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Abstract

In this paper we consider a variant of the virtual private network design problem
(VPNDP). Given an uncapacitated physical network, represented by a graph G =
(V ∪P,E), where V is the set of VPN routers and P is the set of clients for which it
is given thresholds on the amount of traffic that each client can send (b+p ) or receive
(b−p ), the VPNDP asks for (1) a connected sub-network G′ = (V ′∪P,E′), (2) a client
assignments (p, v), p ∈ P and v ∈ V ′, and (3) a bandwidth allocation ue, e ∈ E′,
in order to accommodate any traffic demand matrix that respects client thresholds.
When G′ is acyclic, we have a VPN tree (VPNT). Also, when client thresholds are
asymmetric, i.e.,

∑
p∈P b+p �= ∑

b∈P b−p , the problem has been shown to be NP-hard.
In this paper, we give MILP formulations for the asymmetric VPN tree problem.
Also, we discuss the polytope associated with one of these formulations and describe
several classes of valid inequalities. Moreover, we present necessary and sufficient
conditions under which these inequalities define facets. We also devise separation
routines. Using these routines, we propose a Branch-and-Cut algorithm and present
a computational study.
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1 Introduction

The general VPN Design Problem (VPNDP) can be presented in terms of a
graph G = (V ∪ P,E), where P is the set of VPN clients and V is the set of
network routers. Each edge in E represents a link between either two routers
or a router and a client. We can assume, without loss of generality, that every
client p ∈ P is connected to a single router i ∈ V and that the edges in E
have unlimited capacities.

In the very popular hose workload model introduced by Duffield et al.
[1], the bandwidth requirements of VPN clients can be modeled by defining
thresholds b+p ≥ 0 and b−p ≥ 0, p ∈ P , which represent the expected amount
of data that client p can send and receive, respectively. Accordingly to this
model, a demand traffic matrix D ∈ R

P×P
+ is said to be feasible if

∑
q∈P Dpq ≤

b+p and
∑

p∈P Dpq ≤ b−q , for every p, q ∈ P , where the matrix entry Dpq

represents the amount of information that client p can send to client q.

The minimum VPNDP consists in finding a subgraph G′ = (V ′ ∪P,E ′) of
G spanning all the clients in P and a bandwidth allocation ue, e ∈ E ′, capable
of routing any feasible demand traffic matrix, such that, the total bandwidth∑

e∈E′ ue is minimum. When G′ is acyclic, we have a VPN tree. In this case,
the problem is also referred as the minimum VPN Tree Problem (or VPNTP,
for short). This problem has a wide range of practical applications, specially
for Internet Service Providers [2].

Accordingly to the hose thresholds, one can say that the VPNTP is sym-
metric when b+p = b−p for all p ∈ P , and balanced when

∑
p∈P b+p =

∑
p∈P b−p

(clearly, any symmetric VPNTP is also balanced, but the converse is not al-
ways true). In both cases, the problem has been shown to be polynomially
solvable by Gupta et al. [2] and Italiano et al. [3], respectively. However, in
its asymmetric version, i.e., when

∑
p∈P b+p �= ∑

p∈P b−p , Gupta et al. [2] have
shown that the Steiner Tree can be reduced to VPNTP, implying that the
latter is NP-hard.

In this paper, we are interested in the Asymmetric VPN Tree Problem
(AVPNTP, for short) from a polyhedral point of view. We propose two differ-
ent MILP formulations and show that they are equivalent for the AVPNTP.
Then, we discuss the polytope associated with one of these formulations, de-
scribe several classes of valid inequalities and derive necessary and sufficient
conditions under which these inequalities are facet defining. We also discuss
separation routines. These results are used afterwards to develop a Branch-
and-Cut algorithm along with computational results are presented.

Although the problems related to designing efficient VPN networks have
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attracted much of attention in the past decade, only little effort has been
dedicated in developing exact approaches. Gupta et al. [2] show that the
AVPNTP could be solved as a sequence of |V | MILP, each one consisting in
computing a Steiner tree where the terminals correspond to the VPN clients.
In [4], Diarrasouba et al. propose a Branch-and-Cut algorithm based on the
formulation in [2]. In [5], Altin et al. consider the VPNDP without any
constraint on the solution topology, i.e., the solution can be any connected
subgraph of G = (V ∪ P,E). In this case, they propose a multicommodity
flow formulation to the problem. Very recently, in [6], Moradi et al. consider
the latter VPNDP over the first Chvátal closure and demonstrate that strong
LP relaxations can be obtained by adding rank-1 Chvátal-Gomory cuts. The
authors also introduce a new ILP formulation and show that zero-half cuts
are very efficient for solving hard instances of the problem.

The paper is organized as follows. In Section 2, a MILP formulation for the
AVPNTP along with its relaxation are introduced. In Section 3, we discuss
this relaxation and the polytope associated with it. Moreover, we describe
the valid inequalities and discuss their facial aspects. In Section 4, we present
the Branch-and-Cut algorithm and some computational results. Finally, in
Section 5 some conclusions and perspectives for future work are given.

In what follows, we give the basic notations we shall use along the paper.
We denote by E(W ) ⊆ E the subset of edges having both endpoints in W .
An edge cut-set, denoted by δ(W ) ⊆ E, is the subset of edges having one
endpoint in W and another in V \W . For a given vertex v ∈ V , we denote
by δ(v) ⊆ E the subset of edges incident on v.

2 AVPNTP formulation

In [2] it is shown that any asymmetric VPN tree can be completely character-
ized by a subset of nodes S, S ⊆ V , called the core set, such that the induced
subgraph G[S] = (S,E(S)) is connected. Moreover, from a given core set S
it is always possible to build a valid VPNT, T (S), as follows: connect all the
nodes in S by a spanning tree. Add the edges of this spanning tree to T (S).
Then, merge all the nodes of S into a single super-node, say w, and construct
a breadth-first tree rooted at w connecting all the VPN clients in P as leaves.
Finally, add the edges of this tree to T (S).

Let C(S), the cost associated with the solution T (S), be defined as

C(S) = B̂(|S| − 1) +
∑
p∈P

min
v∈S

{dG(v, p)} (b+p + b−p ), (1)
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where B̂ = min{∑p∈P b+p ,
∑

p∈P b−p } and dG(v, p) is the length of the shortest
path (in number of hops) between core node v and client p in G. In [2], Gupta
et al. also proved that, for a core set S that minimizes (1), T (S) is an optimal
VPN tree for the asymmetric case with total bandwidth allocation C(S).

Consequently, it is possible to restate the AVPNTP in terms of a weighted
mixed graph H = (V ∪ P,E,A), where P and V are respectively the set
of VPN clients and the set of VPN routers. The set E is the set of edges
that represent the links between the core nodes while the set A is the set of
arcs that represent all possible assignments of the clients to the routers, i.e.,
A = {(p, v) ∈ P × V }.

As suggested in [2], one can associate a cost fa = dG(v, p)(b
+
p + b−p ) with

every arc a = (p, v) ∈ A, representing the amount of bandwidth required
to assign client p to core node v. Still, as proved in [2], the core edges must
accommodate the worst case scenario of data flowing on the network, requiring
a bandwidht reservation of B̂ on these edges.

In this reformulated version, the AVPNTP is equivalent to solve the fol-
lowing problem: find a tree (S,E ′) in the core graph G = (V,E) ⊂ H and
an assignment A′ ⊆ A, of each client p ∈ P to a node v ∈ S, such that∑

e∈E′ B̂ +
∑

(p,v)∈A′ dG(v, p)(b
+
p + b−p ) is minimum.

Let yi be a variable that takes 1 if node i ∈ V is selected in the core set
and 0 otherwise. Let ze be a variable which takes 1 if edge e = ij is used to
connect core nodes i and j. For an arc (p, i) ∈ A, let x(p,i) be a variable which
takes 1 if p is assigned to i and 0 otherwise. Then, it is not hard to see that
every solution of the AVPNTP satisfies the following inequalities

∑
i∈V

x(p,i) = 1, ∀ p ∈ P (2a)

∑
e∈E

ze =
∑
i∈I

yi − 1, (2b)

∑
e∈E(S)

ze ≤
∑

i∈S\{j}
yi, ∀ S ⊆ V, |S| ≥ 2, j ∈ S (2c)

x(p,i) ≤ yi, ∀ (p, i) ∈ A (2d)

ze ≤ yi, ze ≤ yj, ∀ e = ij ∈ E (2e)

0 ≤ze ≤ 1, ∀ e ∈ E (2f)

0 ≤yi ≤ 1, ∀ i ∈ V (2g)

0 ≤xa ≤ 1, ∀ a ∈ A. (2h)
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Inequalities (2a) guarantee that every client p is assigned to exactly one
core node. Inequalities (2b) and (2c) ensure that the solution is a tree. The
former states that the number of edges in the solution is exactly one unit less
than the number of nodes in the core set, while the latter are the general-
ized sub-tour elimination constraints that guarantee the solution is acyclic.
Inequalities (2d) express the fact that if node i is not in the core set then no
client p can be assigned to it. Similarly, inequalities (2e) indicate that if a
vertex i is not in the solution, then any edge incident on it can not be in the
solution either. Constraints (2f)–(2h) are the trivial inequalities.

Let R1 be the polyhedron given by (2a)–(2h). The AVPNTP is equivalent
to the following integer program

min

{∑
a∈A

dG(a)Bpxa + B̂
∑
e∈E

ze : (x,y, z) ∈ R1 ∩ Z
|A|+|V |+|E|

}
, (3)

where Bp = (b+p + b−p ).
Remark that variables x can be considered continuous. In fact, when

variables (y, z) are restricted to {0, 1}, so it is variables x.

A relaxation of formulation (3) can be obtained by first substituting con-
straints (2a) for a lighter counterpart of covering inequalities of the form

∑
i∈V

x(p,i) ≥ 1, ∀ p ∈ P. (4)

Moreover, it is also possible to relax the requirement that the underlying
solution is a tree. With this purpose, one can enforce the solution connectivity
by replacing (2b) and (2c) by cut-set inequalities of the form

∑
e∈δ(S)

ze ≥ yi + yj − 1, ∀ S ⊂ V, S �= ∅, i ∈ S, j ∈ V \ S, (5)

assuring that, for any edge cut-set induced by S, whenever two variables
associated with routers yi and yj, lying in opposite sides of the edge cut-set,
take value one, then at least one edge in cut must also be set to one.

Then, consider the alternative polyhedron R2 given by (2d) - (2h), (4) and
(5). It follows that a relaxation for AVPNTP (hereafter called r-AVPNTP) is
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given by

min

{∑
a∈A

dG(a)Bpxa + B̂
∑
e∈E

ze : (x,y, z) ∈ R2 ∩ Z
|A|+|V |+|E|

}
. (6)

It is clear that all solutions of (3) are also solutions of (6). Furthermore,
given that all the weights are non-negative, every optimal solution of (6) must
satisfy constraints (2a), (2b) and (2c). Hence, it is also a solution of (3). This
implies that, for the AVPNTP, both formulations (3) and (6) are equivalent.

In the rest of the paper, we are going to consider the formulation (6) for
the AVPNTP.

3 Polyhedral analysis

In this section we are going to investigate some polyhedral aspects of problem
(6). Let Q(H) be the convex hull of all integer solutions of (6), i.e.,

Q(H) = conv
{
(x,y, z) ∈ Z

|A|+|V |+|E| : (x,y, z) satisfies (2d)− (2h), (4) and (5)
}
.

First, we characterize the dimension of Q(H).

Theorem 3.1 The polytope Q(H) is full-dimensional if and only if the core
graph G = (V,E) ⊂ H contains a cycle.

In what follows, we consider that the core graph G = (V,E) ⊂ H contains
at least one cycle, implying that Q(H) is full-dimensional. The next theorems
characterize when inequalities (2d) - (2h), (4) and (5) define facets of Q(H).

Theorem 3.2 For an edge uv ∈ E, inequality zuv ≥ 0 defines a facet for
Q(H) if and only if (i) both vertices u and v have degree of at least 2 in the
core graph G = (V,E) ⊂ H and (ii) there must exist a cycle in the core graph
G that does not contain uv.

Theorem 3.3 For a core node v, inequality yv ≤ 1 defines a facet for Q(H)
if and only if the core graph G = (V,E) ⊂ H is 2-edge connected.

Theorem 3.4 For an assignment (q, u) of client q to core node u, inequality
x(q,u) ≥ 0 defines a facet for Q(H) if and only if node u has degree of at least
2 in the core graph G = (V,E) ⊂ H.
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Theorem 3.5 Inequalities (2d), (2e) and (4) define facets for Q(H).

Theorem 3.6 For a disjoint partition (S, V \ S) of the vertex set V and a
pair u, v of vertices lying in S and V \S, respectively, the cut-set inequality (5)
defines a facet for Q(H) if and only if both induced subgraphs G[S] = (S,E(S))
and G[V \ S] are 2-edge connected.

3.1 Valid inequalities

3.1.1 Tree lower bound inequality

The following inequality is clearly valid for r-AVPNTP and its validity relies
on the fact that any connected subgraph has at least n− 1 active edges in the
solution (where n is the number of active vertices):

∑
e∈E

ze ≥
∑
i∈V

yv − 1. (7)

Theorem 3.7 The tree lower bound inequality (7) defines facet for Q(H).

3.1.2 Degree-one assignment inequalities

Let i ∈ V be a vertex such that |δ(i)| = 1. Then, the following inequalities
are valid for r-AVPNTP

x(p,i) ≥ yi − ze, ∀ p ∈ P, i ∈ V : |δ(i)| = 1, e ∈ δ(i). (8)

Theorem 3.8 Degree-one assignment inequalities (8) define facets for Q(H).

3.1.3 Spanning tree inequalities

Denote by T = (V,ET ), with ET ⊆ E, a spanning tree of the core graph
G = (V,E) ⊂ H. Then, the inequalities below are valid for the r-AVPNTP

∑
e∈ET

ze ≤
∑
i∈V

yi − 1, ∀ T ⊆ G. (9)

Theorem 3.9 Spanning tree inequalities (9) define facets for Q(H).

4 Branch-and-Cut algorithm

One of the pillars of the development of a good Branch-and-Cut algorithm is
to devise efficient separation routines. As it is well-known in the literature,
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cut-set inequalities of type (5) can be efficiently separated by using push-relabel
algorithm to compute the max-flow through every pair of vertices u, v ∈ V . In
order to separate spanning tree inequalities of type (9), we propose a slightly
adaptation of Kruskal algorithm to find a maximum spanning tree in the
support graph induced by a fractional solution (z̄, ȳ). To this purpose, it
suffices to sort the edges in decreasing order of values z̄ and then proceed with
regular Kruskal algorithm to find a maximum spanning tree T in G. If the
weight of the maximum spanning tree,

∑
e∈E(T ) z̄e, is greater than

∑
v∈V ȳv −

1, a violated cut has been found. Otherwise, all spanning tree inequalities
are verified by (z̄, ȳ). We remark that this algorithm is exact and runs in
O(|E| log |V |).

The testbed is composed by a subset of Waxman instances introduced in
[4], where the clients and their thresholds are kept the same for all instances
while the core graph is augmented both in number of vertices and edges.
The Branch-and-Cut algorithm was implemented using C++ language, having
CPLEX 12.6 as MILP solver engine. All the CPLEX heuristics as well as
automatic cut generation were turned off. The tests were conducted in a
personal computer with processor Intel Core i7 and 8 Gb RAM. A time limit
of 300 seconds was given to all instances.

Table 1 summarizes some preliminary results. The first three columns
give general information about the instances: the quantity of VPN clients
followed by the quantity of vertices and edges in the core graph. Next column,
Opt., gives the optimal integer solution value for AVPNTP. It is followed by
column LP R2 which gives the optimal solution for the linear relaxation of
(6). Column LP RR

2 presents the value for the linear relaxation of the same
formulation strengthened by additional valid inequalities (7)–(9). The next
column contains the relative gap in percentage between the integer solution
(column Opt.) and the solution over RR

2 (column LP RR
2 ).

From the analysis of the linear relaxation performance indicated in Table
1, we remark that the linear relaxation of (6) depends only on the thresholds
of clients in P and does not vary with the changes in the core graph, indicating
that formulation performs very poorly. This behavior can be explained by the
fact that polyhedron R2 admits the following trivial fractional solution, which
is an optimal solution with respect to the AVPNTP objective function: for
all core vertices i ∈ V make yi = 0.5. Then, for each client p ∈ P , chose
two of the nearest core vertices u and v in V , and make x(p,u) = x(p,v) = 0.5.
Every core edge uv ∈ E can be set to zero, i.e., zuv = 0. However, things
change dramatically in RR

2 , indicating that the valid inequalities have played
an important role strengthening the previous formulation. It is easy to verify
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|P | |V | |E| Opt.
LP relax. B&C RR

2

LP R2 LP RR
2 gap NSub cs sp t(s)

10 10 20 105 50.5 105 0.03 2 0 0 0

10 15 30 137 50.5 147.33 0.07 9 156 0 0.03

10 20 40 152 50.5 142.75 0 17 631 0 0.11

10 25 50 134 50.5 127 0 0 0 0 0

10 30 60 208 50.5 186.29 0.03 8 114 0 0.03

10 35 70 184 50.5 191.88 0.16 121 50,604 0 24.23

10 40 80 194 50.5 192.14 0.14 25 7,875 0 1.92

10 45 90 201 50.5 205.67 0.1 41 14,248 0 3.67

10 50 100 218 50.5 214.46 0.13 145 142,894 0 206.3

10 55 110 241 50.5 215.25 0.12 67 164,782 0 178.98

Table 1
Branch-and-Cut performance

that valid inequality (3.7) cuts-off the previous optimal fractional solution.

The last four columns of Table 1 present general information about the
Branch-and-Cut algorithm. ColumnNSub indicates the total number of nodes
explored in the Branch-and-Bound tree. Column cs gives the total amount
of cut-set inequalities (5) separated, and it is followed by column sp which
indicates the total amount of spanning tree inequalities (9) separated. Last
column gives the execution time in seconds. We report that the performance
of the Branch-And-Cut based on our formulation outperforms the results pre-
sented in [4], giving linear relaxation values of at least half of the values for the
three biggest instances while keeping the same average quality for the smaller
ones. Also, when it comes to execution time, our algorithm was able to solve
faster all but one instance. Unfortunately, the authors do no report in [4] the
number of explored nodes in the Branch-and-Bound tree.

Although spanning tree inequalities (9) always define facets, as indicated
by Theorem 3.9, no violated inequality of that type was separated for any of
the instances in the testbed. This can be explained by the specific structure of
the objective function of AVPNTP, which seeks to minimize the total amount
of edges in the solution. However, we point out that this behavior can easily
change when different configurations of objective function are used. For ex-
ample, multiplying by −1 all the costs associated with variables z is sufficient
to make appear violated inequalities of type (9).
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5 Conclusion

In this work we have shown how the polyhedral approach can be used for
designing an efficient algorithm for the AVPNTP. We have introduced two
different formulations and conducted a polyhedral investigation for one of
them. Moreover, we have presented some classes of valid inequalities and
studied their facial aspects. Also, the computational experiments have shown
that this can be indeed a good approach for solving these problems. Besides
the fact that it can be interesting looking for new classes of valid inequalities,
it can also be a good perspective for future work to investigate some correlated
problems as, for example, the Connected Facility Location Problem, for which
we can easily adapt the formulations here presented.
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over the first Chvátal closure, Operations Research 49 (2015), 569–588.

I. Diarrassouba et al. / Electronic Notes in Discrete Mathematics 64 (2018) 315–324324


	Introduction
	AVPNTP formulation
	Polyhedral analysis
	Valid inequalities

	Branch-and-Cut algorithm
	Conclusion
	Acknowledgement 
	References

