
Journal of Combinatorial Optimization, 6, 359–381, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Composition of Graphs and the Triangle-Free
Subgraph Polytope

F. BENDALI bendali@math.univ-bpclermont.fr
A.R. MAHJOUB Ridha.Mahjoub@math.univ-bpclermont.fr
Laboratoire LIMOS, CNRS FRE 2239, Université Blaise Pascal, Plateau des Cézeaux,
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Abstract. In this paper, we study a composition (decomposition) technique for the triangle-free subgraph poly-
tope in graphs which are decomposable by means of 3-sums satisfying some property. If a graph G decomposes
into two graphs G1 and G2, we show that the triangle-free subgraph polytope of G can be described from two linear
systems related to G1 and G2. This gives a way to characterize this polytope on graphs that can be recursively
decomposed. This also gives a procedure to derive new facets for this polytope. We also show that, if the systems
associated with G1 and G2 are TDI, then the system characterizing the polytope for G is TDI. This generalizes
previous results in R. Euler and A.R. Mahjoub (Journal of Comb. Theory series B, vol. 53, no. 2, pp. 235–259,
1991) and A.R. Mahjoub (Discrete Applied Math., vol. 62, pp. 209–219, 1995).
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1. Introduction

Given a graph G = (V, E) and two subgraphs G1 = (V1, E1) and G2 = (V2, E2), G is called
a k-sum of G1 and G2 if V = V1 ∪ V2, |V1 ∩ V2| = k and the subgraph (V1 ∩ V2, E1 ∩ E2)
is complete. The set V1 ∩ V2 is called a k-node cutset of G. In this paper we study a
composition (decomposition) technique for the triangle-free subgraph polytope in graphs
which are decomposable by 3-node cutsets. If G decomposes into G1 and G2, then we derive
a system of inequalities that defines the triangle-free subgraph polytope from systems related
to G1 and G2. As a consequence, we obtain a procedure to construct this polytope in graphs
that can be decomposed by means of 3-sums satisfying some property. This also gives a
way to construct facets for the triangle subgraph polytope by composition of facets from
the pieces. We also show that if the systems associated with the pieces are TDI, then the
system describing the polytope for G is TDI.

Developing composition (decomposition) techniques for NP-hard combinatorial opti-
mization problems has been a motivating subject for many researchers along the past two
decades (Barahona et al., 1994; Barahona, 1983; Bouchakour and Mahjoub, 1997; Burlet
and Fonlupt, 1995; Euler and Mahjoub, 1991; Hadjar, 1996; Margot, 1994). In fact, for an
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NP-hard combinatorial optimization problem, it is sometimes difficult to give a complete
description of the associated polytope in some graph. Netherless, if the graph decom-
poses into pieces (with respect to certain decomposition operations), it may be possible
to give a complete description of the polytope from polytopes related to the pieces. This
approach has been studied for different combinatorial optimization problems such as the
max-cut problem (Barahona, 1983), the stable set problem (Burlet and Fonlupt, 1995;
Margot, 1994), the acyclic subdigraph problem (Barahona et al., 1994), the dominating set
problem (Bouchakour and Mahjoub, 1997). Margot (1994) studied a general composition
(decomposition) approach for combinatorial optimization polytopes using projection. This
permitted him to generalize known results related to independence systems. Hadjar (1996)
examined an approach of composition based on dynamic programming that he applied to
the travelling salesman problem.

Given a graph G = (V, E) and a weight system associated with the edges of E , the
triangle-free subgraph problem (TFSP for short), is to find a triangle-free subgraph, that is
a subgraph containing no K3, whose weight is maximum. The TFSP has applications to the
maximum weight clique problem (Balas et al., 1987). It may also be seen as a relaxation
of the maximum bipartite subgraph problem (Conforti et al., 1986). The TFSP is NP-hard
in general (Yannakakis, 1981). However, it has been shown to be polynomially solvable
in some special classes of graphs. Euler and Mahjoub (1991) showed that the TFSP can
be solved in polynomial time in the graphs noncontractible to K5\e (the complete graph
on five nodes minus one edge). Conforti et al. (1986) studied the maximum triangle-free
subgraph problem within the framework of a more general model. They showed that the
TFSP is NP-complete on chordal graphs (a graph is chordal (or triangulated) if every cycle
of length greater than three has a chord). They also proved that the TFSP can be solved in
polynomial time in chordal graphs with a fixed clique size.

If G = (V, E) is a graph and T ⊂ E an edge subset of G, then the 0 − 1 vector xT ∈ 
E

with x(e) = 1 if e ∈ T and x(e) = 0 if not, is called the incidence vector of T . The convex
hull of the incidence vectors of all the triangle-free edge sets of G, denoted by P�(G), is
called the triangle-free subgraph polytope of G, i.e.,

P�(G) = conv{xT ∈ 
E | (V, T ) is triangle-free}.

The polytope P�(G) is full dimensional. This implies that (up to multiplication by a
positive scalar) there is a unique nonredundant inequality system Ax ≤ b such that P�(G) =
{x ∈ 
E | Ax ≤ b}. These inequalities define facets of P�(G).

Given a weight vector w ∈ 
E , the triangle-free subgraph problem can then be formulated
as the linear program

maximize{wx, x ∈ P�(G)}.

If T ⊂ E is a triangle-free edge set, then its incidence vector, xT , satisfies the inequalities:

0 ≤ x(e) ≤ 1 for all e ∈ E, (1)∑
e∈�

x(e) ≤ 2 for all triangle � ⊂ E . (2)
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Inequalities (1) are called trivial inequalities and inequalities (2) triangle inequalities.
Moreover, every 0 − 1 solution of (1)–(2) is the incidence vector of a triangle-free edge set
of G. Conforti et al. (1986) discussed several classes of facet-defining inequalities for the
polytope P�(G). Euler and Mahjoub (1991) studied P�(G) in the graphs decomposable
by means of 1 and 2-sums. They showed that, if G decomposes into G1 and G2, then a
system defining P�(G) can be obtained from the union of the systems that define P�(G1)
and P�(G2) and by identifying the variables associated with the edges of E1 ∩ E2. As a
consequence, they obtained that, when G is noncontractible to K5\e, the polytope P�(G)
is completely described by the inequalities (1)–(2) together with the inequalities:∑

e∈W2k+1

x(e) ≤ 3k + 1 for all W2k+1 ⊂ E . (3)

Here Wn , for a given positive integer n, is the wheel on n + 1 nodes, that is the graph
that consists of a cycle on n nodes and a node adjacent to all the vertices of the cycle.
Inequalities (3) are called odd wheel inequalities. These inequalities have been introduced
by Conforti et al. (1986) where they also showed that they are facet defining.

The paper is organized as follows. In the next section, we discuss some structural prop-
erties of P�(G). In Section 3 we study compositions of polyhedra. In Section 4 we study
compositions of TDI systems and in Section 5 we give some concluding remarks.

The remainder of this section is devoted to more definitions and notations.
We assume that the reader is familiar with the basic definitions and concepts of poly-

hedral combinatorics. Refer to Pulleyblank (1989) for necessary background. The graphs
we consider are finite, undirected and without loops. We describe a graph by G = (V, E)
where V is the node set and E the edge set of G. If e is an edge with endnodes u and v, then
we write e = uv. If G = (V, E) is a graph and X ⊂ V is a subset of nodes, we denote by
G(X ) the subgraph of G induced by X . Given a constraint ax ≤ b, a ∈ 
E and a solution
x∗ ∈ 
E , we will say that ax ≤ b is tight for x∗ if ax∗ = b.

2. Structural properties

In this section, we shall discuss some structural properties of the facets of P�(G). Let
G = (V, E) be a graph and ax ≤ b a facet-defining inequality of P�(G) different from
inequalities (1) and (2). Thus a(e) ≥ 0 for all e ∈ E . Let us denote by Ea the support of a,
that is the set of edges e ∈ E such that a(e) > 0. Let Ga = (Va, Ea) be the graph induced
by Ea . A graph is said to be k-connected if, for any pair of nodes {u, v}, there are at least k
node-disjoint paths between u and v.

Let

τ (G) = {T ⊆ E | (V, T ) is � − free},
and

τa = {T ∈ τ (G) | axT = b}.
We have the following.
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Lemma 2.1.
(i) Every edge e ∈ Ea belongs to at least one triangle of Ea ;

(ii) Ga does not contain two edges that both belong to the same unique triangle of Ea ;
(iii) Ga is 3-connected.

Proof:

(i) Suppose there is an edge e0 of Ea that does not belong to any triangle of Ea . As
ax ≤ b is different from a trivial constraint, there must exist an edge set T ∈ τa that
does not contain e0. As (T ∩ Ea) ∪ {e0} is still triangle-free, this implies that ae0 ≤ 0,
a contradiction.

(ii) Suppose there are two edges e1, e2 ∈ Ea that belong to a unique triangle, say � =
{e1, e2, f }, of Ea . We claim that every edge set T ∈ τa contains two edges of �. In fact,
if T ∩� = ∅, then (T ∩ Ea)∪{e1} is triangle-free and thus, a(e1) ≤ 0, a contradiction.
If |T ∩ �| = 1, then (T ∩ Ea) ∪ {ei } would be triangle-free for some i ∈ {1, 2} and,
as a consequence, a(ei ) ≤ 0, which yields again a contradiction. Hence, |T ∩ �| = 2
for all T ∈ τa . Since ax ≤ b is not a triangle inequality, this is impossible.

(iii) This can also be derived from Euler and Mahjoub (1991). For the sake of completeness,
we give here a proof. Suppose that Ga is not 3-connected. Without loss of generality,
we may suppose that Ga is 2-connected. Thus, Ga decomposes into two graphs G1

a =
(V 1

a , E1
a ) and G2

a = (V 2
a , E2

a ) with respect to a 2-node cutset {u, v}.

First, suppose that uv �∈ Ea . Thus, for every T ∈ τa , the following holds

∑
e∈Ea

a(e)xT (e) =
∑
e∈E1

a

a(e)xT (e) +
∑
e∈E2

a

a(e)xT (e) = b.

Let αk = max{∑e∈Ek
a

a(e)xT (e), T ∈ τa}, for k = 1, 2. It then follows that b = α1 + α2,
which implies that every set T ∈ τa satisfies the equation

∑
e∈E1

a
a(e)xT (e) = α1. Since

ax = b is not a positive multiple of this equality, we get a contradiction.
Next, suppose that the edge e0 = uv belongs to Ea . Without loss of generality, we may

suppose that a(e0) = 1. Let us denote by τe0 (G) the set of edge sets of τ (G) that contain e0,
and let τ̄e0 (G) = τ (G)\τe0 (G).
Let

βk = max

{ ∑
e∈Ek

a ,e �=e0

a(e)xT (e), T ∈ τe0 (G)

}
,

and

γk = max

{ ∑
e∈Ek

a

a(e)xT (e), T ∈ τ̄e0 (G)

}
,
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for k = 1, 2. Since ax ≤ b is not a trivial inequality and, therefore, there exists a set of τa

that contains (does not contain) e0, one should have β1 + β2 + 1 = b and γ1 + γ2 = b. As
β1 + γ2 ≤ b and γ1 + β2 ≤ b, it then follows that:

βk ≤ γk ≤ βk + 1, for k = 1, 2.

Let θ = γ1 − β1. Now it is easy to see that the inequality∑
e∈E1

a ,e �=e0

a(e)xT (e) + θx(e0) ≤ γ1

is verified at equality by the incidence vectors of all the sets of τa . But this yields again a
contradiction.

3. Composition of polyhedra

In this section, we show that a system of inequalities that describes P�(G) can be derived
provided that G is a 3-sum of two graphs G1 and G2 satisfying a certain property and
P�(G1) and P�(G2) are known.

3.1. 3-sums

Let G = (V, E) be a graph that is the 3-sum of G1 = (V1, E1) and G2 = (V2, E2) such that

(i) V = V1 ∪ V2,
(ii) E = E1 ∪ E2,

(iii) �0 = E1 ∩ E2 = {e1, e2, e3},
(iv) G1 (resp. G2) contains four edges f1, f ′

1, g1, g′
1 (resp. f2, f ′

2, g2, g′
2) such that �1

1 =
{e1, f1, f ′

1}, �1
2 = {e3, g1, g′

1} (resp. �2
1 = {e2, f2, f ′

2}, �2
2 = {e3, g2, g′

2}) are triangles
and �0, �

1
1, �

1
2 (resp. �0, �

2
1, �

2
2) are the only triangles of G1 (resp. G2) that intersect

{e1, e2, e3, f1, g1} (resp. {e1, e2, e3, f2, g2}) (see figure 1).

Let Ak = {e1, e2, e3, fk, gk}, Êk = Ek\Ak and Ēk = Ek\�0, for k = 1, 2. Let A = A1 ∪
A2, m1 = |E1| and m2 = |E2|.

e 1 e 2
e 3

2
g

2f

G2

e 1 e 2
e 3

f1

g
1

G1

1 e 1
e 3

e 2

f1 2f

g
1 2
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1
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f’2 f’2

g’
2

g’
2

Figure 1. 3-sum of G1 and G2.
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Lemma 3.1. If ax ≤ b is a facet-defining inequality of P�(Gk) different from inequali-
ties (1) and (2), then a(e) = a(e′), for all e, e′ ∈ Ak, k = 1, 2.

Proof: We will give the proof for P�(G1) (the proof is similar for P�(G2)). If a(e) = 0
for some e ∈ A1, it follows from Lemma 2.1 that a(e) = 0, for all e ∈ A1.

So, consider the case where a(e) > 0, for all e ∈ A1. As ax ≤ b is not a trivial inequality,
there must exist a set T1 ∈ τa such that e2 �∈ T1. Hence, e1, e3 ∈ T1. For otherwise, if, for
instance, e1 does not belong to T1, then T1 ∪ {e2} would be triangle-free, which implies that
a(e2) ≤ 0, a contradiction. Let T ′

1 = (T1\{e1}) ∪ {e2} and T ′′
1 = (T1\{e3}) ∪ {e2}. Since,

T ′
1, T ′′

1 ∈ τ (G), the following hold

a(e2) ≤ a(e1), a(e2) ≤ a(e3). (4)

Similarly, we obtain that

a( f1) ≤ a(e1), a( f1) ≤ a( f ′
1), (5)

a(g1) ≤ a(e3), a(g1) ≤ a(g′
1). (6)

Furthermore, as ax ≤ b is not a triangle inequality, there exists a triangle-free subgraph,
T2 ∈ τa , such that |T2 ∩ �0| < 2. This implies that neither e1 nor e3 is in T2. In consequence,
f1, f ′

1, g1, g′
1 must belong to T2. Now, as the edge sets (T2 \{ f1})∪{e1} and (T2 \{g1})∪{e3}

are triangle-free, we have that

a(e1) ≤ a( f1), a(e3) ≤ a(g1). (7)

By combining (5)–(7) we obtain that

a(e1) = a( f1), a(e3) = a(g1). (8)

On the other hand, there is a triangle-free subgraph T3 ∈ τa such that |T3 ∩�1| < 2. Hence,
e1, f ′

1 �∈ T3 and therefore e2, e3 ∈ T3. Since the edge sets (T3\{e2})∪{e1} and (T3\{e3})∪{e1}
contain no triangles, we get

a(e1) ≤ a(e2), a(e1) ≤ a(e3). (9)

From (4), (8) and (9), it follows that a(e1) = a(e2) = a( f1).
By symmetry, we also obtain that a(e3) = a(e2) = a(g1) and then a(e) = a(e′), for all e,

e′ ∈ A1.

From Lemma 3.1, a minimal system defining P�(Gk), k = 1, 2 canbe written as follows:

∑
e∈Êk

ak
i (e)x(e) ≤ bk

i , i ∈ I k
1 , (10)
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∑
e∈Êk

ak
j (e)x(e) +

∑
e∈Ak

x(e) ≤ bk
j , j ∈ I k

2 , (11)

∑
e∈�

x(e) ≤ 2, for all triangle � ⊂ Ek,

x(e) ≤ 1, for all e ∈ Ek,

x(e) ≥ 0, for all e ∈ Ek,

where I k
1 (resp. I k

2 ) is the set of the indices corresponding to the constraints of P�(G)
different from (1) and (2) whose support does not intersect (resp. intersects) the set Ak .

3.2. 3-sums and the polytope P�(G)

In what follows, we are going to show that facets of P�(G) can be obtained from facets of
P�(G1) and P�(G2). First, we introduce new constraints that are valid for P�(G).

Definition 3.1. Given two constraints∑
e∈Ê1

a(e)x(e) +
∑
e∈A1

x(e) ≤ b, (12)

∑
e∈Ê2

a′(e)x(e) +
∑
e∈A2

x(e) ≤ b′, (13)

valid for P�(G1) and P�(G2), respectively, we call mixed constraint, the inequality∑
e∈Ê1

a(e)x(e) +
∑
e∈Ê2

a′(e)x(e) +
∑
e∈A

x(e) ≤ b + b′ − 2. (14)

We have the following.

Lemma 3.2. Mixed constraints are valid for P�(G).

Proof: Let T ∈ τ (G). Let Tk be the restriction of T on Ek, k = 1, 2.

– If |T ∩ �0| = 0, then the edge set T1 ∪ {e2} (resp. T2 ∪ {e1}) induces a triangle-free
subgraph of G1 (resp. G2). Thus∑

e∈Ê1

a(e)xT1 (e) +
∑

e∈A1\�0

xT1 (e) + 1 ≤ b,

∑
e∈Ē2

a′(e)xT2 (e) +
∑

e∈A2\�0

xT2 (e) + 1 ≤ b′,

then∑
e∈Ê1

a(e)xT (e) +
∑
e∈Ê2

a′(e)xT (e) +
∑
e∈A

xT (e) ≤ b + b′ − 2.
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– If |T ∩ �0| = 2, then, since inequalities (12) and (13) are satisfied by xT1 and xT2 ,
respectively, we obtain that xT verifies (14).

– Now, suppose that |T ∩ �0| = 1. If T ∩ �0 = {e3}, as the edge sets T1 ∩ {e2} and T2∪{e1}
are triangle-free, it is easy to see that xT also verifies the mixed constraint. Thus suppose,
for instance, that T ∩�0 = {e1} (the case where T ∩�0 = {e2} is similar). We have that
T1 ∪ {e2} ∈ τ (G1) and, therefore,∑

e∈Ê1

a(e)xT1 (e) +
∑
e∈A1

xT1 (e) + 1 ≤ b,

∑
e∈Ê2

a′(e)xT2 (e) +
∑

e∈A2\�0

xT2 (e) + xT2 (�0) ≤ b′.

Hence, (14) is satisfied by xT .

In all cases, we obtain that xT satisfies inequality (14). Therefore, mixed constraints are
valid for P�(G).

Let Q(G) be the polytope given by the following inequalities∑
e∈Êk

ak
i (e)x(e) ≤ bk

i i ∈ I k
1 , k = 1, 2, (15)

∑
e∈Êk

ak
j (e)x(e) +

∑
e∈Ak

x(e) ≤ bk
j j ∈ I k

2 , k = 1, 2, (16)

∑
e∈Ê1

a1
j (e)x(e) +

∑
e∈A

x(e) +
∑
e∈Ê2

a2
l (e)x(e) ≤ b1

j + b2
l − 2

j ∈ I 1
2 , l ∈ I 2

2 , (17)∑
e∈�

x(e) ≤ 2 for all triangle � ⊂ E, (18)

x(e) ≤ 1 for all e ∈ E, (19)

x(e) ≥ 0 for all e ∈ E . (20)

Let us denote an inequality of type (16) by [ j, k], j ∈ I k
2 , k ∈ {1, 2} and of type (17) by

[ j, l], j ∈ I 1
2 , l ∈ I 2

2 . We can now state our main result.

Theorem 3.3. P�(G) = Q(G).

Proof: Since all the constraints of Q(G) are valid for P�(G), we have P�(G) ⊆ Q(G).
Moreover, any integer solution of Q(G) corresponds to a triangle-free edge set of G. Let
us suppose, on the contrary, that P�(G) �= Q(G). Thus, there exists an extreme point x of
Q(G) which is fractional. We shall denote by S(x), S0(x), S1(x), S f (x) the set of edges e
such that x(e) > 0, x(e) = 0, x(e) = 1, 0 < x(e) < 1, respectively.

Let x1 (resp. x2) be the restriction of x on E1 (resp. E2). As x1 (resp. x2) belongs to
P�(G1) (resp. P�(G2)), there must exist q1 (resp. q2) extreme points y1, . . . , yq1 (resp.
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z1, . . . , zq2 ) of P�(G1) (resp. P�(G2)) such that

x1 =
∑

i

αi yi , αi > 0,
∑

i

αi = 1 and x2 =
∑

j

β j z
j , β j > 0,

∑
j

β j = 1.

Note here that all the vectors y1, . . . , yq1 , z1, . . . , zq2 are integer and that every constraint
of P�(G1) (resp. P�(G2)) tight for x1 (resp. x2) is also tight for yi , i ∈ {1, . . . , q1} (resp.
z j , j ∈ {1, . . . , q2}).

Let us denote by B(�0) the set 2�0\�0. For F ∈ B(�0), let r (F) = ∑
�0∩S1(yi )=F αi and

s(F) = ∑
�0∩S1(z j )=F β j .

We have the following claims.

Claim 1. There is a set F0 ∈ B(�0) such that r (F0) �= s(F0).

Proof: Clearly, the vector ti j = (yi , z̃ j ) induces a triangle-free subgraph of G for every
i, j such that �0 ∩ S1(yi ) = �0 ∩ S1(z j ), where z̃ j is the restriction of z j onto E2\�0. If
r (F) = s(F) for all F ∈ B(�0), then we would have

x =
∑
i, j

γi j ti j

where γi j = (αi · β j )/r (F) for F = �0 ∩ S1(yi ) = �0 ∩ S1(z j ).
Since

∑
i, j γi j = 1 and γi j > 0 for all i, j , this contradicts the extremality of x .

Claim 2.

(i) x(e) < 1 for all e ∈ �0.
(ii) x(�0) < 2.

(iii) �0 ⊂ S(x).

Proof:

(i) Suppose, for instance, that x(e1) = 1 (the other cases are similar). Since yi (e1) =
z j (e1) = 1, for all i, j , we have

x(e2) = r ({e1, e2}) = s({e1, e2}) and x(e3) = r ({e1, e3}) = s({e1, e3}).
As x(e1) = r ({e1, e2})+ r ({e1, e3})+ r ({e1}) = s({e1, e2})+ s({e1, e3})+ s({e1}) = 1,
r ({e1}) = s({e1}). Since r ({e2}) = s({e2}) = 0 and r ({e3}) = s({e3}) = 0, we obtain
that r (F) = s(F) for all F ∈ B(�0). But this contradicts Claim 1.

(ii) Let us suppose that x(�0) = 2.
First, if |�0 ∩ S(x)| = 2, then x(e) = 1 for two edges of �0. But this contradicts (i).
Thus, |�0 ∩ S(x)| = 3. Since yi (�0) = z j (�0) = 2, for all i, j , we obtain that

x(e1) = r ({e1, e2}) + r ({e1, e3}) = s({e1, e2}) + s({e1, e3})
x(e2) = r ({e1, e2}) + r ({e2, e3}) = s({e1, e2}) + s({e2, e3})
x(e3) = r ({e1, e3}) + r ({e2, e3}) = s({e1, e3}) + s({e2, e3})
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As r (F) = s(F) = 0 for all F ∈ B(�0) with |F | �= 2, this system implies that r (F) =
s(F) for all F ∈ B(�0). This contradicts again Claim 1.

(iii) First, if �0∩S(x) = ∅, then r (∅) = s(∅) = 1 and r (F) = s(F) = 0, for all F ∈ B(�0)\∅.
Therefore this contradicts Claim 1.

Now, let us suppose that |�0 ∩S(x)| = 1. W.l.o.g., we may assume that �0 ∩S(x) = {e1}.
Thus, by (i), we have 0 < x(e1) < 1. Hence, r (F) = s(F) = 0 for all F ∈ B(�0)\ {∅, {e1}}.
Moreover, x(e1) = r ({e1}) = s({e1}). Since r (∅) + r ({e1}) = s(∅) + s({e1}) = 1, it follows
that r (∅) = s(∅) and hence, by Claim 1, we get a contradiction.

Thus, |S(x) ∩ �0| = 2. Suppose, w.l.o.g., that S(x) ∩ �0 = {e1, e3} (the proof for the
other cases is similar). So

x(e1) = r ({e1}) + r ({e1, e3}) = s({e1}) + s({e1, e3}),
x(e3) = r ({e3}) + r ({e1, e3}) = s({e3}) + s({e1, e3}).

As r (∅) + r ({e1}) + r ({e3}) + r ({e1, e3}) = s(∅) + s({e1}) + s({e3}) + s({e1, e3}) = 1, we
obtain that s({e1, e3}) − r ({e1, e3}) = s(∅) − r (∅).

If r ({e1, e3}) = s({e1, e3}), then it follows that r (F) = s(F) for all F ∈ B(�0), a
contradiction.

Hence, suppose, w.l.o.g., that s({e1, e3})−r ({e1, e3}) > 0. Let us associate a variable γi, j

with every pair (yi , z j ) if either �0 ∩ S1(yi ) = �0 ∩ S1(z j ) or �0 ∩ S1(yi ) = {e1} and �0 ∩
S1(z j ) = ∅ or �0 ∩ S1(yi ) = {e3} and �0 ∩ S1(z j ) = {e1, e3}. Note that for each of these
cases, the vector ti, j = (yi , z̃ j ), where z̃ j is the restriction of z j on E2\�0, induces a
triangle-free subgraph of G. Let (γ ∗

i, j ) be a solution of the system∑
j

γi, j = αi , i = 1, . . . , q1

∑
i

γi, j = β j , j = 1, . . . , q2.

Note that the above system is a transportation problem and hence it has a solution. Also
note that

∑
i, j γ ∗

i, j = 1. Since, x = ∑
γ ∗

i, j ti, j , this is impossible.

By Claim 2(i) and (iii), we have that 0 < x(e) < 1 for all e ∈ �0.

Claim 3. The inequalities∑
e∈Êk

ak
j (e)x(e) + x(e3) + x(gk) ≤ bk

j − 2,

∑
e∈Êk

ak
j (e)x(e) + x(ek) + x( fk) ≤ bk

j − 2,

are valid for P�(Gk), for all j ∈ I k
2 , k = 1, 2.

Proof: Easy.
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Now, we shall consider two cases.

Case 1. x does not satisfy any mixed constraint at equality.

Claim 4. x(e) + x(e′) ≤ 1, for all e, e′ ∈ �0.

Proof: Suppose, for instance, that x(e1)+ x(e2) > 1 (The proof is similar if either x(e1)+
x(e3) > 1 or x(e2) + x(e3) > 1). So, there are i ∈ {1, . . . , q1} and j ∈ {1, . . . , q2} such that
yi (e1)+yi (e2) > 1 and z j (e1)+z j (e2) > 1. Hence, yi (e1) = yi (e2) = 1 and z j (e1) = z j (e2) =
1 and, as a consequence, the vector x ′ = (yi , z̃ j ) induces a triangle-free subgraph of G.
Moreover, any constraint of Q(G) that is tight for x is also tight for x ′. Since x �= x ′, this
is a contradiction.

By Claim 4, we have x(e) + x(e′) ≤ 1, for all e, e′ ∈ �0. Since x(e2) < 1, there exists
i ∈ {1, . . . , q1} such that yi (e2) = 0.

Suppose first that there is p ∈ I 1
2 such that the constraint [p, 1] is tight for x (the case

where p ∈ I 2
2 is similar). Then, yi (e1) = yi (e3) = 1. Moreover, as [p, 1] is tight for x , by

Claim 3, it follows that x( f1) + x(e1) + x(e2) ≥ 2 and x(g1) + x(e2) + x(e3) ≥ 2. As
x( f1), x(g1) ≤ 1, x(e1) + x(e2) ≤ 1, x(e2) + x(e3) ≤ 1, we obtain that

x(e1) + x(e2) = 1,
(21)

x(e2) + x(e3) = 1.

Next, let x̃2 ∈ 
m2 be defined as x̃2(e) = x2(e), for all e ∈ E2, e �= e1, and x̃2(e1) = 1. We
claim that x̃2 ∈ P�(G2). Indeed, first note that, by (21), we have x̃2(�0) = 2. Moreover,
since all mixed inequalities [p, l] are satisfied by x , it follows that

∑
e∈Ē2

a2
l (e)x̃(e) ≤ b2

l −2,
for all l ∈ I 2

2 . So, x̃2 satisfies constraints [l, 2], l ∈ I 2
2 , implying that x̃2 ∈ P�(G2). Now, as

x̃2(e2)(=x(e2)) < 1, there must exist an integer solution z of P�(G2) such that z(e2) = 0.
As x̃2(�0) = 2, it follows that z(e1) = z(e3) = 1.

Let x̂ ∈ 
E be such that

x̂(e) =




yi (e) if e ∈ Ē1,

z(e) if e ∈ Ē2,

1 if e = e1, e3,

0 if e = e2.

It is not hard to see that x̂ satisfies at equality all the constraints that are tight for x , a
contradiction.

Now, suppose that x does not satisfy at equality any of the constraints [p, 1], p ∈ I 1
2

and [l, 2], l ∈ I 2
2 . As x(e1) < 1, there is i ∈ {1, . . . , q1} such that yi (e1) = 0. Let x̄2 ∈ 
m2

be defined as x̄2(e) = x2(e), for all e ∈ E2\{e1}, and x̄2(e1) = 0. Clearly, x̄2 ∈ P�(G2).
Moreover, from Claim 2(ii) and our assumption above, the inequalities that are tight for x2

are also tight for x̄2.
Suppose yi (e3) = 1. As x̄2(e3) > 0, there must exist an integer solution z̄ ∈ P�(G2) that

satisfies at equality all the constraints that are tight for x2, with z̄(e3) = 1. Let x ′ ∈ 
m2 be
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such that

x ′(e) =




yi (e) if e ∈ Ē1,

z̄(e) if e ∈ Ē2,

1 if e = e3,

0 if e = e1,

z̄(e2) if e = e2.

Since all the constraints [l, k], l ∈ I k
2 , k = 1, 2 as well as the mixed constraints of P�(G)

are not tight for x , we have that the inequalities of P�(G) that are tight for x are also tight
for x ′. As x ′ �= x , this yields a contradiction.

If yi (e3) = 0, we obtain a contradiction along the same way.

Case 2. There is at least one mixed constraint, say [ j0, l0], j0 ∈ I 1
2 , l0 ∈ I 2

2 , that is tight
for x .

Let M = {( j, l) ∈ I 1
2 × I 2

2 | [ j, l] is tight for x}. Let Mk = { j ∈ I k
2 | there is l ∈ I k̄

2 with
( j, l) ∈ M} where k̄ = {1, 2}\{k}. In other words, M represents the set of mixed constraints
that are tight for x and Mk , the set of constraints of P�(Gk) of type (16) that give rise to
mixed constraints of P�(G) tight for x .

Case 2.1. x satisfies at equality at least one of the constraints (16), say [ j1, 1], j1 ∈ I 1
2 ,

(The case where a constraint [l1, 2] is tight for some l1 ∈ I 2
2 can be treated similarly).

Since, by Claim 2 (ii), x(�0) < 2, none of the inequalities [l, 2], l ∈ I 2
2 is tight for x .

Moreover, as [ j1, l], l ∈ I 2
2 is satisfied by x ,

∑
e∈Ē2

a2
l (e)x(e) ≤ b2

l − 2, for all l ∈ I 2
2 .

Hence, if [ j, l] is tight for x for j ∈ I 1
2 , l ∈ I 2

2 , then [ j, 1] is tight for x and
∑

e∈Ē2
a2

l (e)x(e) =
b2

l − 2.
On the other hand, as [ j1, 1] is tight for x , by Claim 3, it follows that x(e2) + x(e3) ≥ 1.

Let x̃2 ∈ 
m2 be given by

x̃2(e) =
{

x2(e) if e ∈ E2\{e1},
2 − (x(e2) + x(e3)) if e = e1.

We have 0 < x̃2(e1) ≤ 1 and x̃2(�0) = 2. Thus, as
∑

e∈Ē2
a2

l (e)x̃2(e) ≤ b2
l − 2, for all

l ∈ I 2
2 , it follows that x̃2 ∈ P�(G2). Note that every constraint [l, 2], l ∈ M2 is tight for

x̃2.
Since x(e2) < 1, there must exist an integer solution ẑ of P�(G2) with ẑ(e2) = 0.

Moreover, ẑ satisfies at equality every constraint that is tight for x̃2. Hence, ẑ(�0) = 2
and, in consequence, ẑ(e1) = ẑ(e3) = 1. Furthermore, there exists an i ∈ {1, . . . , q1}
such that yi (e2) = 0. As [ j1, 1] is satisfied at equality by yi , we have that yi (e1) =
yi (e3) = 1.
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Consider now the solution x̂ ∈ 
E such that

x̂(e) =




yi (e) if e ∈ Ē1,

ẑ(e) if e ∈ Ē2,

1 if e = e1, e3,

0 if e = e2.

We can see that x̂ satisfies at equality all the constraints that are tight for x , which yields
a contradiction.

Case 2.2. x does not satisfy at equality any constraint of type (16).
Let

δk
j = bk

j −
( ∑

e∈Ēk

ak
j (e)x(e) + x(�0)

)
, for all j ∈ I k

2 , k = 1, 2.

Note that δk
j > 0, for all j ∈ I k

2 , k = 1, 2. Since [ j0, l0] is tight for x , x(�0) + δ1
j0

+ δ2
l0

= 2.
Thus, as x also satisfies [ j, l0], we obtain that δ1

j0
≤ b1

j −(
∑

e∈Ē1
a1

j (e)x(e)+x(�0)), for all
j ∈ I 1

2 . Hence, the following hold

δ1
j0 ≤ δ1

j , for all j ∈ I 1
2 ,

δ1
j0 = δ1

j , for all j ∈ M1.

Similarly, we get

δ2
l0

≤ δ2
l , for all l ∈ I 2

2 ,

δ2
l0

= δ2
l , for all l ∈ M2.

Moreover, by Claim 3, x(e2) + δ1
j0

+ x(e3) + x(g1) ≥ 2. Hence, x(e2) + δ1
j0

+ x(e3) ≥ 1.
Therefore, as x(�0) + δ1

j0
+ δ2

l0
= 2, x(e1) + δ2

l0
≤ 1. Similarly, we have x(e2) + δ1

j0
≤ 1.

Let x̃1 ∈ 
m1 and x̃2 ∈ 
m2 be given by

x̃1(e) =
{

x1(e) if e ∈ E\{e2},
x(e2) + δ1

j0 if e = e2.
x̃2(e) =

{
x2(e) if e ∈ E\{e1},
x(e1) + δ2

l0
if e = e1.

It is easy to see that x̃1 ∈ P�(G1) and x̃2 ∈ P�(G2).
As x̃1(�0) < 2, there exists an integer solution y of P�(G1) that satisfies at equality all

the constraints that are tight for x̃1 and such that y(�0) < 2. Since the constraint [ j0, 1] is
tight for x̃1 and thus for y, it follows that y(e2) = 1 and y(e1) = y(e3) = 0. Similarly, there
is an integer solution z of P�(G2) that satisfies at equality all the constraints that are tight
for x̃2 and such that z(e1) = 1, z(e2) = z(e3) = 0.
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Let x ′ ∈ 
E be the solution such that

x ′(e) =




y(e) if e ∈ Ē1,

z(e) if e ∈ Ē2,

0 if e ∈ �0.

Clearly, x ′ ∈ P�(G). Moreover, all the constraints of Q(G) that are tight for x are also tight
for x ′. As x �= x ′, this is a contradiction, which finishes the proof of our theorem.

Theorem 3.3 provides a complete description of P�(G) provided that such descriptions
are known for P�(G1) and P�(G2). The following theorem shows that if the systems defining
P�(G1) and P�(G2) are minimal then the system defining P�(G) is as well.

Theorem 3.4. If inequalities (12) and (13) are facet-defining inequalities for P�(G1) and
P�(G2), respectively, then the mixed constraint (14) is facet-defining for P�(G).

Proof: It suffices to show that there exists a point z in P�(G) that satisfies inequality (14)
at equality and all other constraints of P�(G) with strict inequality.

Suppose that inequality (12) (resp. (13)) is facet-defining for P�(G1) (resp. P�(G2)).
Then, there are m1 (resp. m2) triangle-free edge sets R1, . . . Rm1 (resp. S1, . . . , Sm2 ) of G1

(resp. G2) such that x R1 , . . . , x Rm1 (resp. x S1 , . . . , x Sm2 ) satisfy (12) (resp. (13)) at equality
and are affinely independent. Note that Ri ∩ �0 �= ∅ for i = 1, . . . , m1 and that Ri ∩ �0

is one of the sets {e2, e3}, {e1, e3}, {e1, e2} and {e2}. Similarly, we have that Sj ∩ �0 �=
∅ for j = 1, . . . , m2 and that Sj ∩ �0 is one of the sets {e2, e3}, {e1, e3}, {e1, e2} and {e1}.
Let I1, I2, I3, I4 be the sets of i ∈ {1, . . . , m1} such that Ri ∩ �0 = {e2, e3}, Ri ∩ �0 =
{e1, e3}, Ri ∩�0 = {e1, e2} and Ri ∩�0 = {e2}, respectively. Let J1, J2, J3, J4 be similarly
defined for S1, . . . , Sm2 . Note that It �= ∅ �= Jt , for t = 1, . . . , 4. Thus, for every set Ri , i ∈
It , t = 1, 2, 3 (resp. i ∈ I4) there is a set Sji , ji ∈ Jt (resp. ji ∈ J4) such that Ti = Ri ∪ Sji
(resp. Ti = (Ri\{e2}) ∪ (Sji \{e1})) is triangle-free. Note that xT1 , . . . , xTm1 satisfy (14) at
equality. Similarly, we can construct m2 triangle-free edge sets T ′

j , j = 1, . . . , m2 with
respect to S1, . . . , Sm2 .

Now, it is easy to see that for every constraint of P�(G) different from (14), there exists
at least one edge set among T1, . . . , Tm1 , T ′

1, . . . , T ′
m2

that satisfies this constraint with strict
inequality.

Now, by considering z = 1
m1+m2

(
∑

i xTi + ∑
j xT ′

j ), we have the required vector.

As a consequence of Theorem 3.4, we have the following.

Corollary 3.5. Q(G) is a minimal system defining P�(G).

4. Total dual integrality

A system Ax ≤ b is called total dual integral (TDI) if the dual of max{wx, Ax ≤ b} has
an integer optimal solution for every integer vector w such that the maximum exists. In this
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section, we are going to show that the system defining P�(G) is total dual integral if the
systems defining P�(G1) and P�(G2) so are.

In Euler and Mahjoub (1991), showed the following

Lemma 4.1 Euler and Mahjoub (1991). Let G = (V, E) be the 2-sum of two graphs
G1 = (V1, E1) and G2 = (V2, E2). Then the following hold
1. A system that defines P�(G) can be obtained as the union of the systems defining P�(G1)

and P�(G2) and by identifying the variables associated with the edge of E1 ∩ E2.
2. If the systems defining P�(G1) and P�(G2) are TDI then the system defining P�(G), as

described in (1), is TDI.

Theorem 4.2. If the systems defining P�(G1) and P�(G2) are TDI, then the system (15)–
(20) defining P�(G) is also TDI.

Proof: Let us denote by PG(w) the linear program max{wx subject to (15)–(20)} where
w is an integer weight function. Let DG(w) be the dual of PG(w) and λG(w) its optimal
value. If F ⊂ E , we shall denote by G F = (V, F) the subgraph induced by F and by wF

the restriction of w on the set F . For the sake of commodity, if F = Ek , then we let
wEk = wk, k = 1, 2.

Claim 1. Let e0 be an edge of E that does not belong to any triangle of G. Let G̃ =
(V, E\{e0}) and Ãx ≤ b̃ be a system defining P�(G̃). If Ãx ≤ b̃ is TDI, then the system


Ãx ≤ b̃,

x(e0) ≤ 1,

x(e0) ≥ 0,

defines P�(G) and is TDI.

Proof: Easy.

Since, by Theorem 3.3, Q(G) is integral, the problem PG(w) always has an integral
optimal solution and, in consequence, λG(w) is integer. For F ⊂ E , let κ(F) denote the set
of triangles of F .

Let us associate with a constraint of type (15) ((16)), the dual variable yk
i (yk

j ), with
a mixed constraint (17), the dual variable z j,l , with a constraint (18) corresponding to a
triangle � ∈ κ(Ēk) (� = �0), the dual variable γ k

� (γ�0 ) and with a constraint x(e) ≤ 1
corresponding to an edge e ∈ Ēk (e ∈ {e1, e2, e3}), the variables δk

e (δe), for k = 1, 2.
The dual DG(w) can then be written as

min
2∑

k=1

( ∑
i∈I k

1

bk
i yk

i +
∑
j∈I k

2

bk
j yk

j +
∑

�∈κ(Ēk )

2γ k
� +

∑
e∈Ēk

δk
e

)

+
3∑

i=1

δei + 2γ�0 +
∑

j∈I 1
2 ,l∈I 2

2

(
b1

j + b2
l − 2

)
z j,l
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s.t. 


∑
i∈I 1

1

a1
i (e)y1

i +
∑
j∈I 1

2

a1
j (e)y1

j + δ1
e +

∑
�∈κ(E1)|e∈�

γ 1
� +

∑
j∈I 1

2 ,l∈I 2
2

a1
j (e)z j,l ≥ w(e)

for all e ∈ Ê1,∑
i∈I 2

1

a2
i (e)y2

i +
∑
j∈I 2

2

a2
j (e)y2

j + δ2
e +

∑
�∈κ(E2)|e∈�

γ 2
� +

∑
j∈I 1

2 ,l∈I 2
2

a2
l (e)z j,l ≥ w(e)

for all e ∈ Ê2,∑
j∈I k

2

yk
j + δk

e +
∑

�∈κ(Ek )|e∈�

γ k
� +

∑
j∈I 1

2 ,l∈I 2
2

z j,l ≥ w(e)

for e ∈ { fk, gk}, k = 1, 2,

∑
j∈I 1

2

y1
j +

∑
j∈I 2

2

y2
j + δe +

2∑
k=1

( ∑
�∈κ(E)\{�0}|e∈�

γ k
�

)
+ γ�0 +

∑
j∈I 1

2 ,l∈I 2
2

z j,l ≥ w(e)

for all e ∈ �0,

y1, y2, γ, δ, z ≥ 0.

To show the theorem, we shall use ideas similar to those of Barahona et al. (1994)
and Mahjoub (1995) i.e., we shall proceed by induction on w.

If wA ≤ 0, then clearly λG(w) = λG1 (w1)+λG2 (w2). Thus an optimal solution of DG(w)
can be obtained as the union of the optimal solutions of DG1 (w1) and DG2 (w2) and by setting
z j,l = 0 for all j ∈ I 1

2 , l ∈ I 2
2 , γ�0 = 0 and δe = 0 for all e ∈ �0. As P�(G1) and P�(G2)

are TDI, the optimal solutions of DG1 (w1) and DG2 (w2) can be considered integer and thus
DG(w) has an integer optimal solution.

Now, assume that DG(w) has an integer optimal solution for every integer vector w,

w ≤ t, w �= t , and let us show that DG(w) has an integer optimal solution for
w = t .

Let us denote by Ĝk = (V̂k, Êk) the graph obtained from Gk by removing the set of edges
Ak = { fk, gk, e1, e2, e3} for k = 1, 2.

Let Q(Ĝk) be the system given by the inequalities of P�(Gk) that do not contain variables
x(e) where e ∈ Ak .

Claim 2. P�(Ĝk) = Q(Ĝk).

Proof: Clearly, every triangle-free edge set of Ĝk corresponds to an integer solution of
Q(Ĝk), thus P�(Ĝk) ⊂ Q(Ĝk).

If P�(Ĝk) �= Q(Ĝk) then there exists a facet-defining inequality of P�(Ĝk), say ax ≤ α,
different from the ones describing Q(Ĝk). Thus, there are l = mk − 5 triangle-free edge
sets T1, . . . , Tl of Ĝk whose incidence vectors satisfy ax ≤ α at equality and are affinely
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independent. Consider the edges sets

Tl+1 = T1 ∪ { fk},
Tl+2 = T1 ∪ {gk},
Tl+i = T1 ∪ {ei }, i = 1, . . . , 3.

These sets together with T1, . . . , Tl constitute mk triangle-free edge sets whose incidence
vectors satisfy ax ≤ α at equality and are affinely independent. As the inequality ax ≤ α

is valid for P�(Gk), this implies that the inequality ax ≤ α is facet-defining for P�(Gk), a
contradiction.

Claim 3. Q(Ĝk) is TDI.

Proof: Let ŵk be an integer vector associated with the edges of Êk . Let wk ∈ 
Ek be
such that wk(e) = ŵk(e) if e ∈ Êk and wk(e) = 0 if not.

Since P�(Gk) is TDI, there is an integer optimal solution (y, s) of DGk (wk) where y (resp.
s) is the dual vector associated with the inequalities of P�(Gk) that do not contain (resp.
contain) variables x(e) with e ∈ Ak . We claim that s = 0. Indeed, as, by Claim 2, Q(Ĝk) is
integral, there is an integer optimal solution x̂ to the program PĜk

(ŵk) = max{ŵk x | x ∈
Q(Ĝk)}. As wk(e) = 0 for all e ∈ Ak , the solution x ∈ 
Ek such that x(e) = x̂(e) if e ∈ Êk ,
x(e) = 0 otherwise, is optimal for PGk (wk). Moreover, we have that any constraint of P�(Gk)
that involves variables x(e) with e ∈ Ak and different from x(e) ≥ 0 is not tight for x . This
is clear for the trivial and the triangle inequalities. Now, for the constraints of type (11),
let x∗ ∈ 
Ek such that x∗(e) = x(e) for e ∈ Ek\ fk and x∗(e) = 1 for e = fk . Clearly, x∗

induces a triangle-free edge set of Gk . Consequently, x∗ satisfies inequality (11), implying
that these inequalities are not tight for x . As a consequence, by the complementary slackness
theorem, it follows that s = 0. This also implies that y is an integer optimal solution for the
dual program of PĜk

(ŵk).

Now suppose that w(e0) ≤ 0 for some edge e0 ∈ A. Let G̃ be the graph obtained from
G by removing e0. Note that G̃ is a 1-sum (2-sum) of two graphs, say G̃1 and G̃2, with,
possibly, one or two edges that do not belong to any triangle in G̃. The graph G̃k , for
k = 1, 2, may be either the graph Gk itself or a graph obtained as a 2-sum of Ĝk and a
triangle of Gk . For a triangle T , the system given by the trivial inequalities and inequality
x(T ) ≤ 2 completely describes P�(T ) and is TDI (Mahjoub, 1995). So, from Claims 1, 3
and Lemma 4.1, it follows that P�(G̃) is TDI.

In what follows, we shall assume that w(e) > 0, for all e ∈ A. Let Iw be the set of
inequalities of PG(w) that are satisfied at equality by every optimal solution of PG(w).

We shall distinguish three cases:

Case 1. x(e0) ≤ 1 is in Iw for some edge e0 of A. Let w′ be the vector given by

w′(e) =
{
w(e) if e ∈ E\{e0},
w(e0) − 1 if e = e0.
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We claim that λG(w′) = λG(w)−1. Indeed, it is clear that λG(w)−1 ≤ λG(w′) ≤ λG(w).
If λG(w′) = λG(w), then every optimal solution of PG(w′) is at the same time optimal for
PG(w). But this contradicts the fact that x(e0) ≤ 1 is in Iw and our claim is proved. Now,
by the induction hypothesis, DG(w′) has an integer optimal solution. Increasing by one the
value of the dual variable associated with x(e0) ≤ 1 in that solution gives an integer optimal
solution of DG(w).

Case 2. x(�) ≤ 2 is in Iw for some triangle � ⊂ A ∪{ f ′
1, g′

1, f ′
2, g′

2}. Let w′ be the vector
given by

w′(e) =
{

w(e) if e ∈ E\�,

w(e) − 1 if e ∈ �.

Claim 4. λG(w′) = λG(w) − 2

Proof: As for every triangle-free edge set T of E , w′xT = wxT − |T ∩ �|, we have that

λG(w) − 2 ≤ λG(w′) ≤ λG(w). (22)

Let T ′ ⊂ E be a maximum triangle-free edge set with respect to w′. Hence, w′xT ′ =
λG(w′).

If |T ′ ∩ �| = 2, then w′xT ′ ≤ λG(w) − 2 and thus λG(w′) = λG(w) − 2.
If |T ′ ∩ �| = 1, then, as x(�) ≤ 2 is in Iw, T ′ cannot be of maximum weight with

respect to w. So, wxT ′ ≤ λG(w) − 1, implying that w′xT ′ ≤ λG(w) − 2. By (22), we then
have λG(w′) = λG(w) − 2.

Now, suppose that T ′ ∩ � = ∅. If � �= �0, then there exists f ∈ � ∩ { f1, g1, f2, g2}
such that the edge set T = T ′ + { f } is triangle-free. As x(�) ≤ 2 is in Iw, T is not an
optimal solution of PG(w). Thus, wxT ′ + w( f ) ≤ λG(w) − 1. As w( f ) > 0, by (22), we
have that λG(w′) = λG(w) − 2.

So suppose that � = �0. We may assume that there is a maximum triangle-free edge
set T1 ⊂ E , with respect to w, such that f1 �∈ T1 (otherwise we would be in case 1). As
w( f1) > 0, we have that { f ′

1, e1} ⊂ T1 and, as T2 = (T1\{e1}) + { f1} is triangle-free and
|T2 ∩ �0| �= 2, T2 cannot be an optimal triangle-free edge set. Hence, wxT2 ≤ λG(w) − 1
and w( f1) ≤ w(e1) − 1. Similarly, we can show that w( f2) ≤ w(e2) − 1.

Moreover, as T ′ ∩ � = ∅ and w(e) > 0, for all e ∈ �0, we have that { f1, f ′
1, f2, f ′

2} ⊂
T ′. The edge set T = (T ′\{ f1, f2})+{e1, e2} is thus triangle-free and hence, w′xT ′−w( f1)−
w( f2)+w(e1)+w(e2) ≤ λG(w). By the above inequalities, this yields w′xT ′ ≤ λG(w)−2.
In consequence, λG(w′) = λG(w) − 2, which finishes the proof of the claim.

Now, consider the solution obtained from an integer solution of DG(w′) by increasing by
one the value of the dual variable associated with x(�) ≤ 2. We have that this solution is
integer and optimal for DG(w).

For the rest of the proof, we may suppose that neither a constraint of type x(e) ≤ 1 nor
one of type x(�) ≤ 2 belongs to Iw. Otherwise we are either in Case 1 or Case 2.
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Remark 4.1. We have that yk
j = 0 for all j ∈ I k

2 for some k ∈ {1, 2}. In fact, if y1
j > 0

for some j ∈ I 1
2 , and y2

l > 0 for some l ∈ I 2
2 , then every optimal solution x for PG(w)

satisfies inequalities [ j, 1] and [l, 2] at equality. As x must satisfy the corresponding mixed
constraint [ j, l], one should have x(�0) = 2, a contradiction.

Claim 5.

(i) All the constraints of DG(w) corresponding to the variables x(e), e ∈ A, are tight for
every dual optimal solution.

(ii) Iw contains an inequality of type (17).
(iii) If two mixed constraints [ j1, l1] and [ j2, l2] are in Iw, for some ( j1, l1),( j2, l2), then

[ j1, l2] and [ j2, l1] are also in Iw.
(iv) If an inequality [ j3, 1], j3 ∈ I 1

2 belongs to Iw, then the inequalities [ j3, l] and [ j, 1]
belong to Iw for all ( j, l) such that [ j, l] belongs to Iw.

Proof:

(i) As x( f1) ≤ 1 is not in Iw there exists an integer optimal solution x1 for PG(w) such
that x1( f1) = 0. As w( f1) > 0, this implies that x1(e1) = x1( f ′

1) = 1. So, the dual
constraint corresponding to the variable x(e1) is tight for every dual optimal solution.

Since x(�1
1) ≤ 2 does not belong to Iw, there is an integer optimal solution x2

of PG(w), such that x2(�1
1) < 2. As w(e) > 0 for all e ∈ A, it follows that x2( f1) =

x2(e2) = x2(e3) = 1. Therefore, the dual constraints corresponding to the variables
x( f1), x(e2) and x(e3) are all tight for every optimal solution of DG(w). Now by
considering the triangles �1

2, �
2
1, �

2
2, we show similarly that the dual constraints as-

sociated with x(g1), x( f2), x(g2) are also tight for every dual optimal solution of
DG(w).

(ii) By our hypothesis together with the complementary slackness theorem, it follows that
δe = 0 for all e ∈ A and γ� = 0 for all triangles � ∈ A∪{ f ′

1, f ′
2, g′

1, g′
2}. This together

with (i) imply that the constraint of DG(w) corresponding to the edge f1 (resp. f2),
can be written as

∑
j∈I 1

2

y1
j +

∑
j∈I 1

2 ,l∈I 2
2

z j,l = w( f1) (23)

(
resp.

∑
j∈I 2

2

y2
j +

∑
j∈I 1

2 ,l∈I 2
2

z j,l = w( f2)

)
(24)

So, by Remark 4.1, we may suppose that, for any optimal dual solution, y2
j = 0

for all j ∈ I 2
2 . By (24), we then have

∑
j∈I 1

2 ,l∈I 2
2

z j,l = w( f2) > 0. This implies that
z j,l > 0 for some j ∈ I 1

2 , l ∈ I 2
2 and consequently the corresponding mixed constraint

of type (17) is in Iw.
(iii) As the sum of inequalities [ j1, l1] and [ j2, l2] is the same as the sum of [ j1, l2] and

[ j2, l1], then, if the former inequalities are tight, the latter ones are so.
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(iv) Suppose there is a mixed constraint [ j, l] in Iw. Suppose that the constraint [ j3, l] is
satisfied with strict inequality for some optimal solution x for PG(w). Since x satisfies at
equality [ j3, 1], it follows that

∑
e∈Ē2

a2
l (e)x3(e) < b2

l −2. But this implies that x does
not satisfy [ j, l] at equality, a contradiction. Thus [ j3, l] is in Iw. As [ j3, 1], [ j3, l] ∈ Iw,
every optimal solution x for PG(w) verifies

∑
e∈Ē2

a2
l (e)x(e) = b2

l − 2. Since [ j, l] is
tight for x , it follows that [ j, 1] is also tight for x and as a consequence is in Iw.

Now, let (y1, y2, γ, δ, z) be an optimal solution of DG(w). By Remark 4.1, we may
assume that y2

j = 0 for all j ∈ I 2
2 . Also, as none of the inequalities x(e) ≤ 1 for e ∈ A and

x(�) ≤ 2 for � ⊂ A∪{ f ′
1, g′

1, f ′
2, g′

2} belongs to Iw, it follows that δk
e = 0 for e ∈ { fk, gk},

γ k
� = 0 for � ∈ {�k

1, �
k
2}, k ∈ {1, 2}, δe = 0 for e ∈ �0 and γ�0 = 0. So by Claim 5, we

have

∑
j∈I 1

2

y1
j +

∑
j∈I 1

2 ,l∈I 2
2

z j,l = w(e), for all e ∈ A\{ f2, g2},

and

∑
j∈I 1

2 ,l∈I 2
2

z j,l = w(e), for e ∈ { f2, g2}.

Therefore, w(e) = w(e′) for all e, e′ ∈ A\{ f2, g2} and w( f2) = w(g2). Let α = w(e),
for e ∈ { f2, g2} and w̄2 ∈ 
E2 be the weight vector on E2 given by

w̄2(e) =
{
w(e) for all e ∈ Ē2,

α for all e ∈ �0.

Claim 6. λG(w) = λG1 (w1) + λG2 (w̄2) − 2α

Proof: First note that, as x(�1
1) ≤ 2 does not belong to Iw, there exists an integer opti-

mal solution for PG(w), say x1, such that x1(�1
1) < 2. Thus, x( f1) = 1 and x( f ′

1) = x(e1) = 0.
This implies that x(e2) = x(e3) = 1 and hence x1(�0) = 2. Therefore, λG(w) =∑

e∈E1
w1(e)x1(e) + ∑

e∈E2
w̄2(e)x1(e) − 2α. So we have

λG(w) ≤ λG1 (w1) + λG2 (w̄2) − 2α. (25)

On the other hand, let s1 and s2 be the solutions respectively defined as




s1
i = y1

i for i ∈ I 1
1 ,

s1
j = y1

j +
∑
l∈I 2

2

z j,l for j ∈ I 1
2 ,

s1
e = δ1

e for e ∈ E1,

s1
� = γ 1

� for � ∈ κ(E1),

and




s2
i = y2

i for i ∈ I 2
1 ,

s2
l =

∑
j∈I 1

2

z j,l for l ∈ I 2
2 ,

s2
e = δ2

e for e ∈ E2,

s2
� = γ 2

� for � ∈ κ(E2).
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It is easy to verify that s1 (resp. s2) is feasible for DG1 (w1) (resp. DG2 (w̄2) ), which yields

λG1 (w1) + λG2 (w̄2) ≤ λG(w) + 2α.

Hence, the claim follows by (25).

Now, let t̄1 (resp. s̄2) be an integer optimal dual solution of DG(w1) (resp. DG(w̄2)).
Consider the system


φ j +

∑
l∈M2

ψ j,l = s̄1
j for j ∈ M1,

∑
j∈M1

ψ j,l = s̄2
l for l ∈ M2,

where Mk = { j ∈ I k
2 | there is l ∈ I k̄

2 with [ j, l] ∈ Iw} where k̄ ∈ {1, 2}\{k}. Since the
corresponding matrix is a network flow matrix, the above system has an integer solution.
Let ȳ = (ȳ1, ȳ2, γ̄ , δ̄, z̄)) be such that




ȳk
i = s̄k

i for i ∈ I k
1 , k = 1, 2,

δ̄k
e = s̄k

e for e ∈ Êk, δ̄k
e = 0 for e ∈ { fk, gk}, k = 1, 2,

δ̄e = 0 for e ∈ �0,

γ̄ k
� = s̄k

� for � ∈ κ(Êk), γ̄ k
� = 0 for � ∈ {

�k
1, �

k
2

}
, k = 1, 2,

γ̄�0 = 0,

ȳ1
j = φ j for j ∈ M1, ȳ1

j = 0 otherwise,

z̄ j,l = ψ j,l for j ∈ M1, l ∈ M2, z̄ j,l = 0 otherwise,

ȳ2
l = 0 for l ∈ I 2

2 .

The vector ȳ is an integer feasible solution of DG(w) and its value is equal to λG1 (w1) +
λG2 (w̄2) − 2α. By Claim 6, ȳ is an optimal solution of DG(w) and the proof of our theorem
is complete.

5. Final remarks

We have studied a composition (decomposition) technique for the triangle-free subgraph
polytope. We have shown that if G decomposes into G1 and G2 by means of a 3-sum
satisfying a certain property, a system defining the triangle-free subgraph polytope for G
can be derived from two systems defining the polytopes for G1 and G2. Using this, we have
described a procedure that permits to construct new facets for the triangle-free subgraph
polytope from known ones. We have also shown that if the systems defining the triangle-free
subgraph polytope for G1 and G2 are TDI, then the system defining the polytope for G is
also TDI.

Let � be the class of graphs obtained by means of 1−2 and 3-sums (as described above)
from the graphs K1, K2, K3, the prism, the even wheels and the odd wheels W2k+1 with
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Figure 2. 3-sum of W5 and W7.

k ≥ 2. A system describing the polytope P�(G) for a graph G ∈ � can be easily obtained
using the procedure described above. Moreover, as the systems characterizing the polytope
P�(G) in these graphs are all TDI (Mahjoub, 1995), by Theorem 4.2, it follows that the
system defining P�(G) is also TDI. This generalizes the results in Euler and Mahjoub
(1991) and Mahjoub (1995).

To illustrate this, consider the graph H = (V, E) shown in figure 2(c) which is the 3-sum
of the two wheels W5 and W7, shown in figure 2(a) and (b) respectively. From Euler and
Mahjoub (1991), together with Theorem 3.3, the following system completely describes
P�(H ) ∑

e∈W5

x(e) ≤ 7,

∑
e∈W7

x(e) ≤ 10,

∑
e∈E

x(e) ≤ 15,

∑
e∈�

x(e) ≤ 2 for all triangle � ⊂ E,

x(e) ≤ 1 for all e ∈ E,

x(e) ≥ 0 for all e ∈ E .

Moreover, this system is TDI.
We may consider a slightly different 3-sum operation where the statement (iv) (of the

3-sum given in Section 3.1) is modified in such a way that the triangle �2
1 contains the two

edges f2, f ′
2 and the edge e1 instead of e2. In this case, the composition, unfortunately, does

not permit one to generate mixed constraints from the linear descriptions of the polytopes
associated with the pieces. Further composition techniques are needed in this case.

Finally, let us note that an interesting question would be to study a generalization of the
composition introduced in this paper within the framework of independence systems.
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