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a b s t r a c t

In this paper, we address the Unsplittable Non-Additive Capacitated Network Design problem, a variant of
the Capacitated Network Design problem where the flow of each commodity cannot be split, even
between two facilities installed on the same link. We propose a compact formulation and an aggregated
formulation for the problem. The latter requires additional inequalities from considering each individual
arc-set. Instead of studying those particular polyhedra, we consider a much more general object, the
unitary step monotonically increasing set function polyhedra, and identify some families of facets. The
inequalities that are obtained by specializing those facets to the Bin Packing function are separated in a
Branch-and-Cut for the problem. Several series of experiments are conducted on random and realistic
instances to give an insight on the efficiency of the introduced valid inequalities.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The design of optimal networks has become one of the major
economic issues for nowadays telecommunications industry. Many
variants of this problem have been considered in the literature,
addressing the topology aspects as well as the installation of
capacities and the traffic routing. One of the network design pro-
blems that has received a big attention is the so-called capacitated
network design (CND) problem. Given a network with a set of
commodities and a set of potential capacitated link facilities toge-
ther with their costs, the problem consists of determining the
facilities to install on the network so that the commodities can be
routed and the total cost is minimum.

In this paper, we consider a variant of the CND problem. This
concerns the case where the commodities cannot be split. More
precisely, for its routing, each commodity must go from its origin to
its destination through only one path and must use at most one
facility on each link of the network. The latter constraint makes
impossible to aggregate the capacities installed over a link, and will
be referred to as the non-additivity of the facilities. This problem
arises in the design of telecommunication networks. In particular,
we are interested in optical networks holding a set of multiplexer
devices interconnected by optical fibres and using the so-called
OFDM (Orthogonal Frequency Division Multiplexing) technology.
Indeed, this technology consists in setting up several facilities
referred to as subbands on the links of a network. Every subband
has a certain capacity and a non-negative cost. In this context, given
an optical network, a set of commodities and a set of available
subbands, the aim is to identify the minimum cost subbands to
install on the links of the network so that the traffic may be routed.
In particular, we focus on the problem which concerns the instal-
lation of the subbands, which will permit an optimal routing. In
fact, an efficient algorithm for solving this restricted version of the
problem, which is already NP-hard, as it will be shown later, may be
useful for solving the problem of the more general multilayer ver-
sion. This is our motivation for considering the problem which will
be called the Unsplittable Non-Additive Capacitated Network Design
(UNACND) problem.

The purpose of this paper is to devise a Branch-and-Cut algo-
rithm for the UNACND problem. The algorithm is based on an
investigation of the polyhedral structure of the problem when it is
restricted to a single link. Previous works have already shown the
effectiveness of such approach for solving network design pro-
blems (see [1–3] and the references therein). Some results in this
paper are presented in a very preliminary stage in [4].

To the best of our knowledge, the UNACND problem has not
been considered before. However, other versions of the problem
have been widely discussed in the literature. In fact, the restriction
of CND to one arc has been investigated first by Magnanti et al. [5],
for two facilities and splittable flow assumption. Pochet and Wolsey
[6] study the polyhedron of a single-arc network design problem
with an arbitrary number of facilities and splittable flow assump-
tion. Brockmüller et al. [1] and van Hoesel et al. [2] investigate the
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CND restricted to one edge (the edge capacity problem). They study
the integer knapsack problem arising from this relaxation and
introduce the so-called c-strong inequalities and give necessary and
sufficient conditions for these inequalities to define facets. In [2],
the authors give conditions under which the facets of edge capacity
polytope also define facets for the CND polytope. In [3], Atamtürk
and Rajan study both splittable and unsplittable CND arc-set poly-
hedra by considering the existing capacity of the arc. They give a
linear-time separation procedure for the residual capacity inequal-
ities and show its effectiveness for the splittable CND. They also use
the c-strong inequalities and derive a second class of valid
inequalities for the unsplittable CND problem. Similar approaches
have also been used to study cut-set polyhedra associated with the
CND in [7] and CND with survivability constraints in [8].

Besides, the earlier results on the CND problem and the associated
polyhedron can be found in [5], where the authors study a multiple
commodities-two facilities network design problem restricted to a
single arc. They propose several classes of facet defining valid
inequalities that completely describe the convex hull of the arc-set
CND solutions. In [9], Magnanti et al. propose a more detailed dis-
cussion on the CND problem. They propose two approaches to solve
the problem: a Lagrangian approach and a cutting planes approach.
In particular, they show that the results given in [5] strengthen the
CND formulation. Some of the results given in [5] are generalized by
Bienstock and Günlük in [10]. They are also extended for the capacity
expansion problem, where the overall capacity of the network can be
increased by installing several units of capacitated facilities or “bat-
ches” on the links. The authors develop a cutting plane approach
based on several facet defining inequalities, to solve the problem.
Further polyhedral results are presented in [11–16] for different
versions of the CND problem under splittable traffic assumption. In
particular in [15,12], the authors study two formulations based on
the so-called metric inequalities for the minimum cost CND problem.
In [12], Bienstock et al. describe two classes of valid inequalities that
define facets and are used to obtain a complete characterization of
the considered polyhedron for complete three nodes graphs. More-
over, Mattia et al. [15] introduce the so-called tight metric inequal-
ities and show that all the facets of the polyhedron associated with
the solutions of the CND are tight metric inequalities. Note that
handling the problem by this approach is similar to the Benders
decomposition approach (see [17] for more details on this approach).

More recently, some authors have turned their attention to the
multi-layer version of the CND problem (see for instance [18–20]
and the references therein). Most of the approaches proposed to
solve the multi-layer network design problems are based on the
results introduced for their single-layer versions.

Our contribution. The objective of this paper is to solve efficiently
the UNACND problem by using a Branch-and-Cut algorithm that
embeds new classes of valid inequalities. These are obtained by
investigating the polyhedra associated with the single arc UNACND
problem. Actually, we realized that different possible variants of the
single arc CND are in fact associated with the same polyhedron. We
refer to these variants as functions. We then introduce the poly-
hedra associated with a general class of functions called unitary step
monotonically increasing functions, and study their basic properties.
We provide two classes of inequalities called Min Set I and Min Set II
that are valid for all considered functions. We give necessary and
sufficient conditions for these inequalities to define facets. Our
polyhedral results as well as the separation routines remain avail-
able for every considered function, by integrating the specificities of
each function. We give an application to the Bin Packing function,
that is in fact equivalent to the arc-set UNACND. In particular, our
results for Min Set I inequalities generalize those provided in [1–3]
for c-strong inequalities. Both classes of inequalities Min Set I and
Min Set II are used within a Branch-and-Cut algorithm to efficiently
solve UNACND problem and to strengthen the linear relaxation of
the multi-layer version of this problem.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the UNACND problem and its restriction to a single
arc. In Section 3, we introduce the set functions polyhedra and
study their basic properties. We then present the Min Set I and Min
Set II inequalities, and investigate their facial structure. In Section 4,
we give an application of our polyhedral results to the Bin Packing
function, and show the interest of such application for the UNACND
problem. Both Min Set I and Min Set II inequalities are embedded
within a Branch-and-Cut algorithm described in Section 5. In this
section, we also present the separation procedures used to generate
the identified valid inequalities. We then show a set of experiments
conducted on random and realistic SNDlib based instances in
Section 6. Finally, some concluding remarks are given in Section 7.
2. The unsplittable non-additive capacitated network design
problem

The UNACND problem can be presented as follows. Consider a
bi-directed graph G¼(V,A) that represents an optical network. Each
node v V∈ corresponds to an optical device (multiplexer) and
every arc a i j A,= ( ) ∈ corresponds to an optical fibre. If an arc i j,( )
exists in A, then j i,( ) also belongs to A. Let K be a set of commod-
ities. Each commodity k K∈ has an origin node o Vk ∈ , a destina-
tion node d Vk ∈ and a traffic D 0k > that has to be routed between
ok and dk. We suppose that a set of equivalent modules, each of
capacity C, is available. This set will be denoted by W. Assume that
D Ck ≤ , for all k K∈ . A module w W∈ installed on an arc i j,( ) is a
copy of that arc, and yields a cost cij. Every module w can carry one
or many commodities, but a commodity cannot be split on several
paths or even on several modules of the same arc. This specificity
makes impossible to aggregate the commodities having the same
source and destination nodes, to reduce the size of the problem.
Thus, there might be several different commodities with the same
origin and destination nodes. The UNACND problem is to determine
a minimum cost set of modules that have to be installed on the arcs
of G so that a routing path is associated with each commodity from
its origin to its destination.

Now consider a set K n1, ,= { … } of items (demands) with
weights D1, D2, …, Dn and bins with the same capacity C. The bin
packing problem (BPP) consists in assigning each item to one bin so
that the total weight of the items in each bin does not exceed C
and the number of bins used is minimum [21]. We assume,
without loss of generality, that the weights Dk and the capacity C
are positive integers and D Ck ≤ , for all k K∈ . The bin packing
problem is NP-hard in general [22] and various approaches have
been proposed during the last three decades to solve it. In what
follows, we use the relationship between UNACND problem and
bin packing problem to show that the former is NP-hard.

Proposition 1. The UNACND problem is NP-hard even if A has a
single arc.

Proof. We will show that the UNACND problem is NP-hard even
when the underlying graph consists of only one arc. The reduction
is from the bin packing problem. Consider an instance of the bin
packing problem, given by a set of items denoted K, each one
having a weight D 0k > , k K∈ . Let W denote a set of available bins,
where every bin has a capacity C. We look for the smallest number
of bins needed to pack the items of K. Let us construct the graph
G V A,= ( ), where V u v,= { } and A u v,= {( )}. In other words, G
consists of two nodes interconnected by a single arc. For each
k K∈ , we must send Dk units of flow from node u to node v. The
set W defines the set of available modules with capacity C, the
installation costs are unitary. Let B denote the optimal solution of
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this UNACND problem, that is the number of modules installed
over (u, v). Then B is also the optimal solution of the corre-
sponding bin packing problem.□

Next, we give a compact integer linear programming formula-
tion for the problem.

2.1. Compact formulation

Let y A W∈ | ∥ | be a decision variable vector such that, for each
arc i j A,( ) ∈ and for each module w W∈ , yij

w takes the value 1 if w

is installed on the arc i j,( ), and 0 otherwise. We denote by xij
kw, for

k K∈ , w W∈ and i j A,( ) ∈ the decision variable that takes the
value 1, if k uses the module w, installed on the arc i j,( ), and
0 otherwise. The UNACND problem is then equivalent to the fol-
lowing formulation:
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Equalities (1) are the flow conservation constraints. Together with
(3), they enforce that a single path between ok and dk is used by
each commodity k. Inequalities (2) are the capacity constraints for
each installed module. They also ensure that the capacity installed
on arc i j,( ) is large enough to carry the commodities using this arc.
Constraints (3) and (4) are the trivial and integrity constraints.

Consider now a single arc i j A,( ) ∈ . The polyhedron
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is the convex hull of UNACND problem restricted to the variables
related to (i,j). Note that polyhedron Pij has many symmetric
solutions and does not present a suitable structure to investigate.
In fact, there are few chances that such an investigation can bring
any relevant information to help in solving UNACND problem.

To overcome this difficulty, we will introduce a new aggregated
model that does not specify which copy of the arc i j,( ) is used for
the routing of a commodity k. Indeed, the idea is just to determine
the number of modules that has to be installed on i j,( ), so that
each commodity can be assigned to one of these modules.

2.2. Aggregated formulation

We will define the following additional decision variables. Let
y ∈ + be such that for each arc i j A,( ) ∈ , y yij w W ij

w= ∑ ∈ is the

number of modules installed on i j,( ). Let x K A∈ | ∥ | be such that for
each commodity k K∈ , and for each arc i j A,( ) ∈ , x xij

k
w W ij

kw= ∑ ∈ ,
and xkij takes the value 1, if k uses some module of the arc i j,( ) for
its routing, and 0 otherwise.
Consider the following ILP:
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As in formulation (1)–(4), equalities (5) are the flow con-
servation constraints for each commodity of K. Inequalities (6) will
be called aggregated capacity constraints. They ensure that the
overall capacity of the modules installed over i j,( ) is not exceeded
by the commodities flowing along i j,( ), i j A,( ) ∈ . This is not
enough to model the non-additivity of the capacities. Therefore, in
order to obtain a formulation for the UNACND, we should add the
following constraints:

x y Q x x k K i j A, , with , , , , 8ij ij ij ij ij
k( ) ∈ = ( ∈ ) ∀ ( ) ∈ ( )
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the symmetric solutions of Pij will project on a single point, and Qij

would then be more suitable to investigate. Remark that all
polyhedra Qij, i j A,( ) ∈ , are identical. Therefore, we may drop the
indices (i,j) in its definition and write:
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Polyhedron Q is related to a general class of polyhedra, asso-
ciated with possible variants of the CND problem. In what follows,
we introduce a family of functions that captures the general
structure of those variants.
3. Set function polyhedra

Let E n1, ,= { … } be a ground set with n elements and let c¼(ci,
i E∈ ) be a weight system associated with E. Let f : 2E⟶ + be a set
function over E. Let S be a subset of E. We denote by x 0, 1S E∈ { }
the vector given by

⎧⎨⎩x
i S1 if ,

0 otherwise.
i
S = ∈

We may write f xS( ) for f(S) and let x(S) be equal to xi S i∑ ∈ .

Definition 1. A function f defined on a subset of elements S E⊆ is
called monotonically increasing function if

f S s f S S E s E S0, , .( ∪ { }) − ( ) ≥ ∀ ⊆ ∀ ∈ ⧹

A combinatorial interpretation of such a function is that adding
any element of E S⧹ to the subset S yields a nonnegative increase of
the function value.
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Definition 2. The function f is said to be unitary step monotonically
increasing if

(i) f (∅)¼0,
(ii) f S s f S S E s E S0, 1 , ,( ∪ { }) − ( ) ∈ { } ∀ ∈ ∀ ∈ ⧹ .

In other words, given a subset S E⊆ , a function f is unitary step
monotonically increasing if adding any element s to the initial
subset S yields an increase of at most one in the value of f. It is
clear by the previous definition that the function f is such that
f S S( ) ≤ | |, S E∀ ⊆ , f S T f S f T( ⧹ ) ≥ ( ) − ( ), S E∀ ⊆ and T S⊆ .

Given a unitary step monotonically increasing set function
f : 0, 1 n{ } ⟶ +, we define its polyhedron as

P conv x y S E y f x, 0, 1 : and . 11f
S S n S S≔ {( ) ∈ { } × ⊆ ≥ ( )} ( )+

In what follows we will discuss the polyhedron Pf. We will
introduce two classes of valid inequalities, namely Min Set I and
Min Set II, and give necessary and sufficient conditions for these
inequalities to define facets for any polyhedron Pf, when f is uni-
tary step monotonically increasing.

3.1. Properties of Pf

3.1.1. Dimension

Theorem 1. The polyhedron Pf is full dimensional.

Proof. We shall exhibit n 2+ solutions pi, i¼1,…, n þ 2, whose
incidence vectors x y,S Si i( ) are affinely independent. First, consider
the solutions ( xSi, f Si( )) induced by the subsets Si¼ i{ }, for i E∈ .
Moreover, consider the solutions x , 1( )∅ and x , 0( )∅ . It can be easily
seen that these n þ 2 solutions are affinely independent.□

In what follows, we will be interested in the facial structure of
Pf. In particular we study the trivial inequalities x 0i ≥ , and x 1i ≤ ,
for all i E∈ .

3.1.2. Trivial inequalities

Theorem 2. For i E∈ , x 0i ≥ defines a facet of Pf.

Proof. Denote by i the face induced by inequality x 0i ≥ , that is

x y P x, : 0 ,i f i= {( ) ∈ = }

Similarly, to prove Theorem 2, we have to identify n þ 1 affinely
independent solutions whose incidence vectors belong to i. First
consider the solutions x , 1Sj( ), where S jj = { }, for j E i∈ ⧹{ }. Also
consider the solutions x , 1( )∅ and x , 0( )∅ . Clearly, all these solutions
are in i. Moreover, they are affinely independent. □

Theorem 3. For i E∈ , x 1i ≤ defines a facet of Pf.

Proof. Let us denote by i the face induced by inequality x 1i ≤ ,
that is

x y P x, : 1 ,i f i= {( ) ∈ = }

Consider the subsets Sj of E such that S j i,j = { }, for j E i∈ ⧹{ }.
Clearly, the solution x , 2Sj( ) for j E i∈ ⧹{ } belongs to i. Moreover,
the solutions (xE, n þ 1) and (xE, n þ 2) also belong to i. We can
see that these n þ 1 solutions are affinely independent.□

In what follows, we will show that all the non-trivial facets of
the polyhedron Pf have non negative coefficients.

Theorem 4. All the non-trivial facet defining inequalities of Pf are of
the form x y pi E i i 0π π∑ ≤ +∈ , where p is a non negative integer
parameter, and 0 i 0π π≤ ≤ , for all i E∈ .

Proof. Let F x y p Pp i E i i f, 0π π= ( ∑ = + ) ∩π ∈ be the facet of Pf
defined by x y pi E i i 0π π∑ ≤ +∈ . We will first show that 0iπ ≥ , for all
i E∈ . Consider an element j of E. Since F p,π is not contained in the
face defined by x 0j ≥ , there must exist a set S E⊆ containing j and

y ∈ + such that the vector x y,S( ) belongs to F p,π . So, (i)
x y pi S i i 0π π∑ = +∈ . Consider the subset S S j′ = ⧹{ }. Since x y,S( )′

belongs to Pf, (ii) x y pi S i i 0π π− ∑ ≥ − ( + )∈ ′ . Adding (i) and (ii), we
obtain 0jπ ≥ .

Now we shall show that i 0π π≤ , for all i E∈ . Consider an ele-
ment j of E. Since F p,π is not contained in the face defined by xj¼1,
there must exist a set S E⊆ not containing j and y ∈ + such that
the vector x y,S( ) belongs to F p,π . So, (i) x y pi S i i 0π π∑ = +∈ . Consider
the subset S″¼ S j∪ { }. Since ( xS″

, y 1+ ) belongs to Pf, (ii)
x y p1i S i i 0π π− ∑ ≥ − ( ( + ) + )∈ ″ . Adding (i) and (ii), we obtain

j 0π π− ≥ − .
We also have p ≥ 0, since (0,0) is a solution of Pf.□

In what follows we introduce two families of valid inequalities
and we describe some conditions under which these inequalities
may define facets for polyhedron Pf.
3.2. Min Set I inequalities
Proposition 2. Let S be a subset of E and p a non negative integer
such that p S f S≥ | | − ( ). Then, the following Min Set I inequality

x y p,
12i S

i∑ ≤ +
( )∈

is valid for Pf.

Proof. Let S′ be any subset of E, and let T¼ S S′ ∩ . As the function f
is unitary step monotonically increasing, S T f S f T| | − | | ≥ ( ) − ( ) or
T f T S f S| | ≤ ( ) + | | − ( ). Hence, T f S S f S| | ≤ ( ′) + | | − ( ). For any
y f S≥ ( ′), we then have T y S f S y p| | ≤ + | | − ( ) ≤ + . Thus, (12) is
satisfied for x y,S( )′ .□

Theorem 5. Inequality (12) defines a facet of Pf if and only if the
following holds:

(i) p S f= | | − (S),
(ii) f S s f S S p( ∪ { }) = ( ) = | | − , for all s E S∈ ⧹ ,
iii) f S s f S S p1 1( ⧹{ }) = ( ) − = | | − − , for all s S∈ .

Proof. Necessity:

(i) Trivial.
(ii) Suppose that there exists an element s of E S⧹ such that

f S s S p 1( ∪ { }) = | | − + . Then the inequality (12) with respect
to S s∪ { } can be written as

x y S f S s y p1 .
13i S s

i∑ ≤ + (| | + ) − ( ∪ { }) = +
( )∈ ∪ { }

However, (13) dominates (12), and therefore the latter cannot
define a facet.

iii) Suppose there exists s E S∈ ⧹ , such that f S s S p( ⧹{ }) = | | − .
Inequality (12), with respect to S s⧹{ } can be written as

x y S f S s y p1 1.
i S s

i∑ ≤ + (| | − ) − ( ⧹{ }) = + −
∈ ⧹ { }

Inequality (12) can be obtained as a linear combination of the
inequality above and x 1s ≤ . Therefore, it cannot define a facet.

Sufficiency:
Assume now that conditions (i), (ii) and (iii) of Theorem 5 are

fulfilled. We will denote by the face induced by inequality (12).
That is
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⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

x y P x y p, : .f
i S

i∑= ( ) ∈ = +
∈

First consider the solution p0¼(xS, f(S)). By (i), p0 ∈ . Now let us
consider the solutions ps¼( xS s∪ { }, f(S)), for s E S∈ ⧹ . As by (ii),
f S s f( ∪ { }) = (S), we have that ps is a solution of Pf and also of .
Finally, consider the solutions p x f S, 1s

S s= ( ( ) − )⧹ { } for all s S∈ . By
(iii), it follows that ps is a solution of Pf, for s S∈ . Moreover, ps
satisfies (12) with equality, and then it is also a solution of . Now,
one can easily see that p0, ps for s E S∈ ⧹ , ps for s S∈ are affinely
independent.□

3.3. Min Set II inequalities
Proposition 3. Let S be a subset of E, p and q two non negative
integers, with q 2≥ . Then, the Min Set II inequality

x qy p,
14i S

i∑ ≤ +
( )∈

is valid for Pf if p T qf T≥ | | − ( ), for all T S⊆ .

Proof. Let S′ be a subset of S. By summing trivial inequalities x 1i ≤
over S′, we get x Si S i∑ ≤ | ′|∈ ′ which is valid. On the other hand, by
definition of the polyhedron Pf, we have that y f S≥ ( ′), for all
x y P,S

f( ) ∈′
. As q ≥ 0, it then follows that, q y f S 0( − ( ′)) ≥ . Thus

x x S q y f S qy S qf S qy p,
i S

i
S

i S
i
S∑ ∑= ≤ | ′| + ( − ( ′)) = + | ′| − ( ′) ≤ +

∈

′

∈ ′

′

yielding the validity of (14).□

Theorem 6. Given a subset of elements S E⊆ , two non negative
integers q 2≥ and p. The inequality

x qy p
15i S

i∑ ≤ +
( )∈

defines a facet of Pf, if the following holds:

(i) There exists an integer r ∈ +, p r S 1≤ ≤ | | − , such that for all
S S′ ⊆ with S r| ′| = , f S S p

q
( ′) = | ′ | − ,

(ii) for all s E S∈ ⧹ , there exists S S′ ⊆ such that f S( ′) = S p
q

=| ′ | −

f S s( ′ ∪ { }) ,

Proof. We will denote by the face induced by inequality (15),
i.e.,

x y P x qy p, :f
i S

i∑= {( ) ∈ = + }
∈

Suppose that conditions (i) and (ii) hold. We will exhibit n þ
1 solutions of that are affinely independent. Consider a subset S′
of S such that S r| ′| = . As by (i), p r S 1≤ ≤ | | − , S S S,′ ≠ ∅ ≠ ′. Let e′
and e′ be elements of S′ and S S⧹ ′, respectively.

Consider sets S S e ee = ( ′⧹{ ′}) ∪ { } for all e S S∈ ⧹ ′ and
S S e ee = ( ′⧹{ }) ∪ { ′} for all e S∈ ′. Clearly, by (i), solutions (xS, f(S)),
( xSe, f Se( )), e S∈ all belong to .

Next, for each e E S∈ ⧹ , by (ii) there exists S Se′ ⊆ such that
f S f S ee

S p
q e

e( ′ ) = = ( ′ ∪ { })| ′ | − . Hence, the solutions ( xS ee′ ∪ { },
f S ee( ′ ∪ { })) for all e E S∈ ⧹ all belong to . Finally, consider the
solution (xS, f S S p

q
( ) = | | − ) which is also in . Now, it is not hard to

see that these solutions constitute a set of n þ 1 affinely inde-
pendent points.□

In the next section, we will study an application that illustrates
well how our results for general set functions are still valid for a
specific function. We further provide a counter-example showing
that conditions (i) and (ii) of Theorem 6 are not necessary.
4. Application to the Bin Packing function
Definition 3. Let BP: 2K⟶ + be the function over a set of items K
(with associated demands Dk, for all k K∈ ) where every subset
S K⊆ is mapped to BP(S), the minimum number of bins with
capacity C necessary to pack the items in S. This function will be
referred as the Bin Packing Function (BP).

The following statement is easily seen to be true:

Proposition 4. The Bin Packing Function is unitary step mono-
tonically increasing.

As by Proposition 4, all the results presented in Section 3
remain valid for the Bin Packing Function. The polyhedron corre-
sponding to the Bin Packing Function is then a particular case of
(11) over a set of items K and a capacity C, and is defined as

P K C conv x y S K y BP S, , 0, 1 : and .BP
S n( )≔ {( ) ∈ { } × ⊆ ≥ ( )}+

When the context is clear, we may drop the arguments K and C
and refer to such polyhedron as PBP. Polyhedron PBP is essentially
equivalent to polyhedron Q used in the definition of the aggre-
gated formulation for the UNACND. The difference between Q and
PBP lies in the fact that pair x y,( ) may not belong to Q when W is
too small. If W BP K| | ≥ ( ), then both polyhedra coincide. In fact, it is
clear that Q PBP⊆ . Moreover, by definition, all extreme points of PBP
have the format x y,S( ) for some S K⊆ . If W BP K BP S| | ≥ ( ) ≥ ( ), it
would be possible to assign values to the xkw variables in (10)
corresponding to a packing of items into at most W bins. There-
fore, x y,S( ) also belongs to Q. Thus, we give the following
proposition.

Proposition 5. If W BP K| | ≥ ( ) then Q PBP= .

In practice, due to the huge physical capacity of an optical fibre,
there are few a priori limitations on the maximum number of
modules that can be installed over an arc. Therefore, in practical
instances Q PBP= . Accordingly, all the results from the previous
section apply directly for polyhedron PBP.

In addition, we remark that the c-strong inequalities for the
Unsplittable Capacitated Network Design (UCND) introduced in [1]
and studied in [2,3] correspond to the Min Set I inequalities over
the polyhedron PAP defined by the following unitary step mono-
tonically increasing function:

Definition 4. Let AP: 2K⟶ + be the function over a set of items K
(with associated demands Dk, for all k K∈ ) where every subset
S K⊆ is mapped to D C/i S

i⌈ ∑ ⌉∈ , the minimum number of multiples
of an additive capacity C necessary to pack the items in S. This
function will be referred as the Additive Packing Function (AP).

PBP and PAP are not the same polyhedra. Actually, for a given set
of demands K and a capacity C, P K C P K C, ,BP AP( ) ⊆ ( ). However, PBP
and PAP have a similar deep structure. In both cases, Min Set I
inequalities satisfying the conditions in Theorem 5 are facet-
defining.

4.1. Examples

As example, consider a set K of six demands with sizes 12, 9, 8,
7, 3 and 2, respectively. The bins have capacity 15. Then, the fol-
lowing Min Set I inequality:

x x x y, 161 2 4+ + ≤ ( )

defines a facet of PBP. However, this inequality is not even valid for
PAP since the point (1, 1, 0, 1, 0, 0, 2) PAP∈ is cut off by (16). Further
Min Set I inequalities defining facets of PBP include
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x x x y

x x x x x y

1,

2.

3 4 5

1 3 4 5 6

+ + ≤ +

+ + + + ≤ +

Now consider a set K of six items with sizes 12, 9, 8, 7, 3 and 2.
Assume that each available bin has a capacity of 15. Then, the
following inequalities are examples of Min Set II inequality that
define facets of PBP

x x x y2 , 171 5 6+ + ≤ ( )

x x x x x y2 , 181 2 3 4 6+ + + + ≤ ( )

Note that inequality (18) is an example of facet-inducing
inequality that does not satisfy conditions of Theorem 6. This
implies that conditions of Theorem 6 are not necessary.

In the next section, we devise a Branch-and-Cut algorithm for
the UNACND problem. This algorithm uses theoretical results
presented in the previous sections. First, we give an outline of the
algorithm. Then, we describe the separation procedures used for
some valid inequalities.
5. A Branch-and-Cut algorithm for the UNACND problem

In this section, we devise a Branch-and-Cut algorithm for the
UNACND problem. The algorithm is based on the aggregated for-
mulation of the problem. Our aim is to address the algorithmic
applications of the polyhedral results given in the previous section.
In particular, we would like to examine the effectiveness of the
Min Set I and Min Set II inequalities.

Suppose that we are given a bi-directed graph G V A,= ( ) and a
weight vector c A∈ + associated with the arcs of G. Let K be a set of
commodities to be routed on G and W a set of available facilities
per arc. To start the optimization, we consider the following linear
program, LPinitial, given by the flow conservation constraints and
the aggregated capacity constraints associated with the arcs of G,
together with the trivial inequalities, that is

⎧
⎨⎪
⎩⎪

c y

x x
i d

i o k K i V

min

1 if ,
1 if ,

0 otherwise,

, ,

19

i j A
ij ij

j V
ji
k

j V
ij
k

k

k

,

∑

∑ ∑− =
=

− = ∀ ∈ ∀ ∈

( )

( )∈

∈ ∈

D x Cy i j A, , ,
20k K

k
ij
k

ij∑ ≤ ∀ ( ) ∈
( )∈

x k K i j A0 1, , , , 21ij
k≤ ≤ ∀ ∈ ∀ ( ) ∈ ( )

y W i j A0 , , . 22ij≤ ≤ | | ∀ ( ) ∈ ( )

Proposition 6. An integral solution x y,( ) of (19)–(22) is a valid
UNACND solution if and only if it satisfies Min Set I inequalities.

Proof. Necessity: Let ( x , y ) be an integer solution of (19)–(22).
Assume that there exists a subset of commodities, say S , and an
arc i j A,( ) ∈ , such that x 1ij

k = , for all k S∈ , and so that

x y p,
23k S

ij
k

ij∑ > +
( )∈

By Proposition 2, p S SBP≥ | | − ( ), which leads to yij <
x BP S S S BP S Sk S ij

k∑ + ( ) − | | = | | + ( ) − | |∈ . Thus, we get y BP Sij < ( ),
that is to say ( x , y ) is not feasible for UNACND problem.

Sufficiency: Let ( x , y ) be an integer solution of (19)–(22) that
satisfies all the Min Set I inequalities. Then this solution
guarantees that enough capacity is installed over the arcs of G to
ensure the feasibility for UNACND problem. In fact, Min Set I
inequalities dominate the capacity constraints (2) and ensure that
a solution of the aggregated formulation is feasible for the
problem.□

The optimal solution of this program, say x y,( ) is feasible for
the problem if it is integer and satisfies all the Min Set I inequal-
ities. Usually, this is not the case. Then, at each iteration of the
Branch-and-Cut algorithm, one has to generate further inequalities
that are valid for the problem but violated by the current solution.
For this, we solve the separation problem related to Min Set I and
Min Set II inequalities. The separation of these inequalities is
performed in the following order:

1 . Min Set I inequalities
2 . Min Set II inequalities

Moreover, at each iteration, we may add more than one vio-
lated inequality. Also we move to the separation of a new class of
inequalities only if no additional inequalities can be identified in
the current class. Note that the cutting plane is a global procedure,
applied to all the nodes of the Branch-and-Cut tree. This allows us
to enhance the quality of the lower bound for the problem.

In what follows, we discuss separation algorithms for Min Set I
and Min Set II given by inequalities (12) and (14), respectively.

5.1. Separation

5.1.1. Min Set I inequalities
For each arc a A∈ , we look for a Min Set I inequality (12) that is

violated by the current fractional solution x y,( ). Let a be an arc of
A, and S a subset of commodities in K. In order to separate
inequalities (12), we consider the inequalities

x y p a A S K, for all , ,
24k S

a
k

a r∑ ≤ + ∈ ⊆
( )∈

where p Sr k S
D
C

k
= | | − ∑ ∈ . Notice that pr is obtained by replacing BP

(S) by the trivial lower bound k S
D
C

k
∑ ∈ in p. In what follows, we

describe a procedure for the separation of this relaxed version of
inequalities (12). The idea of our heuristic is to separate inequal-
ities (24). This separation allows us to easily exhibit a subset S
which might induce a violated Min Set I inequality. Let us intro-
duce the variable αk, for all k K∈ , that takes 1 if the item k is in S
and 0 if not. For a solution x y,( ), and an arc a A∈ , the separation
problem associated with inequality (24) is equivalent to the fol-
lowing integer linear program:

Z x
D
C

ymax 1
25k K

a
k

k
k

a∑ α= ( + − ) −
( )∈

k K0 1, 0, 1 , . 26k kα α≤ ≤ ∈ { } ∀ ∈ ( )

The ILP (25) and (26) is maximized by setting to 1 the αk variables
corresponding to the set Sa given by

S k K x
D
C

1 0 . 27a a
k

k
= { ∈ | + − ≥ } ( )

If the corresponding optimal solution Z 0>⁎ , then (24) is vio-
lated. But, even if it is not, we verify if the stronger Min Set I
inequality over Sa is violated.

Actually, instead of computing the exact value of BP Sa( ), we use
a strong lower bound introduced by Fekete and Shepers [23],
which relies on the so-called dual feasible function. These functions
have been introduced by Lueker [24] and used first by Johnson
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[25] and then Lueker [24] to derive lower bounds for bin packing
problems (see [26] for detailed description of dual feasible func-
tions). The Fekete and Shepers's bound we shall use corresponds
to the bound L Sa

2 ( )⁎
( ) in [23], where Sa is a subset of items. This

function uses and strengthen lower bounds previously introduced
by Martello and Toth [21,27]. An interesting property of this bound

function states that if the items of Sa are larger than C1
3

, where C is

the capacity of a bin, then L Sa
2 ( )⁎ equals BP Sa( ).

Therefore, our separation routine for the Min Set I inequalities,
given in Algorithm 2 can be presented as follows. For each arc
a A∈ , we determine a subset of commodities S Ka ⊆ , using Algo-
rithm 1. Then, we compute L S2 ( )⁎ and p S L S2= | | − ( )⁎ , and check
whether Sa and p produce a violated Min Set I inequality.

Algorithm 1. Separation heuristic for inequalities (12).
Da
Ou
1:
2:

3:

4:

5:

6:
7:
ta: a solution x y,( )
tput: a set I of Min Set I inequalities violated by x y,( )

I ← ∅;
Forall a A∈ do

S k K x 1 0a a
k D

C

k
= { ∈ | + − ≥ }

Compute the parameter p S L Sa
2= | | − ( )⁎

If x y pk S a
k

aa
∑ − >∈ then

Denote Ia this inequality;
I I a← ∪ ;

return the identified violated Min Set I inequalities I.
V| |
A :| |
K :| |
Nm
Nm
no
o/p

Ga

Fin
8:

Fekete and Shepers's function L S2 ( )⁎ can be computed in K(| |
Klog(| |)) . In fact, the computational effort consists in sorting the

commodities by traffic amount. As the operation is iterated for each
arc of A, our separation procedure runs in time m K Klog( | | (| |)),
where m¼ A| |. However, if the commodities are already sorted by
traffic amount, then we have a complexity of m K( | |).

The use of Fekete and Shepers's lower bound accelerates a lot
the separation. However, a few Bin Packing problems must still be
solved to optimality. If x y,( ) is integral, then Algorithm 1 uses a
MIP model for calculating BP Sa( ) (instead of L Sa

2 ( )⁎ ) to check the
feasibility of this solution. By Proposition 6, this makes sure that
either x y,( ) is indeed a feasible UNACND solution or it violates a
Min Set I inequality.

5.1.2. Min set II inequality
Now we turn to the separation of Min Set II inequalities. This

relies on the separation procedure developed before for Min Set I
inequalities. First note that for Min Set II inequalities, the validity
condition requires, for a set S K⊆ and two integers p and q, that
p S qBP S≥ | ′| − ( ′), for all S S′ ⊆ . Hence, the separation for inequalities
(14) must incorporate the computation of S qBP S| ′| − ( ′) or an
approximation value of this for all S S′ ⊆ . As the number of possi-
bilities may be very large (2S| | possibilities), this would not be possible
for large S. For this, our separation routine for these inequalities will
only consider sets with small size, not exceeding 4 elements. More-
over, we shall also consider the separation for inequalities with p¼0
and q¼2. In fact, by our experiments, we have noted that most of the
violated Min Set II inequalities are of this type. The procedure works
as follows. For every arc a A∈ , we compute a subset Sa of com-
modities using (27). If S 4a| | ≤ , then for every subset S′ of Sa, we
compute L S2 ( ′)⁎ . If the inequality induced by Sa is valid, thenwe verify
if it is violated by the current solution x y,( ).
6. Computational experiments

In this section, we will present our experimental results. The
Branch-and-Cut algorithm given in the previous section has been
implemented in Cþþ using CPLEX 12.5 as a linear solver and to
handle the Branch-and-Cut framework. Our algorithm was tested
on a Bi-Xeon quad-core E5507 2.27 GHz with 8Go of RAM, running
under Linux. Finally, we have fixed a CPU time limit of five hours.

The results given here have been obtained by considering instances
from a library dedicated to the optimization of telecommunication
networks, namely SNDlib [28]. We have considered random and rea-
listic instances. Each instance is characterized by the node set V, the
arc set A, the set of available facilitiesW, and the set of commodities K.
We included instances with randomly generated commodities and
realistic commodities. Both classes of instances are characterized by
the number of nodes V| |, the number of arcs A| |, the number of
available facilities denoted W| |, and the number of commodities K| |.

The random demand instances use topologies from SNDlib
instances polska, nobel_us, newyork, geant, ta1 and pioro40. The sets
of nodes and arcs in G correspond to those instances, each edge of
the undirected SNDlib instances induces two inversely directed arcs
in our instances. We associate with each arc a length that is the
rounded euclidean distance between the end nodes of the arc.
Moreover, a facility settled on an arc has a cost equivalent to the
length of this arc. The available facilities are supposed to have the
same capacity and their maximum number is fixed to ten on all arcs
W 10(| | = ). Concerning the traffic matrices, we randomly generate
the origin and destination nodes. The traffic demands are picked
from a uniform distribution in the interval C C0.2 ,[ ]. For each SNDlib
original instance, we choose different sizes of K and generate five
instances for each K| |. The reported results in Table 2 are the averages
over those sets of five similar instances.

The realistic demand instances also use SNDlib network
topologies, from abilene, atlanta, nobel_germany, france, nobel_eu,
india35, cost266 and zib54 instances. We assume that we can
install at most five facilities in each arc W 5(| | = ). For each SNDlib
original instance, we choose different sizes of K, and pick the K| |
largest demands from the original instances.

We have performed a simple preprocessing operation on our
instances in order to speed up the solution process. Each com-
modity that is not compatible with any other commodity has its
demand increased to the capacity value. In other words, if for a
commodity k, D D Ck k+ ≥′

, for all k K k′ ∈ ⧹{ }, then Dk is changed to
C. This improves the lower bound provided by the linear relaxation
without changing the optimal integral solution.

Next, we present the experiment results obtained by our
Branch-and-Cut algorithm. These are reported in the tables given
below. The entries of the various tables are:
:
 number of nodes in G,

number of arcs,

number of commodities,
sI:
 number of generated Min Set I inequalities,

sII:
 number of generated Min Set II inequalities,

des:
 number of nodes in the Branch-and-Cut tree,

:
 number of instances solved to optimality over

number of tested instances (only for tests with
randomly generated traffic),
p:
 the relative error between the best upper bound
(optimal solution if the problem has been solved to
optimality) and the lower bound at the root node
(before branching),
alGap:
 the relative error between the best upper bound
(optimal solution if the problem has been solved to
optimality) and the best lower bound over the
Branch-and-Cut tree
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total CPU time in h:m:s

ep:
 total CPU time spent in performing the constraints

separation in seconds.
Table 2
Branch-and-Cut results for SNDlib instances with random demands.

Instance V| | A| | K| | NmsI NmsII Gap Opt nodes TT

polska_10 12 36 10 247.6 3.2 14.61 5/5 66.4 0:00:03
polska_15 12 36 15 533.2 3.6 16.63 5/5 205.8 0:00:25
polska_20 12 36 20 970.8 39.8 17.78 5/5 835.2 0:03:37
polska_30 12 36 30 3294.2 149.2 15.06 4/5 4818 1:14:15
polska_40 12 36 40 7596.8 388.4 16.43 1/5 17,778.6 4:02:08

nobel_us_10 14 42 10 123.6 0.4 21.69 5/5 54 0:00:01
nobel_us_15 14 42 15 795.2 26.4 26.98 5/5 3056.2 0:06:03
nobel_us_20 14 42 20 1609.2 37 26.15 5/5 6399.2 0:29:31
nobel_us_30 14 42 30 3566.8 62.4 22.35 4/5 8436.6 1:17:57
nobel_us_40 14 42 40 8723.6 129.8 25.37 0/5 14616 5:00:00

newyork_10 16 98 10 271.2 2.4 10.61 5/5 110.6 0:00:10
newyork_15 16 98 15 598 11.4 12.66 5/5 527.4 0:01:33
newyork_20 16 98 20 1993.6 28.2 14.09 5/5 3778.4 0:34:21
newyork_30 16 98 30 4683.4 101.2 15.78 0/5 17,894.6 5:00:00
newyork_40 16 98 40 8994.8 99.4 60.53 0/5 10,812.2 5:00:00

geant_10 22 72 10 155.6 0.6 16.65 5/5 35.6 0:00:03
geant_15 22 72 15 312.8 3 14.27 5/5 98.2 0:00:17
geant_20 22 72 20 353 1 13.11 5/5 98.2 0:00:23
geant_30 22 72 30 1496.6 21.6 12.34 5/5 686.8 0:07:15
geant_40 22 72 40 3111.2 37.2 12.60 5/5 2096.4 0:54:45

ta1_10 24 110 10 415.6 7.6 21.03 5/5 778 0:02:04
ta1_15 24 110 15 1120.4 78.4 27.32 4/5 8788.4 1:08:46
ta1_20 24 110 20 1920 49.4 25.25 3/5 10,870 2:45:12
ta1_30 24 110 30 4570 69.6 25.88 0/5 9886.8 5:00:00
ta1_40 24 110 40 9187.2 117.8 52.85 0/5 13,739.8 5:00:00

pioro_4 40 178 4 174.4 0 66.01 5/5 418.4 0:00:07
pioro_6 40 178 6 217.4 0.4 56.49 5/5 365.8 0:00:13
pioro_8 40 178 8 786.4 11.2 59.67 5/5 8678.8 0:11:42
pioro_10 40 178 10 884 9 51.72 5/5 5719.6 0:10:36
pioro_15 40 178 15 2471.4 82.8 56.60 2/5 46,315.2 3:51:36
pioro_20 40 178 20 3426.4 87.4 55.55 0/5 41,249.8 5:00:00
The runs are stopped if CPU time reaches 5 h. For those
instances not solved to optimality, the gap at the root node, as well
as the final gap are indicated in italic.

Our first series of experiments was performed on the random
demand instances. We compare the results of the compact formula-
tion (1)–(4), solved by CPLEX, with those of the Branch-and-Cut
algorithm over the aggregated formulation (AF) (5)–(7) and using Min
Set I first, then both Min Set I and Min Set II inequalities. The goal of
these experiments is to show the efficiency of the valid inequalities
introduced in the previous sections. The results are summarized in
Table 1, where it is possible to compare the performances of the three
approaches in terms of gap, number of nodes of the Branch-and-
Bound (respectively Branch-and-Cut) tree, and CPU time.

The aggregated formulation with valid inequalities (Min Set I þ
Min Set II) performs better than the compact formulation for all
the instances. In fact, we can notice that the Branch-and-Cut
approach allows us to solve to optimality all the tested instances in
a short time (less than 45 min for all the instances except for
newyork_20_1, ta1_16_1, ta1_18_1, and ta1_20_1), whereas many
instances could not be solved by Branch-and-Bound after 5 h. For
example polska_14_1 is solved to optimality in less then 10 min by
Branch-and-Cut, while it could not be solved by Cplex Branch-and-
Bound. The root gaps obtained by the Branch-and-Cut are usually
smaller, but not always. This may happen because CPLEX internal
cuts are allowed in the experiments with the compact formulation
and disabled in the Branch-and-Cut experiments. Note that an
optimal solution could be obtained for instance ta1 20 1_ _ in less
than 25 h, while CPLEX was not able to prove the optimality of this
solution for the compact formulation after 10 days of computation.

Overall, the results presented in Table 1 clearly show the gain
provided by using the valid inequalities introduced in the previous
sections, within a Branch-and-Cut framework. They also indicate
mulation versus Compact formulation.

Compact formulation AF (B&C) w

V| | A| | K| | Gap Nodes TT Gap N

12 36 10 14.04 919 0:02:56 12.28 7
12 36 12 14.15 977 0:02:19 11.33 1
12 36 14 18.83 83,500 5:00:00 18.69 2
12 36 16 13.48 1241 0:03:56 12.16 2
12 36 18 12.32 55,299 1:35:48 14.07 4
12 36 20 27.33 16,777 5:00:00 23.10 5

1 14 42 10 29.08 82,768 5:00:00 29.02 1
1 14 42 12 11.75 71,534 5:00:00 28.90 3
1 14 42 14 27.47 55,221 5:00:00 22.49 2
1 14 42 16 6.57 74,429 5:00:00 20.27 3
1 14 42 18 7.48 64,164 5:00:00 22.34 1
1 14 42 20 10.79 13,291 5:00:00 22.91 4

1 16 98 10 12.65 1360 0:17:06 2.02 1
1 16 98 12 13.94 974 0:07:24 1.83 1
1 16 98 14 21.19 489 0:06:15 8.00 4
1 16 98 16 22.17 1859 0:16:00 5.96 3
1 16 98 18 21.65 5663 0:20:04 10.08 3
1 16 98 20 28.18 8032 5:00:00 18.41 5

24 102 10 7.47 2084 0:14:10 6.83 5
24 102 12 8.88 11,453 0:32:03 22.89 2
24 102 14 21.84 25,186 5:00:00 29.65 9
24 102 16 8.14 23,252 5:00:00 26.94 3
24 102 18 8.52 20,941 5:00:00 25.48 3
24 102 20 30.91 12,088 5:00:00 27.27 5
that the aggregated formulation allowed us to get over the sym-
metries of the problem and solve it efficiently. However, as
expected, separating Min Set II inequalities, in addition to Min Set I
ith msI AF (B&C) with msI and msII

odes TT NmsI Gap Nodes TT NmsI NmsII

1 0:03:28 384 12.28 71 0:03:28 384 0
23 0:05:29 586 11.33 100 0:04:27 499 3
98 0:04:58 606 18.69 269 0:09:46 593 2
44 0:11:52 853 12.16 239 0:11:30 839 1
83 0:24:40 1402 14.07 428 0:22:31 1347 7
63 0:21:50 687 23.10 645 0:24:57 773 18

10 0:02:31 155 29.02 110 0:02:31 155 0
24 0:09:37 312 28.90 302 0:09:43 344 10
67 0:10:54 538 22.49 302 0:12:44 556 14
05 0:11:49 522 20.27 521 0:19:49 676 9
420 0:49:24 768 22.34 1001 0:40:04 757 27
30 0:17:57 505 22.91 295 0:12:38 434 6

8 0:00:15 92 1.82 10 0:00:09 88 1
6 0:00:16 98 1.83 13 0:00:16 109 1
9 0:01:30 223 8.00 46 0:01:39 268 3
7 0:01:04 214 5.96 186 0:05:53 412 5
51 0:17:49 1030 10.08 336 0:15:04 857 9
707 4:55:58 2383 18.94 6049 5:00:00 2189 33

5 0:01:58 282 6.83 55 0:01:58 282 0
72 0:08:37 431 22.89 320 0:09:35 380 2
85 00:41:31 796 29.65 898 0:38:29 770 2
084 02:24:17 1417 26.94 3257 2:39:17 1399 8
574 02:58:34 1740 25.48 4058 3:39:03 1674 21
775 5:00:00 1952 28.50 6174 5:00:00 1530 26



Table 3
The effect of different demand distributions on Branch-and-Cut. Capacity C 100= .

Distribution Instance V| | A| | K| | NmsI NmsII Gap(%) FinalGap(%) nodes TT TT(sep)

U(0,25) Atlanta_10_1 15 44 10 173 0 50.66 0.00 582 0:00:06 1<
U(0,50) Atlanta_10_2 15 44 10 130 5 32.81 0.00 128 0:00:2 1<
U(25,50) Atlanta_10_3 15 44 10 170 2 25.51 0.00 178 0:00:05 1<
U(25,75) Atlanta_10_4 15 44 10 139 0 19.19 0.00 74 0:00:01 1<
U(75,100) Atlanta_10_5 15 44 10 62 0 4.09 0.00 14 0:00:01 1<

U(0,25) Atlanta_20_1 15 44 20 711 1 43.22 0.00 2282 0:02:06 2
U(0,50) Atlanta_20_2 15 44 20 1715 1910 41.47 3.49 76,342 5:00:00 50
U(25,50) Atlanta_20_3 15 44 20 2287 1741 35.86 10.24 65,376 5:00:00 65
U(25,75) Atlanta_20_4 15 44 20 1073 42 18.58 0.00 1059 0:03:09 3
U(75,100) Atlanta_20_5 15 44 20 1293 0 5.96 0.00 153 0:00:37 1

U(0,25) Atlanta_30_1 15 44 30 1954 1254 47.05 0.00 38,492 2:26:03 30
U(0,50) Atlanta_30_2 15 44 30 2956 3242 41.86 26.67 39,359 5:00:00 53
U(25,50) Atlanta_30_3 15 44 30 4497 2922 34.18 21.00 40,443 5:00:00 83
U(25,75) Atlanta_30_4 15 44 30 4091 386 16.23 1.14 48,474 5:00:00 166
U(75,100) Atlanta_30_5 15 44 30 1450 0 5.90 0.00 175 0:00:45 1

U(0,25) Atlanta_40_1 15 44 40 2468 1592 45.73 22.98 46,076 5:00:00 42
U(0,50) Atlanta_40_2 15 44 40 3084 3804 43.42 30.00 36,817 5:00:00 54
U(25,50) Atlanta_40_3 15 44 40 5500 5263 35.88 27.44 29,548 5:00:00 80
U(25,75) Atlanta_40_4 15 44 40 8361 166 19.97 8.41 32,859 5:00:00 117
U(75,100) Atlanta_40_5 15 44 40 6488 0 5.58 0.00 927 0:12:22 11

Table 4
Branch-and-Cut results for SNDlib instances with realistic traffic.

Instance V| | A| | K| | NmsI NmsII Gap(%) FinalGap(%) Nodes TT TTsep

abilene 12 30 10 112 0 15.38 0.00 22 0:00:00 0
abilene 12 30 20 620 4 25.25 0.00 231 0:00:14 0
abilene 12 30 30 1801 9 20.48 0.00 1362 0:02:21 3
abilene 12 30 40 3994 576 19.13 0.00 10246 0:45:03 73
abilene 12 30 45 5781 451 16.86 0.00 10005 2:00:09 35

atlanta 15 44 10 76 1 4.61 0.00 27 0:00:00 0
atlanta 15 44 20 297 17 10.17 0.00 127 0:00:08 0
atlanta 15 44 30 1443 305 13.72 0.00 4145 0:13:23 13
atlanta 15 44 40 3771 484 45.61 1.89 15569 5:00:00 22

nobel_germany 17 52 10 37 1 1.52 0.00 8 0:00:00 0
nobel_germany 17 52 20 400 10 13.47 0.00 80 0:00:04 0
nobel_germany 17 52 30 325 18 33.06 0.00 345 0:00:19 0
nobel_germany 17 52 40 1088 130 30.57 0.00 232 0:45:03 6
nobel_germany 17 52 45 703 44 34.00 0.00 721 0:01:01 2

france 25 90 10 296 10 39.43 0.00 229 0:00:11 0
france 25 90 20 1223 137 27.80 0.00 4610 0:14:57 8
france 25 90 30 4585 951 35.04 21.14 26412 5:00:00 64
france 25 90 40 5763 1154 33.06 22.94 18025 5:00:00 69
france 25 90 45 7865 1497 61.83 56.77 18521 5:00:00 84

india35 35 160 10 234 1 39.05 0.00 93 0:00:09 0
india35 35 160 20 2349 286 51.05 28.87 12724 5:00:00 78
india35 35 160 30 2779 419 75.71 69.81 10017 5:00:00 106
india35 35 160 40 3402 665 72.93 68.24 6747 5:00:00 166
india35 35 160 45 3789 438 66.2 61.37 5879 5:00:00 171

cost266 37 102 10 168 10 36.40 0.00 106 0:00:04 0
cost266 37 102 20 414 751 37.67 0.00 4808 1:19:30 35
cost266 37 102 30 2523 646 42.48 22.56 9710 5:00:00 85
cost266 37 102 40 4224 689 58.00 51.31 6505 5:00:00 164
cost266 37 102 45 3599 794 68.62 63.95 6439 5:00:00 168

zib54 54 160 10 869 111 46.62 0.00 975 0:03:83 4
zib54 54 160 20 4050 913 60.52 29.48 17227 5:00:00 49
zib54 54 160 30 4816 565 64.20 50.55 11809 5:00:00 58
zib54 54 160 40 3264 246 81.46 72.18 10289 5:00:00 85
zib54 54 160 45 5245 367 68.89 64.33 8446 5:00:00 93
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inequalities does not bring that much to the efficiency of the
Branch-and-Cut algorithm. Actually, only a slight improvement
can be noticed for the gap at the root node (see the instance
newyork_10_1 where the gap value changes from 2.02 to 1.82 by
allowing Min Set II separation). We can remark that the CPU time
for computation, as well as the number of nodes in the Branch-
and-Cut tree decreases significantly for some instances while
adding Min Set II inequalities. For instance, nobel_us_18_1 is
solved in 40 min instead of 49 min by using both Min Set I and
Min Set II inequalities.
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We give hereafter additional results, only for the Branch-and-
Cut, on larger instances with both random and realistic demands.

Table 2 reports results for random demand instances with
graphs having from 12 up to 40 nodes and from 36 up to 178 arcs,
while the number of commodities varies from 10 to 40 (4 to 20 for
pioro). Note that the results in Table 1 were obtained in a subset of
those instances. We can see from Table 2 that 19 among 31
families of instances have been solved to optimality within the
fixed time limit (i.e., Opt¼5/5). Also remark that for only 6 families
of instances, the Branch-and-Cut could not provide any optimal
solution within 5 h. It can be seen that the families that could be
solved are those that have a reasonably small gap, in only 4 out of
19 it was greater than 30%. Unsolved instances have larger gaps,
reaching 66% in instance pioro_4.

In order to analyse what, apart from instance size, affects the
gap, we have made some experiments on a single network
(atlanta, 15 nodes and 44 arcs), changing the number of com-
modities and the demand distribution. We considered five dis-
tributions. In the first case the demands are picked from U(0,25);
in the second from U(0,50), in the third from U(25,50), the fourth
from U(25,75), and finally, in the fifth all demands have value 100.
The capacity C is always 100 in all these tests. An instance name
will be followed by the extension 1, 2, 3, 4 or 5 in the table,
according to the interval that contains its demands. The results are
show in Table 3. This table also shows the final gaps, the difference
between the global Branch-and-Cut lower bounds at the end of
the run and the best known solution.

As expected, the instances where all demands are equal to the
capacity are much easier. In that case, the UNACND becomes an
integer multicommodity flow network problem. Apart from that
case, we can observe the following order:

� The instances where all demands are small (from U(0,25)) are
easier, in spite of the larger root gaps. We remark that in that
case, the capacity that is wasted by the non-additivity is not
likely be large, the UNACND solutions are closer to the UCND.

� The instances where most demands are large (from U(25,75))
are harder.

� The hardest instances are those with many medium-sized
demands (from U(0,50) or U(25,50)).

Our last series of experiments were performed on the instances
with realistic demands, taken from SNDlib. The results are given in
Table 4. It can be seen that 19 among the 34 tested instances were
solved to optimality within the fixed time limit, 15 of them within
15 min. The unsolved instances are generally those having more
than 30 commodities and/or more than 35 nodes. We can remark
that the root gap values are slightly better than those obtained for
the instances with random demand. However, they seem to be
equally challenging in terms of solvability.

In all experiments described in Tables 2–4, the CPU time spent
by the separation procedure is not large, even when thousands of
inequalities are generated. Indeed, using the good and fast lower
bounds from [23] instead of exact methods for the bin packing
subproblems (based on solving the ILP formulation) within the
separation routines was important to keep them efficient. Note
also that the number of generated Min Set I inequalities is sig-
nificantly higher than the number of generated Min Set II
inequalities. Although the separation procedure for Min Set II
inequalities can be possibly enhanced, we do not expect them to
be as much effective as Min Set I inequalities.

7. Concluding remarks

In this paper, we have considered the UNACND problem. We
focused our attention on the arc-set polyhedron associated with
this problem. Actually, we studied a more general family of poly-
hedra defined by unitary step monotonically increasing set func-
tions. We investigated the basic properties of those polyhedra and
derived new classes of valid inequalities. We then described
necessary and sufficient conditions for these inequalities to define
facets. By considering one of those functions, the Bin Packing set
function, the resulting inequalities could be applied on the
UNACND problem. We remarked that evaluating the Bin Packing
Function is an NP-hard problem. Nevertheless, Min Set I and Min
Set II inequalities could be efficiently separated in the Branch-and-
Cut algorithm, by using fast and effective lower bounding
procedures.

The generality of the Set Function Polyhedra opens opportu-
nities for using quite similar algorithms in other CND variants. For
example, consider the UNACND problem with the additional
restriction that, for reliability reasons, certain commodities owned
by the same client cannot pass by the same facility over a link.
Those new arc restrictions correspond to a Bin Packing with
Conflicts Set Function (see [29] for more details on the bin packing
with conflicts). This function is still unitary step monotonically
increasing. Therefore, Min Set I and Min Set II inequalities can still
be used in a Branch-and-Cut for the new problem. The only dif-
ference is that other lower bounding procedures would have to be
used in the separation.
Acknowledgments

Authors are very grateful to the anonymous referees for their
comments on a previous version of the paper.
References

[1] Brockmüller B, Günlük O, Wolsey LA. Designing private line networks—poly-
hedral analysis and computation. CORE Discussion Paper 9647, Université
Catholique de Louvain; 1996.

[2] van Hoesel SPM, Koster AMCA, van de Leensel RLMJ, Savelsbergh MWP. Poly-
hedral results for the edge capacity polytope. Math Program 2002;92(2):335–58.

[3] Atamtürk A, Rajan D. On splittable and unsplittable flow capacitated network
design arc-set polyhedra. Math Program 2002;92(2):315–33.

[4] Benhamiche A, Mahjoub AR, Perrot N, Uchoa E. Capacitated network design
using bin-packing. Electron Notes Discret Math 2013;41:479–86.

[5] Magnanti TL, Mirchandani P, Vachani R. The convex hull of two core capaci-
tated network design problems. Math Program 1993;60:233–50.

[6] Pochet Y, Wolsey LA. Integer knapsack and flow covers with divisible coefficients:
polyhedra, optimization and separation. Discret Appl Math 1995;59(1):57–74.

[7] Atamtürk A. On capacitated network design cut-set polyhedra. Math Program
2002;92(3):425–37.

[8] Bienstock D, Muratore G. Strong inequalities for capacitated survivable net-
work design problems. Math Program 2000;89(1):127–47.

[9] Magnanti TL, Mirchandani P, Vachani R. Modeling and solving the two-facility
capacitated network loading problem. Oper Res 1995;43:142–57.

[10] Bienstock D, Günlük O. Capacitated network design—polyhedral structure and
computation. Inf J Comput 1994;8:243–59.

[11] Barahona F. Network design using cut inequalities. SIAM J Optim 1996;6(3):823–37.
[12] Chopra DBS, Günlük O, Tsai C-Y. Minimum cost capacity installation for

multicommodity network flows. Math Program 1995;81:177–99.
[13] Costa A, Cordeau J-F, Gendron B. Benders, metric and cutset inequalities for mul-

ticommodity capacitated network design. Comput Optim Appl 2009;42(3):371–92.
[14] Frangioni A, Gendron B. 01 reformulations of the multicommodity capacitated

network design problem. Discret Appl Math 2009;157(6):1229–41.
[15] Avella P, Mattia S, Sassano A. Metric inequalities and the network loading

problem. Discret Optim 2007;4(1):103–14.
[16] Raack C, Koster AMCA, Orlowski S, Wessäly R. On cut-based inequalities for

capacitated network design polyhedra. Networks 2011;57(2):141–56.
[17] Benders J. Partitioning procedures for solving mixed-variables programming

problems. Numer Math 1962;4(1):238–52.
[18] Dahl AMG, Stoer M. Routing through virtual paths in layered tele-

communication networks. Oper Res 1999;47(5):693–702.
[19] Fortz B, Poss M. An improved benders decomposition applied to a multi-layer

network design problem. Oper Res Lett 2009;37(5):359–64.
[20] Mattia S. A polyhedral study of the capacity formulation of the multilayer

network design problem. Networks.

http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref2
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref2
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref2
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref4
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref4
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref4
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref5
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref5
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref5
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref6
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref6
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref6
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref10
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref10
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref10
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref11
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref11
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref15
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref15
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref15
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref16
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref16
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref16
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref17
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref17
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref17
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref4575100
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref4575100
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref4575100
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref19
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref19
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref19


A. Benhamiche et al. / Computers & Operations Research 66 (2016) 105–115 115
[21] Martello S, Toth P. Knapsack problems: algorithms and computer imple-
mentations. New York: Wiley; 1990.

[22] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of
NP-Completeness. San Francisco: W.H. Freeman; 1979.

[23] Fekete SP, Schepers J. New classes of fast lower bounds for bin packing pro-
blems. Math Program 2001;91(1):11–31.

[24] Lueker GS. Bin packing with items uniformly distributed over intervals [a,b].
In: IEEE symposium on foundations of computer science; 1983. p. 289–297.

[25] Johnson DS. Near-optimal bin packing algorithms. Cambridge, MA: PhD The-
sis, MIT; 1973.
[26] Clautiaux F, Alves C, de Carvalho JMV. A survey of dual-feasible and super-
additive functions. Ann Oper Res 2010;179(1):317–42.

[27] Martello S, Toth P. Lower bounds and reduction procedures for the bin packing
problem. Discret Appl Math 1990;28:59–70.

[28] 〈http://sndlib.zib.de/home.action〉.
[29] EGC Jr, Csirik J, Leung J. Variants of classical one-dimensional bin packing. In:

Gonzalez TF, editor. Handbook of approximation algorithms and metaheur-
istics. Chapman & Hall/CRC; 2007 [chapter 33].

http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref22
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref22
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref23
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref23
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref23
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref25
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref25
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref26
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref26
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref26
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref27
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref27
http://refhub.elsevier.com/S0305-0548(15)00206-3/sbref27
http://sndlib.zib.de/home.action

	Unsplittable non-additive capacitated network design using set functions polyhedra
	Introduction
	The unsplittable non-additive capacitated network design problem
	Compact formulation
	Aggregated formulation

	Set function polyhedra
	Properties of Pf
	Dimension
	Trivial inequalities

	Min Set I inequalities
	Min Set II inequalities

	Application to the Bin Packing function
	Examples

	A Branch-and-Cut algorithm for the UNACND problem
	Separation
	Min Set I inequalities
	Min set II inequality


	Computational experiments
	Concluding remarks
	Acknowledgments
	References




