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Abstract. The authors characterize the stable set polytope for graphs that do not have a 4-wheel as a minor.
The authors prove that the nontrivial facets are either "edge" inequalities or can be obtained by composing
"odd cycles" and "subdivisions of K4." By adding some extra variables, it is shown that the stable set problem
for these graphs can be formulated as a linear program of polynomial size.
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1. Introduction. Given a graph G (V, E), a set S
___
V is called a stable set if no

two nodes in S are adjacent. Given a stable set S, the incidence vector of S, xs v is
defined by

xS(u)={ ifu S,

ifuS.

The stable set polytope of G, denoted by P(G), is the convex hull ofincidence vectors
of stable sets of G. The maximum stable set problem is NP-hard, so it seems difficult to
find a complete characterization ofP(G) for general graphs. To our knowledge, the only
classes of graphs, besides perfect graphs, for which this polytope has been characterized
are line graphs [4], series parallel graphs [2], [13], almost bipartite graphs [5], and graphs
with no odd K4 [7]. The class studied by Gerards and Schrijver [7] contains the classes
studied by Boulala, Fonlupt, and Uhry. In this case, the only nontrivial facets correspond
to edges and odd holes. All the linear systems mentioned above consist of inequalities
with 0-1 coefficients.

In this paper, we characterize the stable set polytope for graphs that do not have a
4-wheel as a minor. The inequalities are more difficult to describe than in the preceding
cases, and they may have arbitrarily large coefficients.

Graphs in this class can be decomposed by two-vertex cuts 10]. We use this property
to prove that the nontrivial facets are either edges or can be obtained by composing odd
cycles and subdivisions of K4. A list of the facets for subdivisions ofK4 is also given. We
also show that, by adding some extra variables, the stable set problem in graphs with no
4-wheel minor can be formulated as a linear program of polynomial size. A polynomial
combinatorial algorithm for the stable set problem in this class can be easily derived ].

If G has a one-node or a two-node cutset, then G decomposes into G1 and G2. In a
companion paper ], we gave a technique to characterize P(G) starting from systems
related to G and G2. In this paper, we apply that technique.
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STABLE SETS IN GRAPHS WITH NO W4 373

A connected graph G is said to have the graph H as a minor if H can be obtained
from G by deleting some edges and by a sequence of elementary contractions in which
a pair of adjacent vertices is identified and all other adjacencies between vertices are
preserved (multiple edges arising from the identification being replaced by single edges).

We denote a 4-wheel by W4; see Fig. 1.1.
This paper is organized as follows. In 2 we summarize our composition techniques.

In 3 we describe the decomposition of graphs with no W4 minor. In 4 we state our
main result. Sections 5 and 6 are devoted to the study of the subdivisions of K4.

We conclude this introduction with a few definitions.
The polytope P(G) is full-dimensional. This implies that (up to multiplication by a

positive constant) there is a unique nonredundant inequality system Ax <_ b such that
P(G) (x:Ax < b}. These inequalities define the facets of P(G). In many cases, we say
that the inequality ax <_ a is afacet instead of saying that it defines a facet. Ifthe inequality
has at least two nonzero coefficients, we say that it is a nontrivial facet.

If ax <_ a defines a facet of P(G), we denote by Va the set

Va {v av > 0}.

The subgraph induced by Va is denoted by Ga, and it is called the support of the facet.
We denote by uv the edge whose endnodes are u and v. If U V, then E(U) denotes

the set of edges with both endnodes in U, and (U, E(U)) is the subgraph induced by U.
An odd cycle with no chord is called an odd hole. A maximal complete graph is called
a clique.

IfK is a clique, then the inequality Zu/ x(u) _< defines a facet ofP(G) [14]. This
is called a clique inequality. If the clique is an edge, it is called an edge inequality.

IfH is an odd hole, then the inequality

x(u)<_
2urH

is valid for P(G); this is called an odd hole inequality. Under some conditions, these
inequalities define facets of P(G) 14].

The trivial facets of P(G) are x(v) >_ 0 for v V.
A graph G is called t-perfect if the only nontrivial facets of P(G) are the odd hole

and the edge inequalities. Chvfital [3] introduced this class of graphs and conjectured
that series-parallel graphs are t-perfect.

A graph is called series-parallel if it does not contain K4 as a minor. Boulala and
Uhry [2] proved that series-parallel graphs are t-perfect; i.e., they characterized P(G) for
graphs that do not have a 3-wheel as a minor. A short proof of this appears in 13].

FIG. 1.1
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2. Compositions of polyhedra. This section is devoted to survey the composition/
decomposition techniques that we need.

Let G (V, E) be a graph such that V V U V2, W--- V ["] V2 q/= j, (W, E(W))
is a clique, and (V\ W, E(V\ W)) is disconnected. Chvfital [3] proved the following result.

THEOREM 2.1. IfG1 (V1, E(V1)) and G2 (V2, E(V2)), then a system that defines
P(G) is obtained by taking the union of the systems that define P(G1) and P(G2) and
identifying the variables associated with the nodes in W.

This theorem applies to the case where G has a one-node or a two-node cutset
{ u, v } with uv E. This is called Case 1.

Now we must treat Case 2, i.e., when G has a two-node cutset { u, v} and uv E.
In the remainder of this section, we assume that
(i) V= V to V2,
(ii) V f’l V2 {u, v},
(iii) uv E, and
(iv) G\ { u, v is disconnected.
We decompose into two pieces and add a 5-cycle to both of them; see Fig. 2.1. For

k 1, 2, we define (Tk (l?k,/) as
(i) V V tO {Wl, w2, w3 },
(ii) E E(Vk) tO {uw, vw, uw2, WzW3, w3v}.
To study the facets of P(G), we present two lemmas. Their proofs appear in [13].
LEMMA 2.2. Let ax < be afacet ofP(G). IfGa has a path with vertices p, u, v, q,

where u and v have degree 2 in Ga, then a, av.

FIG. 2.1
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LEMMA 2.3. Let ax <_ c be afacet ofP(G). IfGa is differentfrom an odd hole, then
it does not contain between two given nodes p and q two paths such that each node of
them, differentfrom p, q, has degree 2 in Ga.

Lemmas 2.2 and 2.3 imply that the facets of P(Gk) for k 1, 2 can be classified in
the following ten types:

(a) Zj vk a}x(j) < ci, I,
(b) vk a}x(j) + x(w,) < ai, I,
(c) v a}x(j) + x(w2) + x(w3) < a, e I3,
(d) x(u) -k- X(Wl) < 1,
(e) x(u) + x(w) <_ 1,
(f) x(v) + x(w) <_ 1,
(g) x(v) + x(w3) < 1,
(h) x(w2) -I- x(w3) 1,
(i) x(u) + x(v) + x(w) + x(w_) + x(w3) -< 2,
(j) x(j) > O, j Vk,

where I is the set of inequalities whose support has empty intersection with {w, w2,

w3 }, I is the set of inequalities whose support contains w and has empty intersection
with { w2, w3 }, and I3 is the set of inequalities whose support contains (w2, w3 } and
not w

Now we can present the necessary polyhedral composition theorems.
Let G (V, E) be the union of G and G_, i.e.,

V= V t..J V2, E= E U E2.

The equation

(2.1) x(u) + x(v) + x(w) + x(w) + x(w3) 2

defines a facet F(G) of P(G); it also defines a facet F(Gk) of P(G) for k 1, 2. The
polytope P(G) is a projection of F(G) along the variables {x(wi)}.

Now we state two theorems that appear in [1 ].
THEOREM 2.4. The facet F(G) is defined by the union of the systems that define

F(G1 and F(Gz).
THEOREM 2.5. The polytope P(G) is defined by (a), together with x(j) > 0 and the

mixed inequalities

(2.2)
E a.x(j) + , ax(j) x(u) x(v) < a + Cs-
j Vk j V

fork= 1,2;/= 1,2;k4:l;i6Iz,SI3.

Moreover, all these inequalities definefacets ofP(G).

3. Graphs with no W4 minor. Graphs with no W4 minor can be easily decomposed
[10]. Gan and Johnson [6] used this property to study the Chinese postman problem in
these graphs. More precisely, if G has no W4 as a minor and has at least five nodes, then
G has a one-node or a two-node cutset where one ofthe pieces is a path or the Wheatstone
bridge; see Fig. 3.1.

Now it is clear how to apply the decomposition techniques of 2. If the cutset is
{ u, v} and uv E, then we just separate the two pieces. If uv E, then we separate the
two pieces and add a 5-cycle to both ofthem. In what follows, we formalize this procedure.
Let us denote by n the number of nodes of G; we prove that the total number of nodes
after decomposing is O(n).
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FIG. 3.1

We recursively apply the procedure below.
(a) If G has at most four nodes, stop.
(b) If G has a one-node cutset, we decompose it into the two blocks.
(c) Suppose that G has a two-node cutset u, v}, where the second block is a path

with two edges or the Wheatstone bridge.
(i) If uv E, we decompose G into the two blocks, we add the edge uv to

both blocks, and we label these two new edges as "artificial." This corresponds to Case
2 of {}2. Artificial edges represent the 5-cycles that are added to both pieces.

(ii) If uv E (where uv is not artificial), we decompose into the two blocks.
This corresponds to Case of {}2.

(iii) If uv E and uv is artificial, we decompose into the two blocks, we leave
the artificial edge uv only in the first block (if there are parallel artificial edges between
u and v, we leave them all in the first block), and we add a new artificial edge uv to each
block. This corresponds to Case 2 of {}2.

Note that a two vertex cutset could be used several times in this decomposition and
that that would create parallel artificial edges. The number of nodes of the larger block
decreases each time we decompose, so the number of artificial edges is bounded by 2n.
The resulting pieces are single edges, sets of parallel edges, triangles, or copies of K4.
Therefore, after applying this procedure, the total number of edges is O(n). These pieces
may have parallel artificial edges.

Figure 3.2 shows an example ofthis decomposition. Dashed lines represent artificial
edges. The set { u, v} has been used twice in the decomposition.

Now we must treat the blocks that have parallel artificial edges. Given a block with
more than two nodes and parallel artificial edges between u and v, we decompose into
two blocks. One of them consists of all those parallel edges. We add a new artificial edge
to each block. Figure 3.3 shows the result of this for the example in Fig. 3.2.

Now let us assume that we have a block that consists of two nodes and p parallel
edges, p >_ 4. The following procedure is applied recursively. We separate into two blocks,
the first with [p/2] edges and the second with the remainder. We add one artificial edge
to each block. We can prove by induction that this procedure creates less than 2p new

FIG. 3.2
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FIG. 3.3

FIG. 3.4

artificial edges. Therefore the total number of edges is O(n). Now the pieces are single
edges, triangles, copies ofK4, and sets of at most three parallel edges. The first three types
do not have parallel edges. Finally, Operation C, given below, is applied to every arti-
ficial edge.

Operation (9(uv). Remove the edge uv. Add the nodes Wl, w2, and w3; add the edges
uw1, vWl, uw2, w2 w3, and w3 v.

Figure 3.4 shows the result of applying this to the pieces in Fig. 3.3.
Let us remark that the final pieces are series-parallel graphs with at most eleven

nodes (like the second block in Fig. 3.4) and graphs obtained by applying (9 to K4.

4. On the stable set polytope of graphs with no W4 minor. In this section, we state
our main result. The facets of P(G) are not described in a simple way as "odd holes" or
"cliques." We present a combinatorial procedure that produces all of them. We first
present three theorems to derive "facets from facets." To make the notation less cum-
bersome, we use a(u) instead of au to denote the coefficients of the inequalities.

THEOREM 4.1 (subdivision of an edge [15]). Let G V, E) be a graph and let uv
be an edge ofG and G G\uv. Let ax <_ be afacet-defining inequality ofP(G) different
from x(u) + x(v) <_ 1. If z max {ax x P(G)} has a solution with
x(u) x(v) 1, then ax + f3x(w) + f3x(y) <_ z defines a facet ofP(G’), where G’ is the
graph obtainedfrom G by replacing the edge uv by the path (u, w, y, v), and f3 z .

THEOREM 4.2 (contraction of an odd path [1 ]). Let G V, E) be a graph and let
ax <_ be a facet-defining inequality ofP(G). Suppose that G contains a path (pu, uv,
vq) such that u and v are ofdegree 2. Assume also that a(p) a(u) a(v) f3. Let G’
V’, E’) be the graph obtainedfrom G by replacing that path by the edge pq. Let

d(u) a(u) for u V’,

then 6x < defines a facet ofP(G’).
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THEOREM 4.3 (subdivision of a star [1 ]). Let G be a graph and let ax <_ a be a
nontrivialfacet that is not an edge inequality. Let v be a node ofG and let N { Vo,
Vk-} be its neighbor set. Suppose that, for each vi, there is a stable set Si such that
axsi a and Si f) N vi, vi + , vi +p- }, where p >_ is a fixed integer and the
indices are numbers modulo k. Suppose also that p and k are relatively prime and
a(lo) a(Vk) a(v)/p. Let G’ (V’, E’) be the graph obtainedfrom G by adding
on each edge vvi a new node vfor 0 <_ <_ k 1. Set

6(u) a(u) for u V\(v},

6(v) a(v)(k p)/p,

(v) a(v)/p for 0 <_ <_ k- 1,

g c + a(v)(k- p)/p.

Then 6x <_ g defines a facet ofP(G’).
It follows from Lemma 2.3 that, if we apply Operation (9 of 3 to K4, the only

nontrivial facets with support different from odd holes and edges, have as support a
subdivision of K4. Now we characterize those facets.

THEOREM 4.4. If G is a subdivision of K4, then the nontrivial facets ofP(G) are
either odd holes or edges or have been obtained by applying Theorems 4.1 and 4.3,
startingfrom the clique inequality ofK4.

The proof of this is the subject of the next two sections. We prove that there are 16
cases to study and we give an explicit list of the facets for each case. We call them K4
inequalities.

Now let G be a graph with n nodes that has no W4 minor. Suppose that it is decom-
posed, as described in {}3. For each piece, we have an explicit list of the facets; the total
number ofthem is O(n). The facets ofP(G) are obtained by composing those inequalities
according to Theorem 2.5.

Our main result can be stated as follows.
THEOREM 4.5. IfG is a graph with no W4 minor, then the nontrivialfacets defining

inequalities ofP(G) are either edge inequalities or can be constructed by composing in-
equalitiesfrom thefollowing twofamilies: (i) odd hole inequalities and (ii) a set of 19 K4
inequalities.

This last theorem gives a system that may have exponentially many inequalities.
Suppose now that we use Theorem 2.4 instead of Theorem 2.5; i.e., we do not project
the extra variables associated with the extra nodes. Then we can describe a polytope
Q {(x, y) :Ax + By <_ b} such that P(G) {x there is a vector y, with (x, y) e Q};
i.e., P(G) is a projection of Q. The decomposition of 3 gives a set of pieces that are
series-parallel graphs with at most 11 nodes and copies of K4 with some edges replaced
by a 5-cycle. The total number of nodes is O(n). Thus the number of variables and the
number of inequalities in the system that defines Q is O(n). Moreover, the coefficients
in those inequalities are integer numbers of absolute value at most 2.

Therefore, for this class of graphs, the stable set problem can be formulated as a
linear program of polynomial size.

For a polytope P the so-called separation problem is: Given a vector 2, decide
whether a7 P and, if not, find a hyperplane that separates 7 from P.

Grrtschel, Lovgtsz, and Schrijver [8], [9] have shown that, ifthe optimization problem
can be solved in polynomial time, then the separation problem can also be solved in
polynomial time by means of the ellipsoid method.
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In our case, by the Farkas lemma, if.g t P(G), there is a vector 7r such that

7rB=0, 7r>0, and 7r(b-A)<0.

So rAx < "xb is the required inequality. Thus, the separation problem can be solved
in polynomial time by means of any polynomial algorithm for linear programming; cf.
Khachiyan [12] and Karmarkar [11 ], for instance.

Solving the stable set problem with a cutting plane approach based on this separation
algorithm is equivalent to applying Benders decomposition to the linear program

maximize wx s.t. Ax + By < b.

5. Technical lemmas. In this section, we present a series oflemmas that lead to the
characterization ofP(G), when G is a subdivision ofK4. First, note the following remarks.

Remark 5.1. It follows from the results of 2 that it is enough to characterize the
polytope for graphs that are obtained by replacing some edges of K4 by paths with two
or three edges.

Remark 5.2. It is enough to consider the case where the four faces of the graph are
odd (a planar graph has an even number of odd faces). If only two ofthem are odd, then
there is a node that covers them; i.e., the removal ofthis node will leave a bipartite graph.
In this case, the graph is t-perfect, as shown by Fonlupt and Uhry [5].

Remark 5.3. Suppose that we have a graph that has been obtained from K4 by
replacing some edges by paths of two edges, with the additional condition that every
original node has at least one incident edge that has not been replaced. Since we should
have four odd faces, the only graph of this kind to be studied is the graph of Fig. 5.1.
This has been shown to be t-perfect by Gerards and Schrijver [7].

Remark 5.4. Consider a graph G (V, E) that is a subdivision of K4 and let
ax <_ a with a > 0 be a facet ofP(G) whose support is not a clique or an odd hole. Since
G\v is a series-parallel graph, we have that a(v) > 0 for all v e V.

From the first three remarks, it follows that we must study the 16 cases shown in
Fig. 5.2. We first state a lemma that will be used in this section.

LEMMA 5.5. Let ax <_ t be a facet ofP(G). Let u be a node ofdegree 2 in Ga and
let v, w be the neighbors ofu in Ga. Then a(v) >_ a(u) < a(w).

Proof The equation

(5.1) ax a

defines a hyperplane different from those of x(v) + x(w) 2 and x(v) x(w) 0. So
there is a stable set S such that axs c and IS f3 {v, w}l 1. Assume that v e S. Since
(S\{v}) t_J {u} is a stable set, we can conclude that a(u) <_ a(v).

Since (5.1) also defines a hyperplane different from that of x(u) + x(v) 1, there
is a stable set T such that axr a, and T f) { u, v, w} { w}. This implies that a(u) <
a(w). [3

FIG. 5.1
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FIG. 5.2

The following lemma will be used to solve nine cases.
LEMMA 5.6. Let G (V, E) be a graph and let (u, w, y, v) be a path in G, where

the nodes w and y have degree 2. Let G’ be the graph obtainedfrom G by replacing this
path by one edge; see Fig. 5.3. Let N(u) and N(v) be the neighbor sets of u and v in G,
respectively. Suppose that ax < a is the only facet-defining inequality of P(G’) whose
support is G’ and let bx < [3 be thefacet ofP(G) obtainedfrom ax < a by the procedure
described in Theorem 4.1. Suppose that, for everyfacet dx < ofP(G) whose support is
G, there exists a stable set S ofG such that xs and either S f3 (N(u)\{w}) or
S f) (N(v)\{y}) . Then bx <_ [3 is the onlyfacet ofP(G) whose support is G.

Proof Let 6x _< a be a facet of P(G), whose support is G. Lemma 5.5 implies that
6(w) 6(y) < min {6(u), 6(v)). If there exists a stable set S of G such that 6xs and
S fq (N(u)\{w}) , say, then w S and S’ (S\{w}) t3 {u} is also a stable set in G.
Hence (u) < 6(w) 6(y) _< 6(u). From Theorem 4.2, we have that the inequality

(5.2) a’x < a’

G

FIG. 5.3
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defines a facet of P(G’), where

a’(i) d(i)

and

for i V(w, y)

.’= a- a(u).

Since the support of (5.2) is G’, we have that a’ a and c’ c. Thus a b and
& ft. The proof is complete.

The next lemma will allow us to solve two cases.
LEMMA 5.7. Let G be a graph obtained from K4 in such a way that at least two

edges have not been subdivided. Let G’ be the graph obtainedfrom G by replacing one of
those two edges by a path ofthree edges; see Fig. 5.4. Ifax <_ is the onlyfacet ofP(G)
having G as support, then the only facet ofP(G’) having G’ as support is the inequality
a’x < a’ obtained by applying the procedure of Theorem 4.1 to ax <

Proof Let bx < be a facet of P(G’) whose support is G’. Let C be the odd hole
of G’ defined by the edge 1, 3 } and the paths 1-2 and 2-3. Since bx < is different
from the facet associated with C, there is a stable set S such that bxs =/3 and C fq SI <
(ICI- 1)/2.

If CI 3, then Sf) C . If ]C] 5 or ]C] 7, then Scan be chosen so that
S fq C Z, where Z is the set of nodes of C adjacent to the node 2 and different from
nodes and 3. In these three cases, we have that S f-) (N( 1)\ w}) . From the previous
lemma we have that b oa’ and/3 0a’, for some

The next three lemmas will enable us to solve four cases.
LeMMA 5.8. Let v be a node ofG. Let N(v) be the neighbor set ofv. Let ax < a be

afacet-defining inequality ofP(G) whose support is not an edge; then

a(v) < a(N(v)\{u})

for all u N(v).
Proof Let u N(v). Since ax <_ c is a facet not associated with an edge, then there

is a stable set S such that

axs o

and {u, v} 71S .
Then (S\(N(v)\{u})) tO {v} is a stable set in G. This implies that

a(v) <_ a(N(v)\ { u}).
LEMMA 5.9. Let G be a graph as in Fig. 5.5, where the dashed lines represent paths

with one or more edges, and v (respectively, w) is a node adjacent to v3 (respectively, v
in the path that replaces the edge v3 v4 (respectively, v v4) ofK4. Ifax < defines afacet

S
S

sS
SSSS

-_-_’_ 222::
FIG. 5.4
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FIG. 5.5

ofP(G) whose support is G, then we have thefollowing:
(a) Either (i) a(v a(v) + a(vv) and a(v3) a(v6) + a(v8), or (ii) a(v2)

a(vv) + a(v8), a(v a(w), and a(v3) a(v);
(b) Ifthe edge v2 v4 is subdivided and u is the node adjacent to v2 in this path, then

(bl) Either (i) and a(v2) a(u) hold, or (ii) holds,
(b2) Ifthe path between u and v4 is (uy, yv4) and a(v2) a(u), then ax <_ c is

obtainedfrom afacet ofP(G’) using the procedure ofTheorem 4.1, where G’ is the graph
obtainedfrom G by contracting the edges uy and yl)4.

Proof (a) Let C denote the cycle (v, v, v6, v3, v8, v2, Vv, v). Since ax <_ c has
as support the graph G and C is an odd hole, there is a stable set S in G such that
Sf’)CI <3andaxs=.

Case 1. {v, v3) S.
Thus S f-) C {v, v3 }. Since (S\{v }) to {vs, vv ) is a stable set, it follows that

a(l) >_ a(vs) + a(l7). From Lemma 5.8, we have that a(v a(vs) +
Since (S\ { v3 )) to v6, v8 } is also a stable set in G, we obtain a(v6) + a(vs) a(v3)

in a similar way.
Case 2. {v, v3 } S.
We should have that {v, v3 ) f3 S . If, for instance, v S and v3 t S, then

{v2, v6 } S or {Vs, v6

_
S, and IS f) CI 3, which is a contradiction.

Therefore S must contain v2 and a node from {vs, v6 }, say v6. Then (S\{v2 }) tO
v7, v8 } is a stable set, which implies that a(v2) > a(v7) + a(v8), and, from Lemma 5.8,
we have that a(v2) a(t7) + a(v8).

Furthermore, w S; otherwise, v S, which is a contradiction. So (S\{ w}) to {
is a stable set. Then a(v < a(w), and, from Lemma 5.5, we have that a(v a(w). Also,
we have v S. If not, (S\{v6 }) to {v3, v5 } is a stable set. Since a(vs) a(v6) and
a(v3) > 0, we have a contradiction.

Since (S\{v, v6 )) to {vs, v3 } is a stable set, we have that a(/)3) -< a(v), and hence
a(/93) a(v).

We now prove (b).
(b l) If {v, v3 )

___
S, then (i) holds. Since S f) C {vl, v3 }, we should have that

u S; otherwise, v2 S, which is a contradiction. Since (S\{ u}) to {v2 } is a stable set,
we have that a(v2) < a(u) and, from Lemma 5.5, we can deduce that a(v2) a(u).

(b2) Since a(v2) a(u) a(y), the statement follows from Theorem 4.2.
LEMMA 5.10. Let G be a graph as in Fig. 5.6, where the dashed lines represent paths

with one or two edges and u (respectively, v, w) is a node adjacent to v (respectively, v2,
v3 in thepath that replaces the edge v v4 (respectively, v2 v4 v3 v4 ofK4. Ifax <_ a defines
a facet ofP(G) whose support is G, then either

(i) a(vl a(vv) + a(v8), a(vz) a(vs) + a(v6), and a(v3) a(vl0) + a(v9), or
(ii) a(v) a(u), a(v_)= a(v), and a(v3) a(w).
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FIG. 5.6

Proof Let C denote the cycle (v, v8, 1)9, 1)3, 1)10, 1)5, 1)2, 1)6, 1)7, 1)1). Since ax <
has as support the graph G and since C is an odd hole, there is a stable set S in G such
that IS fq C < 4 and axs c.

Case 1. S fq C {v, v2, v3 }.
Let

s, s\{v, }) {v, v },

32 (3\{1)2 }) [,-J {1)5, 1)6 },

33 (s\{1)3 }) [,-) {1)10, 1)9 }.

Clearly, S1, S2, and $3 are stable sets in G. Thus we should have

a(v >_ a(vT + a(v8 ),

a(v2) > a(vs) + a(1)6),

a(1)3) >- a(vlo) + a(1)9).

From Lemma 5.8, it follows that these inequalities should be equations.
Case 2. v, v2, v3 } S.
CLAIM 1. We have that v, v2, v3 } fq S .
Let us assume, for instance, that v E S. If {v2, v3 } fq S , then {1)6, v9 } C

and {vl0, v5 f3 SI 1; hence IS fq CI 4, a contradiction.
Suppose that {vz, v3 fq S 4: and let us assume, for instance, that {v2, 1)3 } f3

S {v }; then we should have that {vl0, v9 }
_
S and IS f) CI 4, a contradiction,

which proves Claim 1.
CLAIM 2. We have that u, v, w}

_
S.

Assume, for instance, that u S. Since we can assume that S fq C {1)6, 1)9, v },
we would have that 1)1 E S, which is a contradiction. This proves Claim 2.

Let

SI (S\{u, 1)7, 1)8 }) [,-j {1)1, 1)6,

$2 (S\{1), 1)10, 1)9 }) [,.-j {1)3, 1)5, 1)8 },

& (S\{w, 1)5, 1)6 }) [,-j {1)2, 1)10, 1)7 }.

These node sets define stable sets of G. Since a(1)7) + a(1)8) a(1)6) + a(1)9), we have
that a(1)l <- a(u). It follows from Lemma 5.5 that a(vl a(u).

In a similar way, we can prove that a(v2) a(w) and a(1)3) a(1)). []
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6. The stable set polytope of a subdivision of K4. The purpose of this section is to
prove Theorem 4.4.

First, we can apply Lemma 5.6 to prove our claim for the graphs of Cases 1-9 in
Fig. 5.2. In each case, there is a unique facet whose support is the whole graph, obtained
by applying Theorem 4.1 starting from the clique inequality of K4. Now consider the
graph of Case 10. It has seven nodes and seven maximal stable sets. Then there is a
unique facet that may have this graph as support; this is the facet obtained by applying
Theorem 4.3 to the clique inequality of K4. Starting from this graph, we can apply
Lemma 5.7 to prove our claim for the graphs in Cases 11 and 12. Now we must study
the graphs of Cases 13-16. In all these cases, we denote by ax < c a facet whose support
is the whole graph. We begin with the graph of Case 13; see Fig. 6.1.

Lemma 5.9 implies that either (i) a(/)2) a(/)5 + a(/)6) and a(v3) a(v8) + a(/)9),
or (ii) a(v a(vs) + a(/)9) and a(v2) a(vT). It also implies that either (iii) a(v2) a(/)6)
+ a(v7) and a(v3) a(v8) + a(vo), or (iv) a(v4) a(Vv) + a(vo), a(v2) a(vs), and a(/)3)

a(v9). Thus we have that either (i) and (iii) hold or (ii) and (iv) hold.
Consider the cycle C (v, /)4, /)7, /)2, vs, v). Since ax < a has as support the

graph G and C is an odd hole, there is a stable set S in G such that IS N C < 2 and
axs a. Then S C {v2 }; therefore S {v2, v8, /)9, /)10). Since (S\{/)9 }) [’-J {/)1 }
and (S\{vo }) U {v4 are stable sets, we have that a(v) <_ a(/)9) and a(v4) _< a(vo).
Lemma 5.5 implies that (v) a(v a(/)9) and (vi) a(v4) a(vo).

In the same way, by considering the cycle C (v3,/)9, v,/)4, Vo,/)3), we can prove
that (vii) a(v a(vs) and (viii) a(v4) a(v7).

Consider (i), (iii), and (v)-(viii). This implies that

and

a(v) a(/)4)= a(v): a(/)7)= a(/)9): a(vo)

a(v_) a(/)3) a(/)6) + a(vT).

Since the inequality x(v) + X(/)6) %- X(/)8) %- X(/)3) 2 is valid for P(G), there is a
stable set T such that axT c and xT satisfies x(/)2) + x(v6) + x(/)8) + x(v3) < 2. We
can choose T {v, Vv,/)8, v9, v0 }.

Consider the set S defined above. Since axs ax T, we have that a(vs) a(v8)
a(/)6). Therefore ax < c represents the inequality

10

2x(vz) + 2x(/)3) + x(/)) + x(/)j) <_ 5.
j=4

Condition (v) implies that (ii) and (iv) cannot hold.
Now we study the graph of Case 14; see Fig. 6.2.

FIG. 6.1
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FIG. 6.2

Lemma 5.9 implies that either (i) a(v) a(vs) + a(vT), a(v3) a(v6) + a(v8), and
a(1)2) a(1)9), or (ii) a(v2) a(1)7) + a(1)8), a(1)3) a(1)o), and a(v a(1)3). It
also implies that either (iii) a(v4) a(v + a(v9), a(1)3) a(v8) + a(Vo), and a(v2)
a(1)7), or (iv) a(v2) a(v8) + a(v9), a(1)3) a(v6), and a(v4) a(v2), and that either
(v) a(1)4) a(vl2) + a(1)9), a(v) a(1)7) + a(vl3), and a(v2) a(v8), or (vi) a(v2)
a(1)7) + a(1)9), a(vl) a(vs), and a(1)4) a(P).

We have that either (i), (iii), and (v) hold or (ii), (iv), and (vi) hold. Consider (i),
(iii), and (v). This implies that

a(vo)= a(1)6)= a(v)= a(vs)= a(v2)= a(1)3),

3" a(v2) a(vT) a(v8) a(v9),

fl + 3" a(v) a(1)4) a(1)3).

Lemma 5.8 implies that B >- 3". Consider the cycle C (v, vs, I)6, 1)3, 1)10, 1)11,/)4,

v2, v3, v). Since ax < has as support the graph G and C is an odd hole, there is a
stable set S in G such that IS N CI < 4 and axs c. Then S {v, v2, v3, v4 }. Since
(S\ { v4 }) to { vl, v2 is a stable set, it follows that/3 < 3’. Therefore we have the inequality

13

2x(v) + 2x(1)3) + 2x(v4) + x(v2) + x(vj) < 7.
j=5

Now consider (ii), (iv), and (vi). This implies that

a(v)= a(vs)= a(1)6)= a(1)3)= a(vo)= a(v)= a(1)4)= a(v2)= a(1)3),

3" a(v7) a(v8) a(v9),

23" a(v2).

Lemma 5.5 implies that/3 > 3". Consider the cycle C (v, vs, v6, v3, Vo, vl, 1)4,
v_, v3, v ). Since ax < has as support the graph G and C is an odd hole, there is a
stable set S in G such that IS f) CI < 4 and axs c. Then S {vs, VT, v8, v9, Vo, v3 }.
Since (S\{v9 }) tO {v4 ) is a stable set, it follows that /3 < 3". Therefore we have the
inequality

2x(v2) + x(1)j) <- 6.
j4:2

Now we study Case 15; see Fig. 6.3.
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FIG. 6.3

Lemma 5.10 implies that either (i) /= a(vj) for 5 < j < 16 and 2/= a(vj) for <

j < 4 or (ii) /= a(v), for < j < 16. In the first case, we have the inequality
4 16

2 , x(vj) + , x(vj) <_ 9.
j=l j=5

In the second case, we have the inequality

E x(v) < 7.

Now we study Case 16; see Fig. 6.4.
Part (b l) of Lemma 5.9 implies that either (i) a(/)2) a(/)7) + a(l)8), a(l)3) a(/96)

+ a(vl ), and a(vl a(v) or (ii) a(vl a(v6) + a(vv), a(v3) a(vlO), and a(v2) a(v9).
It also implies that either (iii) a(v) a(v) + a(vv), a(l4) a(l)9) + a(l12), and a(l2)
a(l)8) or (iv) a(v2 a(/)7 + a(/)9), a(ll a(/)6), and a(v4) a(vl0). We have that either
(i) and (iv) hold or (ii) and (vii) hold.

Consider (i) and (iv). This implies that a(vl a(v). It follows from Lemma 5.1
(b2) that the inequality ax < o is obtained from a facet of P(G’), using the procedure of
Theorem 4.1, where G’ is obtained from G by contracting the edges vs Vl2 and Vl v4. The
graph G’ is that of Case 13, which has already been studied. For this, P(G’) has only one
facet whose support is G’, which is the inequality

10

2x(v2) + 2X(V3) -t- X(/)I) -t- X(I)j) 5.
j=4

Then ax <_ o should be
12

x(v) + 2x(v2) + 2x(v3) -t- x(vj) <_ 6.
j=4

FIG. 6.4
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If (ii) and (iii) hold, then a(v2) a(v8). In a similar way, we can prove that ax <_ a is
12

2x(v) + x(v2) + x(v3) + 2x(/)4) + x(/))) _< 6.
j=5

It is easy to see that all the inequalities derived in this section can be obtained by
applying Theorems 4.1 and 4.3, starting from the clique inequality ofK4. This completes
the proof of Theorem 4.4.

The 18 inequalities derived in this section, together with the clique inequality of
K4, form a family of 19 K4 inequalities, referred to in Theorem 4.5.

7. Some examples. In this section, we apply the combinatorial procedure that de-
scribes the facets of P(G) for graphs with no W4 minor. Consider the graphs of Figs.
7.1(a) and 7.1(b).

The constraint

2x(u) + x(u2) + 2x(u3) -k- 2x(u4) + x(uj) <_ 7
j>5

defines a facet for the polytope of the first graph, and the constraint

X(Vl) + 2x(v2) + 2x(v3) + x(vj) <_ 5
j4

defines a facet for the second one.
By identifying the nodes { u, Vl } and { U4, /)2 ) and deleting a 5-cycle, we obtain the

graph of Fig. 7.2.

FIG. 7.1

FIG. 7.2
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FIG. 7.3

Theorem 2.5 gives a facet-defining inequality, whose support is the whole graph,
and its coefficients different from appear in the figure. The value of the fight-hand side
is 10. Here v5 plays the role of Wl, and Ul2 and u3 play the roles of w2 and w3, respectively.

Now consider the graph of Fig. 7.3. It has been obtained by composing the graph
of Fig. 7.2 with itself. Again, Theorem 2.5 shows that there is a facet-defining inequality
whose support is the whole graph and whose coefficients different from are in the figure.
We can state the following.

Remark 7.1. Given any integer p > 0, there exists a graph G with no W4 minor,
such that P(G) has a facet with coefficients 1, 2, p.

Acknowledgments. We thank the referees for their suggestions regarding the pre-
sentation.
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