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Abstract

In this paper we consider the linear relaxation of the k-edge connected subgraph polytope,
P(G, k), given by the trivial and the so-called cut inequalities. We introduce an ordering
on the fractional extreme points of P(G, k) and describe some structural properties of the
minimal extreme points with respect to that ordering. Using this we give sufficient conditions
for P(G, k) to be integral.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction and notation

A graph G = (V , E) is called k-edge connected (where k is a positive integer) if
for every pair of nodes i, j ∈ V , there are at least k edge disjoint paths between i and
j . Given a graph G = (V , E) and a weight function w on E that associates with an
edge e ∈ E, the weight w(e) ∈ R, the k-edge connected subgraph problem (kECSP
for short) is to find a k-edge connected spanning subgraph H = (V , F ) of G such
that

∑
e∈F w(e) is minimum.
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The kECSP arises in the design of reliable communication networks. In fact, with
the introduction of fiber optic technology in telecommunication, designing a mini-
mum cost survivable network has become a major objective in telecommunication
industry. Survivable networks have to satisfy some connectivity requirements, this
means that they are still functional after the failure of certain links. As pointed out
in [23], the topology that seems to be very efficient (and needed in practice) is that
corresponding to networks that survive after the loss of k − 1 or less edges, for some
k � 2 (k depends on the level of reliability required in the network). These net-
works remain connected after the removal of k − 1 or less edges, in other words, k-
edge connected networks. For more details on the general survivable network design
problem see [17–21].

The kECSP is NP-hard for k � 2. Ko and Monma [23] devise heuristics for
obtaining near optimal solution for the kECSP. These extend heuristics previously
developed by Monma and Shallcross [26] for the 2ECSP to the kECSP. For k = 1, the
problem reduces to the minimum spanning tree and thus can be solved in polynomial
time.

Given a graph G = (V , E) and an edge subset F ⊆ E, the 0–1 vector xF ∈ RE

such that xF (e) = 1 if e ∈ F and xF (e) = 0 if e ∈ E\F is called the incidence vec-
tor of F . The convex hull of the incidence vectors of the edge sets of the k-edge
connected subgraphs of G, denoted by kECSP(G), is called the k-edge connected
subgraph polytope of G.

Let G = (V , E) be a graph. Given w : E �→ R and F a subset of E, w(F) will
denote

∑
e∈F w(e). For W ⊆ V , we let W = V \W . If W ⊂ V is a node subset of G,

then the set of edges that have only one node in W is called a cut and denoted by
δ(W). We will write δ(v) for δ({v}). A cut δ(v), v ∈ V , will be called a degree cut.
An edge cutset F ⊆ E of G is a set of edges such that F = δ(S) for some non-empty
set S ⊂ V .

If xF is the incidence vector of the edge set F of a k-edge connected spanning
subgraph of G, then xF satisfies the following inequalities:

x(e) � 0 ∀ e ∈ E, (1)

x(e) � 1 ∀ e ∈ E, (2)

x(δ(W)) � k ∀ W ⊂ V, W /= ∅. (3)

Conversely, any integer solution of the system defined by inequalities (1)–(3) is the
incidence vector of the edge set of a k-edge connected subgraph of G. Constraints (1)
and (2) are called trivial inequalities and constraints (3) are called cut inequalities.
We will denote by P(G, k) the polytope given by inequalities (1)–(3).

Using network flows [12,13], one can compute in polynomial time a minimum
cut in a weighted undirected graph. Hence the separation problem for inequalities
(3) (i.e. the problem that consists of finding whether a given vector x̄ ∈ RE satisfies
inequalities (3), and if not to find an inequality which is violated by x̄) can be solved
in polynomial time. This implies by the ellipsoid method [16] that the kECSP can
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be solved in polynomial time on graphs G for which kECSP(G) = P(G, k). For
k = 2, Mahjoub [25] called these graphs perfectly 2-edge connected graphs. In what
follows we call a graph perfectly k-edge connected (perfectly-kEC) if kECSP(G) =
P(G, k).

In [14], Fonlupt and Mahjoub study the extreme points of P(G, 2). They intro-
duce an ordering on these extreme points and give necessary conditions for a
fractional extreme point to be minimal with respect to that ordering. And as a con-
sequence, they obtain a characterization of the perfectly 2-edge connected graphs.
This paper extends some of the results of [14] to k-edge connected graphs.

The polytope kECSP(G) and its linear relaxation P(G, k) have been the subject
of extensive research in the past years. Grötschel and Monma [17] and Grötschel
et al. [18–21] study the kECSP(G) within the framework of a more general model re-
lated to the design of telecommunication survivable networks. In particular, Grötschel
and Monma describe several basic facets of the polytope associated with that model.
And Grötschel et al. [18,20] study further facets and polyhedral aspects of that
model, and devised cutting plane algorithms along with some experimental results
are discussed [19]. A complete survey of that model can be found in [27]. In [5], Cho-
pra studies the k-edge connected subgraph problem for k odd, when multiple copies
of an edge may be used. In particular, he characterizes the associated polyhedron for
the class of outerplanar graphs (a graph is outerplanar if it can be drawn in the plane
as one cycle with noncrossing chords). This polyhedron has been previously studied
by Cornuéjols et al. [6]. They showed that when the graph is series–parallel (a graph
is series–parallel if it can be created from a single edge by iterative application of two
operations: (i) addition of a parallel edge, and (ii) subdivision of an edge) and k = 2,
the polyhedron is completely described by the nonnegativity and the cut inequalities.
In [10], Didi Biha and Mahjoub give a complete description of the kECSP(G) for
all k, on series–parallel graphs. In particular they show that if G is series–parallel
and k is even, then kECSP(G) = P(G, k), implying that series–parallel graphs are
perfectly-kEC.

Much work has been done on 2ECSP(G). In [24] Mahjoub shows that if G is
series–parallel then 2ECSP(G) is completely described by the trivial and the cut
inequalities. This has been generalized by Baı̈ou and Mahjoub [1] to the Steiner
2-edge connected subgraph polytope, and by Didi Biha and Mahjoub [11] to the
Steiner k-edge connected subgraph polytope for k even. Mahjoub [24] introduced a
general class of valid inequalities for 2ECSP(G). Boyd and Hao [4] describe a class
of “comb inequalities” which are valid for 2ECSP(G). This class, as well as that
introduced by Mahjoub, are special cases of a more general class of inequalities given
by Grötschel et al. [20] for the general survivable network polytope. In [2] Barahona
and Mahjoub characterise the polytope 2ECSP(G) for the class of Halin graphs.
Kerivin et al. [22] describe a general class of valid inequalities for 2ECSP(G) that
generalize the so-called F -partition inequalities [24], and introduce a Branch&Cut
algorithm for 2ECSP based on these inequalities together with the trivial and the
cut inequalities. In [3] Bienstock et al. describe structural properties of the optimal
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solutions of kECSP when the weight function satisfies the triangle inequalities (i.e.
w(e1) � w(e2) + w(e3) for every three edges e1, e2, e3 defining a triangle). In partic-
ular, they show that every node of minimum k-edge connected subgraph has degree
k or k + 1. In [7] Coullard et al. studied the Steiner 2-node connected subgraph
problem. In [8] they devise a linear time algorithm for this problem on special classes
of graphs. And in [9], they characterize the dominant of the polytope associated with
this problem on the graphs which do not have W4 (the wheel on 4 nodes) as a minor.
In [15], Fonlupt and Naddef characterize the class for which the system given by
inequalities (1) and (3), when k = 2, defines the convex hull of the incidence vectors
of the tours of G (a tour is a cycle going at least once through each node).

The paper is organized as follows. In Section 2 we introduce some reduction oper-
ation that preserve perfectly-kEC property. In Section 3 we introduce an ordering on
the extreme points of P(G, k) and discuss some structural properties of the minimal
extreme points with respect to that ordering. In Section 4 we describe sufficient
conditions for a graph to be perfectly-kEC. In Section 5 we give some concluding
remarks.

The rest of this section is devoted to more definition and notation. The graphs
we consider are finite, undirected, loopless and connected. A graph is denoted by
G = (V , E) when V is the node set and E is the edge set. If e ∈ E is an edge with
endnodes u and v, we also write uv to denote e. Given W , W ′ two disjoint subsets
of V , [W, W ′] will denote the set of edges of G having one endnode in W and the
other one in W ′. For F ⊆ E, V (F) will denote the set of nodes of the edges of F .
For W ⊂ V , we denote by E(W) the set of edges having both endnodes in W , and
by G(W) the subgraph induced by W . We also denote by G\W the graph obtained
by deleting W and the edges incident to the nodes of W , and by G/W the graph
obtained by contracting the nodes in W to a new node (retaining multiple edges).
Given an edge e = uv ∈ E, contracting e consists of deleting e, identifying u and
v and of preserving all the adjacencies. Contracting a set of edges F ⊂ E consists
of contracting all the edges of F . If G is a graph and e ∈ E is an edge of G, then
G − e will denote the graph obtained from G by removing e. Given a solution x̄ of
P(G, k), an inequality ax � α is said to be tight for x̄ if ax̄ = α.

2. Reduction operations

In this section we describe three operations on graphs that preserve the perfectly-
kEC property. The first one consists of just removing an edge.

Lemma 2.1. Let G = (V , E) be a graph and f an edge of E. If G is perfectly-kEC
and G − f is k-edge connected, then G − f is perfectly-kEC.

Proof. Suppose that G − f is not perfectly-kEC, and let x be an extreme point of
P(G − f, k) which is fractional. Let x̄ ∈ RE such that
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x̄(e) =
{
x(e) if e /= f,

0 if e = f.

Thus x̄ is an extreme point of P(G, k). Since x̄ is fractional, this contradicts the fact
that G is perfectly-kEC. �

Lemma 2.2. Let G = (V , E) be a graph and W a node subset of V such that G(W)

is k-edge connected. If G is perfectly-kEC, then G/W is perfectly-kEC.

Proof. Suppose that P(G/W, k) has a fractional extreme point, say x̄. Let x̄′ ∈ RE

be the solution given by

x̄′(e) =
{
x̄(e) if e ∈ E\E(W),

1 if e ∈ E(W).

Clearly, x̄′ ∈ P(G, k). Moreover, it is not hard to see that x̄′ is an extreme point of
P(G, k). Since x̄′ is fractional, this is a contradiction. �

Lemma 2.3. Let G = (V , E) be a perfectly-kEC graph and W a node subset of V

with |W | � 2. If |δ(W)| = k + t (t � 0) and G/W is (k + t)-edge connected, then
G/W is perfectly-kEC.

Proof. Suppose, on the contrary, that G/W is not perfectly-kEC, and let x̄ be a
fractional extreme point of P(G/W, k). Thus x̄ is the unique solution of a subsystem
S(x̄) of P(G/W, k), when the inequalities are replaced by equations. Let x̄′ ∈ RE

be the solution given by

x̄′(e) =
{
x̄(e) if e ∈ E\E(W),

1 if e ∈ E(W).

In what follows we are going to show that x̄′ is an extreme point of P(G, k). To this
end, let us first show that x̄′ is a solution of P(G, k). Let U ⊂ V . If either U ⊆ W

or W ⊆ U , then x̄′(δ(U)) = x̄(δ(U)) � k. So, let us suppose first that U ⊂ W . We
have

x̄(δ(W)) = x̄([U, W ]) + x̄([W\U, W ]) � k. (4)

As |δ(W)| = k + t and G/W is (k + t)-edge connected, this yields

|[U, W ]| + |[W\U, W ]| = k + t,

|[U, W ]| + |[U, W\U ]| � k + t.

Thus |[U, W\U ]| � |[W\U, W ]|. As x̄′(e) = 1 for all e ∈ E(W) and x̄′(e) � 1 for
all e ∈ [W\U, W ], it follows that

x̄′([U, W\U ]) � x̄′([W\U, W ]). (5)
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By (4) and (5) we obtain that

x̄′(δ(U)) = x̄′([U, W ]) + |[U, W\U ]|
� x̄′([U, W ]) + x̄′([W\U, W ])
� k.

Suppose now that U1 = U ∩ W /= ∅, U2 = U ∩ W /= ∅, W\U /= ∅ and W\U /= ∅.
Let

E1 = {e ∈ [U1, W ] | x̄(e) < 1},
E2 = {e ∈ [W\U, W ] | x̄(e) < 1},

and

ti = |Ei |, αi =
∑
e∈Ei

x̄(e), i = 1, 2,

l1 = |[U1, W ]|,
l2 = |[W\U, W ]|.

We have

l1 + l2 = k + t, (6)

x̄′([U1, W ]) = l1 − t1 + α1, (7)

x̄′([W\U, W ]) = l2 − t2 + α2. (8)

On the other hand, as G/W is (k + t)-edge connected and x̄′(e) = 1 for all e ∈
E(W), the following hold:

x̄′([U1, W ]|) + x̄′([U1, W\U ]) � k + t + α1 − t1, (9)

x̄′([W\U, W ]) + x̄′([W\U, U1]) � k + t + α2 − t2. (10)

Moreover, since x̄ ∈ P(G, k) and x̄′(e) = x̄(e) for all e ∈ E\E(W), we have

x̄(δ(U2)) = x̄′([U1, U2]) + x̄′([W\U, U2]) + x̄′([U2, W\U ]) � k, (11)

x̄(δ(W\U)) = x̄′([U1, W\U ]) + x̄′([W\U, W\U ]) + x̄′([U2, W\U ]) � k.

(12)

From (7), (9) and (8), (10) we respectively get

x̄′([U1, W\U ]) � k + t − l1, (13)

x̄′([U1, W\U ]) � k + t − l2. (14)



M. Didi Biha, A.R. Mahjoub / Linear Algebra and its Applications 381 (2004) 117–139 123

Also from (11) and (12) we obtain that

2x̄′([U2, W\U ]) � 2k − x̄′([U1, U2]) − x̄′([W\U, U2])
−x̄′([U1, W\U ]) − x̄′([W\U, W\U ])

= 2k − x̄′([U1, W ]) − x̄′([W\U, W ]).
By (7) and (8), this yields

2x̄′([U2, W\U ]) � 2k − l1 − l2 + t1 + t2 − α1 − α2. (15)

Combining (6) and (13)–(15), we get

x̄′([U1, W\U ]) + x̄′([U2, W\U ]) � k + (t1 + t2) − (α1 + α2)

2
� k.

As x̄′(e) � 0 for all e ∈ E, it follows that

x̄′(δ(U)) � x̄′([U1, W\U ]) + x̄′([U2, W\U ]) � k.

Consequently, x̄′ ∈ P(G, k). Moreover, x̄′ is an extreme point of P(G, k). In fact,
x̄′ is the unique solution of the system formed by S(x̄′) and the equations x(e) = 1
for all e ∈ E(W). As x̄′ is fractional, this contradicts the fact that G is perfectly-
kEC. �

Let θ1, θ2 be the operations described by Lemmas 2.1–2.2, respectively and θ3
the operation described by Lemma 2.3 when t = 1. An immediate consequence of
Lemmas 2.1–2.3 is the following.

Lemma 2.4. Let G be a perfectly-kEC graph. If G′ is a graph obtained for G by
repeated applications of operations θ1, θ2, θ3, then G′ is perfectly-kEC.

3. Structural properties

In this section, we introduce an ordering on the extreme points of P(G, k) and
describe some structural properties of these extreme points with respect to that order-
ing. These properties will be useful in the sequel to describe sufficient conditions for
a graph to be perfectly-kEC.

Let G = (V , E) be a graph. A cut δ(W) of G will be called proper if |W | � 2
and |W | � 2. If x̄ is a solution of P(G, k), we will denote by E0(x̄), E1(x̄), Ef (x̄)

the sets of edges e such that x̄(e) = 0, x̄(e) = 1, 0 < x̄(e) < 1, respectively. We also
denote by Cd(x̄) the set of degree tight cuts δ(v) such that δ(v) ∩ Ef (x̄) /= ∅, and by
Cp(x̄) the set of proper tight cuts δ(S) with δ(S) ∩ Ef (x̄) /= ∅. Let x̄ be an extreme
point of P(G, k). Thus there is a set of cuts C∗

p(x̄) ⊆ Cp(x̄) such that x̄ is the unique
solution of the system
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S(x̄)




x(e) = 0 ∀e ∈ E0(x̄),

x(e) = 1 ∀e ∈ E1(x̄),

x(δ(v)) = k ∀δ(v) ∈ Cd(x̄),

x(δ(S)) = k ∀δ(S) ∈ C∗
p(x̄).

We have the following lemma, its proof is omitted because it is similar to that of a
similar result in [6].

Lemma 3.1. Let δ(W) be a tight proper cut. Then system S(x̄) can be chosen so
that if δ(Z) ∈ C∗

p(x̄), then either Z ⊆ W or Z ⊆ W.

In what follows we are going to define a ranking function on the extreme points
of P(G, k). This function has been introduced by Fonlupt and Mahjoub [14] for the
polytope P(G, 2).

Definition 3.1. Let x and y be two extreme points of P(G, k). We say that x domi-
nates y and we write xDy, if either y = x or the following hold:

(1) E0(x) ⊆ E0(y),
(2) E1(x) ⊆ E1(y),
(3) E0(x) ∪ E1(x)�E0(y) ∪ E1(y).

The relation ‘D’ defines a partial ordering on the extreme points of P(G, k). The
minimal elements of this relation (i.e. the extreme points x that do not dominate any
other extreme point y, y /= x) correspond to the integer extreme points of P(G, k).
These extreme points will be called of rank 0. In what follows, we define in a recur-
sive way the rank of any extreme point of P(G, k).

Definition 3.2. An extreme point x of P(G, k) will be called of rank p, where p � 1
is a fixed integer, if

(i) x dominates only extreme points of rank � p − 1, and
(ii) there exists at least one extreme point of P(G, k) of rank p − 1.

Note that extreme points of rank 1 only dominate integer extreme points.

Remark 3.1. Let x be an extreme point of P(G, k) of rank p and f ∈ Ef (x). Let
x′ ∈ RE be given by

x′(e) =
{
x(e) if e ∈ E\f,

1 if e = f.

Then x′ ∈ P(G, k), and hence can be written as a convex combination of extreme
points of rank � p − 1. In particular, if x is of rank 1, then x′ can be written as a
convex combination of integer extreme points of P(G, k).
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Let G = (V , E) be a graph and x̄ a solution of P(G, k). In what follows we are
going to describe some operations that preserve rank 1. The two first ones are easy
to prove

Lemma 3.2. Let f ∈ E be an edge such that x̄(f ) = 0 and let x̄′ be the restriction
of x̄ on G − f. Then x̄ is an extreme point of P(G, k) of rank 1 if and only if x̄′ is an
extreme point of P(G − f, k) of rank 1.

Lemma 3.3. Let W ⊂ V be a node subset such that G(W) is k-edge connected and
x̄(e) = 1 for all e ∈ E(W). Let x̄′ be the restriction of x̄ on E\E(W). Then x̄ is an
extreme point of P(G, k) of rank 1 if and only if x̄′ is an extreme point of P(G/W, k)

of rank 1.

Lemma 3.4. Let W ⊂ V be a node subset such that |W | � 2, |δ(W)| = k and
x̄(e) = 1 for all e ∈ E(W). Let x̄′ be the restriction of x̄ on E\E(W). Then x̄ is an
extreme point of P(G, k) of rank 1 if and only if x̄′ is an extreme point of P(G/W, k)

of rank 1.

Proof. We first show that x̄′ is an extreme point of P(G/W, k). Observe that,
as |δ(W)| = k, one should have x̄(e) = 1 for all e ∈ δ(W). Now, it is easy to see
that x̄′ ∈ P(G/W, k). Moreover, by Lemma 3.1, system S(x̄) can be chosen so
that for every cut δ(Z) of C∗

p(x̄), either Z ⊆ W or Z ⊆ W . Since x̄(e) = 1 for all
e ∈ E(W) ∪ δ(W) it follows that C∗

p(x̄) ⊆ Cp(x̄′) and Cd(x̄) = Cd(x̄′). Therefore
x̄′ is the unique solution of a subsystem of S(x̄). As all the equations of that subsys-
tem correspond to constraints of P(G/W, k), this implies that x̄′ is an extreme point
of P(G/W, k).

Now let us suppose, on the contrary, that x̄′ is not of rank 1, and that there is a
fractional extreme point of P(G/W, k), say y′, which dominates x̄′. Thus y′(e) = 1
for all e ∈ δ(W). Let y ∈ RE be the solution such that

y(e) =
{
y′(e) if e ∈ E\E(W),

1 if e ∈ E(W).

Obviously, y ∈ P(G, k). Moreover, y is an extreme point of P(G, k). In fact, y is
the unique solution of the system given by system S(y′) characterizing y′ together
with the equations x(e) = 1 for all e ∈ E(W). But this implies that x̄ is dominated
by y. As y is fractional, this contradicts the fact that x̄ is of rank 1.

Conversely, suppose that x̄′ is an extreme point of P(G/W, k) of rank 1. First, it
is clear that x̄ is an extreme point of P(G, k). Moreover, if x̄ is not of rank 1, then
there is an extreme point y of P(G, k) of rank 1 which is dominated by x̄. Therefore
the restriction y′ of y on E\E(W) is a fractional extreme point of P(G/W, k) which
is dominated by x̄′. This contradicts the fact that x̄′ is of rank 1. �
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Lemma 3.5. Let W ⊂ V be a node subset such that G(W) is
⌈

k
2

⌉
-edge connected

and |δ(W)| = k + 1. Suppose also that x̄(e) = 1 for all e ∈ E(W). Let x̄′ be the
restriction of x̄ on E\E(W). Then x̄ is an extreme point of P(G, k) of rank 1 if and
only if x̄′ is an extreme point of P(G/W, k) of rank 1.

Proof. Suppose that x̄ is an extreme point of P(G, k) of rank 1. It is clear that x̄′ is
a solution of P(G/W, k). Now to show that x̄′ is an extreme point of P(G/W, k),
it suffices to show that C∗

p(x̄) can be chosen so that if δ(Z) ∈ C∗
p(x̄), then Z ⊆ W .

Assume that there is δ(Z) ∈ C∗
p(x̄) such that Z �⊂ W and Z �⊂ W . We shall consider

two cases.

Case 1: Z ⊂ W .
As δ(Z) ∈ C∗

p(x̄) and x̄(e) = 1 for all e ∈ [Z, W\Z], it follows that [Z, W ] ∩
Ef (x̄) /= ∅ and x̄([Z, W ]) � |[Z, W ]| − 1. Thus

k � x̄(δ(W)) = x̄([Z, W ]) + x̄([W\Z, W ])
� |[Z, W ]| − 1 + |[W\Z, W ]
= k,

where the last equality comes from the fact that |δ(W)| = k + 1. Thus the above
inequalities are all satisfied with equality. This implies that x̄(e) = 1 for all e ∈
[W\Z, W ]. And, in consequence, the two equations x(δ(Z)) = k and x(δ(W)) = k

are equivalent in system S(x̄).

Case 2: Z �⊂ W , Z �⊂ W .
Let Z1 = W ∩ Z, Z2 = W ∩ Z. We have that Z1 /= ∅, Z2 /= ∅, W\Z /= ∅,

W\Z /= ∅ (see Fig. 1).

Z 1 Z 2

W\Z 

W

W\Z 

W

Fig. 1.
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As |δ(W)| = k + 1, it follows that min{|[W, Z2]|, |[W, W\Z]|} �
⌈

k
2

⌉
. Hence,

x̄([Z2, W\Z]) �
⌈

k−1
2

⌉
, for otherwise, we would have either x̄(δ(Z2)) < k or

x̄(δ(W\Z)) < k, a contradiction. As G(W) is
⌈

k
2

⌉
-edge connected this yields

k = x̄(δ(Z))

� |[Z1, W\Z]| + x̄([Z2, W\Z])
�

⌈
k

2

⌉
+

⌈
k − 1

2

⌉

= k.

Thus all the inequalities above are satisfied with equality. Moreover, as a conse-
quence, we have

x̄([Z1, W\Z]) = |[Z1, W\Z]| =
⌈

k

2

⌉
,

x̄([Z2, W\Z]) =
⌈

k − 1

2

⌉
,

x̄([Z1, W\Z]) = x̄([W\Z, Z2]) = 0.

As x̄(δ(Z2)) � k and x̄(δ(W\Z)) � k, it follows that

x̄([Z1, Z2]) � k

2
,

x̄([W\Z, W\Z]) � k

2
.

Since |δ(W)| = k + 1, and x̄(e) � 1 for all e ∈ E, this implies that either
x̄([Z1, Z2]) = |[Z1, Z2]| = k

2 or x̄([W\Z, W\Z]) = |[W\Z, W\Z]| = k
2 .

Suppose, w.l.o.g., that x̄([Z1, Z2]) = |[Z1, Z2]| = k
2 . Hence x̄(e) = 1 for all e ∈

[Z1, Z2] and δ(Z2) is tight for x̄. Consequently the equation x(δ(Z)) = k is redun-
dant with respect to the equations x(δ(Z2)) = k and x(e) = 1 for all e ∈ E1(x̄). Thus
it can be replaced by x(δ(Z2)) = k in system S(x̄).

Consequently, x̄′ is an extreme point of P(G/W, k). We can also show along the
same line as in Lemma 3.4 that x̄′ is of rank 1.

The necessary condition can also be shown in a similar way as in Lemma
3.4. �

Let us denote by θ ′
1, . . . , θ

′
4 the operations described by Lemmas 3.2–3.5 respec-

tively. That is

θ ′
1: Delete an edge e with x(e) = 0.

θ ′
2: Contract a node subset W ⊂ V such that G(W) is k-edge connected and x(e) =

1 for all e ∈ E(W).
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θ ′
3: Contract a node subset W ⊂ V such that |W | � 2, |δ(W)| = k and x(e) = 1 for

all e ∈ E(W).
θ ′

4: Contract a node subset W ⊂ V such that G(W) is
⌈

k
2

⌉
-edge connected, |δ(W)| =

k + 1 and x(e) = 1 for all e ∈ E(W).

An immediate consequence of Lemmas 3.2–3.5 is the following.

Lemma 3.6. Let G = (V , E) be a graph and x̄ a solution of P(G, k). Let G′ =
(V ′, E′) be a graph obtained from G by repeated applications of the operations
θ ′

1, θ
′
2, θ ′

3, θ ′
4. Let x̄′ be the restriction of x̄ on E′. Then x̄ is an extreme point of

P(G, k) of rank 1 if and only if x̄′ is an extreme point of P(G′, k) of rank 1.

Definition 3.3. An extreme point x̄ of P(G, k) will be called critical if

(i) x̄ is of rank 1 and
(ii) none of the operation θ ′

1, . . . , θ
′
4 can be applied to it.

In what follows we are going to describe some properties of the critical extreme
points of P(G, k).

Let G = (V , E) be a k-edge connected graph and x̄ a critical extreme point of
P(G, k). We have the following lemmas. The two first ones will be given without
proof, they are direct consequences of Definition 3.3.

Lemma 3.7. x̄(e) > 0 for all e ∈ E.

Lemma 3.8. Let W ⊆ V such that |W | � 2. If G(W) is k-edge connected, then
E(W) ∩ Ef (x̄) /= ∅.

Lemma 3.9. If W ⊆ V such that |δ(W)| = k, then either |W | = 1 or |W | = 1.

Proof. Suppose that |W | � 2 and |W | � 2. As |δ(W)| = k, it follows that x̄(e) = 1
for all e ∈ δ(W) and x̄(δ(W)) = k. Thus by Lemma 3.1 we may suppose that the set
of cuts C∗

p(x̄) in system S(x̄) is such that for all δ(Z) ∈ C∗
p(x̄), either Z ⊆ W or Z ⊆

W . Let x̄1 (resp. x̄2) be the restriction of x̄ on the graph G1 (resp. G2) obtained from
G by contracting W (resp. W ). Note that both x̄1 and x̄2 are fractional (otherwise,
operation θ ′

3 could be applied to x̄, contradicting the fact that x̄ is critical). Now let
x̄′

1 and x̄′
2 be the solutions of RE defined as

x̄′
1(e) =

{
x̄1(e) if e ∈ E(W) ∪ δ(W),

1 if e ∈ E(W),

and

x̄′
2(e) =

{
x̄2(e) if e ∈ E(W) ∪ δ(W),

1 if e ∈ E(W).
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It is clear that x̄′
1 and x̄′

2 both belong to P(G, k). As x̄ is critical and thus of rank
1, by Remark 3.1 both x̄′

1 and x̄′
2 can be written as convex combinations of integer

extreme points of P(G, k). Let y1 and y2 be two points of these convex combina-
tions, related to x̄′

1 and x̄′
2, respectively. We note that every constraint of P(G, k) that

is tight for x̄′
1 (resp. x̄′

2) is also tight for y1 (resp. y2). In particular, one should have
y1(e) = y2(e) = 1 for all e ∈ δ(W). Let y ∈ RE be given by

y(e) =



y1(e) if e ∈ E(W),

y2(e) if e ∈ E(W),

1 if e ∈ δ(W).

We claim that y is a solution of system S(x̄). In fact, first it is clear that y(e) = 1
for all e ∈ E1(x̄). Now let δ(Z) be a cut of system S(x̄) (δ(Z) may be either a
cut of Cd(x̄) or a cut of C∗

p(x̄)). If Z ⊆ W , then y(δ(Z)) = y2(δ(Z)) = x̄′
2(δ(Z)) =

x̄(δ(Z)) = k. If Z ⊆ W , then y(δ(Z)) = y1(δ(Z)) = x̄′
1(δ(Z)) = x̄(δ(Z)) = k.

Consequently, y is a solution of system S(x̄). As y /= x̄, this is a contradiction with
the fact that x̄ is the unique solution of that system. �

Lemma 3.10. Let δ(W) ∈ Cp(x̄) be a tight cut with |δ(W)| = k + 1. Then either
|W | = 1 or |W | = 1.

Proof. We first show that both G(W) and G(W) are
⌈

k
2

⌉
-edge connected. Let us

suppose for instance that G(W) is not
⌈

k
2

⌉
-edge connected. Then there is a node

subset W1 ⊂ W such that |[W1, W\W1]| <
⌈

k
2

⌉
. Hence x̄([W1, W\W1]) �

⌈
k
2

⌉ −
1. As x̄(δ(W1)) � k and x̄(δ(W\W1)) � k, it follows that x̄([W1, W ]) �

⌈
k−1

2

⌉ +
1 and x̄([W\W1, W ]) �

⌈
k−1

2

⌉ + 1. But this implies that x̄(δ(W)) � k + 1, which
contradicts the fact that δ(W) is tight.

Thus both G(W) and G(W) are
⌈

k
2

⌉
-edge connected. Now suppose the state-

ment does not hold, that is |W | � 2 and |W | � 2. Also suppose that |W | is min-
imum, that is if Z ⊂ W such that δ(Z) ∈ C∗

p and |δ(Z)| = k + 1, then |Z| = 1.
Since x̄ is critical and hence, cannot be reduced by operation θ ′

4, there must exist
two edges f1 ∈ E(W) and f2 ∈ E(W) such that 0 < x̄(f1) < 1 and 0 < x̄(f2) < 1.
Since |δ(W)| = k + 1 and x̄(δ(W)) = k, there must also exist an edge e1 ∈ δ(W)

such that 0 < x̄(e1) < 1. Let x̄1 and x̄2 be the solutions given by

x̄1(e) =
{
x̄(e) if e ∈ E(W) ∪ δ(W),

1 if e ∈ E(W),

and

x̄2(e) =
{
x̄(e) if e ∈ E(W) ∪ δ(W),

1 if e ∈ E(W).

As x̄1 and x̄2 belong to P(G, k), and x̄ is critical, by Remark 3.1, x̄1 and x̄2 can
be written as convex combinations of integer extreme points of P(G, k). Let y1 and
y2 be two points of these convex combinations. As x̄1(e1) = x̄2(e1) < 1; y1 and
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y2 can be chosen so that y1(e1) = y2(e1) = 0. As |δ(W)| = k + 1, this implies that
y1(e) = y2(e) = 1 for all e ∈ δ(W)\{e1}. Let y ∈ R|E| such that

y(e) =




y1(e) if e ∈ E(W),

y2(e) if e ∈ E(W),

1 if e ∈ δ(W)\{e1},
0 if e = e1.

Since δ(W) is tight for x̄, by Lemma 3.1 the set C∗
p(x̄) can be supposed consisting

of tight cuts δ(Z) with either Z ⊆ W or Z ⊆ W . Now it easily follows as in Lemma
3.9 that y is a solution of C∗

p(x̄). Since y /= x̄ this is a contradiction. �

Lemma 3.11. Let δ(W) be a tight cut with |δ(W) ∩ E1(x̄)| = k − 1. Then exactly
one of the following statements holds:

(i) either |W | = 1 or |W | = 1,

(ii) either x̄(e) = 1 for all e ∈ E(W) or x̄(e) = 1 for all e ∈ E(W).

Proof. Suppose that (i) does not hold, that is |W | � 2 and |W | � 2. We will show
that (ii) necessarily holds. For this let us assume, on the contrary, that both E(W)

and E(W) contain fractional edges. Also suppose that |W | is minimum, that is if
for Z ⊂ W , δ(Z) is tight for x̄ and |δ(Z) ∩ E1(x̄)| = k − 1, then either |Z| = 1 or
x̄(e) = 1 for all e ∈ E(Z). By Lemma 3.1, we may also suppose that for every cut
δ(S) of C∗

p(x̄), either S ⊆ W or S ⊆ W . Let e1, . . . , ek−1 ∈ δ(W) with x̄(ei) = 1 for
i = 1, . . . , k − 1. Let G1 = (V1, E1) (resp. G2 = (V2, E2)) be the graph obtained
from G by contracting W (resp. W ). Let x̄1 (resp. x̄2) be the restriction of x̄ on G1
(resp. G2). Obviously, x̄i is a fractional solution of P(Gi, k) for i = 1, 2. We claim
that x̄1 is not an extreme point of P(G1, k). Suppose that this is not the case. Then
let y1 ∈ RE be given by

y1(e) =
{
x̄1(e) if e ∈ E1,

1 if e ∈ E(W).

Obviously y1 ∈ P(G, k). Moreover y1 is an extreme point of P(G, k). This would
follow from the fact that y1 is the unique solution of the system given by the system
defining x̄1 and the equations x(e) = 1 for all e ∈ E(W). As y1 is fractional and
dominated by x̄, this contradicts the fact that x̄ is of rank 1.

Now, since x̄1 is not an extreme point of P(G1, k), it can be then written as a
convex combination of t extreme points y1

1 , . . . , y1
t of P(G1, k). That is

x̄1 =
t∑

i=1

αiy
1
i

with αi > 0 for i = 1, . . . , t and
∑t

i=1 αi = 1. Note that every constraint of P(G1, k)

that is tight for x̄1 is at the same time tight for y1
i , i = 1, . . . , t . In particular y1

i (e) =
1 for e ∈ {e1, . . . , ek−1} and i = 1, . . . , t . We are going to show that y1

i is integer for
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i = 1, . . . , t . Indeed, suppose that, for instance, y1
1 is fractional. Let z ∈ RE be the

solution given by

z(e) =
{
y1

1(e) if e ∈ E1,

1 if e ∈ E(W).

We claim that z ∈ P(G, k). To prove this we first show that G(W) is
⌈

k
2

⌉
-edge con-

nected. Indeed, suppose there is a subset W1 of W such that |[W1, W\W1]| <
⌈

k
2

⌉
.

Also suppose, w.l.o.g., that x̄([W1, W ]) � x̄([W\W1, W ]). Thus

x̄(δ(W1)) = x̄([W1, W\W1]) + x̄([W1, W ])
� |[W1, W\W1]| + k

2

�
⌈k

2

⌉ − 1 + k

2
< k,

a contradiction. Now it is clear that z satisfies the trivial inequalities and the inequal-
ities corresponding to cuts δ(S) with W ⊆ S. So consider a cut δ(S) such that W /=
S ∩ W /= ∅. Suppose first that S ⊂ W . Also suppose, w.l.o.g., that [S, W ] ∩ {e1, . . . ,

ek−1} = {e1, . . . , es}, s � k − 1. Hence z([S, W ]) � s and λ = x̄([S, W ]) − s � 1.
As x̄(δ(S)) � k and λ � 1, one should have x̄([S, W\S]) + s � k − 1. Hence
|[S, W\S]| � k − 1 − s. If |[S, W\S]| � k − s, then

z(δ(S)) = z([S, W\S]) + z([S, W ])
� |[S, W\S]| + s

� k.

If |[S, W\S]| < k − s, then |[S, W\S]| = k − s − 1. This implies that x̄(e) = 1 for
all e ∈ [S, W\S] and λ = 1. Moreover, as δ(W) is tight and |δ(W) ∩ E1(x̄)| = k −
1, one should have |[W\S, W ]| = k − s − 1 and x̄(e) = 1 for all e ∈ [W\S, W ]. It
thus follows that z([S, W ]) = y1

1([S, W ]) = s + 1, and hence z(δ(W)) =
z([S, W\S]) + z([S, W ]) = k.

Now suppose that S �⊂ W , S �⊂ W , S �⊂ W and S �⊂ W . Let S1 = S ∩ W and
S2 = S ∩ W . Then all the sets S1, S2, W\S1, W\S2 are nonempty. We have that
z(δ(S2)) � k, z(δ(W\S2)) � k and z(δ(W)) = k. This implies that z([S2, W ]) � k

2 .
As |[S1, W\S1]| �

⌈
k
2

⌉
and z(e) = 1 for all e ∈ E(W), it follows that

z(δ(S)) � z([S1, W\S1]) + z([S2, W\S2])
�

⌈
k

2

⌉
+ k

2
� k.
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Consequently, z ∈ P(G, k). Moreover it is easy to see that z is an extreme point
of P(G, k). Since z is fractional and dominated by x̄, this is a contradiction. Thus,
y1

1 , . . . , y1
t are all integer. Let e0 ∈ δ(W)\{e1, . . . , ek−1}. As x̄(e0) > 0, w.l.o.g., we

may suppose that y1
1(e0) = 1. As y1

1(ei) = 1 for i = 1, . . . , k − 1, it then follows
that y1

1(e) = 0 for all e ∈ δ(W)\{e0, e1, . . . , ek−1}.
Similarly, there exists an integer solution say y2

1 of P(G2, k) such that y2
1(e) = 1

for all e ∈ {e0, e1, . . . , ek−1} and y2
1(e) = 0 for all e ∈ δ(W)\{e0, e1, . . . , ek−1}. Let

y ∈ RE be the solution defined as

y(e) =




y1
1(e) if e ∈ E(W),

y2
1(e) if e ∈ E(W),

1 if e ∈ {e0, e1, . . . , ek−1},
0 if e ∈ δ(W)\{e0, e1, . . . , ek−1}.

Along a similar way as we did in Lemma 3.6, we can show that y is a solution of
system S(x̄). As y /= x̄, this is a contradiction. �

4. Classes of perfectly-kEC graphs

As it has been mentioned before, series–parallel graphs have been shown to be
perfectly-kEC for k even. However, as pointed out in [10] this is no longer true if k is
odd. To the best of our knowledge no nontrivial classes of perfectly-kEC have been
characterized for k odd.

Using the previous results, we shall introduce further classes of perfectly-kEC
graphs for arbitrary k. To this end, we first give the following lemma.

Lemma 4.1. Let G = (V , E) be a graph and x̄ an extreme point of P(G, k) of rank
1. Suppose that C∗

p(x̄) = ∅. Then the graph induced by Ef (x̄), Gf (x̄) is an odd
cycle C such that

(i) x̄(e) = 1
2 for all e ∈ C;

(ii) x̄(δ(v)) = k for all v ∈ V (C).

Proof. The proof will be a consequence of the following claims.

Claim 1. Every edge f of Ef (x̄) belongs to at least two tight cuts of S(x̄).

Proof. It is clear that f must belong to at least one tight cut of S(x̄). Otherwise,
one can increase x(f ) and obtain a solution still satisfying system S(x̄), which is
impossible. Now let us suppose that f belongs to exactly one tight cut δ(W) of S(x̄).
Let S(x̄)′ be the system obtained from S(x̄) by deleting the equation associated with
δ(W). Thus S(x̄)′ is a nonsingular system. Let x′ ∈ RE be the solution given by
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x′(e) =
{
x(e) if e ∈ E\{f },
1 if e = f.

We have that x′ ∈ P(G, k). Furthermore, x′ is the unique solution of the system{
S(x̄)′,
x(f ) = 1.

Thus x′ is an extreme point of P(G, k). Since δ(W) is tight for x̄, there must exist at
least one more fractional edge in δ(W) and thus x′ is fractional. This implies that x′
dominates x̄, which contradicts the fact that x̄ is of rank 1. �

Claim 2. Gf (x̄) does not contain a pendant node.

Proof. Suppose that Gf (x̄) contains a pendant node, say v0. Let f0 be the edge
of Gf (x̄) adjacent to v0. By Claim 1, we have that x(δ(v0)) = k. But v0 must be
adjacent to at least k edges of E1(x̄) (otherwise, one would have x(δ(v0)) < k).
Since x̄(f0) > 0, this yields x(δ(v0)) > k, a contradiction. �

Claim 3. Gf (x̄) does not contain an even (simple or not) cycle.

Proof. If Gf (x̄) contains an even cycle, say, (f1, f2, . . . , f2l), l � 1, then let x̄′ be
the solution given by

x̄′(e) =



x̄(e) + ε for e ∈ {f1, f3, . . . , f2l−1},
x̄(e) − ε for e ∈ {f2, f4, . . . , f2l},
x̄(e) otherwise,

where ε is a positive scalar sufficiently small. Since C∗
p(x̄) = ∅, x̄′ satisfies system

S(x̄). As x̄′ /= x̄, this is a contradiction. �

Claim 4. Gf (x̄) is connected.

Proof. Suppose that this is not the case. By Claims 2 and 3, there are two odd cycles
C1 and C′ of Gf (x̄) such that C1 ∩ C′ = ∅. Consider the solution x̃ defined as

x̃(e) =
{

1
2 if e ∈ C1,

1 if e ∈ E\C1.

Obviously, x̃ ∈ P(G, k). Moreover x̃ is an extreme point of P(G, k) which is domi-
nated by x̄. Since x̃ is fractional, this is a contradiction. �

By Claims 2–4, it follows that Gf (x̄) contains an odd cycle, say C. Suppose that
Ef (x̄)\C /= ∅. Then by Claims 2–4, there is at least one more simple odd cycle, say
C′ such that C and C′ are joined by a path, say P . W.l.o.g., we may suppose that P

is odd (see Fig. 2). Let
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Fig. 2.

C = (f1, . . . , f2l+1),

C′ = (g1, . . . , g2s+1),

P = (h1, . . . , h2t+1).

Consider the solution x′ defined as

x′(e) =




x(e) if e ∈ E\(C ∪ C′ ∪ P),

x(e) + ε if e ∈ {f1, f3, . . . , f2l+1; g1, g3, . . . , g2s+1},
x(e) − ε if e ∈ {f2, f4, . . . , f2l; g2, g4, . . . , g2s},
x(e) − 2ε if e ∈ {h1, h3, . . . , h2t+1},
x(e) + 2ε if e ∈ {h2, h4, . . . , h2t }.

where ε is a positive scalar sufficiently small (see Fig. 2). Since C∗
p(x̄) = ∅, x′ satis-

fies system S(x̄). As x′ /= x̄, we have a contradiction. �
Consequently, Gf (x̄) consists of only one odd cycle namely C. Moreover we

have that x̄ is the solution of the system


x(e) = 1 for all e ∈ E1(x̄),

x(e) = 0 for all e ∈ E0(x̄),

x(f1) + x(f2) = 1,

x(f2) + x(f3) = 1,
...

x(f2l) + x(f2l+1) = 1,

x(f2l+1) + x(f1) = 1.

This yields x̄(e) = 1
2 for all e ∈ C = Ef (x̄), which finishes the proof of our

lemma. �

Let � be the class of graphs G = (V1 ∪ V2, E), V1 ∩ V2 = ∅, such that:

(1) |V1| = 3 and E(V \V1) = ∅,
(2) |V2| � 3 and if |V2| = 3, then E(V1) = ∅,
(3) |[v1, v2]| �

⌊
k
2

⌋
for all nodes v1 and v2 such that v1 ∈ V1 and v2 ∈ V2.
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Note that the graphs of � can be recognized in polynomial time and may be non
series–parallel. The following theorem generalizes a result in [25].

Theorem 4.2. If G is a graph of �, then G is perfectly-kEC.

Proof. Let G = (V , E) be a graph of �. Let V1 = {s1, s2, s3} and V2 = {u1, . . . , ut },
t � 3. Let Q(G, k) be the polytope given by the trivial constraints together with the
degree constraints, i.e.

Q(G, k) =
{

0 � x(e) � 1 ∀ e ∈ E,

x(δ(v)) � k ∀ v ∈ V.

To show the theorem, we first prove the following.

Claim. Q(G, k) = P(G, k).

Proof. Clearly, P(G, k) ⊂ Q(G, k). Now consider a point x of Q(G, k). We shall
show that x is also a point of P(G, k). For this we have to show that it satisfies
all the proper cut constraints. Let δ(W) be a proper cut of G. Consider first the
case when either V1 ⊆ W or V1 ⊆ W . And suppose for instance that V1 ⊆ W . Then
x(δ(W)) = ∑

u∈V2∩W x(δ(u)) � k.

Now suppose that W ∩ V1 /= ∅ /= W ∩ V1. W.l.o.g., we may suppose that W ∩
V1 = {s1} and hence W ∩ V1 = {s2, s3}. We consider two cases.

Case 1: |W ∩ V2| = 1.
Let {v1} = W ∩ V2. As, by definition of �, |[v1, s1] �

⌊
k
2

⌋
, and x(e) � 1 for all

e ∈ E, it follows that x(δ(v1) ∩ δ(W)) �
⌈

k
2

⌉
and x(δ(s1) ∩ δ(W)) �

⌈
k
2

⌉
. There-

fore x(δ(W)) � k.

Case 2: |W ∩ V2| � 2.
Suppose for instance that u1, u2 ∈ W ∩ V2. We then have that x(δ(W)) �

x(δ(u1) ∩ δ(W)) + x(δ(u2) ∩ δ(W)) � 2
⌈

k
2

⌉
� k.

In both cases we have x(δ(W)) � k. In consequence, x ∈ P(G, k) and therefore
P(G, k) = Q(G, k). �

Now suppose that G is not perfectly-kEC, and in consequence, P(G, k) contains
a fractional extreme point. This implies that there is an extreme point, say x̄, of rank
1 of P(G, k). By the claim above, x̄ is also an extreme point of Q(G, k), and hence
S(x̄) can be chosen so that C∗

p(x̄) = ∅. From Lemma 4.1 it follows that Gf (x̄) is an
odd cycle, say C. Therefore G is not bipartite, and in consequence, by the definition
of �, t � 4. Moreover, as E(V2) = ∅, C contains at least one edge of E(V1). Thus
there are two nodes of V1, say s1 and s2 such that s1s2 ∈ C. By Lemma 4.1, we have
that x̄(s1s2) = 1

2 and x̄(δ(s1)) = x̄(δ(s2)) = k. Since there are at most
⌊

k
2

⌋
edges

between every two nodes v1 ∈ V1 and v2 ∈ V2, it follows that

x̄([{s1, s2}, {ui}]) �
⌈

k

2

⌉
for i = 1, . . . , t.
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Hence

2k = x̄(δ(s1)) + x̄(δ(s2))

� x̄([s1, s2]) +
t∑

i=1

x̄([{s1, s2}, ui])

� 1

2
+

t∑
i=1

x̄([{s1, s2}, ui])

� 1

2
+ 4

⌈
k

2

⌉

� 1

2
+ 2k,

a contradiction. �

Before introducing our second class of perfectly-kEC graphs we give the follow-
ing lemma.

Lemma 4.3. Let G = (V , E) be a graph and x̄ an extreme point of P(G, k). If
δ(W) is a proper cut which is tight for x̄, then G(W) and G(W) are both

⌈
k
2

⌉
-edge

connected.

Proof. Suppose not, then there is a partition W1, W2 of W such that [W1, W2] �⌈
k
2

⌉ − 1. W.l.o.g., we may suppose that x̄[W1, W ] � x̄[W2, W ]. Thus x̄[W1, W ] �
k
2 . Therefore

x̄(δ(W1)) = x̄[W1, W ] + x̄[W1, W2]
� k

2
+

⌈
k

2

⌉
− 1

< k,

which is impossible. �

Theorem 4.4. Let G = (V1 ∪ V2, E) be a bipartite graph without multiple edges,
with |V1 ∪ V2| � 4k − 1. Then G is perfectly-kEC.

Proof. Suppose that there is an extreme point x̄ of P(G, k) which is fractional.
W.l.o.g., we may suppose that x̄ is of rank 1. Since G is bipartite, from Lemma
4.1, it follows that C∗

p(x̄) /= ∅. Let δ(W) be a cut of C∗
p(x̄). As |V1 ∪ V2| � 4k − 1,

we may suppose that |W | � 2k − 1. Since δ(W) is proper, by Lemma 4.3, G(W)

and G(W) are both
⌈

k
2

⌉
-edge connected. In addition, since G is bipartite without

multiple edges, we get
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mi = |W ∩ Vi | �
⌈

k

2

⌉
, i = 1, 2.

It then follows that k � |W |. We may w.l.o.g., suppose that m1 � m2. As |W | �
2k − 1, m1 � k − 1. Moreover, we have

k = x̄(δ(W)) � x̄([W ∩ V2, W ∩ V1])
� m2.

The two last inequalities come from the fact that m1 � k−1, and hence x̄([{v}, W ]) �
1 for all v ∈ W ∩ V2. Thus m2 � k. We shall consider two cases

Case 1: m2 = k.
Then

k = x̄(δ(W)) � x̄[W ∩ V2, W ∩ V1] � k.

As x̄(e) � 0 for all e ∈ E, this implies that x̄([W ∩ V1, W ∩ V2]) = 0. And hence

m1 = k − 1,

x̄(e) = 0 ∀ e ∈ [W ∩ V1, W ∩ V2],
x̄(δ(v)) = k ∀ v ∈ W.

Moreover x(δ(W)) = k is redundant with respect to the degree equations and x(e) =
1, e ∈ E1(x̄), a contradiction.

Case 2: m2 < k.
We then have

k = x̄(δ(W)) = x̄([W ∩ V1, W ∩ V2]) + x̄([W ∩ V2, W ∩ V1])
� m1(k − m2) + m2(k − m1)

� m1 + m2

� k.

The two last inequalities come from the fact that k − mi � 1, i = 1, 2, and |W | =
m1 + m2 � k. Thus all the above inequalities are satisfied with equality. Therefore
we obtain that

x̄([W ∩ V1, W ∩ V2]) = m1(k − m2),

k = m1 + m2,

x̄([W ∩ V2, W ∩ V1]) = m2(k − m1).

This implies that

x̄(δ(v)) = k ∀ v ∈ W,

x̄(e) = 1 ∀ e ∈ [W ∩ V1, W ∩ V2].
We again obtain that x(δ(W)) = k is redundant in system S(x̄), which is impossible.
This ends the proof. �
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Along the same lines as in the proof of Theorem 4.4, we can also show the fol-
lowing.

Theorem 4.5. Let G = (V1 ∪ V2, E) be a bipartite graph without multiple edges.
If min{|V1|, |V2|} � k + 1, then G is perfectly-kEC.

5. Concluding remarks

We have introduced the concept of critical extreme points of the polytope P(G, k)

and described some structural properties of these extreme points. Using this we char-
acterized two classes of perfectly k-edge connected graphs. These results can be seen
as a first step toward a complete characterization of this class of graphs.

In a forthcoming paper we will discuss some polyhedral and algorithmic con-
sequences of these results. In particular we will describe a large class of facets
for the k-edge connected subgraph polytope and show that critical extreme points
may be separated from that polytope in polynomial time using those facets. We will
also describe some separation techniques. Using this we will devise a Branch&Cut
algorithm for the k-edge connected subgraph problem. The reduction operations
θ ′

1, . . . , θ
′
4 may be effective in solving the k-edge connected subgraph problem. In

fact they may be used in a preprocessing phase of the Branch&Cut and then permit
to considerably accelerate the separation process. A Branch&Cut algorithm based on
the critical extreme points of the 2-edge connected subgraph polytope is discussed
in [22].
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