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Abstract Network design problems have been widely stud-
ied in the last decades due to the importance of ICT in our
daily life and are still the subject of extensive researches. Net-
work design covers a large family of problems, and several
algorithms, both exact and heuristic methods, have been pro-
posed to address each of them. In this paper, we consider two
variants of the so-called survivable network design problem
andpropose a generic parallel hybrid algorithm to solve them.
The algorithm is based on the hybridization of a Lagrangian
relaxation algorithm, a greedy algorithm and a genetic algo-
rithm. We present, for each variant, a computational study
showing the efficiency of our approach in producing both
lower and upper bounds for the optimal solution.
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1 Introduction

Designing efficient networks is nowadays of crucial impor-
tance since networks take a large place in many fields
(telecommunications, logistics, economics, ICT, etc.).
Addressing network design issues has raised a large class
of problems.

Survivable network design problems (SNDP) are those
network design problems which aim at designing networks
that are still functioning evenwhen failures occur. The impor-
tance of survivability in networks has led to a wide literature
on these problems, and several algorithms, both exact and
heuristic methods, have been proposed to address them.

In this paper, we consider two SNDP, namely the k-
edge-connected survivable network design and the k-edge-
connected hop-constrained survivable network design prob-
lems. The two problems are defined as follows. Given a
weighted undirected graph G = (V, E) where each edge
e has a weight ωe, a set of demands D ⊆ V × V , a positive
integer k, the k-edge-connected survivable network design
problem (kESNDP) is to find a minimum weight subgraph
ofG such that for each demand {s, t} ∈ D, there exist k edge-
disjoint paths between s and t . If, in addition, we require that,
for all demand {s, t} ∈ D, there exist k edge-disjoint st-paths
of length at most L , and for some integer L ≥ 2, the problem
obtained is the k-edge-connected hop-constrained survivable
network design problem (kHNDP).

Both kESNDP and kHNDP are NP-hard and have been
investigated in the literature. The kESNDP is a particular
case of a more general problem, called general survivable
network design problem (GSNDP) in which it is required
that there exist rst edge-disjoint paths between s and t , for
all {s, t} ∈ D. This latter, and its variants, has been studied
by several authors [see for instance Steiglitz et al. (1969),
Magnanti and Raghavan (2005), Winter (1987), Grötschel
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and Monma (1990), Grötschel et al. (1992) and Goemans
and Bertsimas (1993)]. In Goemans and Bertsimas (1993),
the authors studied a variant of the problem in which each
node u of the graph is given an integer ru ≥ 0 which cor-
responds to the minimum number of paths connecting u to
the rest of the network, and proposed a heuristic to solve this
problem. Grötschel and Monma (1990) and Grötschel et al.
(1992) considered the polytope associated with the GSNDP
and gave some valid inequalities as well as conditions for
these inequalities to define facets. Magnanti and Raghavan
(2005) presented several integer programming formulations
for theGSNDP for both undirected and directed graphs. They
also discussed the efficiency of each formulation in terms
of LP-relaxation. Kerivin and Mahjoub (2005) presented
a review of the main models associated with the GSNDP
as well as the main associated polyhedral results. Another
well-known SNDP is the so-called k-edge-connected sub-
graph problem (kECSP) in which it is required that there
exist k edge-disjoint paths between each pair of nodes of
the graph. This problem corresponds to the kESNDP where
D = {{s, t}, for all s, t ∈ V with s �= t}, and rst = k, for all
{s, t} ∈ D. Several papers deal with the structural properties
of the solutions of the kECSP. Among these, we mention the
papers of Kerivin et al. (2004) and Bendali et al. (2010) who
proposed a polyhedral approach and Branch-and-Cut algo-
rithms for the kECSP, respectively, when k = 2 and k ≥ 3.

The kHNDP has also been widely studied. Dahl and Gou-
veia (2004) considered the directed version of the problem.
They described some valid inequalities and give a complete
description of the polytope of the problem when k = 1,
|D| = 1 and L ≤ 3. In Huygens et al. (2007), and the
authors proposed apolyhedral approach for the kHNDPwhen
k = 2, |D| ≥ 2 and L = 2, 3. They introduced several valid
inequalities and devised a Branch-and-Cut algorithm for the
problem.Diarrassouba et al. (2016a) investigated the kHNDP
when L = 2, 3. They presented several integer programming
formulations basedongraph transformations. They also com-
pared these formulations both in terms of LP-relaxation and
in terms of efficiency. In Botton et al. (2013), the authors
present the first formulation of the k-HNDP for any k, L ≥ 1
and use a Benders decomposition method to handle the big
number of variables and constraints. They present as well
a computational study of various cutting plane and Branch-
and-Cut algorithms.

Diarrassouba et al. (2016b) also investigated a version of
the kHNDP in which it is required that the paths are node
disjoint. They presented some valid inequalities and devised
a Branch-and-Cut algorithm for this problem when k = 2.

In this paper, we introduce two heuristics for the kESNDP
and the kHNDP based on the hybridization of a Lagrangian
relaxation algorithm, a greedy algorithm and a genetic algo-
rithm, used in a parallel computing framework. We test the
algorithmswithin an extensive computational study and com-

pare their efficiency for solving both kESNDP and kHNDP
against CPLEX.

The paper is organized as follows. In Sect. 2, we give the
main motivations of this work. Then, in Sect. 3, we present
the parallel hybrid algorithm, its main components and the
computational results, for the kESNDP. In Sect. 4, we present
the algorithm for the kHNDP, alongwith some computational
results. In Sect. 5, we show and discuss the impact of the par-
allelization in our approach. Finally, in Sect. 6, we discuss the
generalization of our framework and give some concluding
remarks.

2 Motivations

Despite the continuous and significant development of com-
puter’s calculation performance, it remains difficult to solve
to optimality, within a reasonable amount of time, many
combinatorial optimization problems (COPs) for large-scale
input data. For most of these hard problems, including the
kESNDP and the kHNDP, one of the main issues when solv-
ing to optimality with Branch-and-Cut or Branch-and-Price
algorithms is that solving even the linear relaxation of the
considered integer programming formulation can be time-
consuming for large-scale instances. This may prevent the
Branch-and-Cut or Branch-and-Price algorithm from a good
exploration of the enumeration tree and finding good quality
solutions [see for instance Diarrassouba et al. (2016b)].

In this work, we address these two issues (excessive CPU
time and good exploration of the solutions space) by using
both parallel computing and hybridization. We first devise
a Lagrangian relaxation algorithm for both the kESNDP
and kHNDP and use parallel computing in order to reduce
the CPU time needed to obtain good lower bound for the
problem. Then, we devise a population-based metaheuris-
tic, namely a genetic algorithm, in order to ensure a good
exploration of the solutions space. We also devise a greedy
heuristic for having simply and quickly heuristic solutions
of the problem. Moreover, we hybridize the three algorithms
in order to improve the quality of both the lower and upper
bounds. As we will see below, the algorithm takes advantage
of the structure of the integer programming formulations we
consider for the two problems.

3 A parallel hybrid algorithm for the kESNDP

Wepresent in this section the parallel hybrid algorithm for the
kESNDP.We first present a flow-based integer programming
formulation for the problem and then present the Lagrangian
relaxation, the genetic and the greedy algorithms for the
kESNDP. Finally, we present their hybridization and paral-
lelization scheme.We recall that the kESNDP is definedby an
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Fig. 1 Graph transformation for the kESNDP

undirected graph G = (V, E), a set of demands D ⊆ V ×V
given by origin–destination pairs {s, t} ∈ D with s �= t , and
a positive integer k.

3.1 Integer programming formulation

The kESNDP can be formulated as a flow-based integer pro-
gram [see Magnanti and Raghavan (2005)]. For each edge
uv ∈ E , let xuv be the 0 − 1 variable which takes value 1 if
the edge uv is in a solution of the problem and 0 otherwise.
Also let ˜G = (V, A) be the directed graph obtained from G
by replacing each edge uv ∈ E by two arcs of the form (u, v)

and (v, u) (see Fig. 1 for an illustration).
Finally, let f stuv be the flow variable associated with every

arc (u, v) of ˜G and a pair {s, t} ∈ D. The kESNDP is equiv-
alent to

min
∑

uv∈E
ωuvxuv

s.t.

∑

v∈V \{u}
f stuv −

∑

l∈V \{u}
f stlu =

⎧

⎨

⎩

k, if u = s,
−k, if u = t,
0, if u ∈ V \ {s, t} ,

⎫

⎬

⎭

for all u ∈ V and {s, t} ∈ D,

(1)

f stuv

f stvu

}

≤ xuv, for all uv ∈ E and {s, t} ∈ D, (2)

f stuv, f stvu ≥ 0, for all uv ∈ E and {s, t} ∈ D, (3)
xuv ≤ 1, for all uv ∈ E, (4)
xuv ∈ {0, 1}, for all uv ∈ E, (5)

f stuv, f stvu ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D. (6)

Fig. 2 Block structure of the kESNDP undirected flow formulation

The formulation is called “undirected flow formulation”
(UFP). Inequalities (1) are the flow conservation constraints.
They express the fact that between every pair of terminals
(s, t) in the auxiliary graph, there exists an integer flow of
value k. This flow yields k edge-disjoint paths between s
and t in the original graph. Inequalities (2) are the linking
constraints. They ensure that if an edge uv is not taken in the
solution, then no st-flow can use this edge. Inequalities (3)
and (4) are the trivial inequalities.

One can easily see that the above formulation has a block
structure as illustrated in Fig. 2.

Each block “Flow i” corresponds to the flow conservation
constraints associated with a demand {s, t} ∈ D.

3.2 The Lagrangian relaxation algorithm

When devising a Lagrangian relaxation algorithm, the main
issues that must be taken into account are

– which constraints are relaxed,
– how the Lagrange multipliers are updated,
– what is the stopping criterion.

In our framework, the Lagrangian relaxation is obtained
by relaxing the linking constraints (2). We denote by λstuv , the
Lagrange multipliers associated with the linking constraints
(2), for all {s, t} ∈ D and (u, v) ∈ A. The Lagrangian relax-
ation thus obtained, denoted by (LR), is given by

min
∑

uv∈E

⎡

⎣ωuv −
∑

{s,t}∈D

(

λstuv + λstvu
)

⎤

⎦ xuv

+
∑

{s,t}∈S

∑

uv∈E

(

λstuv f
st
uv + λstvu f

st
vu

)
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s.t.

∑

v∈V
f stuv −

∑

l∈V
f stul =

⎧

⎨

⎩

k, if u = s,
−k, if u = t,
0, if u ∈ V \ {s, t} ,

⎫

⎬

⎭

,

for all u ∈ V and {s, t} ∈ D,

0 ≤ f stuv, f stvu ≤ 1, for all uv ∈ E, {s, t} ∈ D,

0 ≤ xuv ≤ 1, for all (u, v) ∈ E,

xuv ∈ Z, for all (u, v) ∈ E,

f stuv ∈ Z, for all (u, v) ∈ A, {s, t} ∈ D.

Observe that, apart the objective function, the variable x
appears in problem (LR) only in the trivial constraints 0 ≤
xuv ≤ 1. Thus, solving problem (LR) reduces to solving the
problem (LR’) as follows:

min
∑

{s,t}∈S

∑

uv∈E

(

λstuv f
st
uv + λstvu f

st
vu

)

s.t.

∑

v∈V
f stuv −

∑

l∈V
f stul =

⎧

⎨

⎩

k, if u = s,
−k, if u = t,
0, if u ∈ V \ {s, t} ,

⎫

⎬

⎭

,

for all u ∈ V and {s, t} ∈ D,

0 ≤ f stuv, f stvu ≤ 1, for all uv ∈ E, {s, t} ∈ D,

f stuv ∈ Z, for all (u, v) ∈ A, {s, t} ∈ D.

One can easily see that if ( f
st

, {s, t} ∈ D) is an optimal
solution for problem (LR’), then solution (x, f

st
, {s, t} ∈

D) where

xuv =
{

1 if ωuv − ∑

{s,t}∈D
(

λstuv + λstvu
)

< 0,

0 otherwise,
, for all uv ∈ E,

is optimal for problem (LR).
Also, it is not hard to see that problem (LR’) consists in

|D| independent minimum cost st-flow problems in graph
˜G. Thus, problem (LR’) can be solved by using any combi-
natorial algorithm solving the minimum cost flow problem.
The reader can refer to Ahuja et al. (1993) for more details on
minimum cost flow problems and the associated algorithms.
Moreover, since the minimum cost flow problems of (LR’)
are independent, we solve (LR’) in a parallel multi-threaded
fashion. Thus, we can solve (LR) in time O(MF) when using
|D| processors, where O(MF) is the runtime for solving a
minimum cost st-flow problem.

An issue to address in the Lagrangian relaxation algo-
rithm (Held and Karp 1971; Beasley 1993) is how the
Lagrange multipliers, λstuv , (u, v) ∈ A and {s, t} ∈ D, are
updated. For this, we use the so-called subgradient method,
which is known for its easy implementation and its speed.
Let λk = (λstuv,k)uv∈E,{s,t}∈D be the vector of the current

Lagrange multipliers at iteration k of the Lagrangian relax-
ation algorithm, (x, f

st
, {s, t} ∈ D) an optimal solution of

problem (LR), zk the optimal value of (LR), and ZUB an
upper bound of the optimal solution of the original problem
(UFP). Then, the Lagrange multipliers at iteration k + 1 are
given by

λstuv,k+1 = max
{

0, λstuv,k − ρkγ
st
uv,k

}

where

γ st
uv,k = x∗

uv − f
st
uv

γ st
uv,k = x∗

uv − f
st
vu

}

, for all uv ∈ E,

ρk = 1

2k
ZUB − zk
‖ γk ‖2 .

The upper bound ZUB can be obtained by a heuristic
running independently from the Lagrangian relaxation algo-
rithm. In our case, we produce a feasible solution to the
kESNDP at each iteration of the Lagrangian relaxation algo-
rithm and choose ZUB as the best value among all solutions
thus obtained. A feasible solution, say y ∈ R

E , to kESNDP
can be obtained from the optimal solution of problem (LR) by
choosing yuv = max{ f stuv, f

st
vu, for all {s, t} ∈ D}. Clearly,

the solution (y, f
st

, {s, t} ∈ D) satisfies constraints (1)–(6).
Finally, the Lagrangian relaxation algorithm stops either

when a CPU time of 2h is reached or the algorithm processes
2000 iterations or after 100 iterations without improving the
best known upper bound. The algorithm returns the best
lower and upper bounds obtained.

3.3 The genetic algorithm

Nowwe turn our attention to the genetic algorithm. A genetic
algorithm consists in considering a set of solutions, feasible
or not, in order to produce one ormore new feasible solutions.
The set of solutions is called the population. The algorithm
randomly chooses two solutions, called parents, in the pop-
ulation and combines them to produce one or more new
solutions, called children. For a general combinatorial opti-
mization problem, the children solutions may not be feasible
for the problem. In this case, the algorithm tries to transform
them into feasible solutions and put them into the popula-
tion. In our case, we will see that both parents and children
solutions we build are feasible for kESNDP.

The choice of implementing a genetic algorithm is moti-
vated by the block structure of the flow formulation. Indeed,
as said before, this allows to consider a feasible solution of
the kESNDP as a sequence of st-flows, each of value k, for
all (s, t) ∈ D. As we will see below, considering a solution
as a sequence of st-flows allows to easily combine different
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solutions in order to produce new feasible ones, which is the
key idea of genetic algorithms.

The design of a genetic algorithm takes into account the
following issues

– solution encoding and evaluation,
– the parent selection,
– the crossover (how the parent are combined),
– the population management,
– the stopping criterion.

Formore details on genetic algorithms, the reader can refer
to Talbi (2002). In the remainder of this section, we discuss
these issues for our genetic algorithm for the kESNDP.

3.3.1 Encoding and evaluation of a solution

A solution of the kESNDP can be represented in different
ways, but in our algorithm, we represent a solution by a set
of 0− 1 vectors ( f

s1t1
, . . . , f

sd td
), where f

si ti ∈ {0, 1}|A| is
a flow vector associated with demand si ti .

The evaluation of a solution encoded by ( f
s1t1

, . . . , f
sd td

)

consists in giving the weight of the subgraph of G corre-
sponding to that solution. The weight of such a solution is
given by Z = ∑

uv∈E ωuvxuv , where

xuv = max{ f stuv, f
st
vu, for all {s, t} ∈ D}.

3.3.2 Parent selection and crossover

The generation of children solutions is done in the follow-
ing way. For two solutions, say P1 = ( f

s1t1
, . . . , f

sd td
) and

P2 = (gs1t1, . . . , gsd td ), we randomly choose two integers
a and b with 2 ≤ a < b ≤ d. Then, we cross P1 and P2
according to integers a and b and produce two solutions C1

and C2 such that

C1 =
(

f
s1t1

, . . . , f
sa−1ta−1

, gsa ta , . . . , gsb−1tb−1 , f
sbtb

, . . . , f
sd td

)

and

C2 =
(

gs1t1 , . . . , gsa−1ta−1 , f
sa ta

, . . . , f
sb−1tb−1

, gsbtb , . . . , gsd td
)

.

Clearly, C1 and C2 are feasible for the kESNDP if P1 and
P2 are feasible for the kESNDP.

The children generation phase is done by applying the
above procedure to 0.1Npool randomly chosen pairs of solu-
tions (P1, P2), where Npool is the number of elements into
the pool before the generation of the new solutions.

3.3.3 Population management

The pool of solutions is initialized with all feasible solutions
produced by the greedy algorithm described in Sect. 3.4.
During the algorithm, we ensure that the pool of solutions
contains nomore than 100 solutions. The solutions are sorted
in increasing order w.r.t. their evaluation. For simplicity, we
denote by Ni

pool the number of solutions in the pool after the
generation of the new solutions at iteration i . In the following,
we first discuss the case where the genetic algorithm runs
simultaneously with the Lagrangian relaxation and greedy
algorithms and then when it is not the case.

We discuss first the case where the genetic algorithm is
running simultaneously with the Lagrangian relaxation and
greedy algorithms. In this case, for every iteration i ≥ 1,
we remove from the pool the Ni

pool − 100 worst solutions, if

Ni
pool ≥ 100. Otherwise, we do not remove any solution.
Now we consider the case where the genetic algorithm

is not running simultaneously with the Lagrangian relax-
ation and greedy algorithms. This is the case when both the
Lagrangian relaxation and greedy algorithms are terminated
or when the genetic algorithm is running separately from
the hybridization. In this case, for every iteration i such that
1 ≤ i ≤ 200, if Ni

pool ≥ 100, thenwe remove the Ni
pool−100

worst solutions. When i > 200, if Ni
pool ≥ 20, we remove

from the pool the
(

Ni
pool − Ni−1

pool

)

+ 5%Ni−1
pool worst solu-

tions. If Ni
pool < 20, thenwe remove the

(

Ni
pool − Ni−1

pool

)

+1

worst solutions.
Note that this management strategy of the pool guarantees

that the number of solutions in the pool slowly decreases
until it remains one solution in the pool, and this using the
hybridization or not.

3.3.4 Stopping criterion

The genetic algorithm stops either when the CPU time
reaches 2h or the pool of solutions contains only one solu-
tion. Note that in both cases, the first solution of the pool is
the best solution obtained by the algorithm.

3.4 The greedy algorithm

We choose to implement a greedy algorithm for the kESNDP
because of its simplicity of implementation. Also, as we will
see below, our greedy algorithm relies on a set of orderings of
the demand set. Each of these orderings is considered inde-
pendently from each other, which yields a possible parallel
implementation of our greedy algorithm.

The main idea of our greedy heuristic is to produce an
upper bound of the optimal solution of the kESNDP. For this,
the algorithm produces a set of feasible solutions, each being
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obtained by iteratively computing minimum cost st-flows,
for all {s, t} ∈ D, and keep the best one. Moreover, each
st-flow takes into account the minimum st-flows obtained
prior.

More precisely, the algorithm starts by randomly generat-
ing a set of |D| orderings of the demands. Each ordering
will produce a feasible solution. For a given ordering of
the demands, let D = {{s1, t1}, {s2, t2}, . . . , {sd , td}} be the
demands w.r.t that ordering. Next, we compute a minimum
cost s1t1-flow of value k in ˜G, where all the arcs have capac-
ity 1 and arcs (u, v) and (v, u) have a cost ωuv . Let E1 be
the set of edges uv of G such that either (u, v) or (v, u)

have a flow value of 1 in that minimum cost flow. Then, we
compute a minimum cost s2t2-flow of value k in ˜G with all
the arcs having capacity 1, the arcs (u, v) and (v, u) such
that uv ∈ E1 have a cost 0 and all the arcs (u, v) and (v, u)

such that uv ∈ E \ E1 have a cost ωuv . More generally, if
Ei denotes the set of edges of E having a flow value 1 in
the minimum cost si ti -flow, we compute a minimum cost
si+1ti+1-flow of value k with all the arcs having capacity 1,
all the arcs corresponding to an edge of

⋃i
j=1 E j having a

cost 0, and all the arcs (u, v) corresponding to an edge uv of
E \ ⋃i

j=1 E j having a cost ωuv .

It is not hard to see that the edge set
⋃|D|

j=1 E j is a feasible
solution of the kESNDP. This procedure is repeated for all
the ordering of the demands, yielding |D| feasible solutions
for the kESNDP. The algorithm ends by finding the best one
among these solutions.

Each minimum cost flow is computed with the net-
work simplex algorithm, which can be implemented to run
in polynomial time. Thus, the overall algorithm runs in
O(|D||V |2|E | log(|V |C)) with C = max(ωuv).

3.5 The hybridization and parallelization scheme

Nowwe present the hybridization and parallelization scheme
of the overall algorithm. For simplicity, we denote by
Lagrangian relaxation algorithm by LRA, the genetic algo-
rithm by GA and the greedy algorithm by SH. The parallel
hybrid algorithm will be denoted by PHA.

We remark that in PHA, the three algorithms LRA, GA
and SH run in parallel. We also hybridize the three algo-
rithms in the following way. First, the solutions generated
by algorithms SH and LRA are introduced in the pool of
solutions of GA. Also, at the beginning of PHA, the global
upper bound ZUB is set to ∞. Then, each time LRA, SH
and GA generate a feasible solution, and the value Z of
this solution is compared to ZUB . If Z < ZUB, then the
best upper bound ZUB is updated with the value of Z . Note
that the value ZUB is used by LRA to update the Lagrange
multipliers.

Algorithm 1: Algorithm PHA for the kESNDP.
Data: An undirected graph G = (V, E), the demand set D, a

positive integer k ≥ 1
Result: A lower and upper bounds of the optimal solution of the

kESNDP
1 begin
2 ZUB ← ∞;
3 Execute SH, LRA et GA in parallel;

4 SH:
5 Computes |D| arbitrary orderings of the demands;
6 for each ordering on the demands do
7 Computes a feasible solution, according to that ordering,

using the Network Simplex Algorithm to solve a series of
minimum cost flow subproblems);

8 Add the new solution obtained into the population pool.
Let ZSH be its value;

9 if ZSH < ZUB then
10 ZUB ← ZSH;

11 Informs GA that has ended;

12 LRA:
13 for each iteration do
14 Compute the Lagrange multipliers using ZUB and the

current solution of problem (LR). Let z be the optimal
value of (LR);

15 Compute a feasible solution from the solution of problem
(LR). Let ZLRA be its value;

16 Add this solution into the pool;
17 if ZLRA < ZUB then
18 ZUB ← ZLRA;

19 if z > ZLB then
20 ZLB ← z;

21 Informs GA that has ended;

22 GA:
23 for each iteration do
24 Sort the solutions of the pool by increasing order w.r.t. to

their weight;
25 Randomly choose several pairs of solutions from the pool

and combine the solutions of each pair in order to
generate new solutions;

26 for every new solution do
27 Let ZGA be the value of the solution;
28 if ZGA < ZUB then
29 ZUB ← ZGA;

30 Add the solution to the pool of solutions;

31 Delete the worst solutions from the pool (according to the
pool management strategy);

32 return (ZLB , ZUB);

We also ensure that GA continues running after LRA and
SH are terminated. This is done in order to give toGA enough
time to process the solutions of LRA and SH.

Finally, notice that together with the global upper bound
ZUB , the Lagrangian relaxation algorithm also produces a
lower bound of the optimal solution of the kESNDP.
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Fig. 3 PHA communication
scheme

Themain operations in PHAare summarized inAlgorithm
1, while Fig. 3 describes the communication scheme of PHA.

3.6 Computational results

In this section, we present the computational experiments
we have conducted for the kESNDP. The aim is to show
the efficiency of our algorithm in producing solutions of
good quality for the problem, and this, in a relatively short
computation time. To do this, we first compare the results
obtained, for several instances, by algorithm PHA against
those obtained by solving the flow formulation with CPLEX.
Then, we compare each algorithm SH, LRA and GA against
the overall PHA algorithm for solving the kESNDP.

All the algorithms have been implemented in C++, and
we have used CPLEX (12.5) for solving the undirected flow
formulation of the kESNDP. The experiments have been
conducted on a computer equipped with an Intel i7 pro-
cessor at 2.5Ghz with 8Gb of RAM, running under Linux.
We have set the maximum CPU time of all the algorithms,
including CPLEX, to 2h. The test problems have been com-

posed of graphs from the TSPLIB (1995) library that are
complete Euclidean graphs. For the demands, we have con-
sidered single-source multi-destination demand set (called
rooted demands) and multi-source multi-destination demand
set (arbitrary demands). The number of nodes of the graphs is
from 30 to 318, while the number of demands varies from 10
to 159 for both rooted and arbitrary demands. We have also
solved each instance with connectivity requirement k = 3.
Each instance is described by its name followed by the num-
ber of nodes of the graph and the number of demands. When
the demands are rooted, the number of demands is preceded
by “r”while arbitrary demands are indicated by “a” before the
number of demands. For example, berlin30-r10 denotes an
instance composed of a graph from TSPLIB with 30 nodes
and 10 rooted demands, and st70-a35 denotes an instance
composed of a graph from TSPLIB with 70 nodes and 35
arbitrary demands.

Tables 1 and 2 report the results for the kESNDP with
k = 3 by both PHA and CPLEX for rooted demands and
arbitrary demands, respectively. The entries of each table are
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|V |: Number of nodes of the graph,
|D|: Number of demands,
UB: Best upper bound achieved by PHA (resp. CPLEX),
LB: Best lower bound achieved by PHA (resp. CPLEX),
Gap: Relative error between the best upper and lower bounds

achieved by PHA (resp. CPLEX),
CPU: Total CPU time in hours:min:sec achieved by PHA

(resp. CPLEX).

Remark that for some instances, CPLEX has not been able
to solve even the linear relaxation after the maximum CPU
time (2h). The results for these instances are indicated with
“–.”

FromTable 1, we can observe that for the rooted instances,
2 instances over 22 have been solved to optimality by
CPLEX, while PHA produces an upper bound of the optimal
solution for all the instances. Also, for 9 instances, CPLEX
produces a better feasible solution than that obtained byPHA.
However, for all the other instances, the upper bound pro-
duced by PHA is better than that obtained by CPLEX after
the maximumCPU time. For example, for instances st70-r35
and kroA100-r50, PHAproduces an upper bound of 1265 and
47454, respectively, while CPLEX produces an upper bound
of 1278 and 49323. We have also compared the lower bound
achieved by PHA with that obtained by CPLEX. For several

instances (12 over 22), the lower bound obtained by CPLEX
after the maximum CPU time is better than that obtained by
PHA. This can be explained by the fact that CPLEX, during
the resolution process, adds several valid inequalities, such
as Gomory cuts and general upper bound inequalities, which
allows us strengthening the linear relaxation of the problem
and improve the quality of the lower bound.

We can also observe that for small graphs (up to 70 nodes
and 35 demands), CPLEX produces a better gap than PHA.
However, PHA performs better for large size instances. Also
remark that for large instances, the gap of CPLEX is high
(near 90%). This shows the limit of CPLEX for solving
large instances and the utility of our approach to handle such
instances.

For the arbitrary instances (see Table 2), the observations
are almost the same. PHA produces better upper bounds for
11 instances over 20. PHA is even able to produce both lower
and upper bounds for 5 instances where CPLEX has not been
able to solve the linear relaxation of the problem. Also, for
9 instances, PHA produces a better lower bound than that
obtained byCPLEX. For the other instances, the lower bound
achieved by CPLEX is better than that obtained PHA.

Finally, we compare CPLEX and PHA in terms of CPU
time. We clearly see, from Tables 1 and 2, that except 2
instances with rooted demands instances and with arbitrary

Table 1 Results for PHA and
CPLEX for the kESNDP and
rooted demands with k = 3

Instances PHA CPLEX

Name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 7168 6072.29 15.29 00:00:11 6241 6241 0 00:43:55

berlin 30 15 10,970 7856.13 28.39 00:00:17 7982 7828 1.93 02:00:00

berlin 30 20 12,173 8391.95 31.06 00:00:27 8510 8510 0 00:56:08

berlin 30 25 12,805 8832.3 31.02 00:00:36 9040 9014.5 0.28 02:00:00

berlin 52 10 6815 4740.6 30.44 00:00:45 5399 4959.58 8.14 02:00:00

berlin 52 15 9871 6821.52 30.89 00:01:12 7505 6680.3 10.99 02:00:00

berlin 52 26 13,033 7639.51 41.38 00:01:58 9270 8223.08 11.29 02:00:00

st 70 15 761 523.647 31.19 00:01:21 607 438.95 27.69 02:00:00

st 70 26 1077 707.247 34.33 00:02:24 928 612.011 34.05 02:00:00

st 70 35 1265 805.399 36.33 00:03:22 1278 707.5 44.64 02:00:00

kroA 100 20 26, 677 11,864.8 55.52 00:05:52 22,637 12,354.3 45.42 02:00:00

kroA 100 35 39,378 16,182.3 58.91 00:10:12 32,738 19,189 41.39 02:00:00

kroA 100 50 47,454 18,875.4 60.22 00:15:03 49,323 23,501.4 52.35 02:00:00

kroA 150 30 36,340 11,596.3 68.09 00:19:09 43,987 16,106.5 63.38 02:00:00

kroA 150 50 47,764 15,774.2 66.97 00:33:04 64,280 22,374.3 65.19 02:00:00

kroA 150 75 57,909 17,742.1 69.36 00:50:48 418,670 28,031.4 93.3 02:00:00

kroA 200 40 41,724 12,080.4 71.05 00:45:44 65,762 17,020 74.12 02:00:00

kroA 200 75 59,482 16,096.8 72.94 01:28:01 – – – 02:00:00

kroA 200 100 69,462 18,792.2 72.95 02:00:00 – – – 02:00:00

lin 318 61 26,723 6068.56 77.29 02:00:00 – – – 02:00:00

lin 318 111 55,000 8702.16 84.18 02:00:00 – – – 02:00:00

lin 318 159 71,464 8719.74 87.8 02:00:00 – – – 02:00:00
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Table 2 Results for PHA and
CPLEX for the kESNDP and
arbitrary demands with k = 3

Instances PHA CPLEX

Name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 10,422 8216.0 21.17 00:00:15 9276 9276.0 0 00:00:08

berlin 30 15 12,385 9716.2 21.55 00:00:24 10,749 10,655.2 0.87 02:00:00

berlin 52 10 10,553 7772.5 26.35 00:00:42 8508 8256.9 2.95 02:00:00

berlin 52 15 13,588 9141.0 32.73 00:01:23 10,270 9870.4 3.89 02:00:00

berlin 52 20 15,603 10,347.5 33.68 00:01:37 11,499 11,499.0 0 00:30:04

st 70 15 1176 678.3 42.32 00:01:31 773 631.3 18.33 02:00:00

st 70 26 1531 979.5 36.02 00:02:56 1067 866.5 18.79 02:00:00

st 70 35 1888 1202.6 36.31 00:04:20 1534 1082.5 29.43 02:00:00

kroA 100 20 42,845 19,839.5 53.69 00:06:58 49,089 19,602.5 60.07 02:00:00

kroA 100 35 61,802 26,609.3 56.94 00:12:54 86,377 28,331.3 67.2 02:00:00

kroA 100 50 68,537 31,378.5 54.22 00:18:27 155,967 33,839.0 78.3 02:00:00

kroA 150 30 56,725 22,773.6 59.85 00:23:24 49,126 24,173.6 50.79 02:00:00

kroA 150 50 71,392 29,684.8 58.42 00:40:14 154,870 32,461.8 79.04 02:00:00

kroA 150 75 88,672 36,283.2 59.08 01:02:03 553,614 42,973.0 92.24 02:00:00

kroA 200 40 64,500 23,745.5 63.19 00:54:46 353,805 26,323.2 92.56 02:00:00

kroA 200 75 91,687 32,872.0 64.15 01:50:27 – – – 02:00:00

kroA 200 100 102,137 37,932.2 62.86 02:00:00 – – – 02:00:00

lin 318 61 49,769 17,303.4 65.23 02:00:00 – – – 02:00:00

lin 318 111 86,928 21,634.2 75.11 02:00:00 – – – 02:00:00

lin 318 159 121,811 24,089.2 80.22 02:00:00 – – – 02:00:00

demands, CPLEX reaches the maximum CPU time for all
the instances. On the contrary, the CPU time achieved by
PHA is relatively small for most of the instances. Indeed, the
CPU time is less than 6min for 50% of the rooted demand
instances and less than 7min for 45%of the arbitrary demand
instances. Only 4 instances for both the rooted demands and
arbitrary demands have reached the maximum CPU time.
This, together with the above observations, shows that PHA
is able to obtain better solutions than CPLEX, and this, in
quite short CPU time.Also it appears fromTables 1 and 2 that
the nature of the instances, rooted or not, does not have a clear
impact on the resolution of the problem either by CPLEX or
PHA. However, we can see that the gaps produced by PHA
for large instances with arbitrary demands are slightly tighter
than those with rooted ones.

Now we turn our attention to the efficiency of PHA w.r.t
its components, which are LRA, GA and SH. The aim is to
see whether each algorithm taken separately is more efficient
than the hybridization or not. For this, we compare the results
obtained by LRA, GA and SH separately with those obtained
by PHA. The results are given in Tables 3 and 4 for rooted
and arbitrary demands, respectively.

We can see from Table 3 that the upper bounds produced
by PHA for all the instances with rooted demands are better
than those obtained by LRA, SH and GA, taken separately.
Also, for the arbitrary demands (see Table 4), PHA outper-
forms algorithms LRA, SH and GA taken separately. This
clearly shows that, with both rooted and arbitrary demands,

the hybridization of the three components produces better
results than each component taken separately.When compar-
ing PHA and LRA in terms of lower bounds, we can see that
for almost all the instances, with both rooted and arbitrary
demands, the lower bound obtained by LRA is better than
that obtained by PHA. Thus, clearly, the hybridization helps
in producing better upper bounds for most of the instances,
but does not help in improving the lower bounds.

4 A parallel hybrid algorithm for the kHNDP

We present in this section the parallel hybrid algorithm for
the kHNDP when L ≥ 3. The algorithm is similar to that
devised for the kESNDP and is based on the hybridization of
a Lagrangian relaxation algorithm, a genetic algorithm and
a greedy heuristic. However, we will discuss some specific
aspects of the algorithm in the context of the kHNDP. First,
we present a flow-based integer programming formulation
for the problem. Then we present the Lagrangian relaxation
algorithm, the genetic algorithm and the greedy heuristic we
have devised for the problem. Finally, we present several
computational results and discuss the efficiency of the over-
all algorithm.

Recall that the kHNDP is defined by an undirected graph
G = (V, E), a demand set D and two positive integers k ≥ 1
and L ≥ 3.
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Table 3 Results for PHA versus
LRA, SH and GA for the
kESNDP and rooted demands
with k = 3

Instances PHA LRA SH GA

Name |V | |D| UB LB UB LB UB UB

berlin 30 10 7168 6072.3 10,543 6298.8 9128 7459

berlin 30 15 10,970 7856.1 16,661 8163.8 12,930 10,970

berlin 30 20 12,173 8392.0 23,165 8356.8 14,271 12,311

berlin 30 25 12,805 8832.3 22,521 8905.6 15,355 13,271

berlin 52 10 6815 4740.6 13,012 5272.4 8668 7034

berlin 52 15 9871 6821.5 22,157 6894.8 12,212 10,373

berlin 52 26 13,033 7639.5 30,418 8000.7 15,257 13,559

st 70 15 761 523.6 2068 539.0 933 789

st 70 26 1077 707.2 3445 809.6 1271 1095

st 70 35 1265 805.4 4304 899.0 1442 1368

kroA 100 20 26,677 11,864.8 71,777 12,605.4 34,141 28,204

kroA 100 35 39,378 16,182.3 114,336 16,922.2 47,090 39,857

kroA 100 50 47,454 18875.4 160,719 20,416.9 53,756 47,531

kroA 150 30 36,340 11,596.3 101,835 13,239.7 44,497 37,824

kroA 150 50 47,764 15,774.2 170,169 19,149.2 53,690 48,303

kroA 150 75 57,909 17,742.1 224,847 23,497.4 66,579 60,797

kroA 200 40 41,724 12,080.4 154,211 14,451.4 51,335 43,110

kroA 200 75 59,482 16,096.8 277,544 19,038.9 69,033 60,606

kroA 200 100 69,462 18,792.2 361,814 23,728.7 80,717 69,929

lin 318 61 26,723 6068.6 139,868 7713.9 31,788 27,143

lin 318 111 55,000 8702.2 375,430 13,495.8 56,199 55,559

lin 318 159 71,464 8719.7 559,326 14,637.2 77,340 75,389

Table 4 Results for PHA versus
LRA, SH and GA for the
kESNDP and arbitrary demands
with k = 3

Instances PHA LRA SH GA

Name |V | |D| UB LB UB LB UB UB

berlin 30 10 10,422 8216.0 11,884 8384.9 12,808 10,597

berlin 30 15 12,385 9716.2 18,118 9683.7 15,283 12,584

berlin 52 10 10,553 7772.5 14,052 7691.9 12,369 10,725

berlin 52 15 13,588 9141.0 19,042 9210.8 15,496 13,771

berlin 52 20 15,603 10,347.5 22,341 10,364.2 17,908 16,152

st 70 15 1176 678.3 2236 692.1 1267 1208

st 70 26 1531 979.5 3277 1030.3 1743 1567

st 70 35 1888 1202.6 4673 1289.0 2137 1908

kroA 100 20 42,845 19,839.5 110,812 20,089.4 48,435 44,661

kroA 100 35 61,802 26,609.3 183,685 27,237.4 65,024 61,802

kroA 100 50 68,537 31,378.5 269,704 31,777.2 74,250 69,406

kroA 150 30 56,725 22,773.6 164,720 23,388.5 59,947 56,725

kroA 150 50 71,392 29,684.8 269,616 30,290.8 74,614 71,392

kroA 150 75 88,672 36,283.2 418,821 38,724.2 92,894 89,342

kroA 200 40 64,500 23,745.5 223,326 24,728.0 71,033 66,202

kroA 200 75 91,687 32,872.0 439,205 35,395.6 99,364 92,285

kroA 200 100 102,137 37,932.2 566,823 42,194.5 113,464 102,577

lin 318 61 49,769 17,303.4 74,080 21,788.7 53,054 50,168

lin 318 111 86,928 21,634.2 137,343 31,754.5 92,973 89,158

lin 318 159 121,811 24,089.2 206,426 39,037.3 129,651 122,911

123



A parallel hybrid optimization algorithm for some network design problems

4.1 Integer programming formulation for the kHNDP

In order to formulate the problem, we use the graph trans-
formation proposed by Diarrassouba et al. (2017), which
transforms the original graph G into a set of directed lay-
ered graphs. This transformation is presented below. For
each demand {s, t} ∈ D, first let V l

st = {(u, l), for all u ∈
V \ {s, t}}, l = 1, . . . , L − 1. Then, let ˜Gst = (˜Vst , ˜Ast ) be
the directed graph where ˜Vst = ⋃L−1

l=1 V l
st ∪ {s, t}. The arc

set ˜Ast is obtained by adding in ˜Gst

– two arcs of the form ((u, l), (v, l+1)) and ((v, l), (u, l+
1)), for all l ∈ {1, . . . , L − 2} and every edge uv ∈ E
such that u, v ∈ V \ {s, t},

– an arc of the form (s, (u, 1)), for every edge su ∈ E with
u ∈ V \ {s, t},

– an arc of the form ((u, L − 1), t), for every edge ut ∈ E
with u ∈ V \ {s, t},

– an arc of the form (s, t), for every edge st ∈ E ,
– an arc of the form ((u, l), (u, l + 1)), for every u ∈ V \

{s, t} and l ∈ {1, . . . , L − 2}.

Figure 4 gives an illustration with D = {{s1, t1}, {s2, t2}}
and L = 4.

Diarrassouba et al. (2017) showed that every L-st-path of
G corresponds to an st-path in ˜Gst and vice versa. Moreover,
They showed that there exists k edge-disjoint L-st-paths in
G if and only if there exists k arc-disjoint st-paths in ˜Gst

such that any pair of arcs used in these paths corresponds to
the same edge of G.

This yields to the following integer programming formu-
lation, called flow formulation, for the kHNDP when L ≥ 3.

Let xe, for each edge e ∈ E , be the 0 − 1 variable which
takes value 1 if edge e is in the solution and 0 otherwise. Let
f sta be an integer flow variable associated with arc a of ˜Gst .
The kHNDP is equivalent to the following integer program

min
∑

uv∈E
ωuvxuv

s.t.

∑

a∈δ+(u)

f da −
∑

a∈δ−(u)

f da =
⎧

⎨

⎩

k if u = s
−k if u = t
0 if u ∈ ˜Vst\ {s, t} ,

⎫

⎬

⎭

,

for all u ∈ ˜Vst and {s, t} ∈ D,

(7)
∑

a∈Ast (e)

f sta ≤ xe, for all e ∈ E and {s, t} ∈ D, (8)

f sta ≥ 0, for all a ∈ ˜Ast and {s, t} ∈ D, (9)
xe ≤ 1, for all e ∈ E, (10)
xe ∈ {0, 1}, for all e ∈ E, (11)

f sta ∈ {0, 1}, for all a ∈ ˜Ast and {s, t} ∈ D. (12)

4.2 The Lagrangian relaxation algorithm

As for the kESNDP, our Lagrangian algorithm for the
kHNDP is based on the relaxation of the linking constraints
(8). This yields the following linear program, called problem
(LR), where λstuv , for all uv ∈ E , are the Lagrangemultipliers
associated with the linking constraints,

min
∑

uv∈E

⎛

⎝ωuv −
∑

{s,t}∈D
λstuv

⎞

⎠ xuv +
∑

{s,t}∈D

∑

uv∈E
λstuv

∑

a∈˜Ast (uv)

f sta

Fig. 4 Graph transformation for L = 4
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s.t.

∑

a∈δ+(u)

f da −
∑

a∈δ−(u)

f da =
⎧

⎨

⎩

k if u = s
−k if u = t
0 if u ∈ ˜Vst\ {s, t} ,

⎫

⎬

⎭

,

for all u ∈ ˜Vst and {s, t}∈D,

0 ≤ f sta ≤ 1, for all a ∈ ˜Ast and {s, t} ∈ D,

0 ≤ xe ≤ 1, for all e ∈ E,

xe ∈ {0, 1}, for all e ∈ E,

f sta ∈ {0, 1}, for all a ∈ ˜Ast and {s, t} ∈ D.

As before, one can easily see that solving problem (LR)
reduces to solving |D| minimum cost st-flow of value k in
graphs ˜Gst , which can be done in polynomial time. Also, as
for the kESNDP, the Lagrange multipliers are updated using
the subgradient method.

It should be noticed that, contrarily to the kESNDP, the
solution y ∈ R

E such that

ye = max{ f sta , for all a ∈ ˜Ast (e) and

{s, t} ∈ D}, for all e ∈ E,

may not be feasible for the kHNDP. Thus, at each iteration of
the algorithm, we checkwhether y is feasible for the kHNDP,
and if not, we transform y into a feasible solution. To see
whether y is feasible or not, we simply check whether each
flow vector f

st
, for every {s, t} ∈ D, is such that

∑

a∈˜Ast (e)

f
st
a ≤ ye. (13)

If y is not feasible for the kHNDP, then for each {s, t} ∈ D,
let Fst be the set of edges ofG for which an inequality (13) is
violated. We build a new solution y′ ∈ R

E as follows. If for
a demand {s, t} ∈ D, Fst = ∅, then let gst be a flow vector
such that gst = f

st
. If Fst �= ∅, then for all e ∈ Fst , we

arbitrarily choose an arc a0 ∈ ˜Ast (e), give it a capacity 1,
give a capacity 0 to all the arcs of ˜Ast (e) \ a0, and compute
a minimum cost st-flow of value k, each arc a ∈ ˜Ast (uv)

having a cost ωuv , for all uv ∈ E . Let gst be the value of that
minimum cost flow. Finally, the solution y′ is such that

y′
e = max{gsta , for all a ∈ ˜Ast (e) and {s, t} ∈ D}, all e ∈ E,

and is clearly feasible for the kHNDP.

4.3 The genetic algorithm

Our genetic algorithm for the kHNDP follows the same lines
that we have devised for the kESNDP. The reader can refer
to Sect. 3.3 for the details.

4.4 Greedy algorithm

Our greedy heuristic for the kHNDP works similarly to that
we have devised for the kESNDP. We start by randomly
generating a set of |D| orderings of the demands. For a
given ordering, let D = {{s1, t1}, {s2, t2}, . . . {sd , td}} be the
demands w.r.t that ordering. For i ∈ {1, . . . , |D|}, we denote
by Ei the set of edges of G having a flow value of 1 in a
minimum cost si ti -flow of value k in ˜Gsi ti . Moreover, in this
flow at most one arc corresponding to the same edge has a
flow value of 1. The edge set Ei is computed as follows. First,
compute a minimum cost si ti -flow of value k in ˜Gsi ti , where
all the arcs have capacity 1, all the arcs corresponding to an
edge of

⋃i−1
j=1 E j have a cost of 0, and all the arcs correspond-

ing to the edges e ∈ E \ ⋃i−1
j=1 E j have a cost ωe. Let f

si ti

be the obtained flow vector and let Fsi ti be the set of edges

e ∈ E such that
∑

a∈˜Asi ti (e)
f
si ti
a > 1. If Fsi ti = ∅, then let

Ei be the set of edges e ∈ E such that
∑

a∈˜Asi ti (e)
f
si ti
a = 1.

If Fsi ti �= ∅, then, for each edge e ∈ Fsi ti , we arbitrarily
choose an arc a0 ∈ ˜Asi ti (e), give him a capacity 1, give a
capacity 0 to all the arcs of ˜Asi ti (e) \ {a0}, and compute a
minimum cost flow of value k in ˜Gsi ti with the same arc costs

as before. If f
′st

is the new flow vector, then let Ei be the set
of edges e ∈ E such that

∑

a∈˜Asi ti (e)
f
′st
a = 1.

Finally, it is not hard to see that the edge set
⋃|D|

j=1 E j is a
feasible solution for the kHNDP. This procedure is repeated
for all the ordering of the demands, yielding |D| feasible
solutions. The algorithm ends by finding the best one among
these solutions.

4.5 The hybridization and parallelization scheme

The hybridization and parallelization schemes for the paral-
lel hybrid algorithm for the kHNDP are the same as those
devised for the kESNDP. We refer the reader to Sect. 3.5 for
the details.

4.6 Computational results

Nowwe present the computational experimentswe have con-
ducted for the kHNDP.As for the kESNDP, the aim is to show
the efficiency of algorithm PHA in producing good lower
and upper bounds for the kHNDP. For this, we compare the
results obtained by PHA with those obtained by solving the
undirected flow formulation for the kHNDP against CPLEX.
We also compare PHA against LRA, GA and SH taken sep-
arately.

All the algorithms have been implemented in C++ and
we have used CPLEX (12.5) for solving the undirected flow
formulation for the kHNDP. The experiments have been con-
ducted on a computer equipped with an Intel i7 processor at
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2.5 Ghz with 8 Gb of RAM, running under Linux. For all the
algorithms, we have set the maximum CPU time to 2h. The
test problems are the same as those used for the kESNDP.

Tables 5 and 6 give the results obtained by PHA and
CPLEX for the kHNDP with k = 3 and with L = 3
and L = 4, respectively. We only present here results for
instances with arbitrary demands. In fact, in our experiments,
we have noted that the behavior of our algorithm as well as
that of CPLEX are similar for the instances with either arbi-
trary or rooted demands. The entries of the table are

|V |: Number of nodes of the graph,
|D|: Number of demands,
UB: Best upper bound achieved by PHA (resp. CPLEX),
LB: Best lower bound achieved by PHA (resp. CPLEX),
Gap: Relative error between the best upper and lower bounds

achieved by PHA (resp. CPLEX),
CPU: Total CPU time in hours:min:sec achieved by PHA

(resp. CPLEX).

As before, when CPLEX does not solve the linear relax-
ation of the problem after the maximum CPU time (2h), the
results are indicated with “–.”

From Table 5, we can see that when k = 3 and L = 3,
PHA outperforms CPLEX in producing upper bounds for 14
instances over 20. For the 6 instances, the solutions produced
by PHA are close (at most 4.30% higher) to those obtained
by CPLEX. It should be noticed that the solutions produced
by PHA are obtainedwithin a CPU time relatively short com-
pared to CPLEX. Indeed, for PHA, 10 instances over 20 are
solved in less than 30min and 2 instances are solved in less
than 40min, while CPLEX reaches the maximum CPU (2h)
for all the instances except one. We also notice that PHA
is able to produce both upper and lower bounds for all the
instances, while CPLEX fails in producing a lower bound for
large instances, even after 2h of CPU time.

The observations are the same for the case where L = 4
and L = 5, with k = 3 (Tables 6 and 7). We observe that
PHA outperforms CPLEX in producing upper bounds for
15 instances and 14 instances, when L = 4 and L = 5,
respectively. Also, the CPU time spent by PHA is less than
30min for 10 instances over 20 when L = 4, and 9 instances
over 20 when L = 5, while CPLEX reaches, in both cases
L = 4 and L = 5, the maximum CPU time for almost all the
instances. Finally, as for L = 3, PHA produces both upper
and lower bounds for all the instances, in particular for large
instance, while CPLEX does not produce even a lower bound
after 2h of CPU time for 9 instances and 12 instances, when
L = 4 and L = 5, respectively.

Now we compare PHA with each of its components. We
do this comparison only in the case where k = 3 and L =
3, as our experiments lead to the same observations when

L = 4 and L = 5. Table 8 gives the lower and upper bounds
obtained by PHA and LRA and the upper bounds obtained
by GA and SH, for the kHNDP with k = 3 and L = 3.

Table 8 clearly shows that PHAoutperformsLRA,GAand
SH taken separately, for all the instances. Indeed, the upper
bound produced by PHA is better for all the instances than
those obtained by GA, LRA and SH. However, when com-
paring the lower bounds obtained by PHA and LRA, except 2
instances (kroA200-a100 and lin318-a159), the lower bound
produced by LRA is better than that obtained by PHA.
Consequently, as before, the hybridization clearly helps in
producing better feasible solutions for the kHNDP but does
not produce better lower bounds.

5 The impact of the parallelization

In the previous sections, we have shown that using the
Lagrangian relaxation, genetic and greedy algorithms in par-
allel allows an improvement of the quality of the feasible
solutions known for the kESNDP and kHNDP. However, an
important question is whether it is relevant to use parallel
computing inside each component of PHA. In this section,we
investigate this question. Indeed, as mentioned above, solv-
ing each subproblem of the Lagrangian relaxation (i.e.,LRA)
and the greedy (i.e., SH) algorithms reduces to |D| inde-
pendent minimum cost flow problems, which can be done
in O(|V |2|E | log(|V |C)) using |D| processors in parallel.
Also, in the genetic algorithm (i.e., GA), parallel computing
is used in the reproduction phase at each iteration, where, in
parallel, we cross several pairs of parent solutions.

The question raised here is important since the CPU time
needed to run an algorithm using several processors (for
instance, for accessing a shared memory, for managing the
interactions with the operating system or between the pro-
cessors) may exceed the CPU time when using a single
processor.

In our approach, because of the nested structure of the
parallelism, we have used two libraries, OpenMP and the
C++11 inner parallelism library std::thread. OpenMP
is used in the deepest level, whereas the latter is used in
the higher level. We have tested different combinations of
libraries and the onewithOpenMPandstd::thread have
shown more efficient.

In addition, to avoid incoherences in the solutions popula-
tion pool that can be caused by the simultaneously access by
the threads, we used the primitive std::mutex proposed
by C++11 to protect the shared data.

In order to measure the impact of the parallelization in
our hybrid algorithm, we have considered the CPU time for
each algorithm LRA, SH and GA used for the kHNDP with
k = 3 and L = 3. We have used p = 1, 2, 4, 8 proces-
sors. Figures 5, 6 and 7 present the CPU time evolution
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Table 5 Results for PHA and CPLEX for the kHNDP and arbitrary demands with k = 3 and L = 3

Instances PHA CPLEX

Name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 10,695 9467.6 11.48 00:00:37 10,254 10,170.49 0.81 00:00:29

berlin 30 15 13,743 11,847.4 13.79 00:01:12 13429 12,829.37 4.47 02:00:00

berlin 52 10 10,298 9136 11.28 00:01:46 9919 9851.46 0.68 00:00:33

berlin 52 15 13,416 11,596.6 13.56 00:02:54 13,278 12,575.49 5.29 02:00:00

berlin 52 20 16,534 13,448.6 18.66 00:04:06 15,891 14,612.79 8.04 02:00:00

st 70 15 1389 971.2 30.07 00:03:21 1336 1119.59 16.20 02:00:00

st 70 26 2107 1312.4 37.72 00:07:09 2176 1610.73 25.98 02:00:00

st 70 35 2834 1714.4 39.50 00:11:37 5299 2142.75 59.56 02:00:00

kroA 100 20 62128 37,704.6 39.31 00:12:47 66,738 44,958.93 32.63 02:00:00

kroA 100 35 103,164 55,049.4 46.64 00:26:12 348,018 68,944.14 80.19 02:00:00

kroA 100 50 14,4842 72,889.6 49.68 00:40:42 55,8391 92,782.7 83.38 02:00:00

kroA 150 30 93,542 45,123 51.76 00:48:19 204,665 61,908.4 69.75 02:00:00

kroA 150 50 14,4861 60,073.2 58.53 01:39:41 – – – 02:00:00

kroA 150 75 209,575 75,856.6 63.80 02:00:00 – – – 02:00:00

kroA 200 40 114,116 46,091.6 59.61 02:00:00 442,010 75,495.36 82.92 02:00:00

kroA 200 75 212,504 66,209.2 68.84 02:00:00 – – – 02:00:00

kroA 200 100 274,917 67,317 75.51 02:00:00 – – – 02:00:00

lin 318 61 54,721 20,638.8 62.28 02:00:00 – – – 02:00:00

lin 318 111 100,666 26,664.8 73.51 02:00:00 – – – 02:00:00

lin 318 159 149,070 32,224.6 78.38 02:00:00 – – – 02:00:00

Table 6 Results for PHA and
CPLEX for the kHNDP and
arbitrary demands with k = 3
and L = 4

Instances PHA CPLEX

Name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 10, 552 8836.4 16.26 00:00:22 9433 9433.0 0 01:46:10

berlin 30 15 13, 774 10, 638.4 22.76 00:00:39 11,898 11,194.7 5.91 02:00:00

berlin 52 10 10, 457 8396.0 19.71 00:01:24 9252 8903.7 3.76 02:00:00

berlin 52 15 13, 672 10,283.6 24.78 00:02:20 12021 11,011.2 8.4 02:00:00

berlin 52 20 16,541 11,844.6 28.39 00:03:12 15,541 12,787.4 17.72 02:00:00

st 70 15 1326 825.5 37.75 00:03:57 1346 910.4 32.37 02:00:00

st 70 26 2023 1043.2 48.43 00:07:13 2572 1263.9 50.86 02:00:00

st 70 35 2818 1209.6 57.08 00:08:44 5588 1613.4 71.13 02:00:00

kroA 100 20 60,786 28,152.7 53.69 00:14:11 71728 34,511.5 51.89 02:00:00

kroA 100 35 100,081 39,413.7 60.62 00:25:33 – – – 02:00:00

kroA 100 50 14,1228 50,301.7 64.38 00:37:25 386,054 62,125.6 83.91 02:00:00

kroA 150 30 89,109 35,455.9 60.21 00:50:58 204,376 44,932.4 78.01 02:00:00

kroA 150 50 141,829 46,229.2 67.40 01:27:57 – – – 02:00:00

kroA 150 75 204,943 58,525.0 71.44 02:00:00 – – – 02:00:00

kroA 200 40 107,850 35,872.6 66.74 02:00:00 – – – 02:00:00

kroA 200 75 209,367 47,121.1 77.49 02:00:00 – – – 02:00:00

kroA 200 100 269,006 48,113.7 82.11 02:00:00 – – – 02:00:00

lin 318 61 53,359 17,987.0 66.29 02:00:00 – – – 02:00:00

lin 318 111 98,525 17,786.1 81.95 02:00:00 – – – 02:00:00

lin 318 159 141,712 15,760.9 88.88 02:00:00 – – – 02:00:00
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Table 7 Results for PHA and
CPLEX for the kHNDP and
arbitrary demands with k = 3
and L = 5

Instances PHA CPLEX

Name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 9989 8527.6 14.63 00:00:47 8897 8897.0 0.00 00:06:24

berlin 30 15 12, 651 10,156.4 19.72 00:01:11 11,397 10,647.4 6.58 02:00:00

berlin 52 10 9967 8073.6 19.00 00:02:39 8855 8511.1 3.88 02:00:00

berlin 52 15 12, 848 9737.3 24.21 00:04:36 11,197 10,466.3 6.53 02:00:00

berlin 52 20 15, 870 11, 211.8 29.35 00:05:59 14,981 12,051.5 19.55 02:00:00

st 70 15 1242 733.4 40.95 00:06:38 1187 827.2 30.31 02:00:00

st 70 26 1808 954.7 47.20 00:10:18 4257 1120.7 73.68 02:00:00

st 70 35 2525 1172.1 53.58 00:15:33 – – – 02:00:00

kroA 100 20 56, 668 25, 532.4 54.94 00:23:19 71,110 30,451.0 57.18 02:00:00

kroA 100 35 90, 788 34, 670.5 61.81 00:40:52 – – – 02:00:00

kroA 100 50 125, 022 43, 359.5 65.32 00:59:12 – – – 02:00:00

kroA 150 30 80, 854 29, 698.5 63.27 01:19:47 – – – 02:00:00

kroA 150 50 126, 533 39,383.0 68.88 02:00:00 – – – 02:00:00

kroA 150 75 188,290 47,148.4 74.96 02:00:00 – – – 02:00:00

kroA 200 40 102,520 29,630.6 71.10 02:00:00 – – – 02:00:00

kroA 200 75 193,169 38,005.0 80.33 02:00:00 – – – 02:00:00

kroA 200 100 246,339 39,859.9 83.82 02:00:00 – – – 02:00:00

lin 318 61 50,570 14,214.8 71.89 02:00:00 – – – 02:00:00

lin 318 111 94,004 13,372.0 85.78 02:00:00 – – – 02:00:00

lin 318 159 137,215 12,026.7 91.24 02:00:00 – – – 02:00:00

Table 8 Results for PHA versus
LRA, SH and GA for the
kHNDP and arbitrary demands
with k = 3 and L = 3

Instances PHA LRA SH GA

Name |V | |D| UB LB UB LB UB UB

berlin 30 10 10, 695 9467,6 11, 914 9566 11, 756 11, 376

berlin 30 15 13, 743 11,847.4 17, 198 12, 091 14, 854 14, 854

berlin 52 10 10, 298 9136 13, 715 9361 11, 359 10, 980

berlin 52 15 13, 416 11,596,6 19, 042 11, 828 14, 508 14, 491

berlin 52 20 16, 534 13,448.6 22,341 13,715 17,633 17,633

st 70 15 1389 971.2 2213 1038 1536 1424

st 70 26 2107 1312.4 3275 1421 2269 2192

st 70 35 2834 17,144 4665 1822 2975 2957

kroA 100 20 62,128 37,704.6 110,812 37,839 66,190 64,081

kroA 100 35 103,164 55,049.4 183,685 56,581 111,403 105,224

kroA 100 50 14,4842 72,889.6 269,705 74,624 151,175 147,820

kroA 150 30 93,542 45,123 165,239 46,682 101,709 95,986

kroA 150 50 144,861 60,073.2 270,609 68,616 149,949 146,986

kroA 150 75 209,575 75,856.6 420,836 75,891 214,646 212,735

kroA 200 40 114,116 46,091.6 223,098 48,169 117,931 114,989

kroA 200 75 212,504 66,209.2 437,497 76,827 218,219 214,878

kroA 200 100 274,917 67,317 565,116 59,827 278,363 273,934

lin 318 61 54,721 20,638.8 74,755 21,638.8 56,285 55,544

lin 318 111 100,666 26,664.8 137,906 26,664.8 103,297 101,115

lin 318 159 149,070 32,224.6 206,681 30,224.6 152,685 150,965

123



I. Diarrassouba et al.

Fig. 5 The CPU time of LRA
w.r.t. to the number of
processors

Fig. 6 The CPU time of SH
w.r.t. to the number of
processors

curve for LRA, SH and GA, respectively, as a function of the
number of processors used to run the algorithms. We have
limited the number of processors to 8 since the computer we
have used for our experiments is equipped with a 8-cores
processor.

The three figures clearly show that, for the three algo-
rithms, the CPU time decreases when the number of proces-
sors increases. Moreover, using two processors significantly
decreases the CPU compared to the usage of a single proces-
sor. We can also notice that, even if the CPU time decreases
as the number of the processors increases, the gain of using
eight processors is not significant compared to using two
processors. In conclusion of these experiments, using sev-

eral processors improve the CPU time of each component of
PHA, and using two processors seems to be the best choice.

It should be noticed that the above conclusion holds if we
do not use more than eight processors, and depends on the
architecture of the computer used for the experiments. Using
a different architecture and more than eight processors may
lead to different conclusions.

6 Conclusion

In this paper, we have proposed two hybrid parallel algo-
rithms for solving the kESNDP and the kHNDP. The
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Fig. 7 The CPU time of GA
w.r.t. to the number of
processors

algorithms are based on a Lagrangian relaxation algorithm,
a genetic algorithm and a greedy algorithm, and aims in
producing both lower and upper bound for the two prob-
lems. The experiments conducted in the paper have shown
that our hybrid algorithm outperforms CPLEX in producing
good feasible solutions, even for large size instances, and this
within a relatively short CPU time. They have also shown
that the hybridization of the three components outperforms,
in most cases, each component taken separately. Finally, we
have shown that using several processors inside each com-
ponent of the hybrid algorithm helps in decreasing the CPU
time for each component.

The parallel computing framework we have proposed in
this paper is generic and can be applied to all the network
design problems, and not only, whose integer program-
ming formulations have the same block structure as the
kESNDP and kHNDP. Also, the implementation we have
proposed is quite simple and can be easily adapted to other
problems.

It should be noticed that our algorithm PHA is heuris-
tic, and contrarily to many heuristics, is able to produce
both upper and lower bounds of the optimal solution. This
can give an indication on the quality of the feasible solu-
tion obtained, in particular when the gap between the lower
and upper bounds is small. Indeed, a very small gap (0% in
the better case) means that the feasible solution obtained is
close to the optimal solution of the problem. We can observe
that in all our experiments the gaps between the lower and
upper bounds are quite large (more than 40% for most of
the instances). Thus, it would be interesting to further inves-
tigate a way of producing better lower bounds in order to
know how close the solutions produced by algorithm PHA
are to the optimal solution.

It would also be interesting to further investigate the par-
allelization of the hybrid algorithm and the use of more
sophisticated architectures, like GPUs or grid computing.

Finally, one can also think of using the techniques pro-
posed in this paper for devising efficient exact (Branch-and-
Bound, Branch-and-Cut, Branch-and-Price, etc.) algorithms
for the kESNDP and kHNDP, and all the problems having
the same structure.
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