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Abstract

In this paper, we consider the Steiner k-Edge-Connected Network Design Prob-
lem (SkESNDP). The problem finds its applications in the design of survivable
telecommunications networks. We propose a parallel hybrid algorithm which aims
to produce good solutions for large scale instances of the problem. Our approach is
based on a Lagrangian relaxation of a flow-based integer programming formulation
of the problem, a greedy and a genetic algorithms.
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1 Introduction

Let G = (V,E) be an undirected graph, a subset of nodes S ⊆ V called
terminals, a weight function ω : E → R which associates the weight ωe with
each edge e ∈ E. The Steiner k-Edge-Connected Network Design Problem
(SkESNDP for short) is the problem of finding a minimum weight subgraph
of G spanning S such that between every two nodes u, v ∈ S, there are at
least k edge-disjoint paths. The SkESNDP is a special case of a more general
model, introduced by [7] and later called generalized Steiner problem by [9].

The SkESNDP is well known to be NP-hard and is a generalization of the
Steiner tree problem in which it is required that the nodes of S are spanned
by a Steiner tree of minimum weight.

Several works have been done on the Steiner network problem and its vari-
ants. Mahjoub and Kerivin [5] have presented a survey of the main variants of
survivable network design problems and integer programming formulations as
well as some polyhedral descriptions. Also, Magnanti and Raghavan [6] have
presented differents types of formulations for a quite more general problem,
which includes the SkESNDP. In particular, they have presented several for-
mulations based on flow variables and compare them in terms of LP-bounds.

Survivable network design problems are still subject of extensive researches
and several variants have been recently investigated. For instance, Binh et al.
[3] and Bui et al. [4] have devised genetic algorithms for solving two variants
of the survivable network design problem.

In this paper, we present a parallel hybrid algorithm for solving the SkESNDP.
This approach takes advantage from the structure of the flow-based integer
formulation presented in [6] and is based on a greedy, a Lagrangian relaxation
and a genetic algorithms.

2 Integer programming formulation

First, we denote by D = {{s, t} | for all s, t ∈ S,with s �= t}. We also let
d = |D| = |S|(|S| − 1)/2. The SkESNDP can be formulated as the following
integer program (see [6]). For each edge uv ∈ E, let xuv be the 0− 1 variable
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which takes value 1 if the edge uv is in the solution and 0 otherwise. Also let
G̃ = {V,A} the directed graph obtained from G by replacing each uv ∈ E by
two arcs (u, v) and (v, u), and for every pair {s, t} ∈ D, let f st

uv be the flow

variable associated with the arc (u, v) of G̃. The SkESNDP is equivalent to

min
∑

uv∈E

ωuvxuv

∑
v∈V \{u}

fst
uv −

∑
l∈V \{u}

fst
lu =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for all u ∈ V and {s, t} ∈ D, (1)

fst
uv

fst
vu

⎫⎬⎭ ≤ xuv, for all uv ∈ E and {s, t} ∈ D, (2)

fst
uv, f

st
vu ≥ 0, for all uv ∈ E and {s, t} ∈ D, (3)

xuv ≤ 1, for all uv ∈ E, (4)

xuv ∈ {0, 1}, for all uv ∈ E, (5)

fst
uv ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D. (6)

This formulation is called Undirected Flow Formulation. Inequalities (1)
are the flow conservation constraints. Inequalities (2) are the linking con-
straints. They ensure that if an edge uv is not taken in the solution, then no
st-flow can use this edge. Inequalities (3) and (4) are the trivial inequalities.

3 Parallel hybrid optimization algorithm

Our algorithm relies on the usage of parallel computing for solving the SkESNDP.
Namely, we devise a heuristic for the problem based on three algorithms

• a greedy heuristic (SH);

• a Lagrangian relaxation algorithm (RLA);

• a genetic algorithm (GA).

For our purpose, we run these three algorithms in a parallel computing
framework. Also, as we will see, each iteration of each algorithm is used to
improve the other algorithms, and hence, improve the whole algorithm. More-
over, we solve the Lagrangian relaxation algorithm using parallel computing.

We describe, in the remain of the section, each algorithm in the following
and the communication between them.
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3.1 The greedy successive heuristic

Our greedy algorithm (SH) for solving the SkESNDP consists in computing a

series of minimum cost st-flows in the graph G̃, for all {s, t} ∈ D.

First, we sort the pairs of D in an arbitrary order, say {s1, t1}, ..., {sd, td}.
We start with the pair {s1, t1}, and compute a minimum cost s1t1-flow in G̃,
where all the arcs have capacity 1 and both arcs (u, v) and (v, u) are cost ωuv,
for all uv ∈ E. Let A1 be the set of arcs that have a s1t1-flow value of 1,
and E1 be the set of edges of G corresponding to the arcs of A1. Then we
choose the pair {s2, t2}, fix to ωuv the cost of the arcs (u, v) and (v, u) for all
uv ∈ E \E1 and fix to 0 the cost of the arcs (u, v) and (v, u), for all uv ∈ E1,
and compute a minimum cost s2t2-flow. We build the arc set A2 and the edge
set E2, as before A1 and E1, and so on until all the pairs {si, ti} have been
explored. Finally, we build a solution of the SkESNDP by considering the
edges of E1 ∪ E2 ∪ ... ∪ Ed.

3.2 The Lagrangian relaxation algorithm

In our Lagrangian relaxation algorithm, we consider the Undirected Flow For-
mulation and relax the linking constraints (2). Let λst

uv, for all {s, t} ∈ D and
all (u, v) ∈ A, be the Lagrangian multiplier associated with constraints (2).
This yields the following problem

min
∑

uv∈E

[
ωuv −

( ∑
{s,t}∈D

(λst
uv + λst

vu)

)]
xuv +

∑
{s,t}∈D

∑
uv∈E

(λst
uvf

st
uv + λst

vuf
st
vu)

∑
v∈V \{u}

fst
uv −

∑
l∈V \{u}

fst
lu =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for all u ∈ V and {s, t} ∈ D,

0 ≤ fst
uv, f

st
vu ≤ 1, for all uv ∈ E, {s, t} ∈ D,

xuv ≤ 1, for all uv ∈ E,

xuv ∈ {0, 1}, for all uv ∈ E,

fst
uv ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D.

One can see that solving this relaxation consists in solving d independant
minimum cost st-flow problems in the graph G̃, for all {s, t} ∈ D. In fact,
we can see that solving the minimum cost st-flow problems gives the optimal
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value of the flow variables f st
uuv, and for the variables xuv, the optimal values

are xuv = 1 if ωuv −
∑

{s,t}∈D
(λst

uv + λst
vu) > 0 and 0 otherwise.

Since the minimum cost st-flow problems are independant, they can be
solved in parallel using d processors.

For the Lagrangian relaxation algorithm, the Lagrangian multipliers are
updated using the subgradient method.

Also, notice that each iteration of the Lagrangian relaxation algorithm
produces a feasible solution. The solution is obtained by considering all the
edges of G corresponding to the arcs of G̃ that get at least once a flow value of
1 during the resolution of the minimum cost st-flow problems. As we will see,
the solution thus obtained are used as input of the genetic algorithm, which
is described below.

3.3 The genetic algorithm

A genetic algorithm consists in considering a set of feasible solutions (pop-
ulation) of problem P , combining two solutions (parents solutions) chosen
randomly, in order to produce one, or more, new feasible solutions. A genetic
algorithm mainly relies on four aspects: the encoding (or representation) of
each solution, the initial population, the evaluation and selection of each so-
lution, and the crossover and reproduction of the solutions. For more details
on genetic algorithms, the reader can refer to [8].

We describe in the following the main points we use for devising our ge-
netic algorithm for solving the SkESNDP. Notice that the whole procedure
is repeated until a given number of iteration is reached (counting starts after
RLA and SH end).

3.3.1 Encoding and initial population

Each solution is represented by a 0 − 1 vector (f
1
, ..., f

d
), where f

i
is a flow

vector associated with a demand {si, ti}, i = 1, ..., d. To see that such a vector
allows to represent a solution of the SkESNDP, it suffices to consider the
vector x ∈ R

E such that xuv = max{f i
uv, f

i
vu, for all i = 1, ..., d}, and notice

that (f
1
, ..., f

d
, x) satisfies constraints (1).

As initial population, we choose some feasible solutions produced by algo-
rithms RLA and SH.
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3.3.2 Evaluation and selection

Each solution (f
1
, ..., f

d
, x) is evaluated by the weight of the subgraph of G it

induces, namely by Z =
∑
uv∈E

ωuvxuv.

The selection is made randomly according to a specific probability distri-
bution scale. We start by dividing the population into five categories (A, B,
C, D and E) based on the social ranking (fitness value), and then we select
1
10

of the population to be reproduced knowing that the probability that a
parent is chosen from the A social category for example is equal to 67%, and
respectively to the B, C, D and E are equal to 19%, 10%, 3% and 1%.

Notice that the strategy of management of the pool size guarantees that the
number of solutions slowly decreases until it remains in the end one solution.

3.3.3 Crossover and reproduction

The reproduction scheme is based on the two-point crossover. Two randomly
chosen points a and b with 1 ≤ a ≤ b ≤ d are used as cutting points. Two
offspring are formed by permuting the two parents. The components between
the two cutting points are inherited from the first parent and the remaining
positions are filled from the second parent as long as the solution remains
feasible.

Moreover, we assign to each pair of selected parents a measure that tries
to predict on a 0− 100 scale the eventual quality of the produced offspring. It
is obvious that if the two parents belong to the social class A, such parents are
more able to produce good quality children than others. Thereby, according
to this measure, the algorithm produces more offspring based on different
randomly chosen two cutting points.

3.4 Hybridisation

The hybridisation scheme of the three algorithms (components) presented
above is designed in order to take advantage from each algorithm. The results
obtained at each iteration of each algorithm are used to reinforce (if possi-
ble) the other algorithms. The three components are self-contained, and are
executed in a parallel multithreaded fashion. One the central tool of the al-
gorithm is a pool of feasible solutions for the SkESNDP which is managed by
the three algorithms. Figure 1 presents the communication scheme.

The communications between the components are summarized below. Note
that UBSH , UBRLA and UBGA denote the upper bounds obtained respectively
by algorithm SH, RLA and GA, and UB denotes the best upper bound. Also,
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Fig. 1. PHA communication scheme

LBRLA denotes the lower bound achieved by RLA and LB denotes the best
lower bound.

(i) Execute SH, RLA et GA in a parallel multithreaded fashion.

(ii) SH:
(a) For each iteration, SH adds to the pool the new solution (individual).
(b) Updates UB with UBSH if UBSH ≤ UB.
(c) Informs GA when the algorithm ends.

(iii) RLA:
(a) For each iteration, RLA uses UB to compute the Lagrangian multi-

pliers,
(b) solves the Lagrangian relaxation and adds to the pool the new solu-

tion,
(c) updates UB with UBRLA if UBRLA ≤ UB,
(d) updates LB with LBRLA if LBRLA ≥ LB,
(e) informs GA when the algorithm ends.

(iv) GA:
(a) For each iteration, GA reads the pool, processes the evaluation

phase, and updates the pool by deleting the worst individuals (if
SH and RLA are ended),

(b) Selects the individuals to reproduce and computes the new genera-
tion,

(c) Updates the pool by adding the new generation data,
(d) Updates UB with UBGA if UBGA ≤ UB.
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4 Experimental Study

The algorithms described in the previous section have been implemented in
C++, using LEMON graph structures [1]. They have been tested on an Intel
i7 2.5 Ghz with 8 Gb of RAM, running under Linux. We have fixed the
maximum CPU time to 2 hours. The test problems have been obtained from
the TSPLIB library [2]. Each test set consists in complete graphs whose edge
weights are the rounded Euclidean distance between the edge vertices. In
addition, for each graph, a set S of terminals is defined including the first |S|
nodes of G.

We have used OpenMP library and the C++ inner parallel library std::thread
in order to manage the multithreading parallel computations. Also, in or-
der to avoid inconsistencies in the solutions pool, we use the C++ library
std::mutex for the shared memory management.

We have also implemented the Undirected Flow Formulation using CPLEX
12.6 concert technology library and have solved the problem for the same
instances. The results obtained by all the algorithms are summarized in Table
1 whose entries are:

|V | : number of nodes of the graph,

|S| : number of terminals,

UB : best upper bound,

LB : best lower bound,

Gap : relative error between the best upper and lower bounds,

CPU : total CPU time in hours:min:sec.

The results of PHA algorithm are interesting (see Table 1).

First we can easily notice that the approach is able to improve, for all the
instances, the upper bounds given by SH and RLA. However we notice that,
the upper bound given by RLA is very weak as in 17 instances over 20.

Second, comparing PHA to CPLEX we can see that our algorithm produces
better upper bounds in 13 cases over 20 while CPLEX is able to solve to
optimality three instances. We can also see that for 14 instances, CPLEX
produces a better lower bound than PHA. Also, the gap produced by PHA is
better than that produced by CPLEX for 13 instances.

Now, we compare the algorithms SH, RLA and GA, taken separately, with
algorithm PHA. We can see that for all the instances, algorithm PHA produces
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Table 1
Numerical results for the algorithms RLA, SH, PHA and CPLEX for k = 3

Instances RLA SH PHA CPLEX

name |V | |S| UB LB Gap CPU UB CPU UB LB Gap CPU UB LB Gap CPU

30 3 2539 2409.13 5.12 00:00:03 2800 00:00:00 2503 2285.98 8.67 00:00:00 2489 2489 0 00:00:00

30 5 5507 2993.18 45.65 00:00:06 4022 00:00:00 3638 2949.69 18.92 00:00:45 3191 3191 0 00:02:08

berlin 52 3 2536 1501.06 40.81 00:00:04 2871 00:00:00 1853 1653.38 10.77 00:00:03 1776 1776 0 00:00:02

52 5 11793 2201.2 81.33 00:00:20 3408 00:00:00 2971 2135.77 28.11 00:01:33 2462 2298.33 6.65 02:00:00

52 7 20400 3127.03 84.67 00:00:37 4761 00:00:00 4187 3006.06 28.2 00:03:19 3802 3389.61 10.85 02:00:00

70 5 1040 152.446 85.34 00:00:29 360 00:00:00 236 164.30 30.38 00:00:07 223 179 19.73 02:00:00

st 70 7 1548 172.465 88.86 00:00:43 408 00:00:00 364 204.73 43.76 00:03:02 252 225 10.71 02:00:00

70 9 2920 201.558 93.1 00:01:13 552 00:00:00 507 222.73 56.07 00:07:10 688 297.111 56.82 02:00:00

100 5 62059 5317.46 91.43 00:01:16 16366 00:00:00 13151 5085.76 61.33 00:05:10 15292 5812.28 61.99 02:00:00

100 7 106829 5418.4 94.93 00:02:32 19902 00:00:00 19469 5871.49 69.84 00:12:48 24360 6270.08 74.26 02:00:00

100 9 151739 5358.9 96.47 00:04:12 21614 00:00:00 19846 5270.00 73.45 00:24:35 49051 7821.06 84.06 02:00:00

150 7 106958 4248.35 96.03 00:05:38 19870 00:00:00 17882 4280.29 76.06 00:26:35 31512 5556.12 82.37 02:00:00

kroA 150 9 155197 5034.3 96.76 00:09:34 21345 00:00:00 20038 4826.98 75.91 00:52:44 51384 6582 87.19 02:00:00

150 11 240264 7681.11 96.8 00:14:15 24937 00:00:00 24016 7517.20 68.7 01:27:04 50323 8060.58 83.98 02:00:00

200 9 194591 6294.12 96.77 00:17:02 22947 00:00:00 20403 6088.26 70.16 01:33:39 117741 5458.25 95.36 02:00:00

200 11 296236 7472.18 97.48 00:22:48 27178 00:00:01 25195 7173.50 71.53 02:00:00 222560 6361.25 97.14 02:00:00

200 13 375741 9256.4 97.54 00:35:33 29989 00:00:01 26397 8525.46 67.7 02:00:00 294825 7890.25 97.32 02:00:00

318 11 34628 2848.95 91.77 00:54:49 6252 00:00:04 5671 1978.31 65.12 02:00:00 251507 0 100 02:00:00

lin 318 13 56637 3553.51 93.73 01:00:24 8051 00:00:05 7660 2656.36 65.32 02:00:00 93116900 0 100 02:00:00

318 15 75722 3369.12 95.55 01:37:53 9331 00:00:07 9017 2749.56 69.51 02:00:00 – – – –

a better upper bound than SH and RLA. We can also observe that, for several
instances, the lower bound achieved by RLA taken separately is better than
that obtained by PHA. These two observations show that the combination of
the three algorithms does not always help in improving the lower bound, but
clearly helps in improving the upper bound.

Finally, we can see that the CPU time of PHA is relatively small (less than
1h) for 13 instances over 20, while CPLEX reaches the maximum CPU time
for almost all the instances (18 instances over 20). Moreover, PHA has been
able to produce an upper bound for instance lin318-15 while CPLEX was not
able to produce even a feasible solution due to lack of memory.

5 Concluding Remarks

In this paper, we have presented a parallel hybrid algorithm for the SkESNDP,
based on a Lagrangian relaxation algorithm, a greedy heuristic and a genetic
algorithm. The series of experiments we have conducted have shown that our
algorithm outperforms CPLEX in the production of upper bounds, and this,
even for large size instances. The algorithm is able to produce solutions with a
guarantee since it produces both upper and lower bounds. This contrasts with
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the behaviour of most of the heuristics that can be found in the litterature, in
particular those based on meta-heuristics like genetic algorithms. Even if the
gaps, and especially the lower bounds, are not very tight, such a behaviour is
an interesting point that, we think, deserves to be improved.

Also, it would be interesting to improve the parallel implementation of
the algorithm, still in the perspective of improving the solutions produced by
the algorithm. This can be done by using for example heterogenous machines
equipped by GPUs. It would also be interesting to improve the implementation
of the algorithm by using distributed architectures.

Finally, we can investigate the usage of such techniques in a Branch-and-
Cut algorithm for the SkESNDP. This could be used, for instance, for improv-
ing the cutting plane or the branching phases of a Branch-and-Cut algorithm.
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