1, |[V1, W1]| = k and |[V2p, W1]| = k

(respectively |[V2p, W2]| = k) if p is even (respectively
odd).

Proof. We will show the result for p even (the proof is
similar if p is odd).

16 NETWORKS—2010—DOI 10.1002/net

Let E0 = ⋃p
s=1[V2s−1, V2s], E1 = ⋃p−1

s=1 [V2s, V2s+1], Ē =
δ(π) \ (E0 ∪ E1), Ẽ = E \ (E0 ∪ E1 ∪ Ē). Inequality (2.1)
can then be written as

x(E0) + x(E1) ≥ p. (2.8)

Suppose that conditions 1–3 above hold. We first give a
claim that will be useful in the proof.

Claim. If D is a subset of edges which covers the node sets
V2, . . . , V2p−1, contains at least one edge of [Vi0 , Vi0+1] for
some i0 ∈ {1, 3, . . . , 2p − 1} and such that D ∩ � = ∅, then
D ∪ � induces a k-edge connected subgraph of G.

Proof. Let F = D ∪ �. Let Ḡ be the graph induced
by F and Ḡ′ the graph obtained from Ḡ by contracting
the node sets W1, W2, V1, . . . , V2p. Let w1, w2, v1, . . . , v2p

be the nodes of Ḡ′ where wj (respectively vi) correspond-
ing to Wj (respectively Vi) for j = 1, 2 (respectively i =
1, . . . , 2p). As by condition 2, the subgraphs of Ḡ induced
by W1, W2, V1, . . . , V2p are (k + 1)-edge connected, to show
the claim, it suffices to show that Ḡ′ is k-edge connected. Let
δḠ′(W) be a cut of Ḡ′.

If, say, w1 ∈ W and w2 ∈ W̄ , then [w1, w2] ⊆ δḠ′(W). If
δḠ′(W) separates vi0 and vi0+1, as D intersects [Vi0 , Vi0+1], and
by condition 3), |[W1, W2]| = k −1, we have that |δḠ′(W)| ≥
k. If vi0 , vi0+1 ∈ W , then [{vi0 , vi0+1}, w2] ⊆ δḠ′(W). Since
|[{vi0 , vi0+1}, w2]| ≥ k − 1 ≥ 1, this yields |δḠ′(W)| ≥ k.

Now if w1, w2 ∈ W (or w1, w2 ∈ W̄), then δḠ′(W)

contains at least two edge sets of the form [vi, wj] with
(i, j) ∈ (I1 × {1}) ∪ (I2 × {2}). As |[vi, wj]| = k − 1,
we have that |δḠ′(W)| ≥ k. ■

Let us denote inequality (2.8) by ax ≥ α and F = {x ∈
kECSP(G) | ax = α}. Let S = � ∪ {e2s−1, s = 1, . . . , p}.
From the claim above, we can see that S induces a k-edge
connected subgraph of G. Moreover, xS satisfies (2.8) with
equality, which implies that F is a proper face of kECSP(G).
Now suppose that there exists a non trivial facet defining
inequality bx ≥ β such that F ⊆ {x ∈ kECSP(G)|bx = β}.
By Lemma 2.1, we have that β > 0, and hence we may
suppose that β = α. As G is (k +1)-edge connected and thus
kECSP(G) is full dimensional, it suffices to show that b = a.

Let e ∈ [V2s−1, V2s] \ {e2s−1} for some s ∈ {1, . . . , p} and
S1 = (S \ {e2s−1}) ∪ {e}. By the claim above, S1 induces a
k-edge connected subgraph of G. Moreover, axS1 = α. It then
follows that bxS1 = α, implying that

b(e) = ρ2s−1 for all e ∈ [V2s−1, V2s], for s = 1, . . . , p,

for some ρ2s−1 ∈ R, ρ2s−1 �= 0. (2.9)

Similarly, for an edge e ∈ [V2s, V2s+1] \ {e2s} for some
s ∈ {1, . . . , p − 1} one can consider the edge sets S2 = � ∪
(
⋃p−1

i=1 {e2i}) ∪ {e1} and S3 = (S2 \ {e2s}) ∪ {e}. We can see
by the claim above that S2 and S3 induce k-edge connected

subgraphs of G. As, axS2 = axS3 = α, it follows that bxS2 =
bxS3 = α and then

b(e) = ρ2s for all e ∈ [V2s, V2s+1], for s = 1, . . . , p − 1,

for some ρ2s ∈ R, ρ2s �= 0. (2.10)

Consider the edge sets S4 = (S2 \ {e1}) ∪ {e2s−1} and
S5 = (S2 \{e1, e2s})∪{e2s−1, e2s+1} for some s ∈ {1, . . . , p−
1}. By the claim above, S4 and S5 induce k-edge connected
subgraphs of G. Since axS4 = axS5 = α, bxS4 = bxS5 = α

and hence

b(e1) = b(e2s) = b(e2s+1), for s = 1, . . . , p − 1. (2.11)

From (2.9), (2.10), and (2.11), it follows that b(e) is the same
for every edge e ∈ E0 ∪ E1. As axS = bxS = α, we get
b(e) = 1 for all e ∈ E0 ∪ E1.

Now we are going to show that b(e) = 0 for all e ∈ Ẽ ∪ Ē.
For this, first consider an edge f ∈ Ẽ. From condition 2,
Sf = S \ {f } induces a k-edge connected subgraph of G.
Moreover, xSf satisfies (2.8) with equality. Hence axSf =
α = bxSf . This implies that b(f) = bxS − bxSf = 0. Now let
e ∈ [Vi, Wj] for (i, j) ∈ (I1 ∪ {1, 2p} × {1}) ∪ (I2 × {2}) and
S6 = (S2 \{e1})∪{ei−1} (respectively S6 = (S2 \{e1})∪{ei})
if i is even (respectively odd). From the claim above, we have
that S6 and S′

6 = S6 \ {e} induce k-edge connected subgraphs
of G and that their incidence vectors satisfy ax ≥ α with
equality. Hence b(e) = bxS6 − bxS′

6 = 0.
For all e ∈ [W1, W2], by the claim above, the edge set

S7 = S \ {e} induces a k-edge connected subgraph of G.
Moreover, xS7 satisfies ax ≥ α with equality. Hence axS7 = α

and bxS7 = bxS = α. Thus we obtain b(e) = 0 for all
e ∈ [W1, W2].

Consequently, b(e) = 0 for all e ∈ E\C, which terminates
the proof of the theorem. ■

2.2. Lifting Procedure for Odd Path Inequalities

In what follows we are going to describe a lifting proce-
dure for the odd path inequalities. This will permit to extend
these inequalities to a more general class of valid inequalities.
But first we give the following lemma which easily follows
from the general lifting procedure presented in [35].

Lemma 2.4. Let G = (V , E) be a graph and ax ≥ α a
valid inequality for kECSP(G). Let G′ = (V , E′) be a graph
obtained from G by adding an edge e, that is E′ = E ∪ {e}.
Then the inequality

ax + a(e)x(e) ≥ α (2.12)

is valid for kECSP(G′) where a(e) = α − γ with γ =
min{ax|x ∈ kECSP(G′) and x(e) = 1}. Moreover, if ax ≥ α

is facet defining for kECSP(G), then inequality (2.12) is
also facet defining for kECSP(G′). In addition, if edges
e1, . . . , ek−1, ek , . . . , et are added to G in this order and
a(ek) is the lifting coefficient of ek with respect to this order,

NETWORKS—2010—DOI 10.1002/net 17

then a(ek) ≤ a′(ek) where a′(ek) is the lifting coefficient
of ek in any order ei1 , . . . , eik−1 , . . . , eit such that il = l for
l = 1, . . . , k − 1 and is = k for some s ≥ k.

Theorem 2.4. Let G = (V , E) be a graph and π =
(W1, W2, V1, . . . , V2p), p ≥ 2, a partition of V which induces
an odd path configuration. Let C, I1, and I2 be defined as
in Section 2.1. Let U1 = ⋃

i∈I1
Vi, U2 = ⋃

i∈I2
Vi, and

W = U2 ∪ V2p ∪ W2 (respectively W = U2 ∪ W2) if p is

odd (respectively even). Suppose that conditions 1–3 of The-
orem 2.3 hold. If G′ = (V , E ∪ L) is a graph obtained from
G by adding an edge set L, then the following inequality

x(C) +
∑
e∈L

a(e)x(e) ≥ p, (2.13)

with

a(e) =

1 if e ∈

 ⋃

j=1,2

[Wj, U1 ∪ U2]

 ∪ [W1, W2] ∪

 ⋃

j=1,2p

[Vj, U1 ∪ U2]

 or

e ∈ ([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W),

2 if e ∈ [Vi, Vj], i, j ∈ {2, . . . , 2p − 1} with j > i + 1 and i even, j odd,

λ if e ∈ [Vi, Vj] with i, j ∈ {2, . . . , 2p − 1}, j > i + 1 and i odd

or i and j have same parity,

0 otherwise,

where 1 ≤ λ ≤ 2 is the lifting coefficient obtained using
the lifting procedure of Lemma 2.4, is facet defining for
kECSP(G′).

Proof. See Appendix. ■

Observe that the lifting coefficients of the edges other
than those between two subsets Vi and Vj such that i, j ∈
{2, . . . , 2p − 1}, j > i + 1, i is odd or i and j have the same
parity do not depend on the order of their addition in G.
Inequalities (2.13) will be called lifted odd path inequalities.
As it will turn out, these inequalities are very useful for our
Branch-and-Cut algorithm.

2.3. F-partition inequalities

In [32], Mahjoub introduced a class of valid inequalities
for 2ECSP(G) as follows. Let (V0, V1, . . . , Vp), p ≥ 2, be a
partition of V and F ⊆ δ(V0) with |F| odd. By adding the
inequalities

x(δ(Vi)) ≥ 2 for i = 1, . . . , p, (2.14)

− x(e) ≥ −1 for e ∈ F, (2.15)

x(e) ≥ 0 for e ∈ δ(V0) \ F, (2.16)

we obtain 2x() ≥ 2p − |F| where 	 = δ(V0, V1, . . . , Vp) \
F. Dividing by 2 and rounding up the right hand side lead to

x() ≥ p − |F| − 1

2
. (2.17)

Inequalities (2.17) are called F-partition inequalities. Didi
Biha [12] extended these inequalities for all k ≥ 2. He showed

that, given a partition (V0, V1, . . . , Vp), p ≥ 2, of V and F ⊆
δ(V0) with F �= ∅, the inequality

x(δ(V0, V1, . . . , Vp) \ F) ≥
⌈

kp − |F|
2

⌉
, (2.18)

is valid for kECSP(G). Note here that |F| can be either odd or
even. Also note that if kp and |F| have the same parity, then
the corresponding inequality (2.18) is implied by the cut and
the trivial inequalities.

In what follows, we describe sufficient conditions for
inequalities (2.18) to be facet defining. Theorems 2.5 and
2.6 describe these conditions for k odd and k even, respec-
tively. Note that all the indices we will consider here will be
modulo 2l + 1.

Theorem 2.5. Let G = (V , E) be a graph and k ≥ 3 an
odd integer. Let π = (W , V1, . . . , V2l+1, U1, . . . , U2l+1), with
l ≥ k−1

2 , be a partition of V such that

1. G[W], G[Vi], G[Ui], i = 1, . . . , 2l + 1, are (k + 1)-edge
connected,

2. |[W , Vi]| ≥ k − 2 for i = 1, . . . , 2l + 1,
3. |[Ui, Ui+1]| ≥ k−1

2 for i = 1, . . . , 2l + 1,
4. |[Vi, Vi+1]| ≥ 1 for i = 1, . . . , 2l + 1,
5. |[Vi, Ui]| ≥ 1 and |[Vi, Ui−1]| ≥ 1 for i = 1, . . . , 2l + 1

(see Fig. 2 for an illustration with k = 5 and l = 2).

Let Fi be an edge subset of [W , Vi] such that |Fi| = k − 2,
i = 1, . . . , 2l +1 and let F = ⋃2l+1

i=1 Fi. Then the F-partition
inequality

x(δ(π) \ F) ≥ l(k + 2) +
⌈

k

2

⌉
+ 1, (2.19)

induced by π and F, defines a facet of kECSP(G).

18 NETWORKS—2010—DOI 10.1002/net

FIG. 2. An F-partition configuration with k = 5. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.
com.]

Proof. See Appendix. ■

We now describe special cases in which inequalities (2.18)
define facets when k is even. Consider a graph G = (V , E) and
an even integer k = 2q with q ≥ 1, a generalized odd-wheel
configuration is given by an integer l ≥ 1, a set of posi-
tive integers {p1, . . . , p2l+1} and a partition π = (V0, Vs

i , i =
1, . . . , 2l + 1, s = 0, . . . , pi) of V such that

1. G[V0] and G[Vs
i] are (k + 1)-edge connected, for s =

1, . . . , pi and i = 1, . . . , 2l + 1,
2. |[V0

i , V0
i+1]| ≥ 2q for i = 1, . . . , 2l + 1,

3. |[Vs
i , Vs+1

i]| ≥ 2q for s = 0, . . . , pi and i = 1, . . . , 2l+1,
4. [Vs

i , Vt
i] = ∅ for s, t ∈ {1, . . . , pi}, |s − t| > 1 and

(s, t) �= (0, pi + 1), and i = 1, . . . , 2l + 1,
5. [Vs

i , Vt
t] = ∅ for s ∈ {1, . . . , pi}, t ∈ {1, . . . , pt}, i, t ∈

{1, . . . , 2l + 1}, i �= t (see Fig. 3).

Let F0
i be an edge subset of [V0, Vpi

i] of q (respectively

q−1) edges if q is odd (respectively even) and F = ⋃2l+1
i=1 F0

i .
With a generalized odd-wheel configuration with q odd

(respectively even) we associate the following F-partition
inequality induced by the partition π and F,

x(δ(π) \ F) ≥ q
2l+1∑
i=1

pi + ql + q + 1

2
,

(
respectively x(δ(π) \ F) ≥ q

2l+1∑
i=1

pi + (q + 1)l + q + 2

2

)
.

(2.20)

Inequalities of type (2.20) will be called generalized odd-
wheel inequalities. We have the following theorem given
without proof, since it follows the same line as that of
Theorem 2.5.

Theorem 2.6. Inequalities (2.20) define facets of
kECSP(G).

2.4. SP-Partition Inequalities

In [7], Chopra introduces a class of valid inequalities for
the kECSP when the graph G is outerplanar, k is odd, and
each edge can be used more than once. Let G = (V , E) be
an outerplanar graph and k ≥ 1 an odd integer. He showed
that if π = (V1, . . . , Vp), p ≥ 2, is a partition of V , then the
inequality

x(δ(V1, . . . , Vp)) ≥
⌈

k

2

⌉
p − 1, (2.21)

is valid for kECSP(G).
Didi Biha and Mahjoub [14] extended this result for gen-

eral graphs and when each edge can be used at most once.
They showed that if G is a graph and π = (V1, . . . , Vp),
p ≥ 2, is a partition of V such that Gπ is series-parallel, then
inequality (2.21) is valid for kECSP(G). They called inequal-
ities (2.21) SP-partition inequalities. They also described
necessary conditions for inequality (2.21) to be facet defin-
ing, and showed that if G is series-parallel and k is odd,
then kECSP(G) is defined by the trivial, cut and SP-partition
inequalities. Further necessary conditions for inequalities
(2.21) to be facet defining are given in [13]. In particular,
Diarrassouba and Slama [13] showed the following.

Theorem 2.7 [13]. Let G = (V , E) be a (k + 1)-edge con-
nected graph and k ≥ 3 an odd integer. Let π = (V1, . . . , Vp),
p ≥ 2, be a partition of V such that Gπ is series-parallel. If
the SP-partition inequality induced by π defines a facet of
kECSP(G) different from the trivial inequalities then

1. |[Vi, Vi+1]| ≥ ⌈
k
2

⌉
for i = 1, . . . , p,

2. Gπ is outerplanar.

Note that the indices are taken modulo p. The follow-
ing theorem gives some sufficient conditions for inequalities
(2.21) to be facet defining.

FIG. 3. A generalized odd-wheel configuration with k = 4. [Color figure
can be viewed in the online issue, which is available at www.interscience.
wiley.com.]

NETWORKS—2010—DOI 10.1002/net 19

FIG. 4. An outerplanar configuration with k = 3.

Theorem 2.8. Let G = (V , E) be a graph and k ≥ 3 an
odd integer. Let π = (V1, . . . , Vp), p ≥ 2, be a partition of V
such that Gπ is outerplanar. Then the SP-partition inequality
induced by π is facet defining for kECSP(G) if the following
conditions hold

1. G[Vi] is (k + 1)-edge connected for i = 1, . . . , p,
2. |[Vi, Vi+1]| ≥ ⌈

k
2

⌉
, i = 1, . . . , p

(see Fig. 4 for an illustration with k = 3).

Proof. See Appendix. ■

Chopra [7] described a lifting procedure for inequalities
(2.21) which can be presented as follows. Let G = (V , E) be
a graph and k ≥ 3 an odd integer. Let G′ = (V , E ∪ L) be
a graph obtained from G by adding an edge set L. Let π =
(V1, . . . , Vp) be a partition of V such that Gπ is series-parallel.
Then the following inequality is valid for kECSP(G′)

x(δG(V1, . . . , Vp)) +
∑

e∈L∩δG′ (V1,...,Vp)

a(e)x(e) ≥
⌈

k

2

⌉
p − 1,

(2.22)

where a(e) is the length (in terms of edges) of a short-
est path in Gπ between the endnodes of e, for all e ∈
L ∩ δG′(V1, . . . , Vp).

We will call inequalities of type (2.22) lifted SP-partition
inequalities. Chopra [7] also showed that, when G is outer-
planar, inequality (2.22) defines a facet of kECSP(G′) if G is
maximal outerplanar, that is to say G is outerplanar and if we
add a new edge in G the new graph is not outerplanar. This
procedure can be easily extended to the case when each edge
can be used at most once.

2.5. Partition Inequalities

In this section, we present a further class of inequalities,
valid for kECSP(G), introduced by Grötschel et al. in [25],

that generalizes the cut inequalities. These inequalities, called
partition inequalities, are defined as follows.

Let π = (V1, . . . , Vp), p ≥ 3, be a partition of V . The
partition inequality induced by π is given by

x(δ(V1, . . . , Vp)) ≥
⌈

kp

2

⌉
. (2.23)

If kp is even, then inequality (2.23) is redundant with
respect to the cut inequalities. Grötschel et al. [25] gave suf-
ficient conditions for the partition inequalities (2.23) to be
facet defining.

Note that the partition inequalities are not a special case of
the F-partition inequalities. In fact, if we consider a partition
π = (V0, V1, . . . , Vp), p ≥ 2, the partition inequality induced
by π is

x(δ(V0, V1, . . . , Vp)) ≥
⌈

k(p + 1)

2

⌉
. (2.24)

However, the F-partition inequality induced by π and F = ∅
is given by

x(δ(V0, V1, . . . , Vp)) ≥
⌈

kp

2

⌉
. (2.25)

One can remark that inequality (2.24) dominates inequality
(2.25).

3. REDUCTION OPERATIONS

In this section, we are going to describe some graph reduc-
tion operations which will be utile for our Branch-and-Cut
algorithm. These operations are based on the concept of crit-
ical extreme points of P(G, k) introduced by Fonlupt and
Mahjoub [18] for k = 2 and extended by Didi Biha and
Mahjoub [16] for k ≥ 3.

Before describing these operations, we shall first introduce
some notation and definition. Let G = (V , E) be a graph and
k ≥ 2 an integer. If x̄ is a solution of P(G, k), we will denote
by E0(x̄), E1(x̄) and Ef (x̄) the sets of edges e ∈ E such that
x̄(e) = 0, x̄(e) = 1 and 0 < x̄(e) < 1, respectively. We also
denote by Cd(x̄) the set of degree tight cuts δ(u) such that
δ(u) ∩ Ef (x̄) �= ∅, and by Cp(x̄) the set of proper tight cuts
δ(W) with δ(W) ∩ Ef (x̄) �= ∅. Let x̄ be an extreme point of
P(G, k). Thus there is a set of cuts C∗

p (x̄) ⊆ Cp(x̄) such that
x̄ is the unique solution of the system

S(x̄)

x(e) = 0 for all e ∈ E0(x̄);
x(e) = 1 for all e ∈ E1(x̄);
x(δ(u)) = k for all δ(u) ∈ Cd(x̄);
x(δ(W)) = k for all δ(W) ∈ C∗

p (x̄).

Note that the system S(x̄) cannot contain an equation
x(δ(W)) = k such that δ(W) ∩ Ef (x̄) = ∅. Such an equa-
tion is redundant with respect to x(e) = 0, e ∈ E0(x̄), and
x(e) = 1, e ∈ E1(x̄).

Suppose that x̄ is fractional. Let x̄′ be a solution obtained
by replacing some (but at least one) fractional components

20 NETWORKS—2010—DOI 10.1002/net

of x̄ by 0 or 1 (and keeping all the other components of x̄
unchanged). If x̄′ is a point of P(G, k), then it can be written
as a convex combination of extreme points of P(G, k). If ȳ
is such an extreme point, then ȳ is said to be dominated by
x̄, and we write x̄ � ȳ. Note that if x̄ dominates ȳ, then
{e ∈ E | 0 < ȳ(e) < 1} ⊂ {e ∈ E | 0 < x̄(e) < 1}, {e ∈
E | x̄(e) = 0} ⊆ {e ∈ E | ȳ(e) = 0} and {e ∈ E | x̄(e) = 1} ⊆
{e ∈ E | ȳ(e) = 1}. The relation � defines a partial ordering
on the extreme points of P(G, k). The minimal elements of
this ordering (i.e., the extreme points x for which there is no
extreme point y such that x � y) correspond to the integer
extreme points of P(G, k). The minimal extreme points of
P(G, k) are called extreme points of rank 0. An extreme point
x is said to be of rank p, if x only dominates extreme points
of rank ≤ p − 1 and if it dominates at least one extreme
point of rank p − 1. We notice that if x̄ is an extreme point of
rank 1 and if we replace one fractional component of x̄ by 1,
keeping unchanged the other integral components, we obtain
a feasible solution x̄′ of P(G, k) which can be written as a
convex combination of integer extreme points of P(G, k).

Didi Biha and Mahjoub [16] introduced the following
reduction operations with respect to a solution x̄ of P(G, k).

θ1: delete an edge e ∈ E such that x̄(e) = 0;
θ2: contract a node subset W ⊆ V such that G[W] is k-edge

connected and x̄(e) = 1 for all e ∈ E(W);
θ3: contract a node subset W ⊆ V such that |W | ≥ 2, |W̄ | ≥

2, |δ(W)| = k, and E(W̄) contains at least one edge with
fractional value;

θ4: contract a node subset W ⊆ V such that |W | ≥ 2, |W̄ | ≥ 2,
G[W] is

⌈
k
2

⌉
-edge connected, |δ(W)| = k + 1, and x̄(e) = 1

for all e ∈ E(W).

Starting from a graph G and a solution x̄ ∈ P(G, k) and
applying θ1, θ2, θ3, θ4, we obtain a reduced graph G′ and a
solution x̄′ ∈ P(G′, k). Didi Biha and Mahjoub [16] showed
that x̄′ is an extreme point of P(G′, k) if and only if x̄ is
an extreme point of P(G, k). Moreover, they showed the
following results.

Lemma 3.1. [16] x̄′ is an extreme point of rank 1 of P(G′, k)

if and only if x̄ is an extreme point of rank 1 of P(G, k).

Lemma 3.2. [16] If C∗
p (x̄) = ∅, then the graph induced by

Ef (x̄) is an odd cycle C ⊆ E such that

1. x̄(e) = 1
2 for all e ∈ C,

2. x̄(δ(u)) = k for all u ∈ V(C).

An extreme point x̄ of P(G, k) will be said critical if it
is of rank 1 and none of the operations θ1, θ2, θ3, θ4 can be
applied to it. If such an extreme point satisfies the assump-
tion of Lemma 3.2, then it violates the following F-partition
inequality ∑

e∈C

x(e) ≥ |C| + 1

2
.

Hence, the critical extreme points of P(G, k) that satisfy
the assumption of Lemma 3.2 can be separated in polynomial
time.

We will use operations θ1, θ2, θ3, θ4 in our Branch-and-
Cut algorithm for the kECSP. As we will see, we use them as
a preprocessing for the separation procedures.

4. A BRANCH-AND-CUT ALGORITHM FOR
THE k ECSP

In this section, we describe a Branch-and-Cut algorithm
for the kECSP. Our aim is to address the algorithmic appli-
cations of the theoritical results presented in the previous
sections and describe some strategic choices made in order
to solve that problem. So, let us assume that we are given
a graph G = (V , E) and a weight vector w ∈ R

E associ-
ated with the edges of G. Let k ≥ 3 be the connectivity
requirement for each node of V .

Given a fractional solution x̄ of P(G, k), we let G′ =
(V ′, E′) and x̄′ be obtained by repeated applications of opera-
tions θ1, θ2, θ3, θ4 with respect to x̄. As pointed out above, x̄′
is an extreme point of P(G′, k) if and only if x̄ is an extreme
point of P(G, k). Moreover, we have the following lemmas
which can be easily seen.

Lemma 4.1. Let a′x ≥ α be an F-partition inequal-
ity (respectively partition inequality) valid for kECSP(G′)
induced by a partition π ′ = (V ′

0, V ′
1, . . . , V ′

p), p ≥ 2,
(respectively π ′ = (V ′

1, . . . , V ′
p), p ≥ 3) of V ′. Let π =

(V0, V1, . . . , Vp), p ≥ 2, (respectively π = (V1, . . . , Vp),
p ≥ 3) be the partition of V obtained by expanding the subsets
V ′

i of π ′. Let ax ≥ α be an inequality such that

a(e) =

a′(e) for all e ∈ E′,
1 for all e ∈ (E \ E′) ∩ δG(π),
0 otherwise.

Then ax ≥ α is valid for kECSP(G). Moreover, if a′x ≥ α

is violated by x̄′, then ax ≥ α is violated by x̄.

Lemma 4.2. Let a′x ≥ α be an odd path inequality
(respectively SP-partition inequality) valid for kECSP(G′)
induced by a partition π ′ = (W ′

1, W ′
2, V ′

1, . . . , V ′
2p),

p ≥ 2 (respectively π = (V ′
1, . . . , V ′

p), p ≥ 3). Let
π = (W1, W2, V1, . . . , V2p), p ≥ 2 (respectively π =
(V1, . . . , Vp), p ≥ 3), be the partition of V obtained by
expanding the elements of π ′. Let ax ≥ α be the correspond-
ing lifted odd path inequality (respectively lifted SP-partition
inequality) obtained from a′x ≥ α by application of the lift-
ing procedure described in Section 2.2 (respectively Section
2.4) for the edges of E \ E′. Then ax ≥ α is violated by x̄, if
a′x ≥ α is violated by x̄′.

Lemmas 4.1 and 4.2 show that looking for an odd path,
F-partition, SP-partition, or a partition inequality violated by
x̄ reduces to looking for such inequality violated by x̄′ on G′.
Note that this procedure can be applied for any solution of

NETWORKS—2010—DOI 10.1002/net 21

P(G, k) and may, in consequence, permit to separate frac-
tional solutions which are not necessarily extreme points of
P(G, k). In consequence, for more efficiency, our separation
procedures will be performed on the reduced graph G′. The
violated inequalities generated in G′ with respect to x̄′ are
lifted to violated inequalities in G with respect to x̄ using
Lemmas 4.1 and 4.2.

We now describe the framework of our algorithm. To start
the optimization we consider the following linear program
given by the degree cuts associated with the vertices of the
graph G together with the trivial inequalities, that is

Min
∑
e∈E

w(e)x(e)

x(δ(u)) ≥ k for all u ∈ V ,

0 ≤ x(e) ≤ 1 for all e ∈ E.

The optimal solution ȳ ∈ R
E of this relaxation of the

kECSP is feasible for the problem if ȳ is an integer vector
that satisfies all the cut inequalities. Usually, the solution ȳ is
not feasible for the kECSP, and thus in each iteration of the
Branch-and-Cut algorithm, it is necessary to generate fur-
ther inequalities that are valid for the kECSP but violated
by the current solution ȳ. For this, one has to solve the so-
called separation problem. This consists, given a class of
inequalities, in deciding whether the current solution ȳ stat-
isfies all the inequalities of this class, and if not, in finding
an inequality that is violated by ȳ. An algorithm solving this
problem is called a separation algorithm. The Branch-and-
Cut algorithm uses the inequalities previously described and
their separations are performed in the following order

1. cut inequalities,
2. SP-partition inequalities,
3. odd path inequalities,
4. F-partition inequalities,
5. partition inequalities.

We remark that all inequalities are global (i.e., valid for
all the Branch-and-Cut tree) and several inequalities may be
added at each iteration. Moreover, we go to the next class of
inequalities only if we haven’t found any violated inequalities
in the current class. Our strategy is to try to detect violated
inequalities at each node of the Branch-and-Cut tree to obtain
the best possible lower bound and thus limit the number of
generated nodes. Generated inequalities are added by sets of
200 or fewer at a time.

Now we describe the separation procedures used in our
Branch-and-Cut algorithm. These are all heuristic proce-
dures except that for the cut inequalities which is performed
using an exact polynomial-time algorithm. The procedures
are applied on G′ with weights (ȳ′(e), e ∈ E′) associated
with its edges where ȳ′ is the restriction on E′ of the current
LP-solution ȳ (G′ and ȳ′ are obtained by repeated applications
of operations θ1, θ2, θ3, θ4).

The separation of the cut inequalities (1.3) can be per-
formed by computing minimum cuts in G′. This can be done

in polynomial time using Gusfield algorithm [27]. This algo-
rithm produces the so-called Gomory-Hu tree [23] with the
property that for all pairs of nodes s, t ∈ V ′, the minimum
(s, t)-cut in the tree is also a minimum (s, t)-cut in the graph
G′. The algorithm requires |V ′| − 1 maximum flow com-
putations. The maximum flow computations are handled by
the efficient Goldberg and Tarjan algorithm [22] that runs in
O(m′n′ log n′2

m′) time where m′ and n′ are the number of edges
and nodes of G′, respectively. Thus our separation algorithm
for the cut inequalities is exact and runs in O(m′n′2 log n′2

m′)

time.
In what follows, we consider the separation of the odd path

inequalities (2.1). For this, we need the following lemma.

Lemma 4.3. Let x ∈ R
E be a fractional solution of P(G, k)

and π = (W1, W2, V1, . . . , V2p), p ≥ 2, a partition of V,
which induces an odd path configuration. If each edge set
[Vi, Vi+1], i = 1, . . . , 2p−1, contains an edge with fractional
value and

x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1 for i = 2, . . . , 2p − 1,

then the odd path inequality induced by π is violated by x.

Proof. As x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1, i =
2, . . . , 2p − 1, we have that

x([V2s−1, V2s]) + x([V2s, V2s+1]) ≤ 1 for s = 1, . . . , p − 1,
(4.1)

x([V2s, V2s+1]) + x([V2s+1, V2s+2])≤1 for s = 1, . . . , p − 1.
(4.2)

By multiplying inequality (4.1) by p−s
p and inequality (4.2)

by s
p and summing the resulting inequalities, we obtain

∑
i∈I

x([Vi, Vi+1]) +
∑
i∈Ī

p − 1

p
x([Vi, Vi+1]) ≤ p − 1, (4.3)

where I = {2, 4, 6, . . . , 2p−2} and Ī = {1, 2, . . . , 2p−1}\ I .
Because each set [Vi, Vi+1], i = 1, . . . , 2p − 1, contains an
edge with fractional value, we have that x([Vi, Vi+1]) < 1 for
all i ∈ Ī . Hence ∑

i∈Ī

x([Vi, Vi+1]) < p. (4.4)

By multiplying inequality (4.4) by 1
p and summing the

resulting inequality and inequality (4.3), we obtain

2p−1∑
i=1

x([Vi, Vi+1]) < p,

and the result follows. ■

Our separation heuristic is based on Lemma 4.3. The idea
is to find a partition π = (W ′

1, W ′
2, V ′

1, . . . , V ′
2p), p ≥ 2, which

22 NETWORKS—2010—DOI 10.1002/net

induces an odd path configuration that satisfies the conditions
of Lemma 4.3. The procedure works as follows. We first look,
using a greedy method, for a path � = {e1, . . . , e2p−1}, p ≥ 2,
in G′ such that the edges e1, . . . , e2p−1 have fractional values
and ȳ′(ei−1)+ ȳ′(ei) ≤ 1, for i = 2, . . . , 2p−1. If v′

1, . . . , v′
2p

are the nodes of � taken in this order when going through
�, we let V ′

i = {v′
i}, i = 1, . . . 2p, and T1 = (

⋃
i∈I1

V ′
i) ∪

V ′
1 (respectively T1 = (

⋃
i∈I1

V ′
i) ∪ V ′

1 ∪ V ′
2p) if p is odd

(respectively even), and T2 = (
⋃

i∈I2
V ′

i) ∪ V ′
2p (respectively

T2 = (
⋃

i∈I2
V ′

i)) if p is odd (respectively even) where I1 and
I2 are as defined in Section 2.1. In order to determine W ′

1 and
W ′

2, we compute a minimum cut separating T1 and T2. If δ(W)

is such a cut with T1 ⊆ W , we let W ′
1 = W \ T1 and W ′

2 =
V ′ \ (W ∪ T2). If the partition π = (W ′

1, W ′
2, V ′

1, . . . , V ′
2p)

thus obtained induces an odd path configuration, then, by
Lemma 4.3, the corresponding odd path inequality is violated
by ȳ′. If not, we apply again that procedure by looking for an
other path. In order to avoid the detection of the same path,
we label the edges of the detected paths so that they won’t
appear again when searching for a new path. This procedure
is iterated until either a violated odd path inequality is found
or all the edges, having fractional values, are labeled. The
routine that permits to look for an odd path runs in O(m′n′)
time. To compute the minimum cut separating T1 and T2, we
use Goldberg and Tarjan algorithm [22]. Since this algorithm
runs in O(m′n′log n′2

m′) time, our procedure is implemented to

run in O(m′2n′ log n′2
m′) time.

In the lifting procedure for inequalities (2.1) given in
Section 2.2 we have to compute a coefficient λ for some
edges e ∈ E \ E′. As the computation of this coefficient is
itself a hard problem, and λ ≤ 2, we consider 2 as lifting
coefficient for those edges rather than λ.

Now we discuss our separation procedure for the F-
partition inequalities (2.18). These inequalities can be sep-
arated in polynomial time using the algorithm of Baïou et al.
[2] when k is even and the edge set F is fixed. For the general
case, we devised three heuristics to separate them.

Our first heuristic is based on Lemma 3.2. As pointed out
by that lemma, if x̄ is a critical extreme point of P(G, k) such
that C∗

p (x̄) = ∅, then the edges having fractional values with

respect to x̄ have all a value equal to 1
2 and form an odd cycle

C. Moreover, x̄(δ(u)) = k for all u ∈ V(C) and

∑
e∈C

x(e) ≥ |C| + 1

2
,

is an F-partition inequality violated by x̄. The heuristic works
as follows. It starts by determining an odd cycle in G′ whose
edges have fractional value and nodes are tight. Let v′

1, . . . , v′
p,

p ≥ 3, be the nodes involved in this cycle. Then we let
V ′

i = {v′
i}, for i = 1, . . . , p, and V ′

0 = V ′ \ {v′
1, . . . , v′

p}.
We choose the edges of F among those of δ(V ′

0) having val-
ues greater than 1

2 and in such a way that |F| and kp have
different parities (if such an edge set F is empty then we
look for an other partition). The cycle is obtained by a direct
labeling procedure. Hence the heuristic runs in a linear time.

Before introducing our second heuristic, we first give the
following lemma.

Lemma 4.4. Let x ∈ R
E be a fractional solution of P(G, k)

and π = (V0, V1, . . . , Vp), p ≥ 2, a partition of V such that
x(δ(Vi)) = k for i = 1, . . . , p. Then an F-partition inequality,
induced by π and an edge set F ⊆ δ(V0) such that |F| and
kp have different parities is violated by x if the following
inequality holds

|F| − x(F) + x(δ(V0) \ F) < 1. (4.5)

Proof. As x(δ(Vi)) = k, i = 1, . . . , p, we have that

p∑
i=1

x(δ(Vi)) = 2x(δ(V1, . . . , Vp)) + x(δ(V0)) = kp.

This together with (4.5) yield

−2x(F) + 2x(δ(V0)) + 2x(δ(V1, . . . , Vp)) < kp − |F| + 1,

and thus the statement follows. ■

The heuristic is based on Lemma 4.4. It starts by deter-
mining all the nodes u of V ′ such that ȳ′(δ(u)) = k and
δ(u) contains at least one edge with fractional value. Let
{v′

1, . . . , v′
p}, p ≥ 2, be the set of such nodes. We con-

sider the partition (V ′
0, V ′

1, . . . , V ′
p) such that V ′

i = {v′
i}, for

i = 1, . . . , p, and V ′
0 = V ′ \ {v1, . . . , vp}, and choose the

edges of F in a similar way as in the first heuristic. If inequal-
ity (4.5) holds with respect to F and V ′

0, then by Lemma 4.4
the F-partition inequality corresponding to (V ′

0, V ′
1, . . . , V ′

p)

and F is violated by ȳ′.
Before presenting our last heuristic for the F-

partition inequalities, let us first remark that a partition
(V ′

0, V ′
1, . . . , V ′

p) and an edge set F ⊆ δ(V ′
0) may induce

a violated F-partition inequality if ȳ′(δ(V ′
0)) is high and

the edges of F are among those of δ(V ′
0) with high val-

ues. Our heuristic tries to find such a partition. For this,
we first compute a Gomory-Hu tree in G′ with the weights
(1 − ȳ′(e), e ∈ E′) associated with its edges. Then from
each proper cut δ(W) with V ′ \ W = {v′

1, . . . , v′
p}, p ≥ 2,

obtained from the Gomory-Hu tree, we consider the partition
π = (V ′

0, V ′
1, . . . , V ′

p) such that V ′
i = {v′

i}, for i = 1, . . . , p,
and V ′

0 = W . The edge set F is chosen in a similar way
as in the previous heuristics. Since the computation of the
Gomory-Hu tree can be done in O(m′n′2 log n′2

m′) time, the

heuristic runs in O(m′n′2 log n′2
m′).

These three heuristics are applied in the Branch-and-Cut
algorithm in that order.

Now we turn our attention to the separation of the
SP-partition inequalities (2.21). These inequalities can be
separated in polynomial time using the algorithm of Baöu
et al. [2] when G′ is series-parallel. That algorithm uses a
reduction of the separation problem to the minimization of a
submodular function. Recently, Didi Biha et al. [17] devised
a pure combinatorial algorithm for the separation of the SP-
partition inequalities when the graph is series-parallel. For

NETWORKS—2010—DOI 10.1002/net 23

our purpose, we devised a heuristic to separate inequali-
ties (2.21) in the general case. This heuristic is based on
Theorems 2.7 and 2.8. The main idea of the heuristic is to
determine a partition π = (V ′

1, . . . , V ′
p), p ≥ 3, of V ′ which

induces an outerplanar graph such that |[V ′
i , V ′

i+1]| ≥
⌈

k
2

⌉
,

i = 1, . . . , p, (modulo p) (see Fig. 4), and for every con-
secutive sets V ′

i and V ′
j , the edge set [V ′

i , V ′
j] contains at

least one edge with fractional value. To this end, we look
in G′ for a path � = {v′

1v′
2, v′

2v′
3, . . . , v′

p−2v′
p−1}, p ≥ 3, such

that |[v′
i, v′

i+1]| ≥
⌈

k
2

⌉
and [v′

i, v′
i+1] contains one edge or

more with fractional value, for i = 1, . . . , p − 2. We then let
V ′

i = {v′
i}, i = 1, . . . , p − 1, and V ′

p = V ′ \ {v′
1, . . . , v′

p−1}.
Afterward, we check by a simple heuristic if the graph G′

π is
outerplanar. Finally, we check if the SP-partition inequality
induced by π is violated by ȳ′ or not. If either the graph G′

π

is not outerplanar or the SP-partition inequality, induced by
π , is not violated by ȳ′, we apply again this procedure by
looking for an other path. In order to avoid the detection of
the same path, we label the nodes we met during the search
of the previous ones, so that they would not be considered in
the search of a new path. This process is iterated until either
we find a violated SP-partition inequality or all the nodes of
V ′ are labeled. The heuristic can be implemented to run in
O(m′n′) time.

Now we discuss the separation of the partition inequalities
(2.23). First observe that if π = (V ′

1, . . . , V ′
p) is a partition

of V ′, with p ≥ 3 and odd, such that ȳ′(δ(V ′
i)) = k, for i =

1, . . . , p, then the partition inequality induced by π is violated
by ȳ′. Thus one can devise a heuristic to separate inequalities
(2.23) which consists in finding a partition π = (V ′

1, . . . , V ′
p),

with p ≥ 3 and odd, such that ȳ′(δ(V ′
i)) is as small as possible

for i = 1, . . . , p. To do this, we compute a Gomory-Hu tree,
say T , in G′ with the weights (ȳ′(e), e ∈ E′) associated with
its edges. After that, we contract the disjoint node subsets
that induce proper tight cuts in T . Let V ′

1, . . . , V ′
t be these

sets and {vt+1, . . . , vp} = V ′ \ (
⋃t

i=1 V ′
i). We then consider

the partition (V ′
1, . . . , V ′

t , {vt+1}, . . . , {vp}) and check whether
or not the corresponding partition inequality is violated by ȳ′.
This algorithm leads to an O(m′n′2 log n′2

m′) time complexity.
To store the generated inequalities, we create a pool whose

size increases dynamically. All the generated inequalities are
put in the pool and are dynamic, i.e., they are removed from
the current LP when they are not active. We first separate
inequalities from the pool. If all the inequalities in the pool are
satisfied by the current LP-solution, we separate the classes
of inequalities in the order given earlier.

Another important issue in the effectiveness of the Branch-
and-Cut algorithm is the computation of a good upper bound
at each node of the Branch-and-Cut tree. To do this, if the
separation procedures do not generate any violated inequality
and the current solution ȳ is still fractional, then we transform
ȳ into a feasible solution of the kECSP, say ˆ̄y, by rounding up
to 1 all the fractional components of ȳ. We then try to reduce
the weight of the solution thus obtained by removing from
the subgraph H = (V , Ê) induced by ˆ̄y some unecessary

edges, that is to say edges which do not affect the k-edge
connectedness of H. To this end, we remove from Ê each edge
e = uv such that |δ(u) ∩ Ê| ≥ k +1 and |δ(v) ∩ Ê| ≥ k +1.
We then check if the resulting edge set, say Ê′, induces a k-
edge connected subgraph of G by computing a Gomory-Hu
tree. If there exists in Ê′ a cut δ(W), W ⊆ V , containing less
than k edges, then we add in Ê′ edges of [W , V\W]\δ(W) that
have been previously removed from Ê as many as necessary
in order to satisfy the cut δ(W). We do this until the graph
(V , Ê′) becomes k-edge connected. Note that we add to each
violated cut the edges having the smallest weights.

5. COMPUTATIONAL RESULTS

The Branch-and-Cut algorithm described in the previous
section has been implemented in C++, using ABACUS 2.4
alpha [1,36] to manage the Branch-and-Cut tree, and CPLEX
9.0 [11] as LP-solver. It was tested on a Pentium IV 3.4 Ghz
with 1 Gb of RAM, running under Linux. We fixed the max-
imum CPU time to 5 h. The test problems were obtained by
taking TSP test problems from the TSPLIB library [37]. The
test set consists in complete graphs whose edge weights are
the rounded euclidian distance between the edge’s vertices.
The tests were performed for k = 3, 4, 5. In all our experi-
ments, we have used the reduction operations described in the
previous sections, unless otherwise specified. Each instance
is given by its name followed by an extension representing
the number of nodes of the graph. The other entries of the
various tables are:

NCut : number of generated cut inequalities;
NSP : number of generated SP-partition inequalities;
NOP : number of generated odd path inequalities;
NFP : number of generated F-partition inequalities;
NP : number of generated partition inequalities;
COpt : weight of the optimal solution obtained;
Gap1 : the relative error between the best upper bound (the
optimal solution if the problem has been solved to optimality)
and the lower bound obtained at the root node of the Branch-
and-Cut tree using only the cut and the trivial inequalities;
Gap2 : the relative error between the best upper bound (the
optimal solution if the problem has been solved to optimality)
and the lower bound obtained at the root node of the Branch-
and-Cut tree;
NSub : number of subproblems in the Branch-and-Cut tree;
TT : total CPU time in hours:min:sec.

The instances indicated with “*” are those whose CPU
time exceeded 5 h. For these instances, the gap is indicated
in italic.

Our first series of experiments concerns the kECSP for
k = 3. The instances we have considered have graphs with
14 up to 318 nodes. The results are summarized in Table 1.
It appears from Table 1 that all the instances have been
solved to optimality within the time limit except the last five
instances. Also we have that four instances (burma14, gr21,
fri26, brazil58) have been solved in the cutting plane phase
(i.e., no branching is needed). For most of the other instances,
the relative error between the lower bound at the root node of
the Branch-and-Cut tree and the best upper bound (Gap2) is

24 NETWORKS—2010—DOI 10.1002/net

TABLE 1. Results for k = 3 with reduction operations.

Instance NCut NSP NOP NFP NP COpt Gap1 Gap2 NSub TT

burma14 4 3 0 0 4 5,530 4.67 0.00 1 0:00:01
ulysses16 5 7 1 15 7 11,412 1.17 0.39 3 0:00:11
gr21 5 6 1 0 2 4,740 1.65 0.00 1 0:00:01
fri26 9 5 0 0 0 1,543 1.30 0.00 1 0:00:01
bayg29 14 16 2 33 2 2,639 1.76 0.19 7 0:00:01
dantzig42 41 31 6 90 18 1,210 2.27 0.68 71 0:00:07
att48 34 34 5 60 9 17,499 1.83 0.56 61 0:00:06
berlin52 36 31 12 97 6 12,601 1.66 0.45 33 0:00:03
brazil58 46 42 2 36 29 42,527 2.67 0.00 1 0:00:05
eil76 9 12 3 298 2 876 0.63 0.06 7 0:00:03
pr76 130 207 72 2,231 54 187,283 3.9 1.50 6767 0:35:32
rat99 41 26 13 341 23 2,029 1.26 0.38 41 0:00:47
kroA100 170 197 31 1,207 57 36,337 4.64 0.97 4201 0:54:06
kroB100 130 114 37 830 47 37,179 2.61 0.73 723 0:08:00
rd100 101 74 11 418 18 13,284 1.91 0.43 171 0:03:37
eil101 86 72 21 3,604 15 1,016 1.06 0.55 1109 0:17:41
lin105 179 198 47 829 68 25,530 3.66 0.69 1031 0:22:39
pr107 201 190 34 674 114 70,852 2.48 0.84 2071 1:26:49
gr120 50 45 6 588 17 11,442 1.12 0.19 99 0:11:15
bier127 46 59 4 276 13 198,184 1.50 0.15 11 0:01:55
ch130 121 132 30 1,355 40 10,400 2.27 0.55 1693 1:05:05
ch150 92 93 19 588 22 11,027 2.04 0.41 193 0:20:31
kroA150 155 143 41 845 47 44,718 2.27 0.53 1205 1:16:35
kroB150 130 110 16 952 48 43,980 2.26 0.31 437 0:38:43
rat195 24 19 3 514 1 3,934 0.48 0.06 7 0:08:21
d198 171 105 23 617 59 25,624 2.00 0.21 159 1:04:19
gr202 77 69 14 558 22 65,729 1.02 0.11 69 0:13:16
*pr226 364 248 35 162 41 — 11.05 9.02 261 5:00:00
*gr229 179 245 23 1,568 94 — 2.43 1.00 1219 5:00:00
*pr264 275 181 145 668 62 — 12.56 12.29 69 5:00:00
*a280 142 84 56 2,539 59 — 3.73 2.69 459 5:00:00
*lin318 189 147 15 610 58 — 6.5 4.94 25 5:00:00

less than 1%. We also observe that our separation procedures
detect a large enough number of SP-partition and F-partition
inequalities and seem to be quite efficient.

Our second series of experiments concerns the kECSP
with k = 4, 5. The results are given in Table 2 for k = 4 and
Table 3 for k = 5. The instances considered have graphs with
52 up to 561 nodes. Note that for k = 4, the SP-partition and
partition inequalities are redundant with respect to the cut
inequalities (1.3). Thus these inequalities are not considered
in the resolution process for k = 4, and therefore do not
appear in Table 2.

First observe that for k = 4, the CPU time for all the
instances is relatively small and most of the instances have
been solved in less than 1 min. We can also observe that 23
instances over 27 are solved in the cutting plane phase. More-
over, a few number of odd path inequalities are generated.
However a large enough number of F-partition inequalities
is detected. Thus these latter inequalities seem to be very
effective for solving the kECSP when k is even. This also
shows that the kECSP is easier to solve when k is even, what
is also confirmed by the results of Table 3 for k = 5. In fact,
the instance pr264 has been solved for k = 4 in 1 s, whereas
it could not be solved to optimality for k = 5 after 5 h. The
same observation can be done for pr439. Also, we can remark
that the CPU time for all the instances when k = 5 is higher

than that when k = 4. For instance, the test problem d198
has been solved in 1 h 50 mn when k = 5, whereas only 16 s
were needed to solve it for k = 4.

Compared with Tables 1, 2, and 3 also show that, for the
same parity of k, the kECSP becomes easier to solve when k
increases. In fact, with k = 3, we could not solve to optimality
instances with more than 202 nodes, whereas for k = 5, we
could solve larger instances.

The results for k = 3, 4, 5 can also be compared with those
obtained by Kerivin et al. [30] for the 2ECSP. It turns out that
for the same instances, the problem has been easier to solve
for k = 2 than for k = 3. However, for k = 4 the problem
appeared to be easier to solve than for k = 2. This shows
again that the case when k is odd is harder to solve than that
when k is even and that the problem becomes easier when k
increases with the same parity.

To evaluate the impact of the reduction operations θ1, θ2,
θ3, θ4 on the separation procedures, we tried to solve the
kECSP, for k = 3, without using them. The results are given
in Table 4.

As it appears from Tables 1 and 4, the CPU time increased
for the majority of the instances when the reduction oper-
ations are not used. In particular, for the instance pr107,
without the reduction operations, we could not reach the opti-
mal solution after 5 h, whereas with the reduction operations,

NETWORKS—2010—DOI 10.1002/net 25

TABLE 2. Results for k = 4.

Instance NCut NOP NFP COpt Gap2 NSub TT

berlin52 5 0 2 18, 295 0.00 1 0:00:01
pr76 3 0 4 266, 395 0.00 1 0:00:01
kroA100 10 0 11 51, 221 0.00 1 0:00:47
kroB100 9 5 123 53, 597 0.08 21 0:00:09
rd100 10 1 91 19, 130 0.00 1 0:00:05
eil101 0 0 60 1, 453 0.00 1 0:00:02
lin105 20 1 5 36, 353 0.00 1 0:00:01
pr107 29 0 0 98, 381 0.00 1 0:00:01
gr120 6 0 36 16, 400 0.00 1 0:00:02
bier127 16 0 0 282, 207 0.00 1 0:00:01
ch130 12 0 132 14, 854 0.00 1 0:00:05
ch150 12 2 70 15, 854 0.00 1 0:00:02
kroA150 13 0 27 64, 249 0.00 1 0:00:02
kroB150 20 0 4 62, 710 0.00 1 0:00:01
rat195 0 0 37 5, 750 0.00 1 0:00:13
d198 43 0 71 35, 404 0.01 3 0:00:16
gr202 13 3 220 94, 841 0.02 3 0:01:28
pr226 91 0 6 183, 537 0.00 1 0:00:04
gr229 24 2 15 318, 565 0.00 1 0:00:03
pr264 59 1 7 122, 941 0.00 1 0:00:06
a280 3 0 180 6, 317 0.00 1 0:01:00
pr299 30 0 427 117, 559 0.00 1 0:00:20
lin318 28 0 2 105, 000 0.00 1 0:00:06
rd400 21 2 232 36, 676 0.00 1 0:07:39
pr439 78 3 61 264, 975 0.02 19 0:02:52
si535 0 0 4 53, 604 0.00 1 0:00:39
pa561 10 1 306 6, 724 0.00 1 0:08:37

TABLE 3. Results for k = 5.

Instance NCut NSP NOP NFP NP COpt Gap2 NSub TT

berlin52 5 2 2 26 2 24,845 0.00 1 0:00:01
pr76 2 0 0 52 1 372,392 0.00 1 0:00:01
kroA100 5 1 5 76 6 71,422 0.04 11 0:00:06
kroB100 6 1 2 83 5 74,241 0.01 3 0:00:06
rd100 6 2 6 193 5 26,168 0.01 5 0:00:24
eil101 1 0 0 309 0 1,938 0.00 1 0:01:10
lin105 9 1 3 119 3 50,711 0.00 1 0:00:26
pr107 92 40 57 680 33 132,870 0.41 381 0:14:45
gr120 2 0 3 93 3 22,024 0.11 27 0:00:17
bier127 22 2 12 450 8 383,165 0.09 25 0:04:25
ch130 1 0 0 45 0 20,508 0.01 3 0:00:05
ch150 5 0 7 58 1 21,791 0.01 37 0:00:50
kroA150 9 0 5 141 3 87,950 0.07 11 0:00:19
kroB150 14 1 7 462 6 85,583 0.02 11 0:15:39
rat195 1 0 0 508 0 7,773 0.00 1 0:20:54
d198 56 9 6 1,093 32 47,614 0.15 337 1:50:40
gr202 0 0 0 64 0 128,990 0.00 1 0:00:31
pr226 142 34 20 661 50 260,878 0.58 103 2:38:50
gr229 18 1 11 679 9 434,422 0.06 43 0:31:58
*pr264 105 12 38 1,327 28 — 1.78 43 5:00:00
a280 2 0 2 302 0 8,643 0.02 7 0:05:05
pr299 11 3 2 637 1 161,576 0.00 1 0:05:12
lin318 24 3 11 1,548 11 144,341 0.02 7 4:34:39
rd400 11 1 15 691 6 49,893 0.01 17 1:29:09
*pr439 46 2 8 746 0 — 3.46 1 5:00:00
si535 0 0 0 0 0 79,115 0.00 1 0:00:19
pa561 1 0 2 286 1 9,161 0.00 1 3:26:58

26 NETWORKS—2010—DOI 10.1002/net

TABLE 4. Results for k = 3 without reduction operations.

Instance NCut NSP NOP NFP NP COpt Gap2 NSub TT

berlin52 31 28 19 44 4 12,601 0.44 15 0:00:04
brazil58 50 27 1 28 31 42,527 0.22 3 0:00:07
eil76 9 6 3 102 2 876 0.00 1 0:00:01
pr76 103 168 65 1,378 37 187,283 1.60 3,483 0:38:46
rat99 41 19 10 223 17 2,029 0.32 61 0:01:29
kroA100 193 234 47 1,765 70 36,337 1.42 7,575 4:13:38
kroB100 141 142 36 899 38 37,179 0.98 1,337 0:45:34
rd100 103 84 15 445 21 13,284 0.40 233 0:11:40
eil101 77 58 26 2,527 12 1,016 0.38 801 0:18:50
lin105 161 158 50 569 53 25,530 0.61 547 0:34:25
*pr107 218 221 136 1,101 104 — 0.81 4,447 5:00:00
gr120 42 38 6 252 15 11,442 0.18 93 0:05:38
bier127 58 56 9 240 12 198,184 0.16 17 0:04:43
ch130 141 147 38 1,590 45 10,400 0.52 2,459 4:10:31
ch150 90 76 15 391 23 11,027 0.39 107 0:21:07
kroA150 155 135 23 705 56 44,718 0.55 1,107 3:08:37
kroB150 150 141 22 1,006 43 43,980 0.31 535 1:55:20
rat195 23 18 7 898 1 3,934 0.01 19 0:19:23
d198 192 118 25 720 50 25,624 0.27 585 5:03:16
gr202 73 62 13 278 23 65,729 0.05 37 0:37:31

it has been solved to optimality after 1 h 26 mn. Also, the
CPU time for the instances ch130 and d198 increased from
1 h to more than 4 h. Moreover, we remark that when using
the reduction operations, we generate more SP-partition, F-
partition and partition inequalities and fewer nodes in the
Branch-and-Cut tree. This implies that our separation heuris-
tics are less efficient without the reduction operations. It
seems then that the reduction operations play an impor-
tant role in the resolution of the problem. They permit to
strengthen much more the linear relaxation of the problem
and accelerate its resolution.

We also tried to measure the effect of the different non-
basic classes of inequalities (i.e., inequalities other than cut
and trivial inequalities). For this, we have first considered a
Branch-and-Cut algorithm for the kECSP with k = 3 using
only the cut constraints in addition to the trivial ones. As it
appears from Table 1, for all the instances we have that Gap1
is greater than Gap2. For example, for the instances KroA100
and rat195, the gap is increased by almost 3%.

Furthermore, in this case, we could not solve any of the
instances with more than 52 nodes. Even more, after less
than 10 min of CPU time, the Branch-and-Cut tree got a
very big size and the resolution process stops. To illustrate
this, take for example the instance brazil58. For this instance,
the Branch-and-Cut tree contained 11,769 nodes after 10
min when the Branch-and-Cut algorithm used only the cut
and trivial inequalities, whereas it has been solved without
branching when using the other classes of inequalities.

Finally, we tried to evaluate separately the efficiency of
each class of the non-basic inequalities. For this, we also
considered the case when k = 3. We have seen that all the
classes of inequalities have a big effect on the resolution of
the problem. In particular, the SP-partition inequalities seem
to play a central role. This can be seen by considering the
instance d198. This instance has been solved in 1 h 04 mn

using all the constraints. However, without the SP-partition
inequalities, we could not reach the optimal solution after
5 h. We also remarked that the gap2 increased when one of
these classes of inequalities is not used in the Branch-and-Cut
algorithm.

6. CONCLUDING REMARKS

In this article, we have studied the k-edge connected sub-
graph problem with high connectivity requirement, that is,
when k ≥ 3. We have presented some classes of valid
inequalities and described some conditions for these inequal-
ities to be facet defining for the associated polytope. We
also discussed separation heuristics for these inequalities.
Using these results, we have devised a Branch-and-Cut algo-
rithm for the problem. This algorithm uses some reduction
operations.

Our computational results have shown that the odd path,
the F-partition, the SP-partition, and the partition inequalities
are very effective for the problem when k is odd. They have
also shown the importance of the F-partition inequalities for
the even case. We could also see the importance of our sepa-
ration heuristics. In particular, our heuristics to separate the
SP-partition and F-partition inequalities have appeared to be
very efficient. In addition, the reduction operations have been
essential for having a good performance of the Branch-and-
Cut algorithm. In fact, they permitted to considerably reduce
the size of the graph supporting a fractional solution and to
accelerate the separation process.

These experiments also showed that the kECSP is easier
to solve when k is even and that, for the same parity of k, the
problem becomes easier to solve when k increases.

One of the separation heuristic devised for the F-partition
inequalities is based on a partial characterization of the crit-
ical extreme points of the linear relaxation of the k-edge

NETWORKS—2010—DOI 10.1002/net 27

connected subgraph polytope. It would be very interesting
to have a complete characterization of these points. This may
yield the identification of new facet defining inequalities for
the problem. It may also permit to devise more appropriate
separation heuristics for the inequalities given in this paper.

In many real instances, we may consider node-
connectivity instead of edge-connectivity. The study pre-
sented in this paper may be very usefull for the k-node
connected subgraph problem for which we require k node-
disjoint paths between every pair of nodes.

In addition to the survivability aspect, one can consider
the capacity dimensioning of the network. These issues have
been mostly treated separately in the literature. It would be
interesting to extend the study developed in this paper to the
more general capacitated survivable network design model.

Acknowledgments

The authors thank the anonymous referees for their valu-
able comments that permitted improvement to the presenta-
tion of the article.

APPENDIX A. PROOF OF THEOREM 2.4

Let us consider the following edge subsets of L:

L1 =

 ⋃

j=1,2

[Wj, U1 ∪ U2]

 ∪ [W1, W2]

∪

 ⋃

j=1,2p

[Vj, U1 ∪ U2]

∪ (([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W)),

L2 = {[Vi, Vj], i, j ∈ {2, . . . , 2p − 1}, j > i + 1,

i even , j odd},
L3 = {[Vi, Vj], i, j ∈ {2, . . . , 2p − 1}, j > i + 1,

i odd or, i and j have the same parity},
L4 = L \ (L1 ∪ L2 ∪ L3).

We will first show that the lifting coefficient of the edges
of L4 is equal to 0, independently of the order in which they
are added to G. Let e be an edge of L4 and let us denote
by a′x ≥ α′ the lifted inequality obtained on G′. As, by our
assumptions, (2.1) defines a facet of kECSP(G), a′x ≥ α′ also
defines a facet of kECSP(G′). As a′x ≥ α′ is different from
the trivial inequality x(e) ≥ 0, there must exist a solution
F ′ ⊆ E′ of the kECSP on G′ such that e ∈ F ′ and whose
the incidence vector satisfies a′x ≥ α′ with equality. Let
h1, . . . hk be the edges of E between V1 and W1. Note that
a′(h1) = · · · = a′(hk) = 0. We will distinguish two cases.

Case 1. |[F ′ ∩ {h1, . . . , hk}]| ≤ k − 1. Let hi be an edge
not contained in F ′. Let F ′′ = (F ′ \ {e}) ∪ {hi}. Since F ′

induces a k-edge connected subgraph of G′, F ′′ so is. Hence
we have that a′xF ′′ = a′xF ′ − a′(e)+ a′(hi) ≥ α′. This yields
a′(e) ≤ a′(hi). As a′(hi) = 0, and by Lemma 2.1, a′(e) ≥ 0,
we get a′(e) = 0.

Case 2. {h1, . . . , hk} ⊆ F ′. Here we also have that F ′′ =
F ′ \ {e} induces a k-edge connected subgraph of G′. As
a′xF ′′ = a′xF ′ − a′(e) ≥ α′, and thus a′(e) ≤ 0, it follows,
by Lemma 2.1, that a′(e) = 0.

Therefore a(e) = 0 for all e ∈ L4, and this, independently
of the order in which e is added to G.

Now we consider the edges of L \L4. For this, we give the
following claim.

Claim. a(e) ≥ 1 if e ∈ L1 ∪ L3, and a(e) ≥ 2 if e ∈ L2.

Proof. We will show first that if we add one edge e ∈ L1

(respectively e ∈ L2) (respectively e ∈ L3) to G, the lifting
coefficient of e in the new graph is 1 (respectively 2) (respec-
tively 1). For this, let us denote by G̃ = (V , Ẽ) the graph
obtained by adding the edge e, that is, Ẽ = E ∪ {e}. Suppose
first that e ∈ L1 and assume that, for instance, e ∈ [Wj0 , Vi0],
with i0 ∈ {2, . . . , 2p − 1} and even, and j0 ∈ {1, 2} (if
i0 is odd, it suffices to consider the path V1, . . . , V2p in
the opposite way). Note that any solution F̃ ⊆ Ẽ of the
kECSP on G̃ must cover the node sets V2, . . . , Vi0−1 and
Vi0+1, . . . , V2p−1 by edges from C. By Lemma 2.3, F̃ must
use at least � i0−2

2 � + � 2p−i0−1
2 � = p − 1 edges from C. Thus

γ ≥ p − 1 where γ is as defined in Lemma 2.4. More-
over, because the conditions of Theorem 2.3 are satisfied, by
the claim given in the proof of that theorem, the edge set
F̃1 = {e2, e4, . . . , ei0−2} ∪ {ei0+1, ei0+3, . . . , e2p−1} ∪ � ∪ {e}
induces a k-edge connected subgraph of G̃. As F̃1 contains e
and uses exactly p−1 edges from C, we have that γ = p−1.
By Lemma 2.4, it then follows that the lifting coefficient of
e is equal to 1.

Consider now an edge e ∈ L2 and suppose that e ∈
[Vi0 , Vj0] with i0, j0 ∈ {2, . . . , 2p − 1}, j0 > i0 + 1, and i0
is even and j0 odd. If F̃ is a solution of the kECSP on G̃, then
F̃ must cover the node sets V2, . . . , Vi0−1, Vi0+1, . . . , Vj0−1

and Vj0+1, . . . , V2p−1. Thus by Lemma 2.3, F̃ must use
� i0−2

2 � + � j0−i0−1
2 � + � 2p−j0−1

2 � = p − 2 edges from C.
Thus, γ ≥ p − 2. Now let F̃2 = {e2, e4, . . . , ei0−2} ∪
{ei0+1, ei0+3, . . . , ej0−2} ∪ {ej0+1, ej0+3, . . . , e2p−2} ∪ � ∪ {e}.
We can see as before that F̃2 induces a k-edge connected
subgraph of G̃ and contains exactly p − 2 edges from C. As
e ∈ F̃2, we obtain that γ = p − 2, and therefore the lifting
coefficient of e equals 2.

Finally, suppose that e is an edge of L3 between two non
consecutive node sets [Vi0 , Vj0] with i0, j0 ∈ {2, . . . , 2p − 1},
j0 > i0 + 1, and, say, i0 is odd and j0 is even (the proof
is similar if i0 and j0 have the same parity). Here observe
that any solution F̃ ⊆ Ẽ of the kECSP on G̃ must cover
by edges from C the node sets V2, . . . Vi0−1, Vi0+1, . . . , Vj0−1

and Vj0+1, . . . , V2p−1. By Lemma 2.3, F̃ must then use at

28 NETWORKS—2010—DOI 10.1002/net

least � i0−2
2 � + � j0−i0−1

2 � + � 2p−j0−1
2 � = p − 1 edges from

C. Thus γ ≥ p − 1. Moreover, as the edge set F̃3 =
{e1, e3, . . . , ei0−2}∪{ei0+1, ei0+1, . . . , e2p−2}∪�∪{e} induces
a k-edge connected subgraph of G̃ and contains exactly p−1
edges from C, we have that γ = p − 1. Hence the lifting
coefficient of e in G̃ is equal to 1.

Consequently the lifting coefficient of e equals 1 (respec-
tively 2) (respectively 1) if e ∈ L1 (respectively e ∈ L2)
(respectively e ∈ L3). By Lemma 2.4, we then have that
a(e) ≥ 1 if e ∈ L1 ∪ L3 and a(e) ≥ 2 if e ∈ L2, which ends
the proof of the claim. ■

In what follows, we are going to show that we also have
a(e) ≤ 1 (respectively a(e) ≤ 2) (respectively 1 ≤ a(e) ≤ 2)
if e ∈ L1 (respectively e ∈ L2) (respectively e ∈ L3). For this,
let us consider a sequence f1, . . . , ft , t ≥ 1, of edges of L,
and suppose that f1, . . . , ft are the edges that are added to G
before e.

Suppose first that e ∈ L1 and let us assume as before
that e ∈ [Wj0 , Vi0] with i0 ∈ {2, . . . , 2p − 1} and even, and
j0 ∈ {1, 2}. Let Ĝ = (V , Ê) be the graph where Ê = E ∪
{f1, . . . , ft , e}. Any solution F̂ ⊆ Ê of the kECSP on Ĝ must
cover the node sets V2, . . . , Vi0−1 and Vi0+1, . . . , V2p−1 by
edges from (C ∪ {f1, . . . , ft}) \ L4. By Lemma 2.3, F̂ must
use at least � i0−2

2 � + � 2p−i0−1
2 � = p − 1 edges from (C ∪

{f1, . . . , ft}) \ L4. As, by the claim above, a(f) ≥ 1 for every
edge f ∈ (C ∪ {f1, . . . , ft}) \ L4, we have that γ ≥ p − 1 and
hence by Lemma 2.4, we have that a(e) ≤ 1. As, by the claim
above a(e) ≥ 1, this implies that a(e) = 1. Moreover, this
holds independently on the order in which e is added to G.

Now consider an edge e ∈ L2 and suppose that e ∈
[Vi0 , Vj0], with i0, j0 ∈ {2, . . . , 2p − 1}, j0 > i0 + 1, i0
even and j0 odd. Any solution F̂ ⊆ Ê of the kECSP on Ĝ
must cover the node sets V2, . . . , Vi0−1, Vi0+1, . . . , Vj0−1 and
Vj0+1, . . . , V2p−1 by edges from (C ∪ {f1, . . . , ft}) \ L4. By
Lemma 2.3, F̂ must use � i0−2

2 � + � j0−i0−1
2 � + � 2p−j0−1

2 � =
p − 1 edges of (C ∪ {f1, . . . , ft}) \ L4. Thus γ ≥ p − 2 and
therefore a(e) ≤ 2. As, by the claim above, a(e) ≥ 2, we get
a(e) = 2.

If e is an edge of L3, we show along the same line that
1 ≤ a(e) ≤ 2.

In consequence, a(e) = 1 if e ∈ L1, a(e) = 2 if e ∈ L2,
1 ≤ a(e) ≤ 2, which ends the proof of the theorem. ■

APPENDIX B. PROOF OF THEOREM 2.5

First observe that, by conditions 1–5, G is (k + 1)-
edge connected and hence kECSP(G) is full dimensional.
Let us denote inequality (2.19) by ax ≥ α and let F =
{x ∈ kECSP(G) | ax = α}. Clearly, F is a proper face of
kECSP(G). Now suppose that there exists a facet defining
inequality bx ≥ α such that F ⊆ {x ∈ kECSP(G) | bx = α}.
We will show that b = a.

Let ei be an edge of [Vi, Vi+1], i = 1, . . . , 2l + 1, and fi
and f ′

i be edges of [Vi, Ui−1] and [Vi, Ui], respectively, for

i = 1, . . . , 2l + 1. Let Ti be an edge subset of [Ui, Ui+1] of
k−1

2 edges, for i = 1, . . . , 2l + 1.
Let E0 be the set of edges not in F and having both

endnodes in the same element of π . First we will show that
b(e) = 0 for all e ∈ E0 ∪ F. Let i0 ∈ {1, . . . , 2l + 1} and
consider the edge sets

E1 = {ei0+2r , r = 0, . . . , l}

∪ {
f ′
i , i = 1, . . . , 2l + 1

} ∪
(

2l+1⋃
i=1

Ti

)
,

E2 = E1 ∪ F ∪ E0.

Claim. E2 induces a k-edge connected subgraph of G.

Proof. Let G2 be the subgraph of G induced by E2. As
by condition 1, the graphs induced by the node sets W and Vi,
Ui, i = 1, . . . , 2l + 1, are (k + 1)-edge connected, it suffices
to show that the graph obtained by contracting W and Vi, Ui,
i = 1, . . . , 2l + 1, is k-edge connected. Let Ḡ2 = (V̄2, Ē2)

be that graph and w, v1, . . . , v2l+1, u1, . . . , u2l+1 the nodes
of Ḡ2 where w corresponds to W , vi to Vi and ui to Ui, for
i = 1, . . . , 2l + 1. Let δ(U) be a cut of Ḡ2 and let Ḡ′

2 =
(V̄ ′

2, Ē′
2) the subgraph of Ḡ2 induced by {w, v1, . . . , v2l+1} and

Ḡ′′
2 = (V̄ ′′

2 , Ē′′
2) the graph obtained from Ḡ2 by contracting

{w, v1, . . . , v2l+1}. Note that Ē′
2 ∩ Ē′′

2 = ∅ and Ē2 = Ē′
2 ∪ Ē′′

2 .
Also note that Ḡ′

2 is (k − 1)-edge connected and that Ḡ′′
2

is a k-edge connected wheel. Thus if U does not inter-
sect {w, v1, . . . , v2l+1}, then δ(U) is a cut of Ḡ′′

2 and hence
|δ(U)| ≥ k. If U intersects {w, v1, . . . , v2l+1}, then δ(U) con-
tains at least k −1 edges from Ē′

2. However, in this case δ(U)

also contains at least one edge from Ē′′
2 . Thus we have that

|δ(U)| ≥ k, and the statement follows.
Note that there are k + 1 edges incident to Vi0 in the graph

induced by E2. Now, observe that for any edge e ∈ Fi0 , one
can show in a similar way as in the claim above that E′

2 = E2\
{e} also induces a k-edge connected subgraph of G. As xE2 and
xE′

2 belong to F , it follows that bxE2 = bxE′
2 = α, implying

that b(e) = 0 for all e ∈ Fi0 . As i0 is arbitrarily chosen,
we obtain that b(e) = 0 for all e ∈ F. Moreover, as the
subgraphs induced by W , V1, . . . , V2l+1, U1, . . . , U2l+1 are
all (k +1)-edge connected, the subgraph induced by E2 \ {e},
for all e ∈ E0, is also k-edge connected. This yields as before
b(e) = 0 for all e ∈ E0. Thus b(e) = 0 for all e ∈ F ∪ E0.

Next, we will show that b(e) = a(e) for all e ∈ δ(π) \ F.
Let gi be a fixed edge of Ti and let T ′

i = Ti \ {gi}, for i =
1, . . . , 2l + 1. Consider the edge sets

E3 = {
fi, f ′

i , i = 1, . . . , 2l + 1
} ∪

(
l⋃

i=1

T2i

)

∪ T2l+1 ∪
(

l−1⋃
i=0

T ′
2i+1

)
,

NETWORKS—2010—DOI 10.1002/net 29

E4 = E3 ∪ F ∪ E0,

E′
4 = (E4 \ g2l+1) ∪ {g1}.

Note that g1 /∈ T ′
1 and thus g1 /∈ E4, and that g2l+1 ∈ E4.

The edge sets E4 and E′
4 can be obtained from E2 using recur-

sively the edge-swapping operation of Lemma 2.2. Hence
both E4 and E′

4 induce k-edge connected subgraphs of G.
Moreover, we have that xE4 and xE′

4 belong to F . Thus
bxE4 = bxE′

4 = α and therefore b(g2l+1) = b(g1). As g1

and g2l+1 are arbitrary edges of T1 and T2l+1, respectively,
it follows that b(e) = b(e′) for all e ∈ T1 and e′ ∈ T2l+1.
Moreover, we have that T1 and T2l+1 are arbitrary subsets
of [U1, U2] and [U2l+1, U1], respectively. This implies that
b(e) = b(e′) for all e ∈ [U1, U2] and e′ ∈ [U2l+1, U1].
Consequently, by symmetry, we get

b(e) = ρ for all e ∈ [Ui, Ui+1], i = 1, . . . , 2l + 1, (B.1)

for some ρ ∈ R.

Now let

E5 = (E4 \ {f1}) ∪ {e2l+1}.
Using Lemma 2.2 and the fact that E4 induces a k-edge

connected subgraph of G, we have that E5 induces a k-
edge connected subgraph of G. Moreover, xE5 belongs to F ,
implying that bxE4 = bxE5 = α. Hence b(f1) = b(e2l+1).
In a similar way, we can show that b(f ′

2l+1) = b(e2l+1).
As f1, f ′

2l+1 and e2l+1 are arbitrary edges of [U2l+1, V1],
[V2l+1, U2l+1] and [V2l+1, V1], respectively, we obtain that
b(e) is the same for all e ∈ [U2l+1, V1] ∪ [V2l+1, U2l+1] ∪
[V2l+1, V1]. By exchanging the roles of V2l+1, V1, U2l+1 and
Vi, Vi+1, Ui, for i = 1, . . . , 2l, we obtain by symmetry that

b(e) = ρ′
i for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui],

(B.2)

i = 1, . . . , 2l + 1, for some ρ′
i ∈ R.

Consider the edge set

E′
5 = (E4 \ {f1}) ∪ {e1}.

Similarly, we can show that E′
5 induces a k-edge connected

subgraph of G. As xE4 and xE′
5 belong to F , it follows in a

similar way that b(e1) = b(f1). From (B.2), we have that
ρ′

1 = ρ′
2l+1. By symmetry, it then follows that ρ′

i = ρ′
j for

i, j = 1, . . . , 2l + 1, i �= j, and therefore

b(e) = ρ′ for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui],
(B.3)

for i = 1, . . . , 2l + 1, for some ρ′ ∈ R.

Let e ∈ ([V2l+1, W]\F2l+1)∪[V2l+1, Vj], j ∈ {2, . . . , 2l−
1}. As before, we can observe that E6 = (E4 \ {f ′

2l+1}) ∪ {e}
induces a k-edge connected subgraph of G. As xE6 ∈ F , this
implies that bxE6 = bxE4 = α and hence b(e) = b(f ′

2l+1). By
(B.3), we then obtain that b(e) = ρ′ for all e ∈ ([V2l+1, W] \

F2l+1)∪[V2l+1, Vi] for i ∈ {2, . . . , 2l−1}. By exchanging the
roles of V2l+1 and Vi, i = 1, . . . , 2l, we obtain by symmetry
that b(e) = ρ′ for all e ∈ ([Vi, W] \ Fi) ∪ [Vi, Vj], i =
1, . . . , 2l + 1 and j ∈ {1, . . . , 2l + 1} \ {i − 1, i, i + 1}.

For any edge e between U2l+1 and either W , Uj, j ∈
{1, . . . , 2l + 1} \ {1, 2l, 2l + 1}, or Vt , t ∈ {1, . . . , 2l + 1} \
{1, 2l + 1}, we can show, using Lemma 2.2 and the fact that
E4 induces a k-edge connected subgraph of G, that

E7 = (
E4 \ {

f ′
2l+1, f1

}) ∪ {e, e2l+1}
also induces a k-edge connected subgraph of G. As xE4 and
xE7 belong to F , we have that bxE7 = bxE4 = α and b(f ′

2l+1)+
b(f1) = b(e) + b(e2l+1). As by (B.3), b(f ′

2l+1) = b(f1) =
b(e2l+1) = ρ′, we get b(e) = ρ′. Here again, by exchanging
the roles of U2l+1 and Ui, i = 1, . . . , 2l, we obtain that b(e) =
ρ′ for all e ∈ [Ui, W]∪[Ui, Uj]∪[Ui, Vt], i = 1, . . . , 2l+1, j ∈
{1, . . . , 2l+1}\{i, i+1} and t ∈ {1, . . . , 2l+1}\{i−1, i, i+1}.

As xE2 and xE4 belong to F , we have that bxE2 = bxE4 = α.
Thus from (B.1) and (B.3), we obtain that ρ = ρ′, and in
consequence, the edges of E \ (E0 ∪ F) have all the same
coefficient in bx ≥ α. Since axE2 = bxE2 = α, this yields
b(e) = 1 for all e ∈ E \ (E0 ∪ F).

Thus we obtain that b = a, which ends the proof of the
theorem. ■

APPENDIX C. PROOF OF THEOREM 2.8

Note that because Gπ is outerplanar and conditions 1
and 2 hold, G is (k + 1)-edge connected. It then fol-
lows that kECSP(G) is full dimensional. Let us denote by
ax ≥ α the SP-partition inequality induced by π and let
F = {x ∈ kECSP(G)|ax = α}. Clearly, F is a proper face
of kECSP(G). Now suppose that there exists a facet defining
inequality bx ≥ α different from the trivial inequalities such
that F ⊆ {x ∈ kECSP(G)|bx = α}. We will show as before
that b = a.

Let Ti be an edge subset of [Vi, Vi+1], i = 1, . . . , p, of k+1
2

edges and let T ′
i = Ti \ {gi}, where gi is a fixed edge of Ti.

Consider

E0 =
p⋃

i=1

E(Vi),

E1 =
(p⋃

i=1

Ti

)
\ {gi0} for some i0 ∈ {1, . . . , p},

E2 = E1 ∪ E0.

Note that gi0 /∈ E2 and gi0+1 ∈ E2. As by condition
1, the subgraphs induced by the node sets V1, . . . , Vp are
(k + 1)-edge connected, it is not hard to see that E2 and
E′

2 = (E2 \ {gi0+1}) ∪ {gi0} induce k-edge connected sub-
graphs of G. As xE2 and xE′

2 belong to F , we have that
bxE2 = bxE′

2 = α and hence b(gi0) = b(gi0+1). As gi0

and gi0+1 are arbitrary edges of Ti0 and Ti0+1, respectively,
it follows that b(e) = b(e′) for all e ∈ Ti0 and e′ ∈ Ti0+1.
Moreover, as Ti0 and Ti0+1 are arbitrary subsets of [Vi0 , Vi0+1]

30 NETWORKS—2010—DOI 10.1002/net

and [Vi0+1, Vi0+2], respectively, we obtain that b(e) = b(e′)
for all e ∈ [Vi0 , Vi0+1] and e′ ∈ [Vi0+1, Vi0+2], i0 = 1, . . . , p.
Consequently, by symmetry, we get

b(e) = b(e′) for all e, e′ ∈
p⋃

i=1

[Vi, Vi+1]. (C.1)

Now let e ∈ [Vi0 , Vj0], i0, j0 ∈ {1, . . . , p} with |i0−j0| > 1.
Note that T0 = Tp, T−1 = Tp−1 and T ′

0 = T ′
p. Consider the

edge sets

E4 = (E2 \ {gi0−1}) ∪ {e},
E′

4 = (E4 \ {e}) ∪ {gi0}.
Using Lemma 2.2 and the fact that E2 induces a k-edge

connected subgraph of G, we can see that E4 and E′
4 induce

k-edge connected subgraphs of G. As xE4 and xE′
4 belong to

F , it follows that bx4 = bxE′
4 = α, and hence b(e) = b(gi0).

By (C.1) this yields

b(e) = b(e′) for all e, e′ ∈ δ(π).

As axE2 = bxE2 = α, we obtain that b(e) = 1 for all
e ∈ δ(π).

Next, we will show that b(e) = 0 for all e ∈ E0. Consider
the edge set

E5 = E2 \ {e} for some e ∈ E0.

As G[Vi], i = 1, . . . , p, are (k + 1)-edge connected, E5

induces a k-edge connected subgraph of G. As xE2 and xE5

belong to F , we have that bxE2 = bxE5 = α, and thus b(e) =
0 for all e ∈ E0.

In consequence we get b = a and the proof is complete.
■

REFERENCES

[1] ABACUS, A branch-and cut system, Available at:
http://www.informatik.uni-koeln.de/abacus.

[2] M. Baïou, F. Barahona, and A.R. Mahjoub, Separation of
partition inequalities, Math Oper Res 25 (2000), 243–254.

[3] M. Baïou and A.R. Mahjoub, Steiner 2-edge connected sub-
graph polytopes on series-parallel graphs, SIAM J Discrete
Math 10 (1997), 505–514.

[4] F. Barahona and A.R. Mahjoub, On two-connected subgraph
polytopes, Discrete Math 147 (1995), 19–34.

[5] D. Bienstock, E.F. Brickel, and C.L. Monma, On the structure
of minimum weight k-connected networks, SIAM J Discrete
Math 3 (1990), 320–329.

[6] S.C. Boyd and T. Hao, An integer polytope related to
the design of survivable communication network, SIAM J
Discrete Math 6 (1993), 612–630.

[7] S. Chopra, The k-edge connected spanning subgraph poly-
hedron, SIAM J Discrete Math 7 (1994), 245–259.

[8] G. Cornuéjols, J. Fonlupt, and D. Naddef, The traveling sales-
man problem on a graph and some related polyhedra, Math
Prog 33 (1985), 1–27.

[9] R. Coullard, A. Rais, R.L. Radin, and D.K. Wagner, Linear
time algorithm for the 2-connected Steiner subgraph problem
on special classes of graphs, Networks 23 (1993), 195–206.

[10] R. Coullard, A. Rais, R.L. Radin, and D.K. Wagner, The
Dominant of the 2-connected Steiner subgraph polytope for
W4-free graphs, Discrete Appl Math 66 (1996), 33–43.

[11] Cplex, Available at: http://www.ilog.com.

[12] M. Didi Biha, Graphes k-arêtes connexes et polyèdres, Thèse
de doctorat, Université de Bretagne Occidentale, Brest, 1998.

[13] I. Diarrassouba and L. Slama, Les inégalités de SP-partition
pour le problème du sous-graphe k-arête connexe, Research
Report, LIMOS RR-07-13, 2007.

[14] M. Didi Biha and A.R. Mahjoub, k-edge connected polyhedra
on series-parallel graphs, Oper Res Lett 19 (1996), 71–78.

[15] M. Didi Biha and A.R. Mahjoub, Steiner k-edge connected
subgraph polyhedra, J Combinat Optim 4 (2000), 131–134.

[16] M. Didi Biha and A.R. Mahjoub, The k-edge connected sub-
graph problem I. Polytopes and critical extreme points, Linear
Algebra Appl 381 (2004), 117–139.

[17] M. Didi Biha, A.R. Mahjoub, and L. Slama, On the separation
of partition inequalities, Proc INOC 2005, Lisbon, Pontugal,
2005, pp. 500–505.

[18] J. Fonlupt and A.R. Mahjoub, Critical extreme points of the
2-edge connected spanning subgraph polytope, Math Prog
105 (2006), 289–310.

[19] J. Fonlupt and D. Naddef, The traveling salesman problem
in graphs with some excluded minors, Math Prog 53 (1992),
147–172.

[20] G.N. Frederickson and J. Jàjà, On the relationship between
the biconnectivity augmentations and traveling salesman
problem, Theor Computer Sci 13 (1982), 189–201.

[21] M.R. Garey and D.J. Johnson, Computer and intractabil-
ity: A guide to the theory of NP-completness, Freeman, San
Francisco, 1979.

[22] A. Goldberg and R.E. Tarjan, A new approach to the maxi-
mum flow problem, J Assoc Comput Machinery 35 (1988),
921–940.

[23] R.E. Gomory and T.C. Hu, Multi-terminal network flows, J
Soc Ind Appl Math 9 (1961), 551–570.

[24] M. Grötschel and C.L. Monma, Integer polyhedra arising
from certain network design problems with connectivity
constraints, SIAM J Discrete Math 3 (1990), 502–523.

[25] M. Grötschel, C.L. Monma, and M. Stoer, Polyhedral
approches to network survivability, Reliability of computer
and Communication networks, Vol 5, Series Discrete Math-
ematics and Computer Science, F. Roberts, F. Hwang, and
C.L. Monma (editors), AMS/ACM, 1991, pp. 121–141.

[26] M. Grötschel, C.L. Monma, and M. Stoer, Polyhedral and
computational investigations arising for designing communi-
cation networks with high survivability requirements, Oper
Res 43 (1995), 1012–1024.

[27] D. Gusfield, Very simple method for all pairs network flow
analysis, Soc Ind Appl Math 009 (1990), 143–155.

[28] J. Hao and J.B. Orlin, A faster algorithm for finding the
minimum cut in a directed graph, J Algorithms 17 (1992),
424–446.

[29] H. Kerivin and A.R. Mahjoub, Design of survivable net-
works: A survey, Networks 46 (2005), 1–21.

NETWORKS—2010—DOI 10.1002/net 31

[30] H. Kerivin, A.R. Mahjoub, and C. Nocq, (1,2)-survivable
networks: Facets and branch-and-cut, The sharpest cut, MPS-
SIAM Series in Optimization, M. Grötschel (Editor), 2004,
pp. 121–152.

[31] C.-W. Ko and C.L. Monma, Heuristics for designing highly
survivable communication networks, 1989, New Jersey.

[32] A.R. Mahjoub, Two-edge connected spanning subgraphs and
polyhedra, Math Prog 64 (1994), 199–208.

[33] A.R. Mahjoub, On perfectly two-edge connected subgraphs
and polyhedra, Discrete Math 170 (1997), 153–172.

[34] C.L. Monma, B.S. Munson, and W.R. Pulleyblank, Mini-
mum weight two-connected spanning networks, Oper Res
37 (1989), 153–171.

[35] G.L. Nemhauser and L.A. Wolsey, Integer and
combinatorial optimization, Wiley Editions, 1988,
pp. 259–295.

[36] S. Thienel, ABACUS—A branch-and-cut system, PhD The-
sis, Universität zu Köln, 1995.

[37] TSPLIB, Available at: http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/.

32 NETWORKS—2010—DOI 10.1002/net

