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Given a weighted undirected graph G with a set of pairs
of terminals (si , t i ), i = 1, . . . , d , and an integer L ≥ 2, the
two node-disjoint hop-constrained survivable network
design problem is to find a minimum weight subgraph
of G such that between every si and t i there exist at least
two node-disjoint paths of length at most L. This problem
has applications in the design of survivable telecom-
munication networks with QoS-constraints. We discuss
this problem from a polyhedral point of view. We present
several classes of valid inequalities along with neces-
sary and/or sufficient conditions for these inequalities
to be facet defining. We also discuss separation routines
for these classes of inequalities, and propose a Branch-
and-Cut algorithm for the problem when L = 3, as well as
some computational results. © 2016 Wiley Periodicals, Inc.
NETWORKS, Vol. 67(4), 316–337 2016
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1. INTRODUCTION

Consider an undirected graph G = (N , E), an integer
L ≥ 2, and a set of demands D ⊆ N × N . Each demand
is an ordered pair (s, t) of nodes, s �= t. Node s is referred
to as the source of the demand and t its destination. The
Two Node-Disjoint Hop-Constrained Survivable Network
Design Problem (TNHNDP for short) consists of finding
a minimum weight subgraph of G containing at least two
node-disjoint L-st-paths, that is, paths between s and t with
at most L edges (also called hops), between each pair of nodes
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(s, t) ∈ D. When the demand set consists of one source and
several destinations, the problem is called the Rooted Two
Node-Disjoint Hop-Constrained Survivable Network Design
Problem (rooted TNHNDP).

In [13], Gouveia et al. discuss the TNHNDP within the
context of an MPLS (Multi-Protocol Label Switching) net-
work design model. They propose two extended formulations
involving one set of variables associated with each path
between each pair of demand nodes. The first model uses
standard flow variables, and the second uses hop-indexed
variables. Each subsystem of constraints associated with a
path is a flow model with additional cardinality constraints.
The authors also introduce a third model involving one set
of hop-indexed variables for each pair of terminals. They
show that this aggregated and more compact model produces
the same linear programming bound as the multipath hop-
indexed model. They also present computational results for
L ∈ {4, 5, 6} using these formulations. Unfortunately, as the
number of variables of the resulting models grows with L (and
the number of pairs of terminals), the size of the correspond-
ing linear programming relaxation may lead to excessive
computational time when more dense instances (or instances
with a larger value of L or a larger number of nodes) are con-
sidered. As mentioned in [13], this points out the need for
formulations using only natural variables.

The edge version of the problem (TEHNDP), when we
look for two edge-disjoint hop-constrained paths instead of
two node-disjoint paths, has already been investigated by sev-
eral authors when L ∈ {2, 3}. In particular, Huygens et al.
[15] study the TEHNDP when |D| ≥ 2. They show that the
TEHNDP is strongly NP-Hard for any L ≥ 2 and |D| ≥ 2
by reducing any instance of the dominating set problem to an
instance of the TEHNDP. They also devise a Branch-and-Cut
algorithm for the problem and present some computational
results for L ∈ {2, 3}. Bendali et al. [3] and Diarrassouba
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[6] consider the more general case when k edge-disjoint
hop-constrained paths are required, for any k ≥ 1. Bendali et
al. [3] give a complete and minimal description of the poly-
tope associated with the problem when L = 3 and |D| = 1.
Diarrassouba et al. [7] (see also [6]) consider the problem
when k ≥ 1, |D| ≥ 2 and L ∈ {2, 3}. They present sev-
eral integer programming formulations for the problem and
devise a Branch-and-Cut algorithm for the problem in this
latter case.

Huygens and Mahjoub [14] study the two versions of the
problem (TNHNDP and TEHNDP) when L = 4. They give
an integer programming formulation for the problem in the
two cases. In [4], Dahl considers the hop-constrained path
problem, namely the problem of finding a minimum weight
path between two distinguished nodes s and t with no more
than L edges when L is fixed. He gives a complete description
of the dominant of the associated polytope when L ≤ 3. Dahl
and Gouveia [5] consider the directed hop-constrained path
problem. They describe valid inequalities and characterize
the associated polytope when L ≤ 3.

As mentioned above, Huygens et al. [15] have shown that
the TEHNDP is strongly NP-Hard for the case L ≥ 2 and
|D| ≥ 2. They establish this result by reducing the ver-
tex dominating set problem to the TEHNDP. The reduction,
as well as the related results, is still valid for the case of
node-disjoint paths. In fact, the solutions of the TEHNDP
obtained from the reduction are at the same time solutions of
the TNHNDP. Thus, as the TEHNDP, the TNHNDP is also
strongly NP-Hard for L ≥ 2 and |D| ≥ 2.

One may notice that in the case where L = 2 and the graph
is simple (it does not contain parallel edges), the TNHNDP
reduces to the TEHNDP. Indeed, in this case, an edge set F ⊆
E induces a solution for the TNHNDP if and only if it induces
a solution for the TEHNDP. To see this, first notice that any
two node-disjoint st-paths of G, for every (s, t) ∈ D, are also
edge-disjoint. Thus any solution of the TNHNDP in G is also
solution of the TEHNDP. Now as G is simple, any two edge-
disjoint 2-st-paths of G are of the form (s, u, t) and (s, v, t),
with u �= v, for every (s, t) ∈ D. Clearly, these two paths are
also node-disjoint and hence, any solution of the TEHNDP,
when L = 2 and G is simple, is also solution of the TNHNDP.

When L = 3, the above observation is no longer valid. We
may find, for some graphs, solutions of the TEHNDP with
L = 3 that are not solutions of the TNHNDP. To see this, con-
sider the graph G shown in Figure 1. In this graph, the paths
(s, u, v, t) and (s, v, w, t) form two edge-disjoint st-paths of
length 3, and hence, G induces a solution of the TEHNDP.
However, these two paths are clearly not node-disjoint and G
does not contain any pair of node-disjoint st-paths. Hence, G
is not solution of the TNHNDP.

Following this observation, we focus in this work only on
the case where L = 3. We consider the polytope associated
with the TNHNDP when L = 3 and give some classes of valid
inequalities along with necessary and/or sufficient conditions
for these inequalities to define facets. We also devise sepa-
ration procedures for these inequalities. Using these results,
we develop a Branch-and-Cut algorithm for the problem and
discuss some computational results.

FIG. 1. A solution of the TEHNDP which is not solution of the TNHNDP
for L = 3.

The paper is organized as follows. We first present in
Section 2 the so-called natural formulation for the TNHNDP.
Then, in Section 3, we give some classes of inequalities that
are valid for the TNHNDP polytope. Necessary and suffi-
cient conditions for these inequalities to be facet defining are
discussed in Section 4. In Section 5, we discuss separation
procedures for these inequalities and devise a Branch-and-
Cut algorithm for solving the problem. In Section 6, we
present some computational results for the problem and
finally, give some concluding remarks in Section 7. The
remainder of this section is devoted to more definitions and
notation that will be used throughout the article.

Let G = (N , E) be an undirected graph. Given a node
z ∈ N , we denote by G – z the subgraph obtained from G by
deleting node z and all its incident edges (but not their other
end nodes). If W ⊂ N is a node subset of G, then the set of
edges having only one end node in W is the cut induced by
W and is denoted by δ(W). We write δ(v) for δ({v}). In the
case where the graph is not clear from the context, we use
δG(W), for a given node set W ⊂ N . For two nodes s, t ∈ V ,
an st-cut is a cut induced by a node set W such that s ∈ W
and t ∈ N \ W . For two disjoint node sets U, V ⊂ N , we
denote by [U, V ] the set of edges of G having one node in U
and the other in V. We write [u, V ] instead of [{u} , V ], where
u ∈ N .

Given a partition (V0, . . . , Vp), p ≥ 1, of N, the set of
edges having their end nodes in different sets of the partition
is called the multicut induced by the partition and is denoted
by δ(V0, . . . , Vp).

A directed graph will be denoted by H = (U, A) with U
the set of nodes and A the set of arcs. For any node subset
W ⊂ U, the st-dicut induced by W, denoted by δ+(W), is
the set of arcs whose origin is in W and tail is in U \ W . As
for the undirected case, if the digraph is not clear from the
context, we write δ+

H (W).
Recall that an st-path is a path between two nodes s, t ∈ N .

An L-st-path is an st-path whose length, in terms of number
of edges, is at most L.

Also, recall that a terminal node is a node involved in at
least one demand. The set of terminal nodes of G will be
denoted by R. Nonterminal nodes, those not involved in any
demand, will be called steiner nodes.

Finally, given an edge subset F ⊆ E, the 0-1 vector xF ∈
R

E such that xF(e) = 1 if e ∈ F and xF(e) = 0 otherwise, is
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the incidence vector of F and, given a vector w ∈ R
E , we let

w(F) = ∑
e∈F w(e).

2. NATURAL FORMULATION FOR THE TNHNDP

In this section, we present an integer programming for-
mulation for the TNHNDP for L ∈ {2, 3, 4}. As we will see
later, this formulation is no longer valid for L ≥ 5. Also, this
formulation only uses the so-called design variables, where
each variable corresponds to an edge of the input graph G.

It is clear that the incidence vector xF of an edge set F ⊆ E
inducing a solution of the TNHNDP satisfies the following
inequalities

x(δ(W)) ≥ 2, for all st-cuts δ(W) and (s, t) ∈ D. (2.1)

Inequalities (2.1) are the so-called st-cut inequalities. They
ensure that the subgraph induced by F contains at least two
edge-disjoint st-paths for all (s, t) ∈ D.

In [4], Dahl introduced a class of valid inequalities for
the hop-constrained shortest st-path problem. For two nodes
s, t ∈ V , s �= t, let (V0, . . . , VL+1) be a partition of N with
s ∈ V0, t ∈ VL+1, and Vi �= ∅ for all i ∈ {1, . . . , L}. The set
T of edges uv ∈ E such that u ∈ Vi, v ∈ Vj, and |i − j| > 1,
that is,

T = δ(V0, . . . , VL+1) \ L∪
i=0

[Vi, Vi+1],

is called an L-st-path-cut. Figure 2 gives an illustration for
L = 3. Notice that an L-st-path-cut intersects each L-st-path
in at least one edge.

Dahl [4] showed that the inequality

x(T) ≥ 1

is valid for the L-st-path polyhedron. These inequalities are
called L-st-path-cut inequalities.

Using similar type of partitions, these inequalities can
be generalized in a straightforward way to the TNHNDP
polytope as

x(T) ≥ 2, for every L-st-path-cut T of G,

for any (s, t) ∈ D. (2.2)

Inequalities of type (2.2) will also be called L-st-path-cut
inequalities. Inequalities (2.2) together with (2.1) ensure that
the subgraph induced by a solution contains at least two edge-
disjoint paths of length ≤ L.

Inequalities (2.1) and (2.2) can be extended to the case of
node-disjoint paths. For the node case, the following similar
inequalities are also needed to ensure that the paths are node-
disjoint

x(δG−z(W)) ≥ 1, for all st-cuts δG−z(W),

z ∈ N \ {s, t} and (s, t) ∈ D, (2.3)

x(TG−z) ≥ 1, for all L-st-path-cuts TG−z of G − z,

z ∈ N \ {s, t} and (s, t) ∈ D. (2.4)

Inequalities (2.3) and (2.4) are called respectively st-node-cut
and L-st-node-path-cut inequalities. Together with inequali-
ties (2.1) and (2.2), they ensure that there exist at least two
node-disjoint L-st-paths in the subgraph induced by an edge
set F.

Finally, the incidence vector of an edge F inducing a
solution of the TNHNDP satisfies

x(e) ≤ 1, for all e ∈ E, (2.5)

x(e) ≥ 0, for all e ∈ E. (2.6)

Inequalities (2.5) and (2.6) are called trivial inequalities.
Huygens and Mahjoub [14] showed that when |D| = 1

and L ∈ {2, 3, 4}, inequalities (2.1)–(2.6) together with the
integrality constraints formulates the TNHNDP. This result
can be easily extended to the case where |D| ≥ 2. An edge
set F induces a solution of the TNHNDP in this case if and
only if xF satisfies the following inequalities

x(δ(W)) ≥ 2, for all st-cuts δ(W) and (s, t) ∈ D,

x(δG−z(W)) ≥ 1, for all st-cuts δG−z(W),

z ∈ N \ {s, t} and (s, t) ∈ D,

x(T) ≥ 2, for all L-st-path-cuts T and (s, t) ∈ D,

x(TG−z) ≥ 1, for all L-st-path-cuts TG−z of G − z,

z ∈ N \ {s, t} and (s, t) ∈ D,

x(e) ≤ 1, for all e ∈ E,

x(e) ≥ 0, for all e ∈ E.

We thus have the following result.

Theorem 1. The TNHNDP when L ∈ {2, 3, 4} is equivalent
to the integer program

min
{
wx : x satisfies (2.1) − (2.6), x ∈ Z

E} . (2.7)

Formulation (2.7) is called natural formulation. As we can
see, it only involves design variables. The TNHNDP polytope,
denoted by TNHNDP(G,L), is the convex hull of the solutions
to program (2.7).

We will also call inequalities (2.1)–(2.4) the natural
inequalities. Here “natural” means that they are necessary
in the natural formulation of the problem.

As mentioned before, formulation (2.7) is no longer valid
for L ≥ 5. Consider for example the graph shown in Figure 3.

As we can see, its incidence vector satisfies inequalities
(2.1)–(2.4) but, unfortunately, the graph does not contain two
node-disjoint st-paths of length at most L = 5. This example
is given in [14].

Also, observe that the linear relaxation of formulation
(2.7) is not integral when L = 3. To see this, consider the
graph G = K5 in Figure 4, where the variables corresponding
to edges in solid lines have value 1, those corresponding to
edges in dashed lines have value 1

2 and those corresponding
to the dotted edges have value zero.
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FIG. 2. Support graph of an L-st-path-cut with L = 3 and T formed by the solid edges.

FIG. 3. Infeasible solution of the TNHNDP with L = 5 and D = {(s, t)}.

It is easy to check that this solution is a fractional extreme
point of the polyhedron given by the linear relaxation of for-
mulation (2.7) with L = 3 and D = {(1, 4)}. Moreover, this
solution violates the following inequality

x(e1) + 2x(e2) + x(e3) + 2x(e4) + x(e5) + 2x(e8) ≥ 3.
(2.8)

Furthermore, and as we will see in Section 4, inequality
(2.8) defines a facet of the TNHNDP polytope.

Therefore, the natural inequalities together with the trivial
inequalities are not sufficient to describe TNHNDP(G,3) and

further inequalities are necessary for its description. In the
next section, we present several classes of additional valid
inequalities for TNHNDP(G,L), for L ≥ 2 in general, and
more specifically for L = 3.

3. VALID INEQUALITIES OF TNHNDP(G,L)

In this section, we present several classes of valid inequal-
ities for the TNHNDP polytope. We may notice that since
any two node-disjoint paths in G are also edge-disjoint, it
follows that any solution of the TNHNDP is also a solu-
tion of the TEHNDP. Thus, every valid inequality for the
TEHNDP polytope is also valid for the TNHNDP polytope.
In the following, we describe some classes of valid inequal-
ities for the TEHNDP, which are, consequently, valid for
the TNHNDP polytope, and introduce a class of inequalities
which is specific to the TNHNDP.

3.1. Valid Inequalities from the TEHNDP Polytope

The first inequalities are the so-called generalized L-st-
path-cut inequalities. They have been introduced by Dahl and
Gouveia [5] for the problem of finding an L-st-path between
two nodes s and t. They are defined as follows. Let (s, t) ∈ D

FIG. 4. A fractional extreme point of the linear relaxation of the TNHNDP with L = 3 and D = {(1, 4)}.[Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

NETWORKS—2016—DOI 10.1002/net 319



and π = (V0, . . . , VL+r), r ≥ 1, be a partition of N such that
s ∈ V0 and t ∈ VL+r . Then, the generalized L-st-path-cut
inequality induced by (s, t) and π is∑

e∈[Vi ,Vj],i �=j

min(|i − j| − 1, r)x(e) ≥ r. (3.9)

These inequalities can be easily extended to the TNHNDP
by replacing the right-hand side of inequality (3.9) by 2r,
yielding ∑

e∈[Vi ,Vj],i �=j

min(|i − j| − 1, r)x(e) ≥ 2r. (3.10)

Inequalities (3.10) give, in some way, the minimum num-
ber of the so-called jumps involved in a partition π =
(V0, . . . , VL+r), with s ∈ V0 and t ∈ VL+r , for some r ≥ 1.
A jump is an edge between two nonconsecutive sets of π .
A jump between two sets Vi and Vj of π will be said to be of
length |i− j|−1. An inequality of type (3.10) for π expresses
the fact that a set of two st-paths of length at most L in G con-
tains a set of jumps of total length ≥ 2r, and that these jumps
may be completed by non-jump edges to form two st-paths
of length ≤ L.

Inequalities of type (3.10) will also be called generalized
L-st-path-cut inequalities. They generalize the L-st-path-cut
inequalities (2.2). In fact, these latter inequalities are obtained
from the former ones by setting r = 1.

Theorem 2 ([5]). For two nodes s, t ∈ N with (s, t) ∈ D,
the generalized L-st-path-cut inequalities (3.10) are valid for
the TNHNDP polytope.

Another family of valid inequalities is that of the so-called
rooted partition inequalities, introduced by Huygens et al.
[15] for the TEHNDP. Suppose that there are p demands,
|D| ≥ p ≥ 2, of the form (s, ti), i = 1, . . . , p, for some s ∈ N
and ti ∈ N \ {s}. These demands are said to be rooted in node
s and s is the root for these demands. Let (V0, V1, . . . , Vp)

be a partition of N such that s ∈ V0 and ti ∈ Vi, for all
i ∈ {1, . . . , p}. Such a partition is called a rooted partition.
Huygens et al. [15] showed that, for any L ≥ 2, the following
inequality is valid for the TEHNDP polytope

x(δ(V0, V1, . . . , Vp)) ≥
⌈

(L + 1)p

L

⌉
. (3.11)

They called this the rooted partition inequality. It indicates
that in the subgraph induced by any solution of the TEHNDP,
the multicut induced by a rooted partition contains at least⌈

(L+1)p
L

⌉
edges.

As mentioned before, rooted partition inequalities (3.11)
are also valid for the TNHNDP. Moreover, as we will see
in Section 4, they define, under some conditions, facets of
TNHNDP(G,3).

Theorem 3 ([15]). The rooted partition inequalities (3.11)
are valid for the TNHNDP polytope.

We now present the last class of inequalities coming from
the TEHNDP. In [15], Huygens et al. introduced the following
class of inequalities for the TEHNDP. Let (s, t) and (s1, t1)
be two demands, with s1 �= s (t1 and t may be the same
node). Let (V1

0 , V2
0 , V1, V2, V3, V4) be a partition of N such

that (V1
0 , V2

0 ∪ V1, V2, V3, V4) induces a 3-st-path-cut T and
V1 induces a s1t1-cut in G. Such a partition is called a double
cut. For an edge set F ⊆ [V2

0 ∪ V1 ∪ V4, V2] such that |F| is
odd, the inequality

x([V1
0 , V1 ∪ V2 ∪ V3 ∪ V4])

+ x([V2
0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])

+ x([V2
0 ∪ V1 ∪ V4, V2] \ F) ≥ 3 −

⌊ |F|
2

⌋
(3.12)

is called double cut inequality and is valid for the TEHNDP
when L = 3. Figure 5 gives an illustration.

As before, double cut inequalities are also valid for the
TNHNDP polytope.

Theorem 4 ([15]). The double cut inequalities (3.12) are
valid for the TNHNDP polytope when L = 3.

Double cut inequalities (3.12) express the fact that if an
edge set F ⊆ [V2

0 ∪ V1 ∪ V4, V2] is taken in a solution of the
TEHNDP, then the two edge-disjoint 3-st-paths and the two
edge-disjoint 3- s1t1-paths of this solution must use at least

3 −
⌊ |F|

2

⌋
edges from (T ∪ [V2

0 , V1] ∪ [V1, V2]) \ F.

Huygens et al. [15] also described necessary conditions for
the double cut inequalities to define facets of the TEHNDP
polytope.

Theorem 5 ([15]). Consider the rooted TEHNDP with
source node s, L = 3 and t1 and t2 two destination nodes.
Let π = (V1

0 , V2
0 , V1, V2, V3, V4) be a partition of N with

s ∈ V1
0 , t1 ∈ V1 and t2 ∈ V4, and F ⊆ [V2

0 ∪ V1 ∪ V4, V2].
Then, the double cut inequality (3.12) induced by π and F
defines a facet of the TEHNDP polytope only if

1. |V1
0 | = 1 and V2

0 = ∅,
2. |V1| = 1,
3. |V4| ≤ 2.

3.2. Further Valid Inequalities

Next, we will introduce a new class of inequalities that
are valid for the TNHNDP polytope. By contrast to those pre-
sented before, these inequalities are specific to the TNHNDP.
We call them st-jump inequalities and they are presented in
the following theorem.

Theorem 6. Assume that |N | ≥ 5, (s, t) ∈ D, L = 3 and let
(V0, V1, . . . , V4) be a partition of N such that s ∈ V0 and
t ∈ V4. Let ui be a node of Vi, i = 1, 2, 3. Then, the st-jump
inequality
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FIG. 5. A double cut with L = 3 and t1 = t.[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

2∑
i=0

x([Vi, Vi+2]) +
1∑

i=0

4∑
j≥i+3

2x([Vi, Vj])

+
1∑

i=0

x([Vi, Vi+1 \ {ui+1}])

+
3∑

i=2

x([Vi \ {ui} , Vi+1]) ≥ 3, (3.13)

is valid for the TNHNDP polytope.

Proof. We shall use the Chvátal-Gomory procedure
to show the validity of st-jump inequalities. Let u1 ∈
V1, u2 ∈ V2, and u3 ∈ V3 and let T1, T2, T3, and
T4 be the L-st-path-cuts induced by (V0, {u1} , V2 ∪ V1 \
{u1} , V3, V4), (V0, V1, {u2} , V3 ∪ V2 \ {u2} , V4), (V0, V1 ∪
V2\{u2} , {u2} , V3, V4), and (V0, V1, V2∪V3\{u3} , {u3} , V4),
respectively. Then by summing the 3-st-path-cut inequalities
induced by Ti, i = 1, . . . , 4, and the st-node-cut inequalities
induced by V0 and u1, by V0 ∪ V1 and u2, and by V4 and u3,
together with

x(e) ≥ 0, for all e ∈ δ(V1\ {u1} , V3) ∪ δ(V2\ {u2} , V4)

∪ δ(V1, V3\ {u3}),
3x(e) ≥ 0, for all e ∈ δ(V0, V1\ {u1} ∪ V4) ∪ δ(V1, V2\ {u2})

∪ δ(V3\ {u3} , V4),

4x(e) ≥ 0, for all e ∈ δ(V0 ∪ V2\ {u2} , V3) ∪ δ(V1, V4),

dividing the resulting inequality by 5, and rounding up the
right-hand side, we obtain inequality (3.13). ■

An illustration of st-jump inequalities is given by inequal-
ity (2.8) obtained from the graph of Figure 4 and the partition
π = (V0, V1, V2, V3, V4) = ({1} , {5} , {2} , {3} , {4}) with

u1 = 5, u2 = 2, u3 = 3. Here, s = 1, t = 4, and T will denote
the 3-st-path-cut induced by π . Inequality (2.8) indicates that
any feasible solution F ⊆ E intersects T in at least two edges
if F contains an edge of [V0, V4] ∪ [V0, V3] ∪ [V1, V4] and at
least three edges if not. Notice that any feasible solution may
contain one or more edge from the st-path (s, u1, u2, u3, t).
For a more general partition (that is, with |Vi| ≥ 2 for some
i ∈ {1, 2, 3}), if F does not contain an edge of the path
(s, u1, u2, u3, t), then it may contain at least one edge from
[V0, V1\{u1}]∪[V1, V2\{u2}]∪[V2\{2} , V3]∪[V3\{3} , V4].

As we will see in Section 4, st-jump inequalities may
define facets of the TNHNDP polytope.

4. FACETS OF THE TNHNDP POLYTOPE

In this section, we investigate the conditions under which
the inequalities presented in the previous section define facets
of TNHNDP(G,3). These conditions will be used later to
devise efficient separation procedures for these inequalities.
First, we discuss the dimension of TNHNDP(G,3).

An edge e ∈ E is said to be essential if the TNHNDP
on the graph obtained by deleting the edge e from G has no
solution. This clearly means that e is essential if and only if
it belongs to either an st-cut or a 3-st-path-cut of cardinality
2, or, to an st-node-cut or a 3-st-path-node-cut of cardinality
1. We thus have the following theorem.

Theorem 7. dim(TNHNDP(G, 3)) = |E| − |E∗|, where
|E∗| is the set of essential edges.

Proof. Note first that since the edges of E∗ belong to
every solution of the problem, that is, xF(e) = 1, for all
e ∈ E∗, and every solution F ⊆ E of the problem, we
have dim(TNHNDP(G, 3)) ≤ |E| − |E∗|. Now we show that
dim(TNHNDP(G, 3)) ≥ |E| − |E∗| by showing that there
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exists |E| − |E∗| + 1 solutions of the problem whose inci-
dence vectors are affinely independent. Consider the edge
sets Ef = E \ {f }, for every f ∈ E \ E∗. Clearly, the edge
sets Ef , for every f ∈ E \ {f }, and E induce solutions of the
TNHNDP with L = 3. Let x∅ and xf be the incidence vectors
of the solutions E and Ef , f ∈ E\E∗, respectively. The matrix
whose rows are x∅ − xf , f ∈ E \ E∗, is given by

|E \ E∗|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|E\E∗|︷ ︸︸ ︷⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

|E∗|︷ ︸︸ ︷
0 · · · 0
...

...
...

...
...

...
0 · · · 0

⎞⎟⎟⎟⎟⎠

Clearly, this matrix contains an identity submatrix of size
|E| − |E∗|, which shows that vectors x∅ − xf , f ∈ E \ E∗, are
linearly independent. Thus, vectors x∅, xf , f ∈ E \ E∗, form
a family of |E| − |E∗| + 1 affinely independent solutions of
the TNHNDP, which establishes the theorem. ■

An immediate consequence of Theorem 7 is the following.

Corollary 8. If G = (N , E) is a complete graph and |N | ≥
4, then TNHNDP(G,3) is full dimensional.

In the remainder of this article, the graph G = (N , E) is
assumed to be complete and simple (that is, it has no parallel
edges), and has |N | ≥ 4. By Corollary 8, TNHNDP(G,3)
is full dimensional under these conditions. Notice that if G
is not complete, one can obtain an equivalent TNHNDP by
adding missing edges to G to make it complete, and giving
the new edges a sufficiently large weight.

Now we investigate the conditions for the trivial and nat-
ural inequalities to define facets. The next two theorems give
necessary and sufficient conditions for the trivial inequalities
to be facet defining.

Theorem 9. Inequality x(e) ≤ 1 defines a facet of
TNHNDP(G,3), for every e ∈ E.

Proof. Note that as G is complete and |N | ≥ 4, by Corol-
lary 8, TNHNDP(G,3) is full dimensional. Thus, to prove
the theorem, it suffices to show that there exist |E| solu-
tions of the problem satisfying x(e) = 1 and which are affinely
independent.

For all f ∈ E \ {e}, consider the edge set Ef = E \ {f }.
As |N | ≥ 4 and G is complete, Ef induces a solution of the
TNHNDP, for all f ∈ E \ {e}. Hence, E and the edge sets
Ef , for all f ∈ E \ {e}, constitute a set of |E| solutions of the
TNHNDP. Moreover, their incidence vectors satisfy x(e) = 1.
Finally, using a similar proof as in Theorem 7, we can show
that these vectors are affinely independent which proves the
theorem. ■

Theorem 10. Inequality x(e) ≥ 0 defines a facet of
TNHNDP(G,3) if and only if either |N | ≥ 5 or |N | = 4, D =
{(s, t)} and e = uv with {u, v} = N \ {s, t}.

Proof. Note that G being a complete graph with |N | ≥ 4
implies that TNHNDP(G,3) is full dimensional.

Suppose that |N | ≥ 5. Then, for all (s, t) ∈ D, G con-
tains four node-disjoint st-paths (an edge of [s, t] and three
paths of the form (s, u, t), u ∈ N \ {s, t}). Hence, any edge
set E \ {f , g} , f , g ∈ E, contains at least two node-disjoint
3-st-paths. The sets E \ {e} and Ef = E \ {e, f }, for all
f ∈ E \ {e}, constitute a set of |E| solutions of the TNHNDP.
Moreover, their incidence vectors satisfy x(e) = 0 and are
affinely independent, yielding that x(e) ≥ 0 defines a facet
of TNHNDP(G,3).

Now suppose that |N | = 4, so N = {s, t, u, v}. If |D| ≥
2, then G has at least three terminal nodes. Without loss of
generality, we assume that these three terminals are s, t, and
u. In this case, any edge e ∈ E is adjacent to at least one
terminal z ∈ {s, t, u}. Therefore, the inequality x(e) ≥ 0 can
be obtained by summing the following inequalities which are
valid for TNHNDP(G,3)

x(δ(z)) ≥ 2,

−x(f ) ≥ −1, for all f ∈ δ(z) \ {e} .

Thus, x(e) ≥ 0, for every e ∈ E, is redundant with respect to
the st-cut inequalities (2.1) and the trivial inequalities (2.5).

Finally, suppose that |N | = 4, |D| = 1, so D = {(s, t)},
and e = uv with {u, v} = N \ {s, t}. Then, the edge sets E \ {e}
and Ef , for all f ∈ E \ {e}, introduced above, are still solu-
tions of TNHNDP. Moreover, their incidence vectors satisfy
x(e) = 0 and are affinely independent, implying that x(e) ≥ 0
defines a facet. ■

In what follows, we investigate the conditions for the
st-cut and the st-node-cut inequalities to define facets of
TNHNDP(G,3). Observe that it may not be easy to give neces-
sary and sufficient conditions for these inequalities to define
facets in the general case when |D| ≥ 2. Consider for exam-
ple the instance of the TNHNDP given by the graph G shown
in Figure 6, and demand set D = {(s, t1), (s, t2), (s, t3)}.

We can see that the node set W = {s, t1} induces a st2-
node-cut with respect to node z, and that every solution
F ⊆ E of the TNHNDP on G such that xF(δG−z(W)) = 1
satisfies xF(st1) = 1. Indeed, if we consider a solution
F ⊆ E of the TNHNDP on G such that st1 /∈ F, then as
(s, t1) ∈ D and, hence, the subgraph induced by F contains
two node-disjoint paths between s and t1, those paths are of
the form P1 = (s, u1, . . . , t1) and P2 = (s, u2, . . . , t1), where
u1, u2 ∈ {z, t2, t3}. As st1 /∈ F, we have that u1 and u2 are in
W . Moreover, as P1 and P2 are node-disjoint, it follows that
u1 �= u2, and hence, one of them, say u1, is different from z.
Therefore, the path P1 uses at least two edges of δG−z(W),
and xF(δG−z(W)) ≥ 2 > 1. Consequently, the st1-node-cut
inequality induced by W and z does not define a facet of
TNHNDP(G,3).
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FIG. 6. A graph G, a node set W and node z such that x(δG−z(W)) ≥ 1
does not induce a facet.

If we consider now the graph G′ obtained by adding to G
a steiner node u adjacent to all the nodes of G (in this way, G′
is also complete as G is complete) and let W = {s, t1, u}, then
x(δG′−z(W)) ≥ 1 defines a facet of TNHNDP (G′,3). In fact,
a deeper observation of the above example shows that the fact
that an st-node-cut inequality defines a facet depends on the
disposition of the demands and steiner nodes over W and W .
There may exist several types of configurations in which st-
node-cut inequalities define facets. In the next two theorems,
we show that the st-cut and the st-node-cut inequalities define
facets of TNHNDP(G,3) when |D| = 1.

Theorem 11. When |D| = 1, every st-cut inequality defines
a facet of TNHNDP(G,3).

Proof. Similar to that used to prove Theorem 3.3 of [3].
■

Theorem 12. If |N | ≥ 5 and |D| = 1 with D = {(s, t)}, then
every st-node-cut inequality induced by a node set W ⊆ N
such that s ∈ W , t /∈ W and W \ {s} �= ∅ �= W \ {t} defines
a facet of TNHNDP(G,3).

Proof. Let W ⊆ V be such that s ∈ W , t ∈ W , and
W \ {s} �= ∅ �= W \ {t}, and let z ∈ N \ {s, t}. As G is
complete and |N | ≥ 5, TNHNDP(G,3) is full dimensional.
Let us denote by ax ≥ α the inequality (2.3) induced by
W and z, and let bx ≥ β be a facet defining inequality of
TNHNDP(G,3) such that {x ∈ TNHNDP(G, 3) : ax = α} ⊆
{x ∈ TNHNDP(G, 3) : bx = β}. To prove that inequality
x(δG−z(W)) ≥ 1, induced by W and z, defines a facet, it
then suffices to show that there exist ρ ∈ R such that b = ρa.
To do this, we use a result proven by Bendali et al. [3] on
the so-called k edge-disjoint 3-hop-constrained paths prob-
lem (kHPP for short). This latter problem consists of finding,
given two nodes s and t, a minimum weight subgraph of G
containing k edge-disjoint paths of length at most 3 between
s and t. Here k is a fixed integer. Bendali et al. [3] studied the
polytope associated with this problem, denoted by kHPP(G),

and showed that for any k ≥ 1, the st-cut inequalities (2.1)
are valid for kHPP(G) and define facets. They also showed
that kHPP(G) is full dimensional if G is complete and N ≥ 4.

Our idea is to use the fact that x(δG−z(W)) ≥ 1 is
a valid st-cut inequality for 1HPP(G – z), and hence, by
Bendali et al. [3], defines a facet of 1HPP (G − z). As
x(δG−z(W)) ≥ 1 defines a facet of 1HPP(G – z), there exist
dim( 1 HPP( G – z )) + 1 solutions of the 1HPP on G – z
whose incidence vectors satisfy x(δG−z(W)) ≥ 1 with equal-
ity and are affinely independent. In what follows, we shall
use these solutions to build |E| solutions of the TNHNDP
on G satisfying x(δG−z(W)) ≥ 1 with equality and which
are still affinely independent. This will yield the existence of
ρ ∈ R such that b = ρa. Notice that as G is complete and
|N | ≥ 5, G – z is also complete with |N \ {z} | ≥ 4. Thus,
by Bendali et al. [3], 1HPP(G – z) is full dimensional and
dim(1HPP(G − z)) = |E| − |δ(z)| = |E| − |N | + 1. The idea
of the proof is summarized in Figure 7 below.

As x(δG−z(W)) ≥ 1 defines a facet of 1HPP(G), there
must exist m′ = |E| − |N | + 1 solutions of the 1HPP on G
– z, denoted by F ′

i , i = 1, . . . , m′, whose incidence vectors
are affinely independent and satisfy x(δG−z(W)) = 1. As the
edge sets F ′

i , where i ∈ {1, . . . , m′}, induce affinely indepen-
dent vectors, one of them contains the edge st. We will denote
by F ′

1 such an edge set.
We denote the edges of δ(z)\{sz, zt} by ej, j = 1, . . . , |N |−

3, and the edges sz and zt by e|N |−2 and e|N |−1, respectively.
Also, observe that as W \ {s} �= ∅ �= W \ {t}, there exist two
nodes, say u1 and u2, with u1 ∈ W \ {s} and u2 ∈ W \ {t}.

The edge sets Fi = F ′
i∪δ(z), for all i ∈ {1, . . . , m′}, induce

solutions of the TNHNDP. Indeed, as F ′
i , i ∈ {

1, . . . , m′} is
solution of the 1HPP on G – z, there exists an st-path of length
at most 3, say (s, u, v, t) (here u and v may be the same node),
in the subgraph of G – z induced by F ′

i . Moreover, as G is
complete, the edges sz and zt are in G, and (s, z, t) forms an
st-path of length 2 in G. Finally, as z is not a node of G – z,
u, and v are necessarily different from z, and hence, the paths
(s, u, v, t) and (s, z, t) are node-disjoint. Thus, Fi induces a
solution of the TNHNDP on G. Furthermore, the incidence
vectors of Fi, i ∈ {1, . . . , m′}, satisfy x(δG−z(W)) = 1.

Let a′ and b′ be the restriction on E\δ(z) of a and b, respec-
tively. Thus, we have a′xFi = α, for i = 1, . . . , m′. Therefore,
b′xFi = β, for i = 1, . . . , m′. As xFi , i = 1, . . . , m′, are
affinely independent and α �= 0, it follows that xFi �= 0, i =
1, . . . , m′, and hence, xFi , i = 1, . . . , m′, are linearly inde-
pendent. Consequently, a is the unique solution of the system
axFi = α, for i = 1, . . . , m′. Let ρ be such that β = ρα. It
then follows that b′ = ρa′.

Now it remains to show that b(e) = 0 for all e ∈ δ(z).
Consider the edge sets Fm′+j = Fm′ \{ej

}
, for j = 1, . . . , |N |−

3. Clearly, these sets induce solutions of the TNHNDP and
their incidence vectors satisfy x(δG−z(W)) = 1. As axFm′ =
axFm′+j = α, it follows that bxFm′ = bxFm′+j = β. This implies
that b(ej) = 0, for j = 1, . . . , |N | − 3.

Finally, let F0 = F1 ∪ {su1, su2}. Clearly, the edge sets
F0, F|E|−1 = F0 \ {sz} and F|E| = F0 \ {zt} induce solu-
tions of the TNHNDP and their incidence vectors satisfy
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FIG. 7. Scheme of the proof of Theorem 12.

x(δG−z(W)) = 1. Thus, bxF|E|−1 = bxF|E| = bxF0 = β, and
hence, b(sz) = b(zt) = 0. Therefore, b = ρa.

As TNHNDP(G,3) is full dimensional and b = ρa,
we obtain that x(δG−z(W)) ≥ 1 defines a facet of
TNHNDP(G,3). ■

The observation previously made for the st-cut and st-
node-cut inequalities is also valid for 3-st-path-cut and
3-st-node-path-cut inequalities. The conditions under which
they define facets depend on the disposition of the demands
and steiner nodes over the partition inducing the 3-st-path-
cut and 3-st-node-path-cut. There may exist several types
of configurations for these inequalities to define facets. In
the following two theorems, we give necessary and suf-
ficient conditions for 3-st-path-cut and 3-st-node-path-cut
inequalities to define facets of TNHNDP(G,3) when |D| = 1.

Theorem 13. If |D| = 1, then every L-st-path-cut inequal-
ity defines a facet of TNHNDP(G,3) if and only if |V0| = 1 =
|VL+1|.

Proof. Similar to that used to prove Theorem 3.4 of [3].
■

Theorem 14. If |D| = 1, then every L-st-node-path-cut
inequality defines a facet of TNHNDP(G,3) if and only if
|V0| = 1 = |VL+1|.

Proof. The idea of the proof is the same as that used in
proving Theorem 12. To summarize, we use the fact that a
3-st-node-path-cut inequality, x(TG−z) ≥ 1, for some 3-st-
path-cut T and some node z ∈ N \ {s, t}, is valid for 1HPP(G
– z) (recall that 1HPP(G – z) is the polytope associated with
the 3-hop-constrained st-path problem on the graph G – z).
As shown by Bendali et al. [3], a 3-st-path-cut inequality,
induced by a partition (V0, . . . , V4), defines a facet of 1HPP(G
– z) if and only if V0 = {s} and V4 = {t}. As in The-
orem 12, we use this observation to show that if the face
{x ∈ TNHNDP( G, 3 ) : ax = α} is contained in a facet
{x ∈ TNHNDP( G, 3 ) : bx = β}, where ax ≥ α denotes
the inequality x(TG−z) ≥ 1, then b = ρa, for some ρ ∈ R.

As G is complete and |N | ≥ 4, TNHNDP(G,3) is full dimen-
sional and we obtain that x(TG−z) ≥ 1 defines a facet of
TNHNDP(G,3). ■

The next theorem, given without proof, describes suffi-
cient conditions for the st-jump inequalities (3.13) to define
facets of TNHNDP(G,3). For the proof, the reader can refer
to [8].

Theorem 15. Let G = (N , E) be a complete graph with
|N | ≥ 5. The st-jump inequality (3.13), induced by a demand
(s, t) ∈ D and a partition (V0, V1, . . . , V4), defines a facet of
TNHNDP(G,3) if one of the following conditions holds

1. |V1| = |V3| = 1,
2. |V1| = |V2| = |V4| = 1,
3. |V0| = |V2| = |V3| = 1.

Notice that by Theorem 15, inequality (2.8) introduced
in the example of Section 2 defines a facet of the TNHNDP
polytope associated with the graph of Figure 4.

The last theorems of this section deal with the condi-
tions under which the rooted partition inequalities (3.11)
define facets of the TNHNDP polytope. In the following,
we investigate both necessary and sufficient conditions.

Theorem 16 ([15]). Let t1, . . . , tp, p ≥ 2, be a set of p des-
tinations relative to a source node s, that is, (s, ti) ∈ D, for
all i ∈ {1, . . . , p}, and let π = (V0, V1, ,̈ Vp) be a partition of
N such that s ∈ V0 and ti ∈ Vi, i = 1, . . . , p. Then, the rooted
partition inequality (3.11) induced by π defines a facet of
TEHNDP(G,L), for any L ≥ 2, only if p is not multiple of L.

In fact, we can show that a rooted partition inequality is
redundant with respect to the st-cut inequalities when p ≥ L.

Theorem 17. For any L ≥ 2, a rooted partition inequality
induced by a partition (V0, V1, . . . , Vp), p ≥ 2, is redundant
with respect to the st-cut inequalities when p ≤ L.

Proof. Note that p ≤ L implies that
⌈ p

L

⌉ = 1. Also, as
each node set Vi, i = 0, . . . , p, contains a terminal node, the
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inequalities

x(δG(Vi)) ≥ 2, for i = 0, . . . , p, (4.14)

are valid for TNHNDP(G,L). By summing these inequalities
and dividing by 2 the resulting inequality, we get

x(δG(π)) ≥ p + 1 = p +
⌈ p

L

⌉
,

which corresponds to the rooted partition inequality induced
by (V0, V1, . . . , Vp). ■

Corollary 18. A rooted partition inequality induced by
a partition (V0, V1, . . . , Vp), p ≥ 2, defines a facet of
TNHNDP(G,3), different from the st-cut inequalities, only
if p ≥ 4 and p is not multiple of 3.

The next theorem describes further necessary conditions
for (3.11) to be a facet.

Theorem 19. Let t1, . . . , tp, p ≥ 4, be a set of p destinations
of a given source node s, and let π = (V0, V1, ,̈ Vp) be a
partition of N such that s ∈ V0 and ti ∈ Vi, i = 1, . . . , p.
Then, the rooted partition inequality (3.11) induced by π

defines a facet of TNHNDP(G,3), only if |Vi| �= 2 or |Vi ∩
R| �= 2, for all i ∈ {1, . . . , p} (recall that R denotes the set of
terminals of the graph).

Proof. Suppose that the conditions of the theorem are
not satisfied by a node set Vi0 , with i0 ∈ {1, . . . , p}, that
is, |Vi0 ∩ R| = |Vi0 | = 2. We will show that in this case
the inequality (3.11) induced by π is dominated by another
rooted partition inequality and the trivial inequalities.

As we have assumed that |Vi0 ∩R| = |Vi0 | = 2, the node set
Vi0 is composed of two terminal nodes, say t1

i0
and t2

i0
, so Vi0 ={

t1
i0

, t2
i0

}
. Also, as the graph G is assumed to be complete and

simple, there exists a single edge between t1
i0

and t2
i0

. Now
consider the partition π ′ = (V ′

0, V ′
1, . . . , V ′

p, V ′
p+1) such that

V ′
i = Vi, for all i ∈ {1, . . . , i0 − 1} ,

V ′
i0

=
{

t1
i0

}
,

V ′
i0+1 =

{
t2
i0

}
,

V ′
i = Vi−1, for all i ∈ {i0 + 2, . . . , p + 1} .

Clearly, π ′ induces a rooted partition and, obviously, by
summing the inequalities

x(δ(π ′)) ≥ p + 1 +
⌈

p + 1

L

⌉
(rooted partition inequality

induced by π ′),

− x(t1
i0

t2
i0
) ≥ −1,

we obtain

x(δ(π)) ≥ p +
⌈

p + 1

L

⌉
≥ p +

⌈ p

L

⌉
.

This latter inequality dominates the inequality (3.11)
induced by π , which, hence, cannot define a facet of
TNHNDP(G,L). ■

The next theorem gives sufficient conditions for inequal-
ities (3.11) to define facets.

Theorem 20. Let t1, . . . , tp, p ≥ 4, be a set of p destinations
of a given source node s, and let π = (V0, V1, ,̈ Vp) be a par-
tition of N such that s ∈ V0 and ti ∈ Vi, i = 1, . . . , p. Then,
the rooted partition inequality (3.11), induced by π , defines
a facet of TNHNDP(G,3) if |Vi| = 1 for all i ∈ {1, . . . , p} and
p is not a multiple of 3.

Proof. Suppose that |Vi| = 1 for all i = 1, . . . , p and
p is not a multiple of 3. Without loss of generality, we will
assume that E(V0) �= ∅. Let us denote inequality (3.11) by
aT x ≥ α, and let bT x ≥ β be a facet defining inequality of
TNHNDP(G,3) such that{

x ∈ TNHNDP(G, 3) : aT x = α
}

⊆ {
x ∈ TNHNDP(G, 3) : bT x = β

}
.

We will show that b = ρa for some ρ �= 0. ■

Let p = 3q + r, where q ≥ 1 is an integer and r is either
1 or 2. We distinguish two cases.

Case 1. r = 1.

Consider the edge sets

F0 = q−1∪
i=0

{st3i+1, t3i+1t3i+2, t3i+2t3i+3, t3i+3s}
∪ {st3q+1, t3q+r t1

} ∪ E(V0),

and

Fe = (F0 \ {tpt1
}
) ∪ {e} , foralle ∈ δ(tp) \ {stp, tpt1

}
(see Fig. 8 for an illustration of F0).

Observe that the set F0 is a collection of q cycles of
length 4, each cycle containing s and three destination nodes,
together with the edges t1tp and tps. Moreover, these cycles
cover all the destination nodes. Hence, F0 induces a solution
of the TNHNDP. Furthermore, |F0 ∩ δ(V0, V1, . . . , Vp)| =
4q + 2(= α), implying that xF0 satisfies (3.11) with equality.
Similarly, the sets Fe also induce solutions of the TNHNDP.
As for F0, each destination node belongs to a cycle of length
≤ 4 that contains the source node s. Moreover, as |Fe ∩
δ(V0, V1, . . . , Vp)| = |F0 ∩ δ(V0, V1, . . . , Vp)| = 4q + 2, xFe

also satisfies (3.11) with equality, for all e ∈ δ(tp)\
{
stp, tpt1

}
.

Consequently, we have bT xF0 − bT xFe = b(e)− b(t1tp) = 0.
Thus,

b(e) = b(t1tp) for all e ∈ δ(tp) \ {stp, tpt1
}

. (4.15)

Furthermore, let F1 = (F0 \ {stp
}
) ∪ {tptp−1

}
. Note that in

the graph induced by F1, tp belongs to a cycle of length ≤ 4,
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FIG. 8. Edge set F0 in the case where r = 1 and q = 1.

containing s and two further destination nodes. Therefore,
F1 induces a solution of the TNHNDP. Its incidence vector
satisfies aT x ≥ α with equality. As bT xF1 = β, we obtain
b(stp) = b(tptp−1). This together with (4.15) yields

b(e) = b(e′) for all e, e′ ∈ δ(tp).

By exchanging the role of tp and ti’s, i �= p, we get

b(e) = ρ for all e ∈ δ(V0, . . . , Vp), for some ρ ∈ R.

Now let e ∈ E(V0). Obviously, F0\ {e} induces a solution
of the TNHNDP whose incidence vector satisfies aT x ≥ α

with equality. Thus, b(e) = bT xF0 − bT xF0\{e} = 0, for every
e ∈ E(V0).

Case 2: r = 2.

In this case, we let

F ′
0 = q−1∪

i=0
{st3i+1, t3i+1t3i+2, t3i+2t3i+3, t3i+3s}

∪ {st3q+1, t3q+r t1, t3q+1t3q+2
} ∪ E(V0) (4.16)

and

F ′
e = (F ′

0 \ {tpt1
}
) ∪ {e} , for some e ∈ δ(tp)

(see Fig. 9 for an illustration of F ′
0).

Similarly, we can see that, F ′
0 and F ′

e induce solutions of
the TNHNDP whose incidence vectors satisfy aT x ≥ α with
equality. Hence, we have bT xF ′

0 −bT xF ′
e = b(e)−b(t1tp) = 0.

In consequence,

b(e) = b(e′) for all e, e′ ∈ δ(tp).

By exchanging the role of tp and ti’s, i �= p, we get

b(e) = ρ for all e ∈ δ(V0, . . . , Vp), for some ρ ∈ R.

Now for an edge e ∈ E(V0), the edge set F0\ {e} induces
a solution of the TNHNDP whose incidence vector satisfies

FIG. 9. Edge set F0 in the case where r = 2 and q = 1.

aT x ≥ α with equality. Thus, b(e) = bT xF ′
0 − bT xF ′

0\{e} = 0,
for every e ∈ E(V0).

Consequently, from Cases 1 and 2, we have

b(e) =
{

ρ for all δ(V0, . . . , Vp),

0 for all E(V0).

Thus b = ρa, and the proof is complete.

5. BRANCH-AND-CUT ALGORITHM

In this section, we devise a Branch-and-Cut algorithm
for solving the TNHNDP when L = 3. We first describe the
general framework of the algorithm. Then, we discuss two
main ingredients of the algorithm, namely separation rou-
tines for the different inequalities involved in the algorithm
and a primal heuristic.

5.1. General Framework

Our Branch-and-Cut algorithm for the TNHNDP starts by
solving the linear relaxation of the natural formulation of the
problem, that is,

min
{
wx : x satisfies (2.1)– (2.6) and x ∈ R

E} . (5.17)

To solve this linear relaxation, we use the so-called cut-
ting plane method as the natural inequalities (2.1)–(2.4) are
exponential in number. Recall that the cutting plane method
consists of solving a linear program (LP) containing a large
number of constraints by solving a series of LPs contain-
ing a subset of constraints of the original LP. In our case,
the algorithm starts with an LP containing a small number
of natural constraints (2.1)–(2.4) and, iteratively, adds con-
straints (2.1)–(2.4) that are violated by the optimal solution,
say x∗, of the current LP. The algorithm stops when all the
natural inequalities are satisfied by x∗. In this latter case, x∗
is the optimal solution of problem (5.17). To find inequalities
of type (2.1)–(2.4) which are violated by the solution of the
current LP, if there are any, one has to solve the so-called
separation problem associated with inequalities (2.1)–(2.4).
Recall that the separation problem associated with a family of
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inequalities F and a solution x is to verify if x satisfies all the
inequalities of F , and if not, to exhibit at least one of them
which is violated by x. An algorithm solving a separation
problem is called a separation algorithm.

If x∗ satisfies all the natural inequalities and is integral,
then it is optimal for the problem (2.7). If x∗ is fractional,
then we strengthen the linear relaxation of the problem by
adding further valid inequalities. To do this, we also add in
the cutting plane phase the rooted partition and double cut
inequalities (3.11) and (3.12), respectively. Notice that the
st-jump inequalities (3.13) are not taken into account in the
algorithm because we did not find any of them violated in the
preliminary tests we did for |D| ≥ 2.

The separation of the different inequalities used in the
Branch-and-Cut algorithm are performed in the following
order

1. st-cut and L-st-path-cut inequalities,
2. st-node-cut and L-st-node-path-cut inequalities,
3. rooted partition inequalities (only for rooted instances),
4. double cut inequalities.

In this order, we separate the natural inequalities first as
they are necessary in the natural formulation of the TNHNDP.
Then, the rooted partition inequalities are separated before
double cut inequalities because, in our preliminary tests,
rooted partitions inequalities appeared more than double cut
inequalities.

We apply the rooted partition inequalities (3.11) for the
rooted TNHNDP (i.e., when the set of demands is rooted in a
single node) and do not apply them when arbitrary demands
are considered.

All the inequalities added during the algorithm are global
(i.e., valid at every node of the Branch-and-Cut tree) and
many of them can be added at each iteration. Furthermore,
we move to the next class of inequalities only if we do not find
any violated inequalities in the current class. All the generated
inequalities are stored in a dynamic pool (managed by ABA-
CUS), so the inequalities in the pool can be removed from
the current LP when they are not active. Also, the inequali-
ties in the pool are separated before we separate the classes
of inequalities according to the order given above.

In the following, we present the separation algorithms
we have devised for the natural inequalities (2.1)–(2.4),
the rooted partition inequalities (3.11), and the double cut
inequalities (3.12).

5.2. Separation Algorithms

First, we consider natural inequalities, that is to say the
st-cut and the 3-st-path-cut inequalities, on one hand, and
the st-node-cut and the 3-st-node-path-cut inequalities on the
other hand.

We give the following theorem showing that the st-cut and
the 3-st-path cut inequalities (2.1) and (2.2) can be separated
in polynomial time.

Theorem 21. The separation problem of the st-cut and the
3-st-path-cut inequalities (2.1) and (2.2) can be solved using
an O(|D|(|E|2|N | + |N ||E| log |E|))-time algorithm.

Proof. Let x ∈ R
E be the solution for which we are

separating the natural inequalities (2.1)–(2.4). To separate
them, we consider the following graph transformation from
[3] (see also [6]). Let (s, t) ∈ D and let Vst = N \ {s, t} , V ′

st
be a copy of Vst and Ñst = Vst ∪ V ′

st ∪ {s, t}. The copy in V ′
st

of a node u ∈ Vst will be denoted by u′. From G and (s, t),
we build the directed graph G̃st = (Ñst , Ãst). Its arc set Ãst

is obtained as follows. For an edge of the form st ∈ E, we
add an arc (s, t) in Ãst . For each edge su ∈ E, u �= t, (resp.,
vt ∈ E, v �= s), we add in Ãst an arc (s, u), u ∈ Vst (resp.
(v′, t), v′ ∈ V ′

st). For each edge uv ∈ E, with u, v /∈ {s, t},
we add two arcs (u, v′) and (v, u′) in Ãst , with u, v ∈ Vst and
u′, v′ ∈ V ′

st . Finally, for each node u ∈ N \ {s, t}, we add an
arc (u, u′) in Ãst (see Fig. 10 for an illustration).

Notice that for each (s, t) ∈ D, |Ñst | = 2|N | − 2 and
|̃Ast | = 2|E| − |δ(s)| − |δ(t)| + |[s, t]|.

Bendali et al. [3] (see also [6]) showed that there is a
one-to-one correspondence between the st-cuts and the 3-st-
path-cuts in G and the st-dicuts in G̃st which do not contain
arcs of the form (u, u′), for all u ∈ N \ {s, t}. Moreover, if
each arc a ∈ Ãst , corresponding to an edge e ∈ E, is assigned
the capacity c̃(a) = x(e) and each arc of the form (u, u′)
is assigned an infinite capacity, then the weight of an st-cut
or 3-st-path-cut in G with respect to x is the same as that
of the corresponding st-dicut in G̃st with respect to capacity
vector c̃. Thus, for a given (s, t) ∈ D, there is an st-cut or
3-st-path-cut inequality violated by x if and only if there is
an st-dicut in G̃st whose capacity is < 2. If W̃∗

st ⊆ Ñst is a node
set inducing a minimum capacity st-dicut of G̃st , with respect
to c̃, then there is an st-cut or 3-st-path-cut inequality violated
by x if c̃(δ+

G̃st
(W̃∗

st)) < 2. If c̃(δ+
G̃st

(W̃∗
st)) ≥ 2, then every st-

cut or 3-st-path-cut inequality is satisfied by x. Therefore,
the separation problem for the st-cut and the 3-st-path-cut
inequalities reduces to computing a minimum st-dicut in G̃st

with respect to the capacity vector c̃. By the Max Flow-Min
Cut Theorem, computing a minimum weight st-dicut in G̃st

is equivalent to computing a maximum flow separating s and
t in G̃st , which can be done in polynomial time.

Now if δ+
G̃st

(W̃) is an st-dicut of G̃st which does not contain

any arc of the form (u, u′) and is such that c̃(δ+
G̃st

(W̃)) < 2,

then we need to identifiy if δ+
G̃st

(W̃) corresponds to an st-
cut or a 3-st-path-cut in the original graph G. For this, one
can apply the following procedure. First remove from G the
edges corresponding to the arcs of δ+

G̃st
(W̃). Then, compute

the shortest path (in terms of number of edges) between s
and every node of N \ {s} and let l(u) denote the length of a
shortest path between s and node u ∈ N \{s}. If l(t) is infinite,
then δ+

G̃st
(W̃) corresponds to an st-cut of G. If l(t) is finite,

then δ+
G̃st

(W̃) corresponds to a 3-st-path-cut of G. In this case,
the partition (V0, . . . , V4) inducing the 3-st-path-cut is such
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FIG. 10. Construction of graphs G̃st with D = {(s1, t1), (s1, t2), (s3, t3)}.

that V0 = {s} , Vi = {u ∈ N \ {s} : l(u) = i}, for i = 1, 2, 3,

and V4 = N \ (
3∪

i=0
Vi).

The maximum flow computation in G̃st can be han-
dled by the Edmonds–Karp algorithm [10] which runs in
O(|̃Ast |2|Ñst |) = O(|E|2|N |) time. The computation of the
shortest paths (to distinguish whether we have found an st-
cut or a 3-st-path-cut) can be done using Dijkstra’s algorithm
[9], which can be implemented to run in O(|N ||E| log |E|)
time. As this procedure is performed |D| times (one for each
demand), the whole separation algorithm can be implemented
to run in O(|D|(|E|2|N | + |N ||E| log |E|)) time, and hence is
polynomial. ■

The next theorem shows that the separation problem for
the st-node-cut and the 3-st-node-path-cut inequalities (2.3)
and (2.4) can also be solved in polynomial time.

Theorem 22. The separation problem for the st-node-cut
and the 3-st-node-path-cut inequalities (2.3) and (2.4) can
be solved using an O(|D||N |(|E|2|N | + |N ||E| log |E|))-time
algorithm.

Proof. For the st-node-cut and the 3-st-node-path-cut
inequalities (2.3) and (2.4) induced by a node z ∈ N \ {s, t},
the separation problem can be addressed using a similar algo-
rithm as that described in Theorem 21 but on the graph G – z.
We build for each (s, t) ∈ D, the graph G̃z

st from G – z and (s,
t), and check if the weight of a minimum st-dicut in G̃z

st is < 1
or not. If we get an st-cut δ+

G̃z
st
(W̃) of G̃z

st whose weight < 1,

then we identify if it is a st-node-cut or a 3-st-node-path-cut
in a similar way as in Theorem 21. In fact, if δ+

G̃z
st
(W̃) corre-

sponds to an st-dicut of G – z, then it is an st-node-cut of G
with respect to node z, otherwise, it is a 3-st-node-path-cut
of G with respect to node z.

This procedure is repeated for every node z ∈ N \ {s, t}
and every demand (s, t) ∈ D. Thus, the whole separation
algorithm for inequalities (2.3) and (2.4) can be implemented
to run in O(|D||N |(|E|2|N | + |N ||E| log |E|)) time. ■

Now we consider the double cut inequalities (3.12). To
the best of our knowledge, the complexity of the separation
problem associated with the double cut inequalities (3.12) is
still an open question. To separate them, we use the separa-
tion heuristic developed in [6]. This heuristic is implemented

to run in O(|N |3 log |N | (2|N |+|Dsource|+|Ddest|)2

(|N |−1)(|N |+|Dsource|+|Ddest|) ) time (here
Dsource and Ddest denote the sets of nodes which are, respec-
tively, the source and destination in a demand), which is
polynomial.

We discuss now the separation problem of the rooted
partition inequalities (3.11). Recall that a rooted partition
inequality is induced by a set of p terminals t1, . . . , tp which
are destinations relative to a source node s and a partition
(V0, V1, . . . , Vp) such that s ∈ V0 and ti ∈ Vi, i = 1, . . . , p.

Notice that Huygens et al. [15] studied the separation prob-
lem for the rooted partition inequalities for the TEHNDP. In
particular, they showed that the separation problem associ-
ated with inequalities (3.11) can be solved in polynomial
time when L = 2, by using a result from Goemans and
Ramakrishnan [11].

For the case when L ≥ 3, the complexity of the separation
problem of inequalities (3.11) is still unknown. Therefore,
for our purpose, we have devised a heuristic algorithm for
finding violated rooted partition inequalities when L = 3. This
heuristic looks in particular for inequalities (3.11) induced by
a partition (V0, V1, . . . , Vp) with p ≥ 2, p(mod3) �= 0 and
|Vi| = 1, for all i ∈ {1, . . . , p}. As shown in Theorem 20,
such inequalities define facets of TNHNDP(G,3).

Our heuristic is based on the computation of a maximum
flow in a special directed graph where the arc flows are subject
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to upper and lower bounds. First, observe that the inequality
(3.11) induced by (V0, . . . , Vp), p ≥ 2, with s ∈ V0 and
p(mod3) �= 0, is equivalent to

x(δ(V0)) +
∑

u∈N\V0

x(δ(u)) ≥ 8

3
p + 2α (5.18)

with

α =
⎧⎨⎩α1 = 2

3 if p (mod 3) = 1,

α2 = 1
3 if p (mod 3) = 2.

To see this, observe first that

1.
⌈

4p
3

⌉
is obtained by adding a scalar α to 4p

3 where α is

either 2
3 or 1

3 , depending on whether p(mod3) = 1 or
p(mod3) = 2, respectively;

2. x(δ(V0, . . . , Vp)) = 1
2

∑p
i=0 x(δ(Vi)) = 1

2 [x(δ(V0)) +∑p
i=1 x(δ(Vi))], = 1

2 [x(δ(V0)) +∑p
i=1 x(δ(ti))].

By combining points 1 and 2, and multiplying the resulting
inequality by 2, we can write (3.11) as

x(δ(V0)) +
p∑

i=1

x(δ(ti)) ≥ 8

3
p + 2α.

Now as p = |N \ V0| and, as G is undirected, x(δ(V0)) =
x(δ(N \ V0)), inequality (5.18) is equivalent to

x(δ(N \ V0)) ≥
∑

u∈N\V0

yu + 2α, (5.19)

where yu = 8
3 − x(δ(u)), for all u ∈ N \ V0.

Now we describe our separation algorithm. Let x ∈ R
E

which satisfies the trivial inequalities and let y ∈ R
V with

yu = 8
3 − x(δ(u)), for all u ∈ V . Our algorithm starts by

contracting with node s all the steiner nodes of G, every ter-
minal u ∈ R such that (s, u) /∈ D, and every terminal u such
that (s, u) ∈ D and yu < 0 (recall that R denotes the set of
terminal nodes of the graph). For convenience, the supern-
ode obtained after these contractions will still be denoted by
s. We also denote by N the remaining node set after all the
contractions (note that N is composed of the supernode s and
the terminal nodes u such that (s, u) ∈ D and yu ≥ 0).

To find violated rooted partition inequalities, we look for
violated inequalities (5.19) by looking for a feasible flow with
lower bounds in a directed graph G = (N , A). Each arc a of
G is associated with a pair (La, Ua), where La and Ua are,
respectively, the lower and upper bounds of the flow on arc
a. For convenience, they will be called capacities. The graph
G is constructed as follows.

For every edge uv ∈ E with x(uv) > 0, we add two arcs
(u, v) and (v, u) in G with capacities (0, x(uv)). For every node
u ∈ N\{s}, we add an arc (s, u) in G with capacities (yu, +∞).
Finally, we add an arc (s, u0) for some node u0 �= s, with
capacities (0, +∞). This latter arc transforms the feasible
flow problem into a feasible circulation problem (see [2] for

more details). Figure 11 gives an illustration of this graph
transformation.

As the flow on each arc of the graph is subject to a lower
bound, a flow from a terminal, say t1 ∈ N \ {s}, to s in G may
not be feasible with respect to these lower bounds. As shown
in [2], there exists a feasible flow in G if and only if every cut
of G has a non-negative capacity, where the capacity of a cut
induced by a node set W ⊆ N is defined by

∑
a∈δ+

G
(W) Ua −∑

a∈δ−
G
(W) La.

It is not hard to see that the capacity of the cut induced by
W is ∑

a∈δ+
G
(W)

Ua −
∑

a∈δ−
G
(W)

La =
∑

e∈δG(W)

x(e) −
∑
t∈W

yt .

For our separation algorithm, we distinguish two cases.

Case 1. If there is no feasible flow from t1 to s, then there
exists a node set W ⊆ N with W = {

t1, t2, . . . , tp
}

, s ∈ N\W
and whose capacity is such that∑
a∈δ+

G
(W)

Ua −
∑

a∈δ−
G
(W)

La =
∑

e∈δG(W)

x(e) −
∑
t∈W

yt < 0 < 2α.

As s /∈ W , inequality (5.19) induced by W is hence vio-
lated by x. From W, we build a rooted partition π =
(V0, V1, . . . , Vp) with V0 = N \ W , Vi = {ti} , i = 1, . . . , p.
Obviously, if |W |(mod3) �= 0, then the rooted partition
inequality (3.11) induced by π is violated by x.

Case 2. If there exists a feasible flow from t1 to s, then we
compute a maximum feasible flow. We then look for a mini-
mum capacity cut in G separating t1 and s. As shown in [2],
a minimum capacity cut in G can be obtained by comput-
ing the value of a maximum feasible flow from t1 to s. Let
f denote the value of the minimum capacity of a cut and let
W be a node set inducing such a minimum capacity cut. If
|W |(mod3) = 0, then we choose another terminal, say t2,
and repeat the procedure. Observe that, as there exists a fea-
sible flow from t1 to s, there also exists a feasible flow from
any node of G to s (see [2]). If |W |(mod3) �= 0, then we
check if f < 2α1 (resp., f < 2α2) for |W |(mod3) = 1 (resp.,
|W |(mod3) = 2). If it is the case, then we have found a vio-
lated rooted partition inequality. This is built from the node
set W as in Case 1.

We repeat the above procedure for each terminal until we
find a violated rooted partition inequality or all the terminals
of N have been selected and no violated inequality has been
found.

The separation algorithm is summarized in Algorithm 1
below.

Notice that, as mentioned in [2], computing a maximum
feasible flow, if there is any, can be solved in polynomial
time by computing two classical maximum flows in G (that
is, flows where the arcs are not subject to lower bounds).
These maximum flows can be computed using Goldberg and
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FIG. 11. A graph G, a solution x and the corresponding graph G with its arc flow upper and lower bounds.

Tarjan’s algorithm [12] which runs in O(|N ||A| log |N |2
|A| ) =

O(|N |(|E| + |N |) log |N |2
|E|+|N | ) time.

The algorithm described in [2] produces the value of a
maximum feasible flow as well as a node set W inducing a cut
whose capacity,

∑
a∈δ+

G
(W) Ua −∑

a∈δ−
G
(W) La, is minimum.

In the case where there is no feasible flow, the algorithm in [2]
produces a node set W inducing a cut with negative capacity,
by computing a maximum flow and a set of augmenting paths.
This can be done using Goldberg and Tarjan’s algorithm [12]
for the maximum flow and the Edmonds–Karp algorithm [10]
for augmenting paths. Therefore, our separation heuristic for
the rooted partition inequalities can be implemented to run
in O(|D|[|N |(|E|+ |N |) log |N |2

|E|+|N | + (|E| + |N |)2|N |]) time,
which is polynomial.

5.3. Primal Heuristic

An important issue in the efficiency of the Branch-and-Cut
algorithm is computing a good upper bound at each node of
the Branch-and-Cut tree. We use a primal heuristic described
in Algorithm 2 to find upper bounds. Let x ∈ R

E be the current
solution and assume that x satisfies the trivial inequalities and
is fractional. We start by fixing a threshold value α (α is set
to 0.80 at the beginning) and removing from G every edge
e ∈ E such that x(e) ≤ α. Then, we check if the resulting
graph, denoted by G(x, α), induces a feasible solution of the
TNHNDP. To do this, we compute, for every (s, t) ∈ D, the
graph G̃st (see proof of Theorem 21) obtained from G(x, α),
and compute the number of node-disjoint st-dipaths in G̃st ,
denoted by λst . If λst ≥ 2 for all (s, t) ∈ D, then G(x, α)

induces a feasible solution of the TNHNDP. If not, then we
decrease the threshold value α by 0.05 and repeat the same
procedure. The procedure is repeated until G(x, α) induces a

feasible solution. Notice that, there always exists a value of
α ≤ 0.80 for which G(x, α) induces a feasible solution. In
fact, for α = 0, G(x, α) is exactly the original graph G, which is
assumed to induce a feasible solution of the problem. Thus, in
the worst case, the algorithm will produce a feasible solution
when α is decreased to 0.

After finding a feasible solution, with a given threshold
value α0, we try to improve the solution by removing from
G(x, α0) all the edges that are not used in any 3-st-path
met during the feasibility test phase of the algorithm. The
complete algorithm is summarized in Algorithm 2 below.

To compute the number of node-disjoint st-dipaths in G̃st ,
for every (s, t) ∈ D, we use a variant of the Edmonds–Karp
algorithm [10]. We recall that the Edmonds–Karp algorithm
computes a maximum st-flow in a directed graph by itera-
tively computing a set of augmenting st-dipaths. Moreover,
by assigning a unit capacity to each arc of the graph, the
obtained augmenting st-dipaths are mutually edge-disjoint.
To compute the number of node-disjoint st-dipaths in G̃st , we
modify the Edmonds–Karp algorithm in the following way.
First, we give unit capacity to each arc of G̃st . Then, we com-
pute an augmenting st-dipath in G̃st using the same procedure
as that of Edmonds–Karp. If this path is of the form (s, t),
then we look for another augmenting path. If this st-dipath is
of the form (s, u, v′, t) (note that v may be equal to u), then
we remove u and v′, and the corresponding nodes u′ and v,
from G̃st . Notice that in this way, any augmenting st-dipath
obtained by the algorithm will be node-disjoint from the oth-
ers. As, by its construction, any st-dipath in G̃st corresponds
to a 3-st-path of G, the number of node-disjoint st-dipaths of
G̃st will correspond to the number of node-disjoint 3-st-paths
of G.

It is not hard to see that the main issue in the algorithm
is the computation of the number of node-disjoint st-dipaths
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Algorithm 1 Separation algorithm for rooted partition
inequalities

in G̃st for every (s, t) ∈ D and each value of α ≤ 0.80.
This can be done in at most (|N | − 1)(|N | − 2) iterations
for each (s, t) ∈ D and α ≤ 0.80. Moreover, the number
of iterations of the main loop of Algorithm 2 is bounded by
16 = 0.80/0.05. Thus, Algorithm 2 runs in O(|D||N |2) time,
which is polynomial.

6. COMPUTATIONAL RESULTS

The Branch-and-Cut algorithm presented in the previous
section has been implemented in C++, using ABACUS 3.0
[1] to manage the Branch-and-Cut tree and CPLEX 12.2 as
LP-solver.

Algorithm 2 Primal Heuristic Algorithm for TNHNDP

It was tested on a Xeon Quad-Core E5507 machine with
a 2.27 GHz processor and 8 GB RAM, running under Linux.
The maximum CPU time has been fixed to 5 h. The test prob-
lems are composed of complete graphs coming from TSPLIB
[16] or that are randomly generated on a 250 × 250 grid. In
both cases (TSPLIB and random instances), the nodes of the
graphs are assigned coordinates in the plane. The weight of
each edge is taken as the Euclidean distance between the end
nodes of the edge. The demands used in these tests are ran-
domly generated. Each set of demands is either rooted, that
is, of the form {(s, ti) : i = 1, . . . , d} (s is the root node of the
demands), or arbitrary.

For each instance, the Branch-and-Cut algorithm has been
run twice. The first run (run 1) is performed with all the
inequalities listed in Section 5.1. The second run (run 2) is
done with only the natural inequalities (st-cut, st-node-cut,
L-st-path-cut and L-st-node-path-cut inequalities).

For the random problems, five instances have been tested
and the results given represent averages. Finally, the instances
having graphs with up to 30 nodes will be considered as small
size instances, while those having graphs with more than 30
nodes will be considered as large size instances.

The computational results are given in Tables 1–4. Each
instance is described by the number of nodes of the graph and
the number of demands. The number of nodes is preceded
either by “r” if the demands are rooted or “a” if they are not
rooted. The entries of the various tables presented below are:
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|N | the number of nodes of the graph,
|D| the number of demands,
NC the number of generated st-cut inequalities,
NNC the number of generated st-node-cut inequalities,
LPC the number of generated L-st-path-cut inequalities,
LPNC the number of generated L-st-node-path-cut

inequalities,
RP the number of generated rooted partition inequali-

ties,
DC the number of generated double cut inequalities,
COpt value of the best upper bound obtained,
Gap1 the relative error between the best upper bound and

the lower bound
obtained at the root node of the Branch-and-Cut

tree in the first run,
Gap2 the relative error between the best upper bound and

the lower bound
obtained at the root node of the Branch-and-Cut

tree in the second run,
Gt1 the relative error between the best upper bound and

the best lower
bound of the Branch-and-Cut tree in the first run,

Gt2 the relative error between the best upper bound and
the best lower

bound of the Branch-and-Cut tree in the second
run,

Tree1 the number of nodes in the Branch-and-Cut tree in
the first run,

Tree2 the number of nodes in the Branch-and-Cut tree in
the second run,

CPU1 total CPU time of the first run in hours:min.sec.,
CPU2 total CPU time of the second run in hours:min.sec.

Note that a value of ∞ for Gap1 or Gap2 means that the
algorithm spends all the CPU time (5 h) at the root node of the
Branch-and-Cut tree. Also, a value of 0 for Gt1 or Gt2 means
that the algorithm has obtained the optimal solution within
the CPU time limit while a non-zero value indicates that the
optimal solution has not been reached. Finally, a value of ∞
for Gt1 and Gt2 means that the algorithm ends without finding
any feasible solution (upper bound is ∞) and that all the CPU
time has been spent at the root node of the Branch-and-Cut
tree.

Our first series of computations concerns the rooted
demands for both TSPLIB and random instances. The results
are given in Tables 1 and 2.

We can see that, at the first run, for rooted TSPLIB
instances (Table 1), the algorithm has solved to optimality
6 instances out of 15, with graphs having up to 30 nodes
and with 10 demands, and the CPU time varies from 1 s to
27 min. The gap achieved between the best upper bound (that
is, the optimal solution) and the value at the root node of the
Branch-and-Cut tree (Gap1) is relatively small (less than 8%)
for these instances. For the instances that have not been solved

to optimality, the value of the gaps (Gap1 and Gt1) are rela-
tively high: more than 20% for Gap1 and more than 11% for
Gt1. For some instances (like r-58-40) Gap1 and Gt1 reach,
respectively, 76.13% and 75.31%. The number of nodes in the
Branch-and-Cut tree is relatively small (less than 100 nodes
in 5 h of computations) for those instances. For one instance,
r-58-40, the algorithm has not been able to get even a fea-
sible solution and spends all the CPU time at the root node
of the Branch-and-Cut tree (Gap1 and Gt1 are ∞). Table 1
also shows that a large number of natural inequalities, espe-
cially 3-st-path-cut inequalities, have been generated during
the resolution process. Rooted partition inequalities have also
been generated for 14 instances out of 15 and no double cut
inequalities have been generated for any of the instances.

For the rooted random instances (Table 2), the observa-
tions are quite similar. Here 5 instances out of 16 have been
solved to optimality with average CPU time between 1 s and
56 min for graphs with fewer than 30 nodes. The average gap
Gap1 is less than 10%. For the instances not solved to opti-
mality, the average gaps Gap1 are relatively high (more than
20%), and the number of nodes in the Branch-and-Cut tree
is, in general, relatively small. Here also, we observe that a
large number of natural inequalities are generated during the
resolution process and rooted partition inequalities have been
generated for all the instances. A few number of double cut
inequalities have been generated.

The Branch-and-Cut algorithm has also been run for
TSPLIB and random instances with arbitrary demands
(Tables 3 and 4 below). Recall that the rooted partition
inequalities have not been applied for arbitrary instances.
Thus, the corresponding column does not appear in Tables
3 and 4.

As for the rooted demands, we can see that the algorithm
has solved to optimality the instances with graphs having
fewer than 30 nodes. For the instances not solved to optimal-
ity, the gap Gap1 is relatively high (more than 19%) for both
TSPLIB and random instances. We also notice that a large
number of natural inequalities are generated and, contrary
to the rooted instances, several double cut inequalities have
been generated during the resolution process.

Our next series of experiments aims to check the efficiency
of the different classes of inequalities used in the Branch-
and-Cut algorithm. For this, we have first run the algorithm
without the rooted partition and double cut inequalities and
using the natural inequalities (i.e., run 2) for all the instances
and compared the results with those obtained in run 1. The
comparison between run 2 and run 1 for the rooted TSPLIB
instances (Table 1) shows that, for the instances solved to opti-
mality in run 1, the performance of the algorithm is decreased
in run 2. In fact, the CPU time CPU2 is greater for all these
instances. Also, in general, the gap Gap2 and the number of
nodes in the Branch-and-Cut tree Tree2 are also increased
with respect to Gap1 and Tree1. Moreover, for one instance
r-30-10, the algorithm in run 2 has not been able to solve the
problem to optimality within the CPU time limit while it was
able to solve it to optimality in run 1. For the rooted random
instances (Table 2) and for the arbitrary instances (Tables 3
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TABLE 1. Results for TSPLIB instances with L = 3 and rooted demands

|N | |D| NC NNC LPC LPNC RP DC COpt Gap1 Gap2 Gt1 Gt2 Tree1 Tree2 CPU1 CPU2

r 10 5 26 2 21 0 2 0 2,387 0.87 1.87 0 0 9 11 0:00:01 0:00:01
r 10 7 20 12 52 0 2 0 3,022 2.87 7.69 0 0 11 33 0:00:01 0:00:01
r 14 10 42 11 901 31 11 0 4,085 6.82 9.50 0 0 105 171 0:00:02 0:00:05
r 14 7 44 8 438 6 6 0 3,237 8.40 10.38 0 0 57 53 0:00:01 0:00:01
r 17 16 69 23 7,838 1,176 50 0 3,051 8.22 14.65 0 0 1,391 4,233 0:05:45 0:20:20
r 30 10 367 722 5,304 439 17 0 5,002 7.51 9.00 0 2.98 1,385 481 0:27:13 5:00:00
r 30 15 444 646 42,019 1,598 75 0 7,843 20.61 29.28 11.17 19.24 3,071 3,007 5:00:00 5:00:00
r 48 10 363 194 55,664 27 9 0 12,302 40.55 29.59 38.32 27.81 17 15 5:00:00 5:00:00
r 48 15 261 177 23,285 230 21 0 13,712 38.70 45.07 33.51 40.96 55 45 5:00:00 5:00:00
r 52 10 767 901 35,494 48 10 0 6,243 27.09 25.68 23.90 23.34 71 35 5:00:00 5:00:00
r 58 20 520 0 67,061 0 0 0 - ∞ ∞ ∞ ∞ 1 1 5:00:00 5:00:00
r 58 30 573 25 41,371 10 17 0 96,593 69.32 71.87 68.31 71.87 3 3 5:00:00 5:00:00
r 58 40 439 0 44,463 0 2 0 137,712 76.13 74.87 75.31 74.75 1 7 5:00:00 5:00:00
r 76 20 413 0 57,278 1 12 0 768 52.14 45.03 51.24 43.33 9 17 5:00:00 5:00:00
r 76 40 435 0 28,755 0 31 0 1,764 69.28 ∞ 66.75 ∞ 13 1 5:00:00 5:00:00

TABLE 2. Results for random instances with L = 3 and rooted demands

|N | |D| NC NNC LPC LPNC RP DC COpt Gap1 Gap2 Gt1 Gt2 Tree1 Tree2 CPU1 CPU2

r 10 5 24 14 98 5 1 0 841 8 12 0 0 35 31 0:00:01 0:00:01
r 10 7 25 16 461 47 2 6 1,100 12 14 0 0 129 120 0:00:01 0:00:01
r 14 10 44 11 2,736 286 22 0 1,141 13 18 0 0 755 1,536 0:00:41 0:01:09
r 14 7 91 22 1,585 79 12 0 1,030 14 16 0 0 337 258 0:00:12 0:00:05
r 17 16 19 44 19,642 4,055 191 0 1,346 10 20 0 5 17,713 29,711 0:56:14 3:02:23
r 30 10 194 6 3,137 47,840 11 0 1,691 35 39 31 36 91 553 5:00:00 5:00:00
r 30 15 138 51 40,619 336 29 0 2,129 37 40 34 39 395 765 5:00:00 5:00:00
r 48 10 288 0 45,077 128 9 0 1,413 20 25 16 23 35 136 5:00:00 5:00:00
r 48 15 204 35 35,558 5 12 0 2,542 50 56 47 51 25 66 5:00:00 5:00:00
r 52 10 455 29 31,814 128 16 0 1,434 30 36 26 33 59 129 5:00:00 5:00:00
r 52 20 424 87 31,142 97 23 0 2,884 55 64 53 61 187 381 5:00:00 5:00:00
r 58 20 390 20 85,628 15 15 0 2,788 49 53 48 51 25 12 5:00:00 5:00:00
r 58 30 318 0 30,475 0 9 0 - ∞ ∞ ∞ ∞ 1 1 5:00:00 5:00:00
r 58 40 154 0 26,186 30 32 0 11,837 81 85 81 83 49 81 5:00:00 5:00:00
r 76 20 622 0 65,835 0 7 0 3,143 53 57 52 55 7 7 5:00:00 5:00:00
r 76 40 709 0 76,057 0 18 0 13,361 83 88 83 88 9 41 5:00:00 5:00:00

TABLE 3. Results for TSPLIB instances with L = 3 and arbitrary demands

|N | |D| NC NNC LPC LPNC DC COpt Gap1 Gap2 Gt1 Gt2 Tree1 Tree2 CPU1 CPU2

a 10 5 9 2 188 1 15 3,500 9.48 9.48 0 0 49 49 0:00:01 0:00:01
a 14 10 45 13 5,975 515 23 4,421 14.70 14.70 0 0 563 575 0:01:08 0:01:29
a 14 7 4 0 191 0 0 3,938 2.14 2.14 0 0 9 9 0:00:01 0:00:01
a 17 45 516 80 47,865 4,021 61 2,707 21.71 30.65 0 14.97 1,989 795 0:42:11 5:00:00
a 17 8 30 6 17,260 671 68 3,233 14.18 14.18 0 0 1,789 2,259 0:14:51 0:20:03
a 30 10 71 2 33,687 11 0 7,308 19.04 19.04 15.64 15.64 41 41 5:00:00 5:00:00
a 30 15 19 0 40,863 11 0 13,882 43.97 43.97 43.00 42.91 91 101 5:00:00 5:00:00
a 48 10 121 16 27,165 31 0 17,824 42.14 42.14 39.99 40.01 19 13 5:00:00 5:00:00
a 48 15 65 0 24,306 0 0 22,731 58.90 58.90 58.79 58.79 1 1 5:00:00 5:00:00
a 52 10 194 4 23,460 3 0 7,268 19.15 19.15 15.87 15.87 35 35 5:00:00 5:00:00
a 52 20 60 0 29,551 0 0 21,250 56.35 56.35 56.14 56.11 29 35 5:00:00 5:00:00

and 4), the observations are the same. The CPU time CPU2,
the gap Gap2 and the number of nodes in the Branch-and-
Cut tree Tree2, generally increase in run 2 compared to run
1. This shows that, as expected, using the natural inequalities
only is not effective for solving the TNHNDP and additional
inequalities (mainly rooted partition inequalities for rooted
demands and double cut inequalities for arbitrary demands)

may considerably improve the algorithm for instances with
graphs having less than 30 nodes.

For the instances that are not solved to optimality in run 1,
the influence of the rooted partition and double cut inequali-
ties is less clear, mainly for TSPLIB instances (Tables 1 and
3). First, it can be noticed that for TSPLIB instances with
arbitrary demands (Table 3), the results obtained in runs 1
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TABLE 4. Results for random instances with L = 3 and arbitrary demands

|N | |D| NC NNC LPC LPNC DC COpt Gap1 Gap2 Gt1 Gt2 Tree1 Tree2 CPU1 CPU2

a 10 5 6 0 195 8 7 1,063 9 10 0 0 47 91 0:00:01 0:00:01
a 14 10 49 20 9,301 1,099 33 1,179 19 22 0 0 977 1,454 0:02:47 0:06:40
a 14 7 6 0 12,043 834 69 1,283 15 18 0 0 3,045 2,067 0:09:13 0:07:57
a 17 45 575 54 118,509 16,839 605 1,214 28 30 0 6 12,025 8,140 5:00:00 5:00:00
a 17 8 22 8 17,997 731 78 1,315 12 21 0 14 2,519 279 0:16:38 3:21:31
a 30 10 43 0 42,166 44 3 1,778 21 36 18 33 133 711 5:00:00 5:00:00
a 30 15 10 0 38,339 11 0 4,722 56 54 56 54 15 15 5:00:00 5:00:00
a 48 10 79 0 33,040 7 0 2,350 36 ∞ 32 ∞ 97 1 5:00:00 5:00:00
a 48 15 40 0 42,978 2 0 9,906 80 80 80 80 5 10 5:00:00 5:00:00
a 52 10 61 0 25,105 7 0 2,412 46 46 45 45 17 16 5:00:00 5:00:00
a 52 20 64 0 67,952 0 0 - ∞ ∞ ∞ ∞ 1 1 5:00:00 5:00:00

TABLE 5. Results for TSPLIB instances with L = 3, rooted demands and without the primal heuristic

|N | |D| Copt Gap1 Gap4 Gt1 Gt4 Tree1 Tree4 CPU1 CPU4

r 10 5 2,387 0.87 0.87 0 0 9 9 0:00:01 0:00:01
r 10 7 3,022 2.87 2.87 0 0 11 11 0:00:01 0:00:01
r 14 10 4,085 6.82 6.82 0 0 105 117 0:00:02 0:00:04
r 14 7 3,237 8.40 8.4 0 0 57 59 0:00:01 0:00:01
r 17 16 3,051 8.22 8.22 0 0 1,391 2,317 0:05:45 0:12:27
r 30 10 5,002 7.51 7.51 0 0 1,385 1,385 0:27:13 0:27:10
r 30 15 7,843 20.61 ∞ 11.17 ∞ 3,071 5,485 5:00:00 5:00:00
r 48 10 12,302 40.55 ∞ 38.32 ∞ 17 17 5:00:00 5:00:00
r 48 15 13,712 38.70 ∞ 33.51 ∞ 55 55 5:00:00 5:00:00
r 52 10 6,243 27.09 ∞ 23.90 ∞ 71 71 5:00:00 5:00:00
r 58 30 96,593 69.32 ∞ 68.31 ∞ 3 3 5:00:00 5:00:00
r 76 20 768 52.14 ∞ 51.24 ∞ 9 9 5:00:00 5:00:00
r 76 40 1,764 69.28 ∞ 66.75 ∞ 13 13 5:00:00 5:00:00

and 2 for the instances that are not solved to optimality in
run 1, are quite similar. This is explained by the fact that no
double cut inequality is generated for these instances, and
that rooted partition inequalities are not used for arbitrary
demands. Now, for the rooted TSPLIB instances not solved
to optimality in run 1 (Table 1), we observe, for some of
them (e.g., r-30-15), that the gaps Gap and Gt are better in
run 1 than in run 2, while for some other instances (e.g., r-52-
10), the results are better when rooted partition inequalities
are not used. However, we can remark that for the instances
where run 1 produces better results than run 2, several rooted
partition inequalities have been generated during run 1. More-
over, for one instance (r-76-40), the algorithm was not able to
find even a feasible solution after the CPU time limit, when
the rooted partition and double cut inequalities are not used.
This tends to show that the rooted partition and double cut
inequalities are effective in solving the problem.

We have also compared the efficiency of the rooted par-
tition inequalities against the double cut inequalities. For
this, we have solved the problem without the rooted partition
inequalities and using the natural and double cut inequalities,
for the same instances as those of Table 1. We first observe
that no double cut inequalities have been generated when
only rooted partition inequalities are not used, and that the
results are quite similar to those obtained in run 2 (remind
that run 2 is the algorithm without both rooted partition and
double cut inequalities). This clearly shows that the rooted

partition inequalities are more effective than the double cut
inequalities, for rooted instances.

As for the inequalities, we have also checked the efficiency
of the primal heuristic that has been used in the computations
and described by Algorithm 2. For this, we have run, in run 4,
our Branch-and-Cut algorithm after deactivating the primal
heuristic, and compared the results obtained to those obtained
during run 1. Namely, we have compared the values achieved,
during runs 1 and 4, for the gaps Gap and Gt, the number of
nodes in the Branch-and-Cut tree and the total CPU time.
Recall that the primal heuristic is called with a fractional
solution x satisfying the natural inequalities and when no
rooted partition and double cut inequalities violated by x are
found during the separation phase. The test has been done for
TSPLIB instances and both rooted and arbitrary demands.
We have considered only instances for which the number of
nodes in the Branch-and-Cut tree achieved in run 1 (Tree1)
is at least 2. Indeed, for instances having Tree1 equal to 1,
the Branch-and-Cut algorithm spends all the CPU time in the
cutting plane phase at the root node of the tree, and stops
before calling the primal heuristic. Thus, for these instances,
the results are the same with and without using the primal
heuristic. The results of this run are given in Tables 5 and 6
for rooted and arbitrary demands, respectively.

From Tables 5 and 6, we can see first that instances that are
solved to optimality in run 1 are also solved to optimality in
run 4 (i.e., without the primal heuristic). Indeed, the gaps
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TABLE 6. Results for TSPLIB instances with L = 3, arbitrary demands and without the primal heuristic

|N | |D| Copt Gap1 Gap4 Gt1 Gt4 Tree1 Tree4 CPU1 CPU4

a 10 5 3,500 9.48 9.48 0 0 49 49 00:0:01 0:00:01
a 14 10 4,421 14.70 14.7 0 0 563 563 0:01:08 0:01:28
a 14 7 3,938 2.14 2.14 0 0 9 9 0:00:01 0:00:01
a 17 45 2,707 21.71 21.71 0 0 1,989 2,045 0:42:11 0:55:52
a 17 8 3,233 14.18 14.18 0 0 1,789 1,795 0:14:51 0:19:40
a 30 10 7,308 19.04 ∞ 15.64 ∞ 41 41 5:00:00 5:00:00
a 30 15 13,882 43.97 ∞ 43.00 ∞ 91 91 5:00:00 5:00:00
a 48 10 17,824 42.14 ∞ 39.99 ∞ 19 19 5:00:00 5:00:00
a 52 10 7,268 19.15 ∞ 15.87 ∞ 35 35 5:00:00 5:00:00
a 52 20 21,250 56.35 ∞ 56.14 ∞ 29 29 5:00:00 5:00:00

TABLE 7. Results for TSPLIB instances with L = 3, rooted demands and all inequalities separated simultaneously

|N | |D| NC NNC LPC LPNC RP DC COpt Gap3 Gap1 Gt3 Gt1 Tree3 Tree1 CPU3 CPU1

r 10 5 26 67 32 13 4 0 2,387 1.87 0.87 0 0 9 9 0:00:01 0:00:01
r 10 7 17 63 59 32 4 0 3,022 7.69 2.87 0 0 11 11 0:00:01 0:00:01
r 14 10 41 270 824 357 22 0 4,085 9.50 6.82 0 0 105 105 0:00:07 0:00:02
r 14 7 30 158 390 191 12 0 3,237 10.38 8.40 0 0 57 57 0:00:01 0:00:01
r 17 16 42 545 8,878 4,992 108 0 3,051 14.65 8.22 0 0 2,267 1,391 0:52:39 0:05:45
r 30 10 242 2,864 3,676 3,835 32 0 5,002 9.00 7.51 0.98 0 987 1,385 5:00:00 0:27:13
r 30 15 262 2,580 10,222 5,317 86 0 8,477 30.14 20.61 19.44 11.17 781 3,071 5:00:00 5:00:00
r 48 10 254 4,092 3,602 12,041 20 0 11,114 35.37 40.55 28.38 38.32 75 17 5:00:00 5:00:00
r 48 15 197 6,577 9,342 10,237 56 0 12,731 33.98 38.70 27.66 33.51 89 55 5:00:00 5:00:00
r 52 10 539 9,477 1,994 11,985 20 0 6,243 27.09 27.09 24.35 23.9 47 71 5:00:00 5:00:00
r 58 20 322 2,138 7,462 25,406 42 0 60,925 56.55 ∞ 55.15 ∞ 13 1 5:00:00 5:00:00
r 58 30 369 1,478 15,719 23,858 2 0 105,343 71.87 69.32 71.27 68.31 1 3 5:00:00 5:00:00
r 58 40 272 719 11,895 20,626 2 0 137,712 76.13 76.13 75.46 75.31 1 1 5:00:00 5:00:00
r 76 20 428 3,913 6,603 24,175 24 0 775 54.54 52.14 51.69 51.24 11 9 5:00:00 5:00:00
r 76 40 352 1,464 12,519 26,366 34 0 1,686 67.86 69.28 65.30 66.75 9 13 5:00:00 5:00:00

Gt1 and Gt4 are both equal to 0 for these instances. We
can also see that the number of nodes in the Branch-and-
Cut tree as well as the total CPU time are either the same or
increased, when the primal heuristic is not used. For exam-
ple, for instance r-17-16 in Table 5 the number of nodes in
the Branch-and-Cut tree increases from 1,391 to 2,317, and
the total CPU time increases from 5 min and 45 s to 12 min.
The same observation holds for instance a-17-45 in Table 6.
This latter observation shows that using the primal heuristic
permits one to speed up the resolution of the problem for
these instances.

For instances that are not solved to optimality in run 1, the
Branch-and-Cut algorithm is still not able to solve them to
optimality when the primal heuristic is not used. Moreover,
we can see in both Tables 5 and 6 that for these instances,
the Branch-and-Cut algorithm is not able to find a feasible
solution after 5 h of computation (Gap4 and Gt4 are both ∞).
Furthermore, the heuristic produces, in some cases, upper
bounds of good quality, as for instances like r-30-15 in Table
5 and a-30-10 and a-52-10 in Table 6, the gap Gap1 is ≤ 20%.
Therefore, the primal heuristic developed here is useful in the
Branch-and-Cut algorithm.

We conclude this computational study by addressing an
issue met when solving the TNHNDP in run 1, especially
for large size instances. Indeed, we have observed that the
Branch-and-Cut algorithm spends a lot of time in solving

the different LPs it creates. This reduces the total CPU time
spent for the exploration of the Branch-and-Cut tree and may
prevent finding good solutions in short time. It may also pre-
vent finding even feasible solutions as, in some cases, the
algorithm spends all the CPU time at the root node of the
Branch-and-Cut tree (see for example instances r-58-20 and
r-58-40 in Table 1 and instance a-48-15 in Table 3). To address
this issue, we have run the Branch-and-Cut algorithm by sep-
arating the natural inequalities, rooted partition, and double
cut inequalities simultaneously, instead of separating them
according to the order described in Section 5.1. In this way,
one may reduce the number of linear programs to solve during
the entire algorithm and reduce the total CPU time allowed
to solve LPs and allow more CPU time for the exploration of
the Branch-and-Cut tree. Also, one may strengthen the linear
relaxation of the problem. This separation strategy composes
run 3, and the results for TSPLIB instances are presented in
Tables 7 and 8. Notice that the number of inequalities pre-
sented in Tables 7 and 8 are those obtained for each instance
in run 3.

The comparison between run 3 and run 1 for rooted
instances (Table 7) shows that for the instances solved to
optimality at run 1, the CPU time increases at run 3. Also, for
one instance, r-30-10, the algorithm was not able to solve the
problem within the CPU time limit while it is solved to opti-
mality in run 1. Moreover, the gap Gap3 increases when all the
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TABLE 8. Results for TSPLIB instances with L = 3, arbitrary demands and all inequalities separated simultaneously

|N | |D| NC NNC LPC LPNC DC COpt Gap3 Gap1 Gt3 Gt1 Tree3 Tree1 CPU3 CPU1

a 10 5 5 25 164 84 15 3,500 9.48 9.48 0 0 49 47 0:00:01 0:00:01
a 14 10 41 144 4,933 1,237 23 4,421 14.7 14.70 0 0 563 563 0:01:08 0:01:35
a 14 7 4 26 167 155 0 3,938 2.14 2.14 0 0 9 7 0:00:01 0:00:01
a 17 45 430 540 41,074 8,024 69 2,707 21.71 21.71 0 0 1,989 2,211 0:42:11 0:58:50
a 17 8 21 232 16,157 3,386 73 3,233 14.18 14.18 0 0 1,789 1,799 0:14:51 0:37:29
a 30 10 56 317 2,909 2,487 0 6,307 19.04 6.19 15.64 0 41 97 5:00:00 0:10:47
a 30 15 17 218 51,328 2,967 0 14,031 43.97 44.57 43.00 43.65 91 83 5:00:00 5:00:00
a 48 10 85 1,278 39,050 10,117 0 17,824 42.14 42.14 39.99 39.39 19 25 5:00:00 5:00:00
a 48 15 43 579 15,151 9,471 0 33,525 58.90 58.90 58.79 58.79 1 7 5:00:00 5:00:00
a 52 10 147 1,503 22,319 5,851 0 7,268 19.15 19.15 15.87 17.69 35 15 5:00:00 5:00:00
a 52 20 61 561 21,826 9,109 0 20,401 56.35 54.53 56.14 54.09 29 57 5:00:00 5:00:00

inequalities are generated simultaneously. For the instances
that are not solved to optimality in run 1, the gaps Gap1 and
Gap3 are quite close except for three instances, r-30-15, r-48-
10, and r-48-15, for which Gap3 is higher than Gap1. This
implies that separating all the inequalities simultaneously
seems to be less effective than separating the inequalities in
a predefined order. Notice that for one instance, r-58-20, the
algorithm at run 3 has obtained a feasible solution while in
run 1, the total CPU time has been spent at the root node of the
Branch-and-Cut tree and no feasible solution has been found.
This let us conclude that, as expected, run 3 may improve the
resolution process for some instances. However, the number
of nodes in the Branch-and-Cut tree is very small and the
gap Gap3 is relatively high. Hence, we conclude that this
improvement is not very significant.

For arbitrary demands (Table 8), the observations are the
same. For the instances which are solved to optimality in run
1, the CPU time increases in run 3, and Gap3 is the same as
Gap1 for all these instances except for instance a-30-10 where
Gap3 equals 19.04% and Gap1 equals 6.19%. Moreover, for
this latter instance, the algorithm obtains the optimal solution
in run 1, while in run 3, only an upper bound is obtained.

All these observations lead to the conclusion that separat-
ing the inequalities simultaneously does not help to reduce
the total CPU time used for solving the LPs in our Branch-
and-Cut algorithm. It may even decrease the performance of
the algorithm in several cases.

7. CONCLUSION

In this article, we have studied the Two Node-Disjoint
Hop-Constrained Survivable Network Design Problem
(TNHNDP) in the case where the hop constraint is L = 3.
We have presented an integer programming formulation
for the problem and studied the associated polytope. We
then have described several classes of valid inequalities and
investigate conditions under which they define facets of the
polytope. We have also discussed the separation problem
associated with the so-called natural inequalities, as well as
the rooted partition and double cut inequalities, and devised
a Branch-and-Cut algorithm to solve the problem.

The computational study realized in this article shows that
the Branch-and-Cut algorithm is effective in solving the prob-
lem for several instances with both rooted and arbitrary sets of
demands. It also shows that for large size instances, the prob-
lem is still difficult to solve. The experiments further point out
that both rooted partition and double cut inequalities (3.11)
and (3.12) are effective in solving the problem in general.
Moreover, the rooted partition inequalities are more effec-
tive than the double cut inequalities for solving the rooted
TNHNDP.

The theoretical and computational study conducted here
also shows that solving large size instances by a Branch-and-
Cut algorithm is still a challenging task and several issues
need to be addressed for an efficient resolution of the prob-
lem. Among these, the reduction of the gap achieved between
the root node of the Branch-and-Cut tree and the best upper
bound may have a significant impact on the resolution of the
problem, by decreasing the total CPU time as well as the
number of nodes in the Branch-and-Cut tree. This can be
addressed by investigating more deeply the polytope of the
problem and finding more facet defining inequalities, and
devising efficient separation algorithms for the concerned
inequalities.

Another issue to be addressed is the large number of
natural inequalities separated during the execution of the
algorithm, and the CPU time spent by the algorithm in solving
each LP. As previously mentioned, the excessive CPU time
spent in solving each LP and separating the natural inequali-
ties may prevent the Branch-and-Cut algorithm from a good
exploration of the Branch-and-Cut tree and finding good fea-
sible solutions. The different separation strategies tested in
this study have not improved the total CPU time. Even the
simultaneous separation of all the inequalities, sometimes
used in the literature to reduce the total number of LPs that
are solved, has failed in improving the total CPU time. For
this latter point, one may investigate other methods, like
decomposition methods, to efficiently solve each LP of the
Branch-and-Cut algorithm.

It could also be interesting, for both theoretical and
practical purposes, to investigate in some special cases the
structural properties of the solutions of the TNHNDP. For
example, one can consider that the edge weights satisfy
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the triangle inequalities. In fact, many real networks have
this property. One can also consider the problem in spe-
cial classes of graphs like series-parallel or Halin graphs.
This can lead to efficient primal heuristics for the problem
in the above cases or even produce new valid inequali-
ties for a Branch-and-Cut algorithm in general. These two
points can also be used to reduce the gap and the total CPU
time spent by a Branch-and-Cut algorithm in solving the
problem.

Finally, the case where L = 4 should also be addressed
since in practice, the QoS-constraint in telecommunication
networks may be ensured by paths with more than 3 hops. To
the best of our knowledge, few polyhedral results are known
for that case even if the natural formulation (2.7) is valid for
the TNHNDP with L = 4. More generally, there are few results
on both TEHNDP and TNHNDP for L ≥ 4. As an illustration,
a natural formulation even for L = 5 for both TNHNDP and
TEHNDP is still unknown in the literature. Thus, it would be
interesting to study, from both theoretical and computational
points of view, the TNHNDP (and the TEHNDP) for L = 4 in
particular, and for L ≥ 4 in general.
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