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Abstract

Given a weighted undirected graph G with a set of pairs of terminals {si, ti}, i =
1, ..., d, and an integer L ≥ 2, the two node-disjoint hop-constrained survivable net-
work design problem (TNHNDP) is to find a minimum weight subgraph of G such
that between every si and ti there exist at least two node-disjoint paths of length
at most L. This problem has applications to the design of survivable telecommuni-
cations networks with QoS-constraints. We discuss this problem from a polyhedral
point of view. We present several classes of valid inequalities along with necessary
and/or sufficient conditions for these inequalities to be facet defining. We also dis-
cuss separation routines for these classes of inequalities. Using this, we propose a
Branch-and-Cut algorithm for the problem when L = 3, and present some compu-
tational results.
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1 Introduction

Given a weighted undirected graph G = (N,E), an integer L ≥ 2, and a set
of demands D ⊆ N × N , the two node-disjoint hop-constrained survivable
network design problem (TNHNDP) consists in finding a minimum weight
subgraph of G containing at least two node-disjoint paths of at most L hops
between each pair of nodes {s, t} in D.

The edge version of the problem (TEHNDP) has been already investi-
gated by several authors when L = 2, 3. In particular, [5] give a complete and
minimal linear description of the corresponding polytope when L = 2, 3 and
|D| = 1. [3] and [1] have studied the problem when |D| ≥ 2 and when two and
k edge-disjoint paths, respectively, are required. They devise Branch-and-Cut
algorithms for the problem when L = 2, 3 and give some computational re-
sults. Also, Huygens and Mahjoub [4] have studied the two versions of the
problem (TNHNDP and TEHNDP) when L = 4. They give an integer pro-
gramming formulation for the problem in the two cases.

Given an edge subset F ⊆ E, the 0−1 vector xF ∈ R
E, such that xF (e) = 1

if e ∈ F and xF (e) = 0 otherwise, is called the incidence vector of F . The
convex hull of the incidence vectors of the solutions to the TNHNDP on G,
denoted by P (G,L), will be called the TNHNDP polytope. If W ⊂ N is a
node subset of G, then the set of edges that have only one node in W is called
a cut and denoted by δ(W ). We will write δ(v) for δ({v}). A cut δ(W ) such
that s ∈ W and t ∈ N \W will be called an st-cut. Given a node z ∈ N , the
graph G− z is the subgraph obtained from G by deleting the node z and all
its incident edges (but not their other end nodes). Let V0, V1, . . . , VL+1 be a
partition of N such that s ∈ V0, t ∈ VL+1, and Vi 6= 0 for all i = 1, . . . , L. Let
T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj, and |i− j| > 1. The set T
is called an L-path-cut. The nodes in N that do not belong to any demand of
D will be called Steiner nodes. δ(V0, V1, . . . , VL+1) is the set of edges between
any two subsets of the partition of N .

The following linear system along with the integrality constraints formu-
lates the TNHNDP as an integer program when L = 2, 3, 4 (see [4]).
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x(δ(W ))≥ 2 for all st-cuts δ(W ), (1)

x(δG−z(W ))≥ 1 for all st-cuts δG−z(W ), for all z ∈ N \ {s, t}, (2)

x(T )≥ 2 for all L-path-cuts T, (3)

x(TG−z)≥ 1 for all L-path-cuts TG−z, for all z ∈ N \ {s, t}, (4)

x(e)≤ 1 for all e ∈ E, (5)

x(e)≥ 0 for all e ∈ E. (6)

Inequalities (1),(2),(3) and (4) are called st-cut inequalities, st-node-cut
inequalities, L-path-cut inequalities and L-path node-cut inequalities, respec-
tively. Inequalities (5) and (6) are called trivial inequalities.

2 Further Valid Inequalities

In this section, we describe further classes of inequalities that are valid for
P (G,L). As it will turn out, these inequalities define facets in some cases
and reinforce the linear relaxation of the integer programming formulation
presented in the previous section.

In the following two theorems, we present two classes of inequalities that
are valid for the TEHNDP polytope. As we will mention below, they are also
valid for P (G,L) when L = 3.

Theorem 2.1 [3]
Let L = 3 and T = {t1, . . . , tp} be a subset of p destination nodes w.r.t. to
a node s. Let π = (V0, V1, . . . , Vp) be a partition of N such that s ∈ V0, and
ti ∈ Vi, i = 1, . . . , p. Then, the inequality

x(δ(V0, . . . , Vp)) ≥ ⌈4p/3⌉ (7)

is valid for the two-edge connected hop-constrained network design problem.

Theorem 2.2 [1,5]
Let L = 3 and Π = {V 1

0 , V
2
0 , V1, V2, V3, V4} be a partition of V such that

π = (V 1
0 , V

2
0 ∪ V1, V2, V3, V4) induces a 3-st-path-cut, and V1 induces a valid

st-cut in G. If F ⊆ [V 2
0 ∪ V1 ∪ V4, V2] is chosen such that |F | is odd, then the

inequality

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])

+x([V 2
0 ∪ V1 ∪ V4, V2]) ≥ ⌈3− |F |/2⌉ (8)

is valid for the two-edge connected hop-constrained network design problem.
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Inequalities of type (7) are called Rooted Partition inequalities and in-
equalities of (8) are called Double Cut inequalities. Since every solution of
the TNHNDP is also solution of the TEHNDP, Inequalities (7) and (8) are
also valid for TNHNDP. As we will see in the next section, rooted partition
inequalities define facets in some cases.

Now, in the following theorem, we introduce a new class of inequalities
which allows to describe the optimal solutions of the TNHNDP in the case
where the demands are rooted and when the edge weights satisfy the triangle
inequalities.

Theorem 2.3 Suppose that L ≥ 2 and the weight of the edges of G satisfy
the triangle inequalities. Let u ∈ V be a Steiner node and F ⊆ E an optimal
solution of the rooted TNHNDP w.r.t. to these edges weights. If s is the root
of the demands and F ∩ [s, u] = ∅, then δ(u) ∩ F = ∅.

Proof. See [2]. ✷

Corollary 2.4 Consider the rooted TNHNDP and let s be the root of the
demand set. When L = 3 and when the weight of the edges satisfy the triangle
inequalities, then the incidence vector of any optimal solution of the rooted
TNHNDP satisfies

x(su) ≥
∑

uv∈δ(u)\{su}

x(uv), for every Steiner node u ∈ N. (9)

Inequalities (9) are called optimality constraints. They are in polynomial
number and, as we will see in Section 5, they are effective in solving the rooted
TNHNDP.

3 Facets of the TNHNDP Polytope

In this section, we give necessary and sufficient conditions for inequalities (1)-
(6). We also give sufficient conditions for inequalities (7) to define facets of
P (G,L). These conditions will be used later to derive efficient separation pro-
cedures.

First, we discuss the dimension of P (G,L) when L = 3. An edge e is said
to be essential if it belongs to an st-cut or a 3-st-path-cut of cardinality 2, or
to an st-node-cut or a 3-st-path-node-cut of cardinality 1. We denote by E∗

the set of essential edges of G. We have the following theorem.
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Theorem 3.1 dim(P (G, 3)) = |E| − |E∗|.

If G = (N,E) is complete and |N | ≥ 4, then E∗ = ∅. In the remainder of
this paper, G is a complete and simple graph with |N | ≥ 4. Thus, P (G, 3) is
full dimensional. If G is not complete, one can make it complete and obtain an
equivalent problem by adding the missing edges with sufficiently high weights.

Theorem 3.2 (i) Inequality x(e) ≤ 1 defines a facet of P (G, 3) for all e ∈ E.

(ii) Inequality x(e) ≥ 0 defines a facet of P (G, 3) if and only if either
(a) |N | ≥ 5 or
(b) |N | = 4 and e = uv with {u, v} ∈ N \ {s, t}.

Theorem 3.3 Every st-cut inequality and every st-node-cut inequality other
than those induced by {s} or {t} defines a facet of P (G, 3).

Theorem 3.4 Every L-path-cut and L-path-node-cut inequality defines a facet
of P (G, 3) if and only if |V0| = 1 and |VL+1| = 1.

Theorem 3.5 The rooted partition inequality (7) induced by a partition π =
(V0, V1, ..., Vp) defines a facet of P (G, 3) if |Vi| = 1 for all i = 1, . . . , p and p
is not a multiple of 3.

4 Separation Procedures

In order to develop our Branch-and-Cut algorithm, we devise separation al-
gorithms for Inequalities (1)-(4) and Inequalities (7) and (8).

As showed in [1], Inequalities (1)-(4) can be separated in polynomial time
by computing a maximum flow in a special directed graph. For double cut
inequalities, we use the separation heuristic developed by [1].

In the following, we describe a separation heuristic for the rooted parti-
tion inequalities when L = 3 and |Vi| = 1, for all i ∈ {1, ..., p}, and p is not
multiple of 3. By Theorem 3.5, they define facets in this case. Our separation
algorithm in this case is based on the reduction of the separation problem to
that of finding a maximum flow with lower bounds in a special graph.

First, we can easily see that Inequality (7) is equivalent to

x(δ(V0)) +
∑

u∈N\V0

x(δ(u)) ≥
8

3
p+ α (10)
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with

α =







4
3

if p = 3q + 1, for some q ∈ N

2
3

if p = 3q + 2, for some q ∈ N.

Since p = |V \V0| and x(δ(V0)) = x(δ(N \V0)), Inequality (10) is equivalent
to

x(δ(N \ V0)) ≥
∑

u∈N\V0

yu + α (11)

where yu = 8
3
− x(δ(u)), for all u ∈ N \ V0.

Therefore, if x is a solution of RE , then there exists a violated rooted par-
tition inequality induced by a partition π = (V0, V1, ..., Vp) with |Vi| = 1 for
all i = 1, ..., p, if and only if the inequality (11) induced by π is violated by x.

The separation problem of the rooted partition inequalities in this case
then reduces to finding a set of terminals W for which the corresponding
inequality (11) is violated by x. This can be done by computing a feasible
flow with lower bounds in a special directed graph obtained from G and x
and can be implemented in polynomial time. For more details, the reader can
refeer to [2].

5 Branch-and-Cut and Computational Results

Based on the results described in previous sections, we have developed a
Branch-and-Cut algorithm to solve the TNHNDP when L = 3. The algo-
rithm has been implemented in C++, using ABACUS 3.2 to manage the
Branch-and-Cut tree and CPLEX 12.2 as linear solver. It was tested on a
Xeon Quad-Core E5507 machine at 2.27 GHz with 8GB RAM, running under
Linux. The maximum CPU time has been fixed to 5 hours.
The test problems are composed of complete graphs from TSPLIB (with eu-
clidean edge weights). The demands are randomly generated. Each set of de-
mand is either rooted at the same node s or arbitrary having multiple sources
and destinations.
We use in our Branch-and-Cut algorithm all the different inequalities we have
presented above, except in the non-rooted case where we do not use opti-
mality constraints (since they are not valid in this case). The separations
of the different constraints are performed in the following order: (i) st-cut
inequalities, (ii) 3-st-path-cut inequalities, (iii) st-node-cut inequalities, (iv)
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3-st-path-node-cut inequalities, (v) rooted-partition inequalities, (vi) double
cut inequalities.
Table 1 below presents the results obtained for instances with graphs hav-
ing up to 76 nodes. For each instance, we give the type of the demand set
(”a” for arbitrary, ”r” for rooted), the number of nodes |N | and the num-
ber of demands |D|, the number of generated constraints (NC and NNC for
st-cut and st-node-cut inequalities, LPC and LPNC for 3-st-path-cut and 3-
st-path-node-cut inequalities, RP and DC for rooted partition and double cut
inequalities), the relative error, in percentage, between the best upper bound
and the best lower bound obtained at the root node of the Branch-and-Cut
tree (resp., the best lower bound obtained over all the Branch-and-Cut tree)
Gap1 (resp. Gt1). We also give Gap2 and Gt2 which are the gaps (as defined
before) achieved when the optimality constraints, the rooted partition and
double cut inequalities are not used in the Branch-and-Cut algorithm. We fi-
nally give the number of nodes in the Branch-and-Cut tree and the total CPU
time in hours:min.sec. Remark that a value of 0 for Gt1 and Gt2 indicates
that the upper bound obtained is optimal.

Table 1
Results for real instances when L = 3

|N| |D| NC NNC LPC LPNC RP DC Gap1 Gap2 Gt1 Gt2 Tree1 Tree2 CPU1 CPU2

a 14 10 45 13 5978 517 0 23 14.7 14.7 0 0 563 575 0:01:19 0:01:29

a 14 7 4 0 191 0 0 0 2.14 2.14 0 0 9 9 0:00:01 0:00:01

r 14 10 37 15 257 15 4 0 3.58 9.5 0 0 47 171 0:00:01 0:00:05

r 14 7 17 7 56 6 1 0 3.44 10.38 0 0 21 53 0:00:01 0:00:01

a 17 45 475 72 43186 138487 0 43 24.5 30.65 5.46 14.97 1639 795 5:00:00 5:00:00

a 17 8 32 6 17330 694 0 80 14.18 14.18 0 0 1801 2259 0:14:01 0:20:03

r 17 16 74 33 9522 1659 52 0 8.22 16.21 0 4.63 1915 949 0:07:36 5:00:00

a 30 10 78 2 3108 35 0 0 6.19 6.19 0 0 97 97 0:00:52 0:00:57

a 30 15 19 2 52744 13 0 0 43.97 43.97 42.91 42.91 101 101 5:00:00 5:00:00

r 30 10 318 751 509 72 8 0 6.38 9 0 2.98 443 481 0:01:17 5:00:00

r 30 15 778 1435 14098 1726 92 0 11.53 29.28 0 19.24 7411 3007 1:30:53 5:00:00

a 48 10 111 18 76852 18 0 0 42.14 42.14 40.01 40.01 13 13 5:00:00 5:00:00

a 48 15 68 0 28895 0 0 0 58.9 58.9 58.79 58.79 7 7 5:00:00 5:00:00

r 48 10 2425 1411 641 139 18 0 8.1 29.59 0 27.81 387 15 1:05:13 5:00:00

r 48 15 631 897 4001 601 55 0 9.62 45.07 0 40.96 1649 45 0:43:42 5:00:00

a 52 10 202 4 41755 11 0 0 19.15 19.15 15.87 15.87 35 35 5:00:00 5:00:00

a 52 20 57 2 73270 0 0 0 56.35 56.35 56.11 56.11 35 35 5:00:00 5:00:00

r 52 10 1188 2583 562 81 8 0 6.38 25.68 0 23.34 451 35 1:36:51 5:00:00

r 58 20 183 215 27780 3125 91 0 22.27 ∞ 16.5 ∞ 2339 1 5:00:00 5:00:00

r 58 30 69 31 21317 284 38 0 41.42 71.87 38.9 71.87 823 3 5:00:00 5:00:00

r 58 40 244 9 23881 127 23 0 71.88 74.87 70.76 74.75 215 7 5:00:00 5:00:00

r 76 20 26 46 14097 2288 37 0 27.72 45.03 23.68 43.33 1635 17 5:00:00 5:00:00

r 76 40 14 1 12171 116 10 0 53.88 ∞ 53.01 ∞ 305 1 5:00:00 5:00:00

Table 1 shows that for the test problems used in these experiments, 12
instances over 23 have been solved to optimality. For the instances solved to
optimality, the CPU1 time varies from 1 sec to 1h36min. We notice that a
small number of double cut inequalities are generated and for almost all the
instances, the rooted partition inequalities are generated. Also, we notice that
for the instances which are not solved to optimality, the gaps (Gap1 and Gap2)

I. Diarrassouba et al. / Electronic Notes in Discrete Mathematics 41 (2013) 551–558 557



are relatively high while the number of nodes in the Branch-and-Cut tree is
relatively small. Also, we notice that a large number of basic inequalities are
generated. This let us suppose that the algorithm spends a lot of time in
the separation of the different inequalities and does not have enough time to
explore more solutions in the Branch-and-Cut tree.

We have also checked the efficiency of the different constraints presented
in this paper, especially for rooted partition inequalities and optimality con-
straints. For this, we have tried to solve the problem without rooted partition
and double cut inequalities and optimality constraints. In this case, we re-
mark that the efficiency of the algorithm is significantly decreased. For some
instances, we do not have the optimal solution after 5 hours when these con-
straints are removed while the algorithm is able to obtain the optimal solu-
tion, in short time, when they are used (see for example (r17,16) and (r30,10)).
Moreover, for some instances (see (r58,20) and (r76,40)), the algorithm spends
all the time at the root node when the optimality constraints are removed.
This shows the efficiency of the additional inequalities, especially the rooted
partition inequalities and the optimality constraints, in solving the problem.
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