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ABSTRACT 

Let 𝐺 = (𝑉 ∪ 𝑇, 𝐸) be an undirected graph such that 𝑉 is a set of vertices, 𝐸 a set of edges and T a 
set of terminal vertices. The Multi-terminal vertex separator problem consists in partitioning V  
into 𝑘 + 1 subsets {𝑆, V1,..., V𝑘} minimizing the size of 𝑆  and such that there is no edge between two 

subsets 𝑉i and 𝑉𝑗 and each subset Vi  contains exactly one terminal. Set 𝑆 is called a separator. In 

this paper, we show that this problem is NP-complete. We discuss the problem from a polyhedral 
point of view. We describe some valid inequalities and characterize when they define facets. Using 
this we develop a Branch-and-Cut algorithm. 

Keywords: Combinatorial optimization, Polyhedral approach, Branch-and-Cut, Complexity, Vertex 
separator problem. 

1 INTRODUCTION:  

Let 𝐺 = (𝑉 ∪ 𝑇, 𝐸) be a simple graph with 𝑉  a set of vertices, 𝐸  a set of edges and 𝑇  a set of 
terminal vertices. The multi-terminal vertex separator problem, MTVSP for short, consists in finding 
the smallest subset 𝑆 ⊆ V called a separator such that the graph induced by 𝑉\𝑆 contains 𝑘 disjoint 
components and each component contains exactly one terminal. This problem is a variant of the 
vertex separator problem that consists in partitioning 𝑉 into 𝑘 + 1 subsets 𝑆, V1, ... , V𝑘 in such a way 

that 𝑆 is minimum and there is no edge between two subsets Vi and Vj. The MTVSP is equivalent to 

finding the smallest node subset 𝑆 such that each path between two terminals intersects 𝑆. The 
MTVSP has applications in different areas like VLSI conception, linear algebra, connectivity 
problems and parallel algorithms. Many variants of the vertex separator problem have been studied 
[2] [3] [4]. In [2]  Balas and Suza studied the following problem. Given a simple graph 𝐺 = (𝑉, 𝐸) and 
an integer 𝛽(𝑛) with 𝑛 = |𝑉|, partition 𝑉 into three subsets 𝐴, 𝐵 and 𝐶 such that |𝐶| is minimum, no 
vertex in 𝐴 is incident to a vertex in 𝐵 and max{|𝐴|, |𝐵|} ≤ 𝛽(𝑛). In [5] authors studied another 
variant of the problem. Let 𝐺 = (𝑉, 𝐸) be a simple graph and 𝑎, 𝑏 ∈ 𝑉 two terminal nodes. The 
problem here is to partition V  into three subsets 𝐴, 𝐵 and 𝐶 minimizing |𝛿(𝐶)| such that no vertex in 
𝐴 is incident to a vertex in 𝐵 and 𝑎 ∈ A, b ∈ B. This problem can be solved in polynomial time. It is 
equivalent to a minimum cut problem in a transformed graph.   
The paper is organized as follows, in Section 2 we discuss the complexity of the MTVSP. In Section 3 
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we propose two 0 − 1 linear programming formulations for the problem. In Section 4 we study the 
problem from polyhedral point of view and propose some valid inequalities. In Section 5 we present 
a branch-and-cut algorithm along with some experimental results.  
We denote by 𝐺 = (𝑉 ∪ 𝑇, 𝐸) a simple graph with V  a set of vertices, T a collection of terminal 
vertices and E a set of edges. We denote by 𝑛 the size of the set V  and  𝑘 the number of terminals 
in T. Given a vertex 𝑣 ∈ 𝑉 ∪ 𝑇, we denote by 𝑁(𝑣) ⊆ (𝑉 ∪ 𝑇)  the set of vertices incident to 𝑣 and by 
𝑑(𝑣) the size of 𝑁(𝑣) called degree of 𝑣 in 𝐺. Given a subset R ⊆ (𝑉 ∪ 𝑇), we denote by 𝑁(𝑅) ⊆ (𝑉 ∪
𝑇)  the set of vertices incident to at least one vertex in R. Let 𝛿(𝑣)  be the set of edges incident to 
𝑣  and 𝛿(𝑅)  the set of edges having exactly one vertex in R . Let C ∈ ℤ𝑉  be a vector, 𝐶(𝑅) is 
equivalent to ∑ C𝑣∈R (𝑣). Let 𝐻 = (𝑈, 𝐼) be a subgraph of G. We denote by 𝐻 ⊆ 𝑉 the subset 𝑈 and by 
H ⊆ E  the subset  𝐼. The internal vertices of a path are all vertices of the path except the 
extremities. A path having its extremities in T  is called a terminal path. In this paper we consider 
the following hypotheses: 

 There is no edge between two terminals, otherwise the problem has no solution. 

 For each pair of terminals ti, tj ∈ T, we have 𝑁(ti) ∩ 𝑁(tj) = ∅. Otherwise all vertices of 

𝑁(ti) ∩ 𝑁(tj) belong to every separator. 

 For each vertex 𝑣 ∈ V, there is at least one path, between two terminals, containing 𝑣. 
Otherwise 𝑣 cannot belong to a minimal separator. 

 The graph G  is connected. 

2 COMPLEXITY ANALYSIS 

In this section we consider the three-terminal vertex separator problem (𝑇𝑇𝑉𝑆𝑃). It has been shown 
that the (𝑇𝑇𝑉𝑆𝑃) is NP-complete [10]. In this section we give a simpler of this result using a 
polynomial reduction from the minimum vertex cover set problem  𝑉𝐶. The 𝑉𝐶 problem is a well-
known NP-complete problem. It consists of finding the smallest subset of vertices such that all 
edges have at least one vertex in it.  

It is clear that the 𝑇𝑇𝑉𝑆 problem is in NP. Let 𝐻 = (𝑈, 𝐸′) be a simple graph. We construct a graph 
G = (V1 ∪ V2 ∪ V3 ∪ T, E ) from the graph H using the following operations: 

 add three vertices t1, t2 and t3 in T. 

 for each vertex 𝑢 ∈ U , add three vertices, 𝑣1
𝑢 in V1, 𝑣2

𝑢 in V2 and 𝑣3
𝑢 in V3 

 for each vertex 𝑢 ∈ U , add three edges t1𝑣1
𝑢, t2𝑣2

𝑢 and t3𝑣3
𝑢 in E. 

 for each vertex 𝑢 ∈ U , add two edges 𝑣1
𝑢𝑣3

𝑢 and 𝑣2
𝑢𝑣3

𝑢 in E. 

 for each edge 𝑢𝑤 ∈ 𝐸′, add two edges 𝑣1
𝑢𝑣2

𝑤 and 𝑣1
𝑤𝑣2

𝑢 in E. 

 

Figure 1: Graph transformation 

Figure 1 illustrates the above graph transformation. Let 𝑆 ⊆ V1 ∪ V2 ∪ V3  be a separator and 

𝑣1
𝑢 , 𝑣2

𝑢 , 𝑣3
𝑢 ∈ 𝑉 three vertices associated with each vertex 𝑢 ∈ U. 
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Proposition 1: For a vertex 𝑢 ∈ U, if S  is the smallest separator of G then either 𝑣1
𝑢, 𝑣2

𝑢 ∈ 𝑆 and 𝑣3
𝑢∉ 𝑆 

or 𝑣1
𝑢 , 𝑣2

𝑢∉ 𝑆 and 𝑣3
𝑢∈ 𝑆. 

Proof.  
If 𝑣1

𝑢 belongs to the separator 𝑆  and not 𝑣2
𝑢  and 𝑣3

𝑢 then there is a path from t3 to t2. If 𝑣1
𝑢 and 𝑣3

𝑢 
belong together to the separator 𝑆  but not 𝑣2

𝑢 then we can replace 𝑣3
𝑢 by 𝑣2

𝑢. Clearly,  the separator 
remains the smallest since 𝑣3

𝑢 is only incident to 𝑣1
𝑢,𝑣2

𝑢 and t3 . If 𝑣1
𝑢 , 𝑣2

𝑢and 𝑣3
𝑢 belong together to 𝑆, 

then 𝑆\{v3
𝑢} is also a separator, a contradiction with the minimality of S .         ∎ 

Proposition 2: The smallest vertex cover set in H  is of size q  if and only if the smallest separator in 

G is of size 𝑞 + |𝑈|. 

Proof. 

(⇒) Let R ⊆ U  be the vertex cover set of size q. If for each vertex 𝑢 ∈ R, we add its corresponding 

vertices 𝑣1
𝑢 and 𝑣2

𝑢 in set 𝑆, and for each vertex 𝑢 ∈ U \R  we add its corresponding vertex 𝑣3
𝑢 in set 

𝑆, then 𝑆  is a separator in G  of size 2q − 𝑞 + |𝑈| = 𝑞 + |𝑈|. Moreover, 𝑆 is the smallest separator.  
(⇐) For a terminal path containing 𝑣1

𝑢 ∈ V1 and 𝑣2
𝑣 ∈ V2, either 𝑣1

𝑢 ∈ 𝑆 or 𝑣2
𝑣 ∈ 𝑆. We know that there 

is an edge between 𝑣1
𝑢 and 𝑣2

𝑣 if there exists an edge 𝑢𝑣 ∈ E'. It then follows that the corresponding 

vertices of 𝑆 ∩ V1 represent a vertex cover set in H of cardinality q. If 𝑣1
𝑢∉ 𝑆 or 𝑣2

𝑣∉ 𝑆, then 𝑣3
𝑢 ∈

V3 belongs to 𝑆. So the separator is of size 2q − 𝑞 + |𝑈| = 𝑞 + |𝑈|, and the vertex cover in H is of 

size q. It is clear that if 𝑆  is the smallest in G, then the vertex cover is in H.                   ∎ 

3 FORMULATIONS 

In this section we propose two different 0 − 1 linear formulations for the problem, the first one has 
a polynomial number of variables and constraints and uses double indices. The second has a 
polynomial number of variables but an exponential number of constraints. 

3.1 Double indices formulation 

Let 𝑥 ∈ {0,1}(V ∪T )×T such that:  

𝑥𝑣𝑡 = {
1, if the vertex 𝑣 belongs to the subset 𝑉𝑡 ,
0, otherwise.

  for every 𝑣 ∈ (𝑉 ∪ 𝑇), 𝑡 ∈ 𝑇 

 

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑣𝑡

𝑡∈𝑇𝑣∈𝑉

 𝑥𝑢𝑡 + ∑ 𝑥𝑣𝑘

𝑘∈𝑇\{𝑡}

  ≤ 1     ∀ (𝑢𝑣) ∈ 𝐸, ∀𝑡 ∈ 𝑇,               (𝟏)

∑ 𝑥𝑣𝑡

𝑡∈𝑇

≤ 1     ∀𝑣 ∈ (𝑉 ∪ 𝑇),                       (𝟐)

𝑥𝑡𝑡 = 1     ∀𝑡 ∈ 𝑇,                                    (𝟑)

𝑥𝑣𝑡 ∈ {0,1}        ∀𝑡 ∈ 𝑇, ∀𝑣 ∈ (𝑉 ∪ 𝑇)                    (𝟒)

 

3.2 Natural formulation 

Let 𝛤 be the set of terminal paths between each pair of terminals. Let 𝑥 ∈ {0,1} 𝑉  such that: 

𝑥𝑣 = {
1, if the vertex 𝑣 belongs to the separator,
0, otherwise.

  for every 𝑣 ∈ 𝑉 
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𝑚𝑖𝑛 ∑ 𝑥𝑣

𝑣∈𝑉

 ∑ 𝑥𝑣

𝑣∈𝑃𝑡𝑖𝑡𝑗

  ≥ 1     ∀𝑃𝑡𝑖𝑡𝑗
∈ 𝛤, ∀(𝑡𝑖 , 𝑡𝑗) ∈ 𝑇, (𝟓)

𝑥𝑣 ≤ 1     ∀𝑣 ∈ 𝑉                              (𝟔)

𝑥𝑣 ≥ 0     ∀𝑣 ∈ 𝑉                              (𝟕)

𝑥𝑣 integer        ∀𝑣 ∈ 𝑉                                         (𝟖)

 

We notice that the first formulation has (𝑛 + 𝑘)𝑘 variables and the second has only 𝑛 variables. 
Inequalities (5) in this latter formulation, which are in an exponential number can be separated in 
polynomial time. Since the second formulation has less variables, we consider it for our analysis.  

4 POLYHEDRAL ANALYSIS 

For 𝑆 ⊂ 𝑉, let 𝑥𝑆 ∈ {0,1}V be the vector given by 𝑥𝑣 = 1 if 𝑣 ∈ 𝑆  and 𝑥𝑣 = 0 otherwise. 𝑥𝑆  is called 
the incidence vector of 𝑆. Let 𝑃(𝐺, 𝑇) be the convex hull of solutions of the above program, that is, 

 𝑃(𝐺, 𝑇) =  𝑐𝑜𝑛𝑣(𝑥 ∈ {0,1}𝑉  | 𝑥  satisfies (5)). 

4.1 Dimension and valid inequality 

We have the following results: 

Proposition 3: Polytope 𝑃(𝐺, 𝑇) is full dimensional. 

Proposition 4: For 𝑣 ∈ V , inequality (6) defines facet of 𝑃(𝐺, 𝑇). 

Proposition 5: For a vertex 𝑣 ∈ V, inequality (7) defines a facet of 𝑃(𝐺, 𝑇) if and only if, vertex 𝑣 
does not belong to a terminal path containing two internal vertices.          ∎ 

4.2 Path inequalities 

Theorem 1: Inequality (5) associated with a path Ptitj
 defines a facet of 𝑃(𝐺, 𝑇) if and only if: 

 Ptitj
 is inclusewise minimal, that is only two internal vertices from Ptitj

 connected to a terminal. 

 No vertex 𝑣 ∉ Ptitj
 is incident to a terminal t ∉ Ptitj

 and to two vertices of Ptitj
. 

 No vertex from Ptitj
 is incident to more than two vertices from Ptitj

. 

Proof.(⇐) 

 Suppose there exists a nonterminal vertex 𝑣 ∈ Ptitj
, adjacent to tk ∈ T \{t𝑖 , tj}. It is clear that 

there exists a terminal path between tk  and tj  such that Ptktj
⊂ Ptitj

. Inequality (5) associated 

with Ptitj
 can then be obtained from inequality (5) associated with 𝑃𝑡𝑘𝑡𝑗

 and inequalities (7) 

associated with each nonterminal vertex of  Ptitj
\Ptktj

. 

 Suppose there exists 𝑣 ∈ V \Ptitj
  and 𝑣 adjacent to tk ∈ T \{ti, tj} and to two vertices of Ptitj

. The 

following inequality is valid for 𝑃(𝐺, 𝑇):  𝑥(𝑃titj
) + 𝑥𝑣 ≥ 2. This is obtained by chvátal-gomory 

procedure on inequalities (5) induced by the paths Ptitj
, Ptitk

 and Ptjtk
. Inequality (5) associated 

with the path Ptitj
 can be obtained from the above inequality and inequality (6) of the vertex 𝑣. 

 If there exists a vertex 𝑣 ∈ 𝑃titj
 incident to more than two vertices of 𝑃titj

, this means that there 

exists a terminal path 𝑃′titj
 such that 𝑃′titj

⊂ 𝑃titj
. Inequality (5) associated with 𝑃titj

 can then be 

obtained from inequality (5) of 𝑃′titj
 and inequalities (7) associated with vertices of 𝑃titj

\𝑃′titj
. 
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(⇒)Denote by 𝑎𝑥 ≥ 𝛼 inequality (5). Let 𝑏𝑥 ≥ 𝛽 be an inequality that defines a facet of 𝑃(𝐺, 𝑇). We 
suppose that {𝑥 ∈ 𝑃(𝐺, 𝑇): 𝑎𝑥 = 𝛼} ⊆ {𝑥 ∈ 𝑃(𝐺, 𝑇): 𝑏𝑥 = 𝛽}. Since 𝑃(𝐺, 𝑇) is full dimensional, we need 
to prove that there exists ρ such that 𝑏 = 𝜌𝑎.  

For each vertex 𝑣 ∈ Ptitj
, define a separator 𝑆𝑣 = (V \ Ptitj

) ∪ {𝑣}. For each pair of vertices 𝑢, 𝑣 ∈ Ptitj
, 

the incidence vectors 𝑥𝑆𝑢
 and 𝑥𝑆𝑣

 are solutions of 𝑃(𝐺, 𝑡) and satisfy inequality (5) with equality. 

Hence, 𝑎𝑥𝑆𝑢
= 𝑎𝑥𝑆𝑣

, and hence 𝑏𝑥𝑆𝑢
= 𝑏𝑥𝑆𝑣

.  Therefore: 

b(𝑢) = b(𝑣) = ρ for all 𝑢, 𝑣 ∈ Ptitj  and some scalar 𝜌 ∈ ℝ 

For each vertex 𝑣 ∉ Ptitj
, let 𝑢 ∈ Ptitj be a vertex adjacent to 𝑣. If there is no 𝑢 ∈ Ptitj adjacent to 𝑣, 

then  𝑢 would represent any vertex of Ptitj . Consider the separator 𝑆𝑣
𝑢 = 𝑆𝑢\{𝑣}. The incidence 

vectors 𝑥𝑆𝑣
𝑢
 and 𝑥𝑆𝑢

 are solutions of 𝑃(𝐺, 𝑇) and satisfy inequality (5) with equality. Hence, 𝑎𝑥𝑆𝑢
=

𝑎𝑥𝑆𝑣
𝑢
 and hence b𝑥𝑆𝑢

= b𝑥𝑆𝑣
𝑢
. This implies that:                       𝑏(𝑣) = 0    ∀𝑣 ∉ 𝑃𝑡𝑖𝑡𝑗

                    ∎ 

 

Figure 2: examples of a star tree, clique star, terminal cycle and terminal tree 

4.3 Star tree inequalities 

A star tree J  is a tree given by a root vertex 𝑣r ∈ V  and 𝑓 vertex disjoint paths between 𝑣r and 𝑓 
terminal vertices. Let Pt  be the set of internal vertices of a path between 𝑣r and a terminal vertex 

t ∈ T . Let 𝐹𝐽 ⊆ 𝑇 be the leaf set of J. The following inequalities, are valid for 𝑃(𝐺, 𝑇): 

∑ 𝑥

t∈F

(𝑃𝑡) + (𝑓 − 1)𝑥𝑣r
≥ 𝑓 − 1       (9) 

Theorem 2: Inequality (9) defines a facet of 𝑃(𝐺, 𝑇) if and only if the following hold: 

 𝑓 ≥ 3. 

 No vertex 𝑢 ∈ J is incident to a terminal t ∈ T \𝐹𝐽. 

 If two vertices 𝑢, 𝑣 ∈ 𝐽 are not adjacent in the sub-graph induced by J, then 𝑢𝑣 ∉ E. 

Proof.(⇐) 
 If 𝑓 = 2, then the star tree inequality is equivalent to a path inequality associated with 𝐽. 
 If a vertex 𝑣 ∈ 𝑃t is incident to a terminal 𝑡′ ∈ 𝑇 ∖ 𝐹𝐽, then let the star tree 𝐽′ with all leaves in 

𝐹𝐽 ∖ {𝑡}. Inequality (9) can be obtained from the star tree inequality associated with 𝐽′, the path 

inequality associated with 𝑃′ and the trivial inequalities. If 𝑣𝑟 is incident to a terminal 𝑡′ ∈ 𝑇 ∖
𝐹𝐽, then let the a star tree 𝐽′ with all leaves in 𝐹𝐽 ∪ {𝑡′}. Inequality (9) can be obtained from the 

star tree inequality associated with 𝐽′ and the trivial inequalities.  

 Suppose there exist two vertices 𝑢, 𝑣 ∈ 𝐽 not adjacent in the sub-graph induced by J and 𝑢𝑣 ∈ E.  
a- 𝑢 ∈ 𝑃t and 𝑣 ∈ 𝑃𝑡′, for 𝑡, 𝑡′ ∈ 𝐹𝐽 and 𝑡 ≠ 𝑡′. Then the following inequality:  
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∑ 𝑥

t∈𝐹𝐽

(𝑃t) + (𝑓 − 2)𝑥𝑣r
≥ 𝑓 − 1 

is valid for 𝑃(𝐺, 𝑇) and dominates inequality (9). Then, inequality (9) cannot be facet defining. 

b- 𝑢, 𝑣 ∈ Pt, for 𝑡 ∈ 𝐹𝐽. Let 𝑃𝑢𝑣 ⊂ 𝑃𝑡 ∖ {𝑢, 𝑣} be the internal vertices of the path between 𝑢 and 𝑣. 

Then the  following inequality:               

∑ 𝑥

t∈𝐹𝐽  

(Pt) + (𝑓 − 1)𝑥𝑣r
− 𝑥(P𝑢𝑣) ≥ 𝑓 − 1 

is valid for P(G,T) and dominates inequality (9). Then, inequality (9) cannot be facet defining. 

(⇒) Let us inequality (9) denote by 𝑎𝑥 ≥ 𝛼. Let 𝑏𝑥 ≥ 𝛽 be an inequality that defines a facet of 
𝑃(𝐺, 𝑇) such that {𝑥 ∈ 𝑃(𝐺, 𝑇): 𝑎𝑥 = 𝛼} ⊆ {𝑥 ∈ 𝑃(𝐺, 𝑇): 𝑏𝑥 = 𝛽}. Since 𝑃(𝐺, 𝑇) is full dimensional, we 

need to prove that there exists ρ such that 𝑏 = 𝜌𝑎. For a terminal 𝑡 ∈ 𝐹𝐽, let a ring  𝑄𝑖
𝑡 ⊂ (𝐽 ∖ (𝑃𝑡 ∪

{𝑣𝑟})) be a subset of 𝑓 − 1 vertices containing exactly one vertex of each 𝑃𝑙 for all 𝑙 ∈ (𝐹𝐽 ∖ {𝑡}), i.e., 

for all 𝑙 ∈ (𝐹𝐽 ∖ {𝑡}), |𝑃𝑙 ∩ 𝑄𝑡| = 1 . Consider two vertices 𝑢1, 𝑢2 ∈ 𝐽 ∖ (𝐹𝐽 ∪ {𝑣𝑟}) . There exists two 

terminals 𝑡, 𝑡′ ∈ 𝐹𝐽 and two associated rings 𝑄1
𝑡 , 𝑄2

𝑡′  such that 𝑢1 ∈ 𝑄1
𝑡, 𝑢2 ∈ 𝑄2

𝑡′ and 𝑄1
𝑡 ∖ {𝑢1} = 𝑄2

𝑡′ ∖

{𝑢2}. Let 𝑆𝑄1
𝑡

= (𝑉 ∖ 𝐽) ∪ 𝑄1
𝑡 (resp. 𝑆𝑄2

𝑡′
= (𝑉 ∖ 𝐽) ∪ 𝑄2

𝑡 ′). Clearly 𝑆𝑄1
𝑡
 and 𝑆𝑄2

𝑡′
 are two separators. 

The incidence vectors 𝑥𝑆𝑄1
𝑡

 and 𝑥𝑆𝑄2
𝑡′

 satisfy inequality (9) with equality. Hence, 𝑎𝑥𝑆𝑄1
𝑡

= 𝑎𝑥𝑆𝑄2
𝑡′

. 

Therefore 𝑏𝑥𝑆𝑄1
𝑡

= 𝑏𝑥𝑆𝑄2
𝑡′

implying that b (𝑢1) = b (𝑢2). As 𝑢1 and 𝑢2 are arbitrary, we deduce that: 

b (𝑢) = b (𝑣) = 𝜌 ∀𝑢, 𝑣 ∈ J \(𝐹𝐽 ∪ {𝑣𝑟}) and a scalar 𝜌 ∈ ℝ 

Set 𝑆0 = (V ∖ J ) ∪ {𝑣r}. Clearly, 𝑆0  is a separator, and its incidence vector satisfy inequality (9) 

with equality. Hence, 𝑎𝑥𝑆𝑄1
𝑡

= 𝑎𝑥𝑆0
 and therefore, b𝑥𝑆𝑄1

𝑡

= b𝑥𝑆0
. This yields: 

b (𝑣r) = ∑ b

𝑣∈𝑄1
𝑡

(𝑣) = (𝑓 − 1)ρ 

For a vertex 𝑤 ∉ J, set 𝑆�̅� = 𝑆𝑄1
𝑡

∖ {𝑤} . Clearly, 𝑆�̅� is a separator of 𝐺  and its incidence vector 

satisfies inequality (9) with equality. Hence 𝑎𝑥𝑆�̅� = 𝑎𝑥𝑆𝑄1
𝑡

. Therefore b𝑥𝑆�̅� = b𝑥𝑆𝑄1
𝑡

. This implies 
that: 

 b (𝑤) = 0 ∀𝑤 ∉ J 

From the above equalities, it follows that 𝑏 = 𝜌𝑎.             ∎ 

4.4 Clique star inequalities 

A clique star is a graph defined by a clique induced by K𝑓 ⊂ V  and 𝑓  vertex disjoint paths from 

each vertex of K𝑓  to a terminal t ∈ T. Let 𝑃i
𝑣i  be the internal vertices of the path from  𝑣𝑖  to a 

terminal vertex ti ∈ T. The following inequality is valid for 𝑃(𝐺, 𝑇):     

∑ 𝑥

𝑣i∈K𝑓

(𝑃i
𝑣i) + 𝑥(K𝑓) ≥ 𝑓 − 1 

4.5 Terminal cycle inequalities 

Let 𝐶 ⊆ V  be a cycle and 𝑄 ⊆ 𝐶 be a vertex subset of 𝐶 of size 𝑓. A terminal cycle 𝐿 is a graph 
given by 𝐶  and 𝑓  vertex disjoint paths between vertices of 𝑄 to 𝑓 terminals of 𝑇. The following 
inequality is valid for 𝑃(𝐺, 𝑇): 
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 𝑥(C ) ≥ ⌈
𝑓

2
⌉ 

Theorem 3: A terminal cycle inequality defines a facet of 𝑃(𝐺, 𝑇) if and only if the following hold:  

 𝑓 is odd. 

 If two vertices 𝑢, 𝑣 ∈ 𝑄 are not incident in 𝐿 then (𝑢𝑣) ∉ 𝐸. 

 If there is a vertex 𝑤 not in 𝐿, adjacent to all vertices of 𝑄′ ⊆ 𝑄, then there exists a vertex 

cover in 𝐶 of size ⌈
𝑓

2
⌉ that contains at least |𝑄’| − 1 vertices of 𝑄′.                    ∎ 

4.6 Terminal tree inequalities 

A terminal tree 𝑅 is a tree induced by R ⊆ V  in G  such that all the leaf vertices are terminals. For a 

vertex 𝑣 ∈ R,  let dR(𝑣) be the number of edges that are incident to 𝑣 in 𝑅. Let 𝑓R be the number of 
terminals of R. For a terminal tree the following inequality is valid for 𝑃(𝐺, 𝑇): 

∑(

𝑣∈𝑅

dR(𝑣) − 1)𝑥(𝑣) ≥ 𝑓R − 1 

5 BRANCH-AND-CUT ALGORITHM 

We developed a branch-and-cut algorithm to solve the multi-terminal vertex separator problem. 
The path inequalities are separated in polynomial time by an exact algorithm. However we used 
some heuristic algorithms to separate the valid inequalities cited before. We compare the CPU time 
of the branch-and-cut with the one of the commercial solver Cplex using the double indices 
formulation. We use DIMACS graphs coloring instances [9] by adding some terminal vertices. We use 
also some random graphs. In the following table 𝑛, 𝑚 and 𝑘 represent respectively the number of 
vertices, edges and terminals. Ps, St, Cs, Tt and Tc represent respectively the number of path 
inequalities, star tree inequalities, clique star inequalities, terminal tree inequalities and terminal 
cycle inequalities separated in the branch-and-cut algorithm. Nodes and Gap represent respectively 
the number of branching nodes and the gap given by the branch-and-cut algorithm. Finally, B&C and 
Cplex represent respectively the CPU Time of the branch-and-cut algorithm and Cplex in seconds. 

Table 1: Numerical experimentation and comparison of results 

instances 𝒏 𝒎 𝒌 Ps St Cs Tt Tc Nodes Gap B&C Cplex 

DSJR500 500 99258 10 94 934 903 1 255 1 0% 116.18 37.859 

Anna 138 493 11 210 155 12 31 0 58 20% 0.784 0.972 

DSJC125 125 1472 11 61 665 158 136 103 7 2% 13.245 1.272 

games120 120 638 10 106 1421 136 6 40 31 11% 14.701 0.933 

David 87 406 10 137 1220 54 42 1 137 31% 9.641 1.223 

Jean 80 254 6 34 11 7 0 0 5 4% 0.143 0.172 

Huck 74 391 9 155 81 0 1 0 36 13% 0.584 0.31 

miles250 128 387 15 474 617 40 0 6 426 28% 6.722 1.195 

myciel5 47 236 7 39 23 0 3 6 1 0% 0.376 0.12 

myciel6 95 755 11 176 1354 0 3 14 17 7% 13.413 5.188 

myciel7 192 2360 11 177 344 0 0 77 1 0% 4.609 11.013 

myciel7 192 2360 17 286 987 0 369 69 1 0% 38.996 23.767 

Queen8_ 8 64 728 8 79 83 8 81 15 1 0% 0.382 0.398 

Queen8 _12 96 1368 11 56 199 73 171 19 1 0% 2.136 1.895 
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The bold numbers represent the cases where the branch-and-cut is better than Cplex. We can see 
that when the number of vertices and edges is small, both of Cplex and branch-and-cut are 
efficient. For huge random graphs, when the density and the number of terminals are high, Cplex 
cannot solve instances. We can notice that Cplex is not efficient with high density graphs. 
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Queen10 _ 10 100 2940 11 106 223 18 40 26 5 1% 1.880 1.932 

Queen12_ 12 144 5192 16 126 483 134 150 23 33 7% 7.673 8.697 

Queen14_ 14 196 8372 18 163 600 410 6 81 12 2% 22.8 33.074 

Queen16_ 16 256 12640 16 125 84 90 62 34 1 0% 2.78 62.87 

Queen16_ 16 256 12640 20 386 246 152 201 48 4 0.4% 15.529 83.827 

Random_1000 1000 275308 4 13 1 0 0 0 1 0% 20.528 979.788 

Random_1200 1200 396283 10 45 35 15 0 2 1 0% 148.569 - 

Random_1300 1300 465918 15 187 70 70 26 10 1 0% 517.499 - 

Random_1500 1500 619257 4 6 2 1 0 1 1 0% 75.633 3780.41 

Random_1800 1800 891586 15 111 38 26 39 14 1 0% 719.949 - 

Random_2000 2000 1100866 4 27 10 9 0 5 1 0% 243.373 - 

Random_2100 2100 1213802 10 66 29 21 0 0 1 0% 588.63 - 

Random_2300 2300 1456690 15 107 37 29 32 7 1 0% 1077.519 - 

Random_3000 3000 2478761 4 18 6 5 1 1 1 0% 697.077 - 

Random_3300 3300 2998740 10 66 29 10 0 1 1 0% 1618.887 - 

Random_3800 3800 3978688 15 192 25 24 25 10 1 0% 3039.716 - 
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