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Abstract. In this paper we consider the Steinerk-edge survivable network problem. We discuss the polytope
associated with the solutions to that problem. We show that when the graph is series-parallel andk is even,
the polytope is completely described by the trivial constraints and the so called Steiner-cut constraints. This
generalizes recent work of Ba¨ıou and Mahjoub,SIAM J. Discrete Mathematics, vol. 10, pp. 505–514, 1997 for
the casek = 2. As a consequence, we obtain in this case a linear description of the polyhedron associated with
the problem when multiple copies of an edge are allowed.
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1. Introduction

With the trend in communication networks to the use of fiber optic technology, it has become
important to design networks with lower cost which are survivable. Survivable networks
must satisfy certain connectivity requirements. A typical survivability condition is that
between every pair of nodes of the network there are at leastk edge- (node-) disjoint paths.
In practice, there may exist specific nodes for which the survivability condition has to be
satisfied. In this paper we discuss this problem. The problem of designing general communi-
cation survivable networks has been studied by Gr¨otschel and Monma (1990) and Gr¨otschel
et al. (1991, 1992a, b). Related work and applications can also be found in Bienstock et al.
(1990), Christofides and Whitlock (1981), Erickson et al. (1987), Monma et al. (1990),
Steiglitz et al. (1969), Voss (1990) and Winter (1985, 1986, 1987).

A graphG = (V, E) is calledk-edge connected(wherek is a positive integer) if for any
pair of nodesi, j ∈ V , there are at leastk edge-disjoint paths fromi to j . Let G = (V, E)
be a graph andω a weight function onE that associates with an edgee ∈ E, the weight
ω(e) ∈ R. Given a subset of distinguished nodesS ⊆ V , called terminals, the Steiner
k-edge survivable network problem(SkESNP) is the problem of finding a minimum weight
subgraph ofG spanningSsuch that between every two nodesi , j ∈ S, there are at leastk
edge-disjoint paths.

Polyhedral combinatorics has been successfully applied to prove the polynomiality and
obtain efficient cutting plane algorithms for combinatorial optimization problems. In par-
ticular, if a polyhedral description of a combinatorial optimization problem is known and
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the associated separation problem (the problem that consists to determine whether or not
a given pointx satisfies all the inequalities describing the polyhedron and if not to find an
inequality which is violated byx) is solvable in polynomial time, then the problem can
be solved in polynomial time. In this paper we discuss the polytope associated with the
solutions to the SkESNP. We show that when the graph is series-parallel andk is even,
the polytope is completely described by the trivial constraints and the so-called Steiner-cut
constraints. This generalizes recent work of Ba¨ıou and Mahjoub (1997) for the casek = 2.
As a consequence, we obtain in this case a linear description of the polyhedron associated
with the problem when multiple copies of an edge are allowed. Both descriptions yield
polynomial time algorithms for solving these problems on series-parallel graphs.

The SkESNP is NP-hard in general. Winter devised a linear time algorithm to solve
the S2ESNP in Halin graphs (Winter, 1985) and series-parallel graphs (Winter, 1986). He
mentioned in Winter (1987) that for Halin graphs he also found a linear algorithm to solve the
S3ESNP. The SkESNP has been studied by Gr¨otschel and Monma (1990) and Gr¨otschel et al.
(1991, 1992a, b) within the framework of a more general model. In particular, Gr¨otschel
and Monma (1990) described several basic facets of the polytope associated with that model
and Grötschel et al. (1991, 1992a, b) studied further facets and polyhedral aspects of that
model, and devised cutting plane algorithms. They also presented experimental results for
both the low and high connectivity cases. A complete survey of that model can be found in
Stoer (1992).

Given a graphG = (V, E) and a node subsetW ⊆ V of G, the set of edges having one
endnode inW and the other inV\W is called acut and denoted byδ(W). If W = {v} for
somev ∈ V , then we writeδ(v) for δ(W). If a cut containsr edges, it is also calledr-edge
cutset.

Let G = (V, E) be a graph. Letx(e) be a variable associated with each edgee. For
an edge subsetF ⊆ E, the 0-1 vectorxF ∈ RE with xF (e) = 1 if e ∈ F andxF (e) = 0
if not, is called theincidence vectorof F . For any subset of edgesT ⊆ E, we define
x(T) = ∑

e∈T x(e). If W ⊆ V , then we denote byE(W), the set of edges having both
endnodes inW.

The SkESNP can be formulated as the following integer linear program

Min ωx

Subject to x(e) ≥ 0, for all e∈ E, (1.1)

x(e) ≤ 1, for all e∈ E, (1.2)

x(δ(W)) ≥ k for all W ⊂ V, S 6= W ∩ S 6= ∅, (1.3)

x(e) ∈ {0, 1}, for all e∈ E. (1.4)

Inequalities (1.1), (1.2) are calledtrivial constraintsand inequalities (1.3) are called
Steiner-cut constraints.

Let SkESNP(G, S) = conv{x ∈ RE | x satisfies (1.1)–(1.4)} be the polytope associated
with the SkESNP.

The SkESNP(G, S) has been extensively investigated forS=V andk≤ 2. It has been
described fork = 1 for general graphs and fork = 2 for some classes of graphs. Using
Edmonds’ characterization of matroid polytopes (Edmonds, 1970, 1971), Gr¨otschel and
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Monma (1990) (see also Cornu´ejols et al., 1985) showed that the so-called partition in-
equalities together with the trivial inequalities suffice to describe the S1ESNP(G, S) for
S= V . In Mahjoub (1994), Mahjoub gives a complete description of the S2ESNP(G, S)
when the graph is series-parallel andS= V.

In Chopra (1994), Chopra considers a relaxation of the SkESNP(G, S), namely when
multiple copies of an edge are allowed. The problem here consists of determining an
integer vectorx ∈ NE such that i) the graphH = (V, E(x)) is Steinerk-edge connected
and ii)

∑
e∈E w(e)x(e) is minimum. HereE(x) is the set of edges obtained by replacing

each edgee = ij of E by x(e) parallel edges betweeni and j . This relaxation of the
SkESNP is important because it may provide a lower cost solution than the case where at
most one copy of an edge may be used. He studies the polyhedronPk(G, S) associated
with the solutions to that problem, that is

Pk(G, S) = conv{x ∈ NE | (V, E(x)) is k-edge connected}.

He gives a complete description ofPk(G, S)whenG is outerplanar,S= V andk is odd. (A
graph is outerplanar if it is planar and it can be embedded on the plane so that all nodes lie on
the outermost face). The polyhedronPk(G, S) has been previously studied by Cornu´ejols
et al. (1985). They showed that when the graph is series-parallel,S = V andk is even,
Pk(G, S) is completely described by the nonnegativity and the cut inequalities.

In Didi Biha and Mahjoub (1996), Didi Biha and Mahjoub discuss the SkESNP when
S= V . They describe, in this case, the SkESNP(G, S) for all k whenG is series-parallel.
In Barahona and Mahjoub (1995), Barahona and Mahjoub describe the S2ESNP(G, S) for
Halin graphs whenS = V . In Baı̈ou and Mahjoub (1997), Ba¨ıou and Mahjoub discuss
the S2ESNP and show that when the graph is series-parallel, S2ESNP(G, S) is given by
the trivial and the Steiner-cut constraints. The purpose of this paper is to extend this to
evenk.

Related work can also be found in Coullard et al. (1991a, b), Fonlupt and Naddef (1992),
Fonlupt and Mahjoub (1999), Margot et al. (1994) and Steiglitz et al. (1969). In Fonlupt
and Naddef (1992), Fonlupt and Naddef characterize the class of graphs for which the
system given by the nonnegativity constraints and the cut constraints, whenS= V , defines
the convex hull of the incidence vectors of the tours ofG. (A tour is a cycle going at least
once through each node). In Coullard et al. (1991a, b), Coullard et al. discuss the Steiner
2-node connected subgraph polytope. In Coullard et al. (1991a), they describe that polytope
for series-parallel graphs, and in Coullard et al. (1991b), they describe the dominant of that
polytope for the graphs noncontractible toW4 (the wheel on 5 nodes).

The problem S1ESNP is closely related to the well known Steiner tree problem in graphs.
In Chopra and Rao (1994), Chopra and Rao describe several classes of the Steiner tree
polytope in both the directed and undirected cases. In Margot et al. (1994), Margot et al.
(see also Goemans, 1994) give an extended formulation for the Steiner tree problem and
show that it is a complete linear description of the associated polytope when the graph
is a 2-tree (a maximal series-parallel graph). In Goemans (1994), Goemans discusses an
extended formulation of the Steiner tree problem and describes the associated polytope
when the underlying graph is series-parallel. He also describes some classes of facets for
the Steiner tree polytope.
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In the next section, we give a complete description of the polytope SkESNP(G, S) when
the graph is series-parallel andk is even. In Section 3 we describe the polyhedronPk(G, S)
in that class of graphs whenk is even. In Section 4 we give some concluding remarks.

The remainder of this section is devoted to more definitions and notations. The graphs
we consider are finite, undirected, connected and may have multiple edges. Ife is an edge
between two nodesi and j , then we writee = ij . If G = (V, E) is a graph ande ∈ E,
thenG − e will denote the graph obtained fromG by removinge. For W ⊆ V , we let
G(W) denote the induced subgraph ofG on W. GivenW1, W2 two disjoint subsets ofV ,
[W1,W2] will denote the set of edges ofG having one node inW1 and the other one inW2.
If W ⊆ V , thenW̄ denotesV\W. Given a constraintax ≥ α, a ∈ RE, and a solutionx∗,
we will say thatax ≥ α is tight for x∗ if ax∗ = α.

2. The SkESNP(G,S) of a series-parallel graph

A homeomorphof K4 (the complete graph on 4 nodes) is a graph obtained fromK4 when
its edges are subdivided into paths by inserting new nodes of degree two. A graph is called
series-parallelif it contains no homeomorph ofK4 as a subgraph. Connected series-parallel
graphs have the following property.

Lemma 2.1. If G = (V, E) is a connected series-parallel graph with|V | ≥ 3, then G
contains a node that is adjacent to exactly two nodes.

Let G = (V, E) be a graph andS⊆ V a set of terminals. We will suppose that|S| ≥ 2
(if |S| = 1, then the polytope SkESNP(G, S)would be given by the trivial constraints). Let
Qk(G, S) be the polytope given by inequalities (1.1)–(1.3). (Recall thatk is a fixed positive
integer). In what follows we shall show that ifG is series-parallel andk is even, then
Qk(G, S) = SkESNP(G, S). Since the minimum cut problem can be solved in polynomial
time (see Nagamochi and Ibaraki, 1992; Stoer and Wagner, 1994), a consequence of our
result is that the SkESNP is solvable in polynomial time in these graphs using the ellipsoid
method (Gr¨otschel et al., 1981).

We have the following lemma, its proof is omitted because it is similar to that of a similar
result in Ba¨ıou and Mahjoub (1997).

Lemma 2.2. Let x be a solution of Qk(G, S). If δ(W1) andδ(W2) are two Steiner cuts
tight for x with(W1∩W2)∩S 6= ∅and(W1 ∪W2)∩S 6= ∅ thenδ(W1∩W2)andδ(W1 ∪W2)

are two Steiner-cuts tight for x, and x([W1\W2,W2\W1]) = 0.

If x is an extreme point ofQk(G, S), then there exist two edge subsetsE0, E1 ∈ E and a
family of Steiner-cuts{δ(Wi ), i = 1, . . . , r } such thatx is the unique solution of the system

x(e) = 0, for all e∈ E0,

x(e) = 1, for all e∈ E1,

x(δ(Wi ) = k, for i = 1, . . . , r,

(2.1)

where|E0| + |E1| + r = |E|.
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Lemma 2.3. Letδ(Wi ) be a Steiner-cut of system(2.1). Then system(2.1) can be chosen
so that either Wj ⊆ Wi or Wj ⊆ W̄i for all j ∈ {1, . . . , r }\{i }.

Proof: The proof uses some ideas developed by Cornu´ejols et al. (1985) for a similar
result. W.l.o.g. we may suppose thati = 1. Suppose for instance thatW1 ∩ W2 6= ∅,
W1 6⊂ W2, W2 6⊂ W1 andW1∪W2 6= V . W.l.o.g. we may suppose that(W1∩W2)∩S 6= ∅.
SinceW̄2 ∩ S 6= ∅, at least one of the setsW1\W2 andW1 ∪W2 intersectsS.

Case 1. (W1 ∪W2)∩ S 6= ∅. As (W1∩W2)∩ S 6= ∅, it follows that bothδ(W1∩W2) and
δ(W1 ∪W2) are Steiner cuts. By Lemma 2.2 we then have{

x(δ(W1 ∩W2)) = x(δ(W1 ∪W2)) = k,

x([W1\W2,W1\W2]) = 0.

This together withx(δ(W1)) = k implies thatx(δ(W2)) = k. Hencex(δ(W2)) = k can
be replaced in the system (2.1) byx(δ(W1∩W2)) = k andx(δ(W1 ∪W2)) = k, the new
system still hasx as a unique solution.

Case 2. (W1 ∪W2)∩ S= ∅. As W̄1 ∩ S 6= ∅ 6= W̄2 ∩ S, it follows that(W2\W1)∩ S 6= ∅
and(W1\W2) ∩ S 6= ∅. Hence by consideringδ(W̄1) instead ofδ(W1), by Lemma 2.2
we obtain thatδ(W1\W2) andδ(W2\W1) are two Steiner cuts tight forx andx([W1 ∩
W2,W1 ∪W2]) = 0. Moreover, as we did in Case 1, if we replacex(δ(W2)) = k by
x(δ(W1\W2)) = k andx(δ(W2\W1)) = k we obtain a system still havingx as a unique
solution.

So any equationx(δ(Wj )) = k, j ∈ {2, . . . , r }, can be replaced by equations of the form
x(δ(W)) = k whereδ(W) is a Steiner cut with eitherW ⊆ W1 or W1 ⊆ W (δ(W) and
δ(Wj )may be the same). LetL be the system thus obtained. And letM be the system given
by the trivial inequalities of system (2.1) andx(δ(W1)) = k. Note that the constraints of
M belong toL. As x is the unique solution ofL andM is a nonsingular system, there must
exist|E| − (|E0| + |E1| + 1) equations ofL different from those ofM that form withM a
nonsingular system havingx as a unique solution. This new system is as required. 2

Now we can state our main result.

Theorem 2.4. Let G= (V, E) be a series-parallel graph and S⊂ V a set of terminals.
If k is even, then SkESNP(G, S) = Qk(G, S).

Proof: The proof is by induction on|E|+ |V |. The statement is trivially true ifG consists
of two nodes (terminals) joined byk edges. So suppose that it is true for any series-
parallel graph with no more thanm edges and suppose thatG containsm+ 1 edges. Also
suppose that, under this hypothesis,|S| is maximum. That is, for any series-parallel graph
G′ = (V ′, E′) with |E′| = m+ 1 and a set of terminalsS′ such that|S′| > |S|, we have
SkESNP(G′, S′) = Qk(G′, S′). Note that such assumption can be made since, as shown in
Didi Biha and Mahjoub (1996), SkESNP(G′,V) = Qk(G′,V) holds ifG is series-parallel.
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Now suppose that, on the contrary, SkESNP(G, S) 6= Qk(G, S) and letx be a fractional
extreme point ofQk(G, S). We assume thatx is the unique solution of system (2.1). 2

Claim 1. x(e) > 0 for all e ∈ E.

Proof: If f is an edge such thatx( f ) = 0, then letx∗ ∈ RE∗ be the solution given by
x∗(e) = x(e) for all e∈ E∗ whereE∗ = E\{ f }. Obviously,x′ ∈ Qk(G− f, S). Moreover
x∗ is an extreme point ofQk(G− f, S). Sincex∗ is fractional, this contradicts the induction
hypothesis.

Claim 2. Each variable x(e) has a nonzero coefficient in at least two equations of the
system(2.1) defining x.

Proof: It is clear thatx(e)must have a nonzero coefficient in at least one of the equations of
(2.1). Otherwise,x(e)would be fractional and the solutionx̄ ∈ RE such that̄x(e) = x(e)+ε
and x̄(e′) = x(e′) if e′ ∈ E\{e} whereε ∈ R, would be a solution of system (2.1). Since
x̄ 6= x this is impossible. Now suppose that for an edgef = uv ∈ E, x( f ) has a nonzero
coefficient in exactly one equation of (2.1). And let(2.1)′ be the system obtained from (2.1)
by deleting this equation. Obviously,(2.1)′ is a nonsingular system. LetG′ = (V ′, E′) be
the graph obtained by contractingf . Let S′ = (S\{u, v})∪{w} if S∩{u, v} 6= ∅ andS′ = S
if not, wherew is the node arising from the contraction off . Letx′ be the restriction ofx on
E′. Clearly,x′ ∈ Qk(G′, S′). Also note that the equations of system(2.1)′ all correspond
to constraints ofQk(G′, S′). This implies thatx′ is an extreme point ofQk(G′, S′). Since
G′ is series-parallel and|E′| < |E|, this contradicts the induction hypothesis. 2

From Claims 1 and 2 we have the following.

Claim 3. Each variable x(e) has a nonzero coefficient in at least one Steiner-cut constraint
of system(2.1).

SinceG is series-parallel, by Lemma 2.1, there exists a nodev which is adjacent to
exactly two nodesv1, v2. Let F1 (F2) be the set of edges betweenv andv1 (v2). W.l.o.g.
we may suppose that|F1| ≥ |F2| and if |F1| = |F2|, x(F1) ≥ x(F2).

Claim 4. The set F1 (F2) contains at most one edge e with0< x(e) < 1.

Proof: Suppose that there are two edgese1, e2 ∈ F1 with 0 < x(e1) ≤ x(e2) < 1. Let
x′ ∈ RE be the solution such that

x′(e) =


x(e)+ ε if e= e1,

x(e)− ε if e= e2,

x(e) if e∈ E\{e1, e2}.
Since every cutδ(Wi ) either contains both edgese1 ande2 or does not contain any one of
these edges,x′ is a solution of system (2.1). Asx′ 6= x, this is a contradiction. 2
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Claim 5. System(2.1) can be chosen so that if|Wi | ≥ 2, then (Wi \{v}) ∩ S 6= ∅, for
i ∈ {1, . . . , r }.

Proof: The claim is trivially true if eitherv 6∈ Wi ∩ Sor |Wi ∩ S| ≥ 2. Now, suppose that
for somei ∈ {1, . . . , r }, Wi ∩ S= {v} and|Wi | ≥ 2. By Lemma 2.3, we may suppose that
system (2.1) is such thatWj ⊆ Wi or Wj ⊂ W̄i for j ∈ {1, . . . , r }\{i }. W.l.o.g. we may
suppose that|Wi | is minimum with respect to this assumption. We have thatx(δ(W)) ≥ k
for everyW ⊂ V with v1 ∈ W andW̄ ∩ S 6= ∅. In fact, this is clear ifW ∩ S 6= ∅. So
suppose thatW ∩ S= ∅. As v ∈ S, we have thatv ∈ W̄ and, consequently,F1 ⊆ δ(W).
Furthermoreδ(W ∪ {v}) is a Steiner-cut. Ifv2 ∈ W then x(δ(W)) ≥ x(δ(v)) ≥ k. If
v2 ∈ W̄, thenδ(W∪{v}) = (δ(W)\F1)∪ F2. As x(F1) ≥ x(F2) andx(δ(W∪{v})) ≥ k, it
follows thatx(δ(W)) ≥ k. Now, we claim thatv1 ∈ S. Indeed, if this is not the case, then let
S′ = S∪ {v1}. As x(δ(W)) ≥ k for every cutδ(W) with v1 ∈ W andW̄∩ S 6= ∅, it follows
that x is at the same time an extreme point of the polytopeQk(G, S′). As |S′| > |S| and
x is fractional, this contradicts the maximality of|S|. So, asWi ∩ S= {v}, it follows that
v1 ∈ W̄i andv2 ∈ Wi . By Claim 3, the edges ofF2 must belong to at least one Steiner-cut
δ(T) of the system (2.1). AsT ⊆ Wi andx(e) > 0, it follows thatT = {v} and, by the
minimality of Wi , δ(T) is the only tight cut of the system (2.1) whereT ⊆ Wi . By Claim
2 it follows thatx(e) = 1 for all e ∈ F2. As x(δ(v)) = k and by Claim 4,F1 can contain
at most one edge with fractional value, this implies thatx(e) = 1 for all e∈ F1. Moreover,
we haveF2 = E(Wi ). If for instance there isf ∈ E(Wi )\F2, then by the minimality
of Wi , f cannot belong to any tight cut of system (2.1), contradicting Claim 3. Thus we
have 

Wi = {v, v2},
x(δ(v)) = k,

x(e) = 1, for all e∈ δ(v).

Let G′ = (V ′, E′) be the graph obtained fromG by contractingF2. Let x′ be the restriction
of x on E′. Let S′ = (S\{v})∪ {w} wherew is the node that arises from the contraction of
F2. Clearly,x′ ∈ Qk(G′, S′). Furthermore, it is not hard to see thatx′ is an extreme point
of Qk(G′, S′). As |E′| < |E| andx′ is fractional, this contradicts the induction hypothesis.

2

For the rest of the proof we suppose thatv ∈ Wi for i = 1, . . . , r . Now, by Claim 2,
there must exist a cutWi , i ∈ {1, . . . , r }, such thatF1 ⊂ δ(Wi ). Let us suppose that
|Wi | is maximum. We claim that|Wi | ≥ 2. Indeed, suppose thatWi = {v}. Thus by the
maximality of|Wi |, δ(Wi ) is the only Steiner-cut containingF1. By Claim 2 it follows that
x(e) = 1 for all e∈ F1. In consequence we have

x(e) = 1 for all e∈ δ(Wi ),

implying that x(δ(v)) = x(δ(Wi )) = k is redundant in system (2.1), a contradiction.
Consequently,|Wi | ≥ 2 andv, v2 ∈ Wi . Also by Claim 4, we may assume that(Wi \{v})∩
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S 6= ∅ (and(W̄i ∪ {v}) ∩ S 6= ∅). Thus

k ≤ x(δ(Wi \{v})) = x(δ(Wi ))+ x(F2)− x(F1)

= k+ x(F2)− x(F1)

≤ k.

This implies that the inequalities above are all satisfied with equality. Hence,
x(δ(Wi \{v})) = k,

x(F2) = x(F1),

|F1| = |F1|.
(2.2)

The last equation is obtained using Claim 4 and the fact thatx(F2) = x(F1). Now,
suppose thatδ(v) is tight for x. If there is an edgee1 ∈ F1 with 0 < x(e1) < 1, then by
(2.2) together with Claim 4 there must exist an edgee2 of F2 such thatx(e2) = x(e1). Let
l = |F1| = |F2|. We have

x(δ(v)) = x(F1)+ x(F2)

= (l − 1)+ x(e1)+ (l − 1)+ x(e2)

= 2(l − 1)+ 2x(e1)

= k.

However the last equation cannot hold sincek is even and 0< x(e1) < 1. Thusx(e) = 1
for all e ∈ F1. Similary we havex(e) = 1 for all e ∈ F2. Hencex(δ(v)) = k is redundant
with respect to system (2.1). And in consequence, one may assume thatx(δ(v)) = k does
not belong to system (2.1). Let

F1
i = {e∈ Fi | x(e) = 1}, i ∈ {1, 2}.

Let J be the set of indicesj ∈ {1, . . . , r } such thatF1 ⊂ δ(Wj ). Let W′j = Wj \{v}
for j ∈ J. Clearly, by Claim 5,δ(W′j ) is a Steiner cut forj ∈ J. As x(δ(v)) = k and
x(F1) = x(F2) we havex(δ(W′j ) = k for j ∈ J.

Now, consider the system(2.1)′ obtained from system (2.1) by replacing the equations
x(δ(Wj )) = k by x(δ(W′j )) = k for j ∈ J, and deleting the equationsx(e) = 1, fore∈ F1

1 .
Let G′ = (V ′, E′) be the graph obtained by contractingF1. Let S′ = (S\{v, v1}) ∪ {v0}
if {v, v1} ∩ S 6= ∅ andS′ = S if not, wherev0 is the node arising from the contraction of
F1. Let x′ be the restriction ofx on E′. Clearly,x′ ∈ Qk(G′, S′) andx′ satisfies system
(2.1)′. As |E′| < |E|, by the induction hypothesisQk(G′, S′) is integral. And, sincex′ is
fractional, there must exist an integral extreme pointy′ of Qk(G′, S′) which is a solution
of (2.1)′. We distinguish two cases.
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Case 1. F11 ⊂ F1. ThusF1
2 ⊂ F2. And there are two edgese1 ∈ F1 ande2 ∈ F2 with

0< x(e1) = x(e2)<1. Let y ∈ RE be the solution given by

y(e) =


y′(e) if e∈ E\F1,

1 if e∈ F1
1 ,

y′(e2) if e= e1.

It is not hard to see thaty is a solution of system (2.1). Asy is integral and hencey 6= x,
this contradicts the extremality ofx.

Case 2. F11 = F1. ThusF1
2 = F2. Let y ∈ RE be defined as

y(e) =
{

y′(e) if e∈ E\F1,

1 if e∈ F1.

As in Case 1, it is easy to see thaty is a solution of system (2.1). But this is a contradiction,
which finishes the proof of our theorem. 2

An immediate consequence of Theorem 2.4 is the following.

Corollary 2.5. The SkESNP is solvable in polynomial time on series-parallel graphs when
k is even.

3. The polyhedronPk(G,S) of a series-parallel graph

In this section we shall discussPk(G, S), the polyhedron associated with the SkESNP when
multiple copies of an edge are allowed. Using Theorem 2.4 we will show that inequalities
(1.1) and (1.3) are sufficient to describePk(G, S) whenG is series-parallel andk is even.

Theorem 3.1. Let G= (V, E) be a series-parallel graph and S⊆ V a set of terminals.
If k is even then Pk(G, S) is completely described by inequalities(1.1) and(1.3).

Proof: Let P∗k (G, S) be the polyhedron described by inequalities (1.1) and (1.3). It is
clear that inequalities (1.1) and (1.3) are valid forPk(G, S). ThusPk(G, S) ⊆ P∗k (G, S).
To show thatP∗k (G, S) ⊆ Pk(G, S) it suffices to show that the extreme points ofP∗k (G, S)
are integral. Suppose, on the contrary, that there exists a fractional extreme pointx ∈ RE of
P∗k (G, S). Let G′ = (V, E′) be the graph obtained fromG by replacing each edgee= i j
of E such thatx(e) > 0 by dx(e)e edgese1, . . . ,edx(e)e betweeni and j . Let x′ ∈ RE′ be
the solution given by

x′(ei ) = 1

x′(ei ) = x(e)− dx(e)− 1e
x′(e) = 0

for i = 1, . . . , dx(e)e − 1,

for i = dx(e)e,

}
if x(e) 6= 0,

if not.
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It is easily seen thatx′ satisfies inequalities (1.1) and (1.3). Moreover,x′ is an extreme
point ofQk(G′, S). In fact, it is clear thatx′ satisfies inequalities (1.2). Now if the statement
does not hold, as, by Theorem 2.4,Qk(G′, S) is integral, there must existt integer solutions
(t ≥ 2) y′1, . . . , y′t of Qk(G′, S) and λ1, . . . , λt ∈ R∗ such thatx′ = ∑t

j=1 λ j y′j and∑t
j=1 λ j = 1. Now lety1, . . . , yt ∈ RE be the solutions such that

yi (e) =
dx(e)e∑

j=1

y′i (ej ),

for e ∈ E and i = 1, . . . , t . It is clear thaty1, . . . , yt ∈ P∗k (G, S). Moreover we have
thatx = ∑t

j=1 λ j yj . But this contradicts the fact thatx is an extreme point ofP∗k (G, S).
Consequently,x′ is an extreme point ofQk(G′, S). Sincex′ is fractional andG′ is series-
parallel, this contradicts Theorem 2.4. 2

4. Concluding remarks

We have studied the Steinerk-edge survivable network problem and have given a complete
linear description of the associated polytope when the underlying graph is series-parallel
andk is even. We have shown that in this case, the trivial and the Steiner-cut inequalities
suffice to describe the polytope. As a consequence we obtained that the nonnegativity
inequalities together with the Steiner-cut inequalities characterize the polyhedron in this
case, when multiple copies of an edge are allowed. Both characterizations yield polynomial
time algorithms for the corresponding optimization problems on series-parallel graphs.

The trivial inequalities and the Steiner-cut inequalities do not suffice to describe the
polytope SkNSP(G, S) on series-parallel graphs whenk is odd. In fact, as shown by Didi
Biha and Mahjoub (1996), forS= V andk odd, a further class of constraints calledseries-
parallel partition inequalitiesis needed to have a complete description when the graph is
series-parallel. This class generalizes the cut inequalities, and may be extended to the case
whenS⊂ V as follows:

Let G = (V, E) be a series-parallel graph andS be a set of terminals. LetV1, . . . ,Vp

be a partition ofV such that

i) G(Vi ) is connected fori = 1, . . . , p, and
ii) Vi ∩ S 6= ∅ for i = 1, . . . , p.

Then the inequality

x(δ(V1, . . . ,Vp)) ≥
⌈

k

2

⌉
p− 1

is valid for SkESNP(G, S). Hereδ(V1, . . . ,Vp) denotes the set of edges between the mem-
bers of the partition. The trivial inequalities and the series-parallel partition inequalities do
not, unfortunately, suffice to describe the polytope SkENSP(G, S) on series-parallel graphs
even fork = 1 (see Chopra and Rao, 1994; Didi Biha et al., to appear; Goemans, 1994).
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Figure 1. Graphs of0.

It would be interesting to characterize the class of graphsG such thatQk(G, S) =
SkESNP(G, S). The problem SkESNP can be solved in polynomial time in that class of
graphs. Theorem 2.4 shows that that class contains for instance the class of series-parallel
graphs, ifk is even. In what follows we describe further classes for whichQk(G, S) =
SkESNP(G, S) whenS= V , for the proofs see Didi Biha (1998).

Let Γ be the class of graphsG = (V, E) such that

1) V = V1 ∪ V2, V1 ∩ V2 = ∅,
2) |V1| = 3 andE(V2) = ∅,
3) |V2| ≥ 3 and if|V2| = 3, thenE(V1) = ∅,
4) |[v1, v2]| ≤ b k

2c for all nodesv1, v2 such thatv1 ∈ V1 andv2 ∈ V2.

Figure 1 shows some graphs ofΓ. Note that graphs ofΓ can be recognized in polynomial
time and may be non series-parallel.

The following theorem generalizes a result of Mahjoub (1997) fork = 2.

Theorem 4.1. If G is a graph ofΓ, then Qk(G,V) = SkESNP(G,V).

In Didi Biha (1998) it is also shown that ifG = (V1∪V2, E) is a bipartite graph without
parallel edges such that either|V1 ∪ V2| ≤ 4k − 1 or |V1| ≤ k + 1, thenQk(G,V) =
SkESNP(G,V).

In Fonlupt and Mahjoub (1999), Fonlupt and Mahjoub characterize the graphs for which
Q2(G,V) = S2ESNP(G,V). In Didi Biha (1998), Didi Biha gives sufficient conditions
under whichQk(G,V) = SkESNP(G,V).

In Mahjoub (1994), Mahjoub introduces a class of facet defining inequalities for the
S2ESNP(G, S) when S = V , calledodd wheel inequalities. Wheels with 2n + 2 nodes
(where the exterior cycle of the wheel contains 2n+ 1 nodes, andn ≥ 1) are examples of
graphs producing odd wheel inequalities.

A Halin graphG = (V, T ∪ C) consists of a treeT that has no degree-two nodes,
together with a simple cycleC whose nodes are pendant nodes ofT , the graph should
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be embeddable in the plane withC as the exterior face. These are examples of minimally
3-connected graphs given by Halin (1971). In Barahona and Mahjoub (1995), Barahona and
Mahjoub show that ifG is a Halin graph then S2ESNP(G, S) with S= V , is given by the
trivial, cut and odd wheel inequalities. In Didi Biha (1998) Didi Biha gives a generalization
of that result as follows. LetHk be the class of graphsG such thatG can be obtained from
a Halin graph by replacing each edgei j of T by k−1 parallel edges betweeni and j . Note
that graphs inHk are minimallyk+ 1-connected.

In Didi Biha (1998), Didi Biha describes a class of inequalities that generalises the
odd wheel inequalities for graphs ofHk and arbitraryk, and shows that these inequalities
together with the trivial and the cut inequalities describe the SkESNP(G, S) for S = V
whenG is a graph ofHk.

The SkESNP can be seen as a relaxation of the following problem called theSteiner
k-edge connected subgraph problem(SkECSP) introduced by Monma et al. (1990). Given
a graphG = (V, E) with weights on its edges and a set of terminalsS⊆ V , the problem is
to find a minimumk-edge connected subgraph ofG, spanningS. Note that if the weights
are positive, the two problems are equivalent. This problem has been studied by Ba¨ıou and
Mahjoub (1997) and by Ba¨ıou (1997) fork = 2. In Baı̈ou and Mahjoub (1997) it is shown
that the associated polytope SkECSP(G, S) on series-parallel graphs is given by the trivial
inequalities, Steiner-cut inequalities and the inequalities

x(δ(W))− 2x(e) ≥ 0 for all W ⊂ V, S⊆ W, e 6∈ E(W).

A natural question that may arise here is whether or not this result can be extended to
the case wherek is even. Our study of that question motivates us to give the following
conjecture.

Conjecture 4.2. If G is series-parallel with a set of terminals S, and k is even, then
SkECSP(G, S) is given by the trivial inequalities, the Steiner-cut inequalities and the
inequalities

x(δ(W))− kx(e) ≥ 0 for all W ⊂ V, S⊆ W, e 6∈ E(W).

In Baı̈ou (to appear), Ba¨ıou gives a complete description of the dominant of the
SkECSP(G, S) in the class of graphs for which SkECSP(G, S) coincides with its linear
relaxation. This class contains series-parallel graphs as a subclass.
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