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Abstract

In this paper, we consider the Capacitated Network Design (CND) problem. We
investigate the relationship between CND and the Bin-Packing problem. This is
exploited for identifying new classes of valid inequalities for the CND problem and
developing a branch-and-cut algorithm to solve it efficiently.
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1 Introduction

Given an optical network having a set of optical devices interconnected by
optical fibers, and a set of traffic demands, this problem consists in finding
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the number of modular capacities (modules) that have to be installed over
each fiber so that the traffic is routed and the cost is minimum. In practice,
several modules can be installed on one fiber. Each one can carry many traffic
demands but one demand has to be routed on a unique path.
More formally, the problem can be presented as follows. Consider a bidirected
graph G = (V,A) that represents an optical network. Each node v ∈ V corre-
sponds to an optical device and each arc a = ij ∈ A corresponds to an optical
link. Let K be a set of commodities or traffic demands. Each commodity
k ∈ K has an origin node ok ∈ V , a destination node dk ∈ V and a traffic
Dk that has to be routed between ok and dk. We suppose that we can install
a set of modules on each link. The set of available modules is denoted by
W and a module w ∈ W installed between nodes i and j is a copy of the
arc a = ij ∈ A. Every module w can carry one or many commodities, but a
commodity can not be splitted on many modules. We denote by C and cij,
the capacity and the cost of each module, respectively. The CND problem
consists in determining the number of modules to install on each arc of G so
that the commodities can be routed and the total cost is minimum.
In this work, we mainly focus on the restriction of CND to one edge. This
approach is similar to one presented by Bienstock and Muratore in [2], for
survivable network design problems restricted to a cut. In [1], authors have
exploited the relationship of Network Design problem with several problems
studied earlier, like the binary knapsack problem.
We are interested in the relationship between CND and Bin-Packing prob-
lem [3]. Our primary motivation comes from the structure of CND whose
restriction on one edge reduces to study a variant of the Bin-Packing prob-
lem. In particular, our contribution concerns this relationship and how it
can be exploited to identify valid inequalities for CND problem and develop
a branch-and-cut algorithm to solve it efficiently. The paper is organized as
follows. In section 2, we give a compact formulation for the CND problem. We
introduce an aggregated model for the problem in section 3, and highlight the
relationship between CND and the Bin-Packing problem. We study the basic
properties of the polyhedron associated with the latter problem in section 4.
Finally, we show some experiments in section 5.

2 Compact formulation for CND

In this section, we give a compact flow-based formulation for the CND prob-
lem. Let ywij be a variable that takes value 1 if the module w ∈ W is installed
on the arc ij ∈ A, and 0 otherwise. And let xkw

ij be a variable that takes value
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1 if the commodity k ∈ K is routed on the module w ∈ W of the arc ij ∈ A,
and 0 otherwise. The CND problem is then equivalent to the following ILP:

min
∑

ij∈A

∑

w∈W

cijy
w
ij

∑

w∈W

∑

j∈V

xkw
ji −

∑

w∈W

∑

j∈V

xkw
ij =





1, if i = dk,

−1, if i = ok,

0, otherwise,

∀k ∈ K,

∀i ∈ V,
(1)

∑

k∈K

Dkxkw
ij ≤ Cywij, ∀w ∈ W, ∀ij ∈ A, (2)

xkw
ij ∈ {0, 1}, ywij ∈ {0, 1}, ∀k ∈ K, ∀w ∈ W, ∀ij ∈ A. (3)

Equalities (1) are the flow conservation constraints, they require that a unique
path between ok and dk is associated with each commodity k. Inequalities (2)
are the capacity constraints for each installed module.

3 Aggregated formulation and Bin-Packing

Suppose now that G consists of nodes i, j connected by a single edge ij. Then
the CND problem here, is to determine the number of modules to install over
ij, in such a way that each commodity using ij is assigned to at most one
module and the total cost is minimum. Consider the polyhedron:

Pij := conv{(x, y) ∈ {0, 1}|K|×|W | × {0, 1}|W | :

∑

k∈K

Dkxkw
ij ≤ Cywij ∀w ∈ W,

∑

w∈W

xkw
ij ≤ 1 ∀k ∈ K}

Pij is the convex hull of CND problem restricted to ij. If K and W are a set of
objects and a set of bins, respectively, then Pij corresponds to the Bin-Packing
polytope. Note that the polyhedron Pij has many symmetric solutions. To
overcome this difficulty, we will introduce a new aggregated model that does
not specify which copy of the arc ij is used for the routing of a commodity k.
Indeed, the idea is just to determine the number of modules that have to be
installed, so that each commodity can be assigned to one of these modules. We
will define the additional integer design variable yij as the number of modules
installed on ij. We also define the variables xk

ij that takes the value 1, if k uses
some copy of the arc ij for its routing and 0 otherwise. The CND problem
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can then be formulated using the following ILP:

min
∑

ij∈A

cijyij

∑

j∈V

xk
ji −

∑

j∈V

xk
ij =





1, if i = dk,

−1, if i = ok,

0, otherwise,

∀k ∈ K,

∀i ∈ V,
(4)

∑

k∈K

Dkxk
ij ≤ Cyij, ∀ij ∈ A, (5)

(xk
ij , yij) ∈ Qij , ∀ij ∈ A, ∀k ∈ K. (6)

where

Qij := conv{(x, y) ∈ {0, 1}|K| × Z
+ : xk

ij =
∑

w∈W

xkw
ij , yij ≥

∑

w∈W

ywij,

∑

k∈K

Dkxkw
ij ≤ Cywij ∀w ∈ W,xkw

ij ∈ {0, 1}, ywij ∈ {0, 1}, ∀k ∈ K, ∀w ∈ W}

As in formulation (1)-(3), equalities (4) are the flow conservation constraints
for each commodity of K. Constraints (5) and (6) express the capacity con-
straints over the polyhedron Qij .
Qij is the projection on (xk

ij , yij) of the polyhedron Pij. Observe that the sym-
metric solutions of Pij will project on a single point. We denote by BP (S)
the solution of the Bin-Packing problem for a subset S of K. In other words,
BP (S) is the minimum number of bins needed to carry the objects of S.
We also introduce S(x) that denotes the subset of objects corresponding to
incidence vector x. Then we provide an alternative definition of Qij :

Qij := conv{(x, y) ∈ {0, 1}|K| × Z
+ : yij ≥ BP (S(x))}

Qij would then be more suitable to investigate. This polyhedron is associated
with a problem that will be referred to as Bin-Packing Function (BPF). Since
polyhedra Qij are identical for every ij ∈ A, in the remaining of this article,
we ommit the indices ij. We then refer to Qij as Q, xk

ij as x
k and yij as y.

4 Polyhedral analysis and valid inequalities

The purpose of this section is to discuss the polyhedron Q. We will describe
its dimension, identify some valid inequalities and give necessary and sufficient
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conditions for these inequalities to be facet defining.

Proposition 4.1 Q is full dimensionnal.

Proof. We will exhibit |K|+2 solutions whose incidence vectors are affinely
independent. Let us introduce the |K| solutions Sk, k ∈ K, defined such that
one module is used to satisfy the commodity k, while the other commodities
are not satisfied. Consider the incidence vector associated with each Sk, given
by (0, . . . , xk = 1, 0, . . . , y = 1). We denote by Sk1,k2 , the solution defined as
follows. Suppose that three modules are installed and two commodities, say
k1 and k2, are satisfied. The incidence vector of Sk1,k2 is given by (0, . . . , xk1 =
1, xk2 = 1, 0, . . . , y = 3). Consider now the solution S0 where no commodity
is satisfied and no module is installed. The associated incidence vector is
then given by (0, .., 0). It is clear that S0, Sk1,k2, and Sk, k ∈ K, are feasible
solutions and their incidence vectors are affinely independent. 2

Theorem 4.2 xk ≥ 0 and xk ≤ 1 define facets for Q.

We will not give the proofs for these inequalities as they are very similar
to proof of Proposition 4.1. We will however focus in the following sections
on introducing new classes of facet defining inequalities.

4.1 Valid inequalities

Proposition 4.3 For each subset S ⊆ K and a non negative integer p ∈ Z
+,

inequality ∑

k∈S

xk ≤ y + p, (7)

is valid for Q if and only if BP (S) ≥ |S| − p.

Proof. (⇐) Suppose that the solution of the BPF problem for a subset S ⊆
K verifies BP (S) ≥ |S| − p, for some p ∈ Z

+. Then by definition of the
polyhedron Q, we have y ≥ BP (S) ≥ |S| − p. Hence, we have |S| ≤ y+ p. In
consequence

∑
k∈S x

k ≤ |S| ≤ y + p. Thus inequality (7) is valid for Q,
(⇒) Suppose now that BP (S) < |S| − p, then the solution (1, 1, 1, . . . , x|S| =
1, 0, . . . , y = BP (S)) is cut off by (7). 2

Theorem 4.4 For each S ⊆ K and a non negative integer p, inequalities (7)
define facets for Q if and only if the following conditions hold

(i) BP (S)=|S| − p,

(ii) BP (S ∪ {s̃})=|S| − p, where s̃ is the largest element of K \ S,

(iii) BP (S\{s}) < |S| − p, where s is the smallest element of S.
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Proof. (⇒) We show that (i), (ii) and (iii) are necessary conditions for (7)
to define facets.

(i) Consider a subset S and a non negative integer p such that the inequality
(7) induced by S and p defines a facet. Then, there exists at least one
solution (x∗, y∗) such that

∑
k∈S x

∗k = y∗ + p. We have by definition of
polyhedron Q that y∗ ≥ BP (S). Thus, BP (S) ≤

∑
k∈S x

∗k−p, and then

BP (S) ≤ |S| − p (8)

We also have by the validity condition of (7) that

BP (S) ≥ |S| − p (9)

Hence, by (8) and (9), we conclude that BP (S) = |S| − p ,

(ii) Suppose that there exists an element s̃ of K \S such that BP (S∪{s̃}) ≤
|S| − p. Then the inequality (7) is dominated by another constraint

∑

k∈S∪{s̃}

xk ≤ y + p

In consequence, (7) can not be a facet of Q.

(iii) If BP (S\{s}) ≥ |S| − p, we can see that (7) is dominated by

∑

k∈S\{s}

xk ≤ y + p

and xk ≤ 1, for k = s, Thus (7) can not define facets for Q.

(⇐) Let S be a subset of K and p a given non negative integer. Suppose
that inequality (7) induced by S and p, is valid for Q. We will exhibit |K|+1
solutions denoted by Sk, k ∈ {1, ..., |K|+1} of BPF that satisfy this constraint
with equality. M1 denotes a (|K|+1)×(|K|+1) matrix containing the incidence
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vectors of solutions Sk, k ∈ {1, ..., |K|+ 1}.

M1 =




x1 x2 x3 . . . x|S| x|S|+1 . . . x|K| y

S1 1 1 1 . . . 1 0 . . . 0 |S| − p

S2 1 1 1 . . . 1 1 . . . 0 |S| − p
...
S|K\S|+1 1 1 1 . . . 1 0 . . . 1 |S| − p

S|K\S|+2 1 1 1 . . . 0 0 . . . 0 |S| − p− 1
...
S|K|+1 0 1 1 . . . 1 0 . . . 0 |S| − p− 1




We can easily check that the incidence vectors of Sk, k ∈ {1, ..., |K \S|+1}
verify conditions (i) and (ii). Indeed, the value of y in incidence vector of S1

ensures BP (S) = |S| − p, and adding to S the greatest commodity of K \ S
does not change the value of BP (S). On an other hand, incidence vectors of
S|K\S|+2 to S|K|+1 verify the condition (iii), as the removal of any commodity

of S yields the decreasing of BP (S) value. Moreover, the incidence vectors of
Sk, k ∈ {1, 2, ..., |K|+ 1} are affinely independent. 2

Proposition 4.5 For S ⊆ K and a parameter q ∈ Z
+
∗ , inequality

∑

k∈S

xk ≤ qy, (10)

is valid for Q if and only if BP (S ′) ≥ ⌈ |S′|
q
⌉, ∀S ′ ⊆ S.

Theorem 4.6 For S ⊆ K and a given parameter q ∈ Z
+
∗ , q ≥ 2, inequalities

(10) are facets defining for Q if and only if BP (S ′) ≥ ⌈ |S′|
q
⌉, ∀S ′ ⊆ S.

5 Computational results

Based on the theoretical results described above, we devised a branch-and-
cut algorithm that has been implemented in C++ using CPLEX 12.0 with
the default settings. We have proposed a heuristic separation procedure for
inequalities (7), that uses a greedy algorithm to find S, strengthened by an
exact evaluation of BP (S). We have tested our approach on several instances
derived from SNDlib topologies (http://sndlib.zib.de), with a restricted sub-
set of commodities. The obtained results are presented in Table 1 with the
following entries. The first three columns contain the size of each instance.
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In column four, we can find the value of the solution given by the aggregated
formulation ZAF , by only considering constraints (4) and (5). Those solutions
ignore the Bin-Packing structure of the problem and usually are not feasible.
ZBC is an upper bound found by the branch-and-cut over the aggregated for-
mulation including the cuts from the Bin-Packing Polyhedron, optimum if the
instance is solved to optimality. ZCF is an upper bound found by the compact
formulation, optimum if the instance is solved to optimality. The remaining
columns are the number of constraints (7) separated, and the CPU time for
branch-and-cut and the compact formulation, denoted TBC and TCF , respec-
tively (given in days:hours:min:sec). In ZCF column, values were written in

Table 1
Results for instances with |W |=4

|V | |A| |K| ZAF ZBC ZCF #CutsI TBC TCF

12 36 20 24000.00 25000.00 25000.00 3 0:00:02.27 0:00:32.31

15 44 10 17256.00 17720.00 17720.00 3 0:00:00.97 0:00:12.00

15 44 20 32806.00 32806.00 32806.00 1 0:00:11.41 0:10:22.31

17 52 15 4692.10 5105.90 5105.90 11 0:00:21.99 0:01:30.05

17 52 20 6165.00 6416.40 6603.80 15 0:06:47.49 1:00:00.00

22 72 15 35332.00 35942.00 35942.00 4 0:01:26.16 0:49:06.23

22 72 20 38172.00 38172.00 38481.00 0 0:04:06.69 1:00:00.00

28 82 15 10528.00 10528.00 10528.00 0 0:00:24.70 0:08:27.72

51 160 20 5700.00 5800.00 5800.00 1 0:02:37.35 1:00:00.00

italics if the optimal solution could not be found within 1 hour. Notice that for
most of the instances, adding only few cuts helped to find the optimal solution
in a short time. These results are very promising and show the efficiency of
facets (7). We are now implementing the separation of (10) and some other
facets that were not presented in this paper.
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