
Computer Networks 57 (2013) 2766–2774
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Hose workload based exact algorithm for the optimal design
of virtual private networks
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2013.06.009

⇑ Corresponding author. Tel.: +216 23655353.
E-mail addresses: diarrasi@univ-lehavre.fr (I. Diarrassouba), Ali.Lourimi@

infcom.rnu.tn (A. Lourimi), mahjoub@lamsade.dauphine.fr (A.R. Mahjoub),
Habib.youssef@fsm.rnu.tn (H. Youssef).
Ibrahima Diarrassouba c, Ali Lourimi a,⇑, Ali Ridha Mahjoub b, Habib Youssef a

a PRINCE Research Unit, ISITCom Hammam Sousse, University of Sousse, Tunisia
b Université Paris Dauphine, Laboratoire LAMSADE, Paris Place De-Lattre-de-Tassigny, 75775 Paris Cedex 16, France
c Université du Havre, Laboratoire de Mathématiques Appliquées du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre Cedex, France
a r t i c l e i n f o

Article history:
Received 17 February 2013
Received in revised form 21 May 2013
Accepted 21 June 2013
Available online 13 July 2013

Keywords:
Virtual private network
Hose model
Branch-and-Cut
Maximum flow problem
Cutting plane
Separation problem
a b s t r a c t

The Virtual Private Networks (VPN) optimal bandwidth allocation problem with tree topol-
ogy has been widely discussed in the literature. Most of the algorithms proposed by
researchers to solve this problem use approximation schemes. In this paper, we propose
an exact and efficient Branch-and-Cut algorithm for the problem in the context of a hose
workload model. In particular, we consider the case when the ingress and egress traffic
at VPN endpoints are asymmetric and the links of the network have unbounded capacities.
The algorithm proposed here is based on a linear integer programming formulation for the
problem introduced by Kumar et al. (2002) [2]. Using this and a deep investigation of the
polyhedral structure of that formulation, our algorithm permits to solve large instances of
the problem having up to 120 nodes and 10 terminals.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A Virtual Private Network (VPN) allows to securely con-
nect distant clients (e.g. via VPN tunnels) over a public net-
work. The logical connections constitute an overlay
network. Such a network is said virtual because it connects
local networks by secured logical tunnels over a physical
public infrastructure such as the Internet, and private be-
cause only the end routers of the local networks on termi-
nal sides of the tunnels can ‘‘see’’ the data.

Today network virtualization represents the most sig-
nificant innovation in networking. The basic entity offered
by network virtualization is a virtual network (VNet), that
is, an abstraction of a network over a given subset of
terminals [8,6,7]. In general, establishing a VNet requires
embedding a subnetwork that spans the terminals of the
VNet in the physical network.

A central challenge in network virtualization is the effi-
cient use of the given physical resources. Companies found
in network virtualization the ideal solution to establish on-
demand overlay networks that enable their customers to
securely access company resources.

VPN design has been the subject of numerous studies
over the last years [1–5,9–13]. Although the security issue
has been settled, bandwidth allocation, survivability and
QoS provisioning remain open research issues. The surviv-
ability here is to install spare resources (nodes, links) in
order to ensure that the VPN continue to deliver the traffic
in case of failure. The resource management concerns the
allocation of the bandwidth on the links of a VPN so that
all the traffic can be delivered to the VPN clients. In this
paper, we deal with the optimal bandwidth allocation
problem assuming a tree topology and a hose workload
with asymmetric ingress and egress traffic.

The hose workload model has been introduced by
Duffield et al. [17] as a flexible model for specifying the

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.comnet.2013.06.009&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2013.06.009
mailto:diarrasi@univ-lehavre.fr
mailto:Ali.Lourimi@infcom.rnu.tn
mailto:Ali.Lourimi@infcom.rnu.tn
mailto:mahjoub@lamsade.dauphine.fr
mailto:Habib.youssef@fsm.rnu.tn
http://dx.doi.org/10.1016/j.comnet.2013.06.009
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774 2767
bandwidth requirements of VPN endpoints. According to
this model, each VPN specification consists of the
following.

� The set of endpoints P.
� The hose ingress bandwidth Bin

i and the hose egress Bout
i ,

for each endpoint i 2 P, expressed in Kbps.

Bin
i and Bout

i represent the expected traffic flows that the
endpoint i receives, and sends, respectively. In contrast to
the pipe model, where the workload is specified in the
form of a matrix giving the expected traffic between any
two VPN endpoints, the hose model only requires the spec-
ification of ingress and egress bandwidth of each VPN end-
point. The hose model has several advantages such as the
ease of specification, scalability, multiplexing gain and
simple characterization [2].

We consider tree structures to connect the VPN end-
points in P. With tree routing, the VPN endpoints are con-
nected by a Steiner tree and all VPN traffic is sent along the
unique paths of this tree, from senders to receivers. Kumar
et al. [2] showed that the optimal tree can be obtained by
solving a set of integer programs.

1.1. Our results

In this paper, we consider the integer programming for-
mulation introduced by Kumar et al. [2]. This formulation
contains an exponential number of constraints. We show
that the linear relaxation of this problem can be solved in
polynomial time. For this, we show that the so-called sep-
aration problem (that is whether a constraint is violated or
not by a given solution) is polynomially solvable. In fact,
we show that this problem reduces to a maximum flow
problem in a special graph, which can be solved in polyno-
mial time.

We also investigate the inequalities of that formulation
and show that they are all nonredundant, and hence, they
all have to be considered in the resolution of the problem.
Using this, we develop a Branch-and-Cut algorithm (that is,
a linear programming-based Branch-and-Cut algorithm
reinforced by the addition of violated inequalities) for the
problem. Our computational study shows that the algo-
rithm we proposed is very efficient and permits to solve
large instances with up to 120 nodes and 10 terminals.

1.2. Related work

The VPN optimal bandwidth allocation problem has
been widely studied in the literature. In [2], Kumar et al.
studied the problem of computing optimal VPN trees in
the context of a hose workload and when the links of the
network have unbounded capacities. The authors consid-
ered this problem in the symmetric case, that is, when
Bin

i ¼ Bout
i for every endpoint i 2 P and devised a polynomial

algorithm for the problem in this case.
In [4], Erlebach and Ruegg consider the bandwidth

allocation problem for hose model VPN under multi-path
routing. They showed that considering multi-path routing
instead of tree and single-path routing offers significant
advantages. In fact, they showed that the problem can be
solved in polynomial time in both cases with and without
finite capacities on the links, whereas it is NP-hard for tree
and single-path routing. For this, they proposed a linear
programming formulation for the problem and showed
that this linear program can be solved in polynomial time.

Most of algorithms proposed in the literature for the
optimal bandwidth allocation problem are heuristic
approaches. Also, a huge work has been considered to
develop approximation algorithms. In [2], Kumar et al. also
considered the problem in the asymmetric case, that is
where egress and ingress bandwidth may be different.
They showed that variant of the problem is NP-Hard. The
authors also gave an integer programming formulation
and proposed a 10-approximation algorithm for the
problem.

Gupta et al. [1] extended the work presented in [2] and
proposed, in the asymmetric case with infinite capacities
on the edges, an algorithm whose approximation ratio
equals 9.002. Their algorithm is based on the linear relax-
ation of the formulation of [2] and rounding procedure.
Swamy et al. [21] improved the approximation ratio to 5.

In [3], Giuseppe et al. showed that in the case of sum-
symmetric, that is when

P
i2PBin

i ¼
P

i2PBout
i and infinite

capacities on edges, a solution can be computed in polyno-
mial time with approximation ratio 3. They also gave a
new integer programming formulation for the problem.

In [24] Eisenbrand et al. considered a variant of the
virtual private network design problem which generalizes
the previously studied symmetric and asymmetric case.
In their model the terminal set is partitioned into a number
of groups, where terminals of each group do not communi-
cate with each other. Their main result is a 4.74 approxi-
mation algorithm for this problem.

In [25], Chu and Lea explored the optimal weight
setting to support hose-model VPN traffic in an IP-based
hop-by-hop routing network. They presented a mixed-
integer programming formulation to compute the optimal
link weights that can maximize the ingress and egress VPN
traffic admissible to a hop-by-hop routing network. They
also presented a heuristic algorithm for solving the link
weight searching problem for large networks.

1.3. Notations

Here we give the basic notations we will use all along
the paper. A network is modelled by an undirected graph
G = (V, E), where V and E are the node and edge sets respec-
tively. An edge between two nodes i and j will be denoted
by ij. We will denote by P # V the set of terminals (VPN
endpoints). A tree is a connected subgraph of G with no
cycle and is denoted by T. A tree T is said to be a Steiner tree
with respect to the terminal nodes of P if it connects all the
nodes of P. Note that a Steiner tree may not connect all the
nodes of G. We will also denote by Tv a tree rooted at the
node v 2 V.

Given an edge ij in a tree T, we denote by Tij
i the con-

nected component of T containing node i when the edge
ij is deleted from T, and Pij

i the set of VPN endpoints in
Tij

i . We also denote by CT(ij) the bandwidth revered on

2768 I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774
the link ij of the VPN tree T, and by CT the total bandwidth
reserved on all the links of the VPN tree T. The distance
between two nodes i and j in a graph G is the length of a
shortest path (in terms of number of edges) between i
and j, and is denoted by dG(ij). dT(ij) will denote the
distance between nodes i and j in the tree T.

Given a node set W # V, we will denote by W ¼ V nW .
If W and W0 are two disjoint node sets, [W, W0] will denote
the set of edges having one endnode in W and the other
one in W0. For W # V ; dðWÞ ¼ ½W;W�, is the cut set induced
by the node set W.

We will denote by H = (V, A) a directed graph with V the
node set and A the arc set. An arc from a node i to a node j
will be denoted (i, j). Given two node sets W and W0, [W,
W0] will denote the set of arcs having their origin in W
and their destination in W0. We will have dþðWÞ ¼ ½W;W�
and d�ðWÞ ¼ ½W;W�.
2. Integer programming formulation for the problem

In this section, we present the integer programming for-
mulation introduced by Kumar et al. [2] for the VPN opti-
mal bandwidth allocation, when the egress and ingress
traffic at every VPN endpoint may be different. They show
that the problem is NP-hard in this case. In the following,
we give some structural properties of VPN trees, and de-
scribe how one can obtain an optimal VPN tree by comput-
ing a series of Steiner trees. In fact, each Steiner tree is
computed by solving a linear integer program. All the re-
sults given here can be found in [2].

Given a VPN tree T, the only traffic that crosses a link ij

from node i to j is the traffic coming from endpoints in Pij
i

and going towards endpoints in Pij
j . The traffic from node

i to node j cannot exceed minf
P

l2Pij
i
Bout

l ;
P

l2Pij
j
Bin

l g. Thus

the bandwidth to be reserved on an edge ij of T from i to
j is given by

Cij
T ¼ min

X
l2Pij

i

Bout
l ;
X
l2Pij

j

Bin
l

8><
>:

9>=
>;:

The total bandwidth reserved for T is

CT ¼
X
ij2T

Cij
T :

An edge ij of VPN tree T is biased towards i if the following
two conditions hold:

�
P

l2Pij
i
Bin

l <
P

l2Pij
j
Bout

l

� �
or (

P
l2Pij

i
Bin

l ¼
P

l2Pij
j
Bout

l and Pij
i

contains a special node, say bl).
�

P
l2Pij

i
Bout

l <
P

l2Pij
j
Bin

l

� �
or (

P
l2Pij

i
Bout

l ¼
P

l2Pij
j
Bin

l and Pij
i

contains a special node, say bl).
An edge ij is said to be biased if it is biased towards

either i or j. An edge is said to be balanced if it is not biased.
A node of T is a core node if a balanced edge is incident on
it.
Kumar et al. [2] showed that the core nodes associated
with a VPN tree T are connected by a tree consisting en-
tirely of balanced edges, each of these edges having a cost

equal to M ¼ min
P

l2PBin
l ;
P

l2PBout
l

n o
. If the balanced edges

are removed from T, then, in each of the resulting con-
nected components, say Cv, there is a single core node v.
The cost of Cv, that is the bandwidth reserved to the edges

of Cv, is
P

l2Cv\PdTðv ; lÞ � ðBin
l þ Bout

l Þ.

If core(T) denotes the set of core nodes in T and by bal(T)
the set of balanced edges in T, then the cost of T is

CT ¼ M � jbalðTÞj þ
X

v2coreðTÞ

X
l2Cv\P

dTðv; lÞ � ðBin
l þ Bout

l Þ:

To compute the optimal VPN tree T⁄, we simply need to
compute a set of nodes S⁄ for whom the quantity

M � bþ
X
l2P

minv2SfdGðv ; lÞg � ðBin
l þ Bout

l Þ ð1Þ

is minimum, where b is the number of edges in the Steiner
tree connecting the nodes in S [2].

If we suppose that a given node v 2 V belongs to the
optimal node set S⁄, then one can compute S⁄ by computing
a Steiner tree rooted in v. Consequently, to compute S⁄, one
can compute, for each node v 2 V, a Steiner tree rooted in v,
say Sv, whose cost is minimum with respect to Eq. (1), and
then, choose S⁄ as the tree whose cost is minimum among
all the trees Sv.

The problem of computing a Steiner tree Sv rooted in v,
for all v 2 V, can be formulated as a linear integer program.
Let xij, yi and ze be 0–1 variables, where yi = 1 if i 2 Sv and
yi = 0 otherwise, xij = 1 if VPN endpoint j is assigned to node
i and xij = 0 otherwise, and finally ze = 1 if edge e is in the
Steiner tree connecting the nodes in Sv. For all j 2 P, we
let Bj ¼ Bin

j þ Bout
j .

Computing Sv is equivalent to solving

Minimize
X

i2V ;j2P

dGði; jÞ � Bj � xij þM �
X
e2E

ze

subject to
X
i2V

xij P 1; 8j 2 P; ð2Þ

yi � xij P 0; 8i 2 V and j 2 P; ð3ÞX
e2dðbV Þze �

X
i2bV xij P 0; 8bV � V ; ð4Þ

xij; yi and ze 2 f0;1g: ð5Þ

In this formulation, each VPN endpoint j must be as-
signed to at least one node in Sv (constraints Eqs. (2) and
(3)). Constraints Eq. (4) are the so-called cut constraints
and ensure that the nodes of Sv are connected by a Steiner
tree.

After computing the optimal core node set S⁄, the opti-
mal VPN tree T⁄ is obtained from S⁄ by first adding in T⁄ the
edges of the Steiner tree of S⁄. Then, we contract in G the
nodes of S⁄ and construct a Breadth-First-Search (BFS) tree
rooted at that supernode and connecting all the VPN end-
points in P (as the leaves). Finally, the edges of that BFS tree
are added in T⁄.

I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774 2769
The whole algorithm is summarized below.

Algorithm 1. Algorithm to compute the optimal VPN tree

As explained before, each node set Sv, v 2 V, is computed

by solving the linear integer program given above. Since
the optimal Steiner tree problem is NP-hard in the general
case, we need to use integer programming techniques like
Branch-and-Cut techniques to solve it. Moreover, it con-
tains an exponential number of constraints (the cut con-
straints Eq. (4)). In the next section, we describe our
Branch-and-Cut algorithm for solving the problem.
3. Branch-and-Cut algorithm

3.1. Description

Branch-and-Cut method is one of the most effective
method for solving combinatorial optimization problems.
It has been widely used to solve both real word and theo-
retical combinatorial problems which are formulated as
integer linear programs. The Branch-and-Cut method con-
sists of solving the problem by applying the Branch-and-
Bound method upon linear programming techniques. Each
node of the Branch-and-Bound tree consists in a linear pro-
gram obtained by considering the linear relaxation of the
problem.

The linear relaxation of the problem can be solved by
using the so-called cutting plane method. This method al-
lows to solve a linear program (LP for short) by using a sub-
set of inequalities of the original LP. The cutting plane
method is particularly effective when the number of
inequalities of the original LP is large (e.g. exponential)
since it permits to solve the LP by using only a few (poly-
nomially bounded) number of inequalities.

For more details on Branch-and-Cut and cutting planes
algorithms, the reader can refer to [18,19,23].

The main ingredient of the cutting plane method is the
so-called separation problem which consists, given a solu-
tion x of an LP and a class of inequalities F , in saying if
there exists an inequality of F which is violated by x or
not. An algorithm used to solve a separation problem is
called a separation algorithm.
The integer programming formulation described above
to solve the Steiner tree problems contains an exponential
number of cut constraints Eq. (4). To solve its linear relax-
ation, we use the cutting plane method. In the next section,
we describe the separation algorithm we use for the cut
inequalities Eq. (4).

3.2. Separation of the cut constraints

In this section, we discuss the separation problem of the
cut constraints Eq. (4). We show that the problem reduces
to maximum flow problem with lower and upper bounds,
and hence, can be solved in polynomial time but before,
we introduce the following notions.

Let G = (V, A) be a directed graph with s and t two nodes
of G. An st-flow from source s to destination t is a function.

f : A! Rþ which satisfies the so-called flow conserva-
tion constraintsX
a2dþðvÞ

f ðaÞ �
X

a2d�ðvÞ
f ðaÞ ¼ 0; for all v 2 V n fs; tg:

Associated with a flow function, the quantity

f0 ¼
X

a2dþðsÞ

f ðaÞ �
X

a2d�ðsÞ
f ðaÞ ¼

X
a2d�ðtÞ

f ðaÞ �
X

a2dþðtÞ

f ðaÞ

is the value of the st-flow.
The maximum flow problem with lower and upper bounds

is the problem of finding a flow function which maximizes
the flow value f0 and such that the flow value f(a) on every
arc a 2 A is restricted to be lower than a positive capacity
U(a) and greater than a positive value L(a). In the classical
version of the maximum flow problem, we have L(a) = 0,
for all a 2 A.

The maximum flow problem with lower and upper
bounds is closely related to the so-called circulation prob-
lem. A circulation on the graph G is a flow function for
which the flow conservation constraints hold on every
node of the graph, that isX
a2dþðvÞ

f ðaÞ �
X

a2d�ðvÞ
f ðaÞ ¼ 0; for all v 2 V :

An st-flow function with lower and upper bounds can
be transformed into a circulation by adding in G an arc
from t to s with 0 and 1 as lower and upper bounds,
respectively. The maximum st-flow problem with lower
and upper bounds is then feasible if and only if the associ-
ated circulation problem is feasible. We have the following
fundamental theorem which can be found in [14].

Theorem 3.1. Given a directed graph G = (V, A), the circu-
lation problem in G with nonnegative lower and upper bounds
on arc flows is feasible if and only if for every node set W

X
ði;jÞ2d�ðWÞ

Lij 6
X

ði;jÞ2dþðWÞ

Uij: ð6Þ

Conditions Eq. (6) described in Theorem 3.1 are the so-
called cut conditions.

To find a feasible circulation in a graph, one can apply a
maximum flow-based algorithm. In fact, we first choose
two nodes s and t and then compute a classical maximum

2770 I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774
st-flow in G, that is with upper bounds Uij and 0 as lower
bounds for every arc (i, j) 2 A. If for every arc (i, j) 2 A, we
have Lij 6 f(i, j), then this flow is feasible with respect to
lower and upper bounds Lij and Uij. If, on the contrary, there
exists some infeasible arcs, that is f(i, j) < Lij, for some arcs
(i, j) 2 A, then we try to make these arcs feasible. For this,
we try, for each infeasible arc (p, q) to gradually increase
the flow value on an augmenting cycle (in the residual
graph) containing arc (p, q), until the flow f(p, q) becomes
greater than Lpq or until there is no augmenting cycle. In
this latter case, if (p, q) has become feasible, then we
choose another infeasible arc and repeat that procedure.
If there is no augmenting cycle and (p, q) is still infeasible,
then there is no feasible circulation in G, with respect to
bounds Lij and Uij and by Theorem 3.1, one can find a node
set W which does not satisfy the cut conditions Eq. (6). This
algorithm can be implemented in polynomial time by
using any efficient maximum flow algorithm and any cycle
finding method. For more details on this procedure and on
maximum flow algorithms, see [14].

In the rest of the paper, we will denote by C ¼ ðx; y; zÞ a
solution of the problem and by GðzÞ the support graph of
this solution, that is the graph obtained from G by remov-
ing every edge e 2 E having zðeÞ ¼ 0. We will also let
zð½W;W�Þ ¼

P
e2½W;W�ze, for all W # V.

Before describing the separation procedure of the cut
constraints Eq. (4), we need to distinguish three cases
which are summarized in the three following lemmas.

Proofs of the following lemmas are given in Appendix A.

Lemma 3.1. Suppose that the graph GðzÞ is not connected
and that C1, . . . ,Cr are its connected components. Suppose also
that v 2 C1. Then, the cut constraints induced by the node sets
Ck, k = 2, . . . , r, are satisfied by ðx; y; zÞ if and only if, for all
j 2 P; xij ¼ 0, for all i 2 Ck, k = 2, . . . , r.
Lemma 3.2. Suppose that GðzÞ is not connected and that
C1, . . . ,Cr are its connected components, with v 2 C1. Suppose
also that the cut constraints induced by node sets Ck,
k = 2, . . . , r, are satisfied by ðx; y; zÞ, for all j 2 P. Then, there
exists a violated cut constraint induced by ðx; y; zÞ if and only
if there exists a violated cut constraint induced by a node setbV such that bV(C1 and v 2 C1 n bV .

In the next lemma, we show that if the graph GðzÞ is
connected, then the separation problem of the cut con-
straints Eq. (4), for a given terminal j 2 P, is equivalent to
finding a maximum flow with lower and upper bounds in
a special graph, described below (note that Gj has the same
node set as G).

Let j 2 P be a VPN endpoint and let Gj = (V, Aj) be the di-
rected graph obtained as follows. For every edge ab 2 E, we
add in Gj two arcs (a, b) and (b, a) with bounds ð0; zabÞ. For
every node i 2 Vn{v}, we add an arc (v, i) with bounds
ðxij;1Þ. We have the following lemma.

Lemma 3.3. Suppose that the graph GðzÞ is connected and let
j 2 P be a terminal node. The solution ðx; y; zÞ satisfies all the
cut constraints associated with j if and only if for all i0 2 Vn{v},
there exists a feasible flow with lower and upper bounds in the
graph Gj between i0 and v.
Lemmas 3.1–3.3 allows to devise an exact separation
algorithm for the cut constraints Eq. (4). We first look if
the graph GðzÞ is connected or not. If it is not connected
and C1, . . . ,Cr are its connected components, with v 2 C1,
we check if for all j 2 P and for every node
i 2 Ck; k ¼ 2; . . . ; r; xij > 0. If yes, then, by Lemma 3.1, the
cut constraint induced by Ck and j is violated. If GðzÞ is
not connected and for every k = 2, . . . ,r, and j 2 P; xij ¼ 0,
then, by Lemma 3.2, the separation problem of the reduces
to looking for violated cut constraints in the subgraph in-
duced by the component C1. Thus, this latter case is similar
to the case when GðzÞ is connected. Now if GðzÞ is con-
nected, then, by Lemma 3.3, the separation problem is
equivalent to finding a feasible flow between i and v, for
all i 2 Vn{v}. To do this, we build, for all j 2 P, the graph Gj

as described above. Then, for all i 2 Vn{v}, we look for a fea-
sible flow between i and v, using the algorithm described
above (and in [14]). If there is no feasible flow between i
and v, then the algorithm returns a node set W which does
not satisfies the cut conditions. By Lemma 3.3, this node
set, together with j induces a violated cut constraint. If
for all i 2 Vn{v} and j 2 P, there exists a feasible flow in Gj

between i and v, then the solution ðx; y; zÞ satisfies all the
cut constraints. The computation of the node set W can
be done by using the maximum flow algorithm of Ford
and Fulkerson which runs in (jVjjAjj). The separation algo-
rithm for cut constraints can, hence, be implemented to
run in polynomial time.
4. Experimental study

4.1. Network topology

In this section we give an analysis of the effectiveness of
the proposed algorithm in terms of execution time and
number of constraints generated. The proposed separation
procedure is also evaluated in terms of solution quality
found.

In this study, two methods are used for generating
graphs. The first is the Waxman method [22] where a flat
random graph is constructed. This method defines the
probability of having an edge between two nodes u and v
as

Pðu;vÞ ¼ ae
�d
bL ;

where 0 < a, b < 1, d is the Euclidian distance between
nodes u and v and L is the maximum distance between
the two freely selected nodes. An increase in the parameter
a results in an increase of the number of edges in the
graph, while a decrease in the parameter b increases the
ratio of the long edges against the short ones.

The second method used to generate graphs is the one
proposed by Barabasi and Albert [15]. This model suggests
two possible causes for the emergence of the power law in
the frequency of outdegrees in network topologies: incre-
mental growth and preferential connectivity. The network
growth process consists of an incremental addition of new
nodes. The preferential connectivity refers to the tendency
of a new node to connect to existing nodes that are highly
connected or popular. When a node u connects to the

Table 2
Results for Waxman graphs.

jVj jEj jPj NCut COpt Gap TT

40 80 5 9443 94 0.01 72.15
45 90 5 15,163 83 0.15 138.83
50 100 5 11,784 77 0.15 107.51
55 110 5 23,549 98 0.02 294.92
60 120 5 32,358 102 0.19 434.37
70 140 5 2,826,529 97 0.00 498.82
80 160 5 3,232,413 103 0.01 1515.31
90 180 5 3,936,736 107 0.04 1020.52

100 200 5 548,294 113 0.69 2135.00
110 220 5 1,837,571 12,060 0.06 3421.00
120 240 5 2,644,177 10,273 2.50 1226.68

30 60 7 3606 116 0.31 24.53
35 70 7 4775 132 0.03 39.53
40 80 7 13,007 164 0.00 150.51
45 90 7 18,124 164 0.00 227.11
50 100 7 26,461 154 0.12 360.56
55 110 7 28,357 143 0.06 428.35
60 120 7 33,125 155 0.00 506.23
70 140 7 2,951,349 17,362 0.00 517.48
80 160 7 3,542,104 20,103 0.03 679.00
90 180 7 4,301,294 20,827 2.57 1949.00

100 200 7 1,193,158 25,781 0.05 1164.75
10 20 10 225 105 0.00 0.71
15 30 10 666 137 0.00 3.29
20 40 10 1943 152 0.00 12.22
25 50 10 2691 134 0.00 22.07
30 60 10 6237 208 0.52 66.75
35 70 10 5645 184 0.12 60.94
40 80 10 18,258 194 0.15 235.23
45 90 10 12,535 201 0.00 250.33
50 100 10 9403 218 0.34 154.17
55 110 10 15,525 241 0.25 322.15
60 120 10 28,331 220 0.00 583.23

I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774 2771
network, the probability that it connects to a node v (al-
ready belonging to the network) is given by:

Pðu;vÞ ¼ dvP
k2V dk

;

where dv is the degree of the node belonging to the net-
work, V is the set of nodes connected to the network andP

k2V dk is the sum of outdegrees of the nodes previously
connected.

BRITE (Boston university Representative Internet Topol-
ogy gEnerator) [20] was used as a tool for generation of
realistic network topologies based on Waxman and Bara-
basi graphs methods.

4.2. Computational results

We have implemented our algorithm for computing the
optimal VPN tree in C++ and used COIN-OR [16] to solve it.
We have used an M40-331 TOSHIBA laptop with an Intel
Pentium M processor of 1.73 GHz and 1 GB of RAM.

We have used BRITE generator [20] to generate graphs
with 10–120 nodes, and using Waxman and Barabasi
methods, respectively. For each type of instances (Waxman
or Barabasi), we have considered 5, 7 and 10 terminals
nodes in the graph. BRITE generator has been configured
to generate graphs whose number of edges equals twice
the number of nodes of the graph. The experimental results
obtained are given in Tables 2 and 3 for Waxman and Bar-
abasi instances, respectively.

Gap is a measure of the relative error between the cost
of the optimal solution COpt and the cost of the linear
relaxation of the optimal Steiner tree solution (say Cr).
Here COpt and Cr are expressed in Mbps. Gap is computed
as follows,

Gap ¼ COpt � Cr
Cr

����
���� � 100: ð7Þ

The entries of Tables 2 and 3 are defined in Table 1.
Recall that the algorithm solves a series of Steiner tree

problems, each of them corresponding to a node of the
graph. The optimal value COpt of the problem is the best
value among all the optimal solutions of the Steiner tree
problems.

First we observe from Table 2 that the algorithm has
been able to solve to optimality all the instances of the
Waxman test set. A large number of cut inequalities is gen-
erated for all the instances but the total CPU time is rela-
tively small. The total CPU time varies from 1 s (Waxman
Table 1
Notations.

jVj Number of nodes of the graph
jEj Number of edges of the graph
jPj Number of VPN endpoints (terminals) of the graph
NCut Total number of generated cut inequalities
COpt Optimal solution (optimal bandwidth to be allocated)
Gap The relative error between the optimal solution and the

linear relaxation of the optimal Steiner tree problem (that is
the Steiner tree problem giving the value COpt)

TT Total CPU time in seconds
23: 10 nodes and 10 terminals) to 57 min (Waxman 10:
110 nodes and 5 terminals). Also, the Gap (the relative
error between the optimal bandwidth and the linear
relaxation of the optimal Steiner tree problem) is relatively
small. The Gap is less than 2.57% for all the instances. For
11 instances, the Gap is 0, that is the optimal Steiner
tree problem is solved with no branching during the
Branch-and-Cut process.

For Table 3, we also observe that the algorithm is able to
solve to optimality all the instances of the Barabasi test set.
For these instances also, the number of generated cut
inequalities is relatively important but the total CPU time
is relatively small (between 1.25 s and 1h11min for
Barabasi 23 and Barabasi 11, respectively). Also for these
instances, the Gap is relatively small (less than 3.35%)
except for two instances, Barabasi 9 and Barabasi 33,
having respectively a Gap of 16.28% and 16.47%. Also, for
8 instances the Gap achieved is 0% indicating that the
Branch-and-Cut algorithm for the optimal Steiner tree
problem is solved to optimality without branching. The
small CPU time obtained for both Waxman and Barabasi
instances shows that the algorithm can be used to
efficiently solve and quickly design a VPN tree with given
endpoints and bandwidths. The efficiency of the algorithm
is also shown by the small Gap achieved during the resolu-
tion process. This points out that the formulation of the
problem as a series of Steiner tree problems produces good
lower bounds and, in many cases, can quickly obtain an
optimal solution of the problem.

Table 3
Results for Barabasi graphs.

jVj jEj jPj NCut COpt Gap TT

40 80 5 6722 70 0.11 50.91
45 90 5 5521 68 0.00 41.44
50 100 5 6762 74 0.00 59.43
55 110 5 27,828 91 0.08 324.30
60 120 5 8971 73 2.02 85.33
70 140 5 2,756,710 11,218 0.04 232.85
80 160 5 3,094,710 10,050 0.06 194.02
90 180 5 3,732,625 9464 0.09 472.67

100 200 5 314,101 7703 16.28 720.85
110 220 5 1,452,690 12,918 0.05 1139.74
120 240 5 2,138,990 15,421 0.13 4313.00

40 80 7 6057 115 1.33 53.12
45 90 7 10,827 131 0.02 119.77
50 100 7 11,986 109 0.46 136.02
55 110 7 12,261 114 0.10 153.22
60 120 7 22,523 134 0.24 340.90
70 140 7 2,871,571 10,804 1.53 116.09
80 160 7 3,320,956 15,563 0.22 341.70
90 180 7 4,050,091 13,262 0.23 543.25

100 200 7 722,739 17,556 0.03 1144.15
110 220 7 157,643 12,778 0.00 842.00
120 240 7 195,791 19,547 0.00 1681.00

10 20 10 356 119 0.48 1.25
15 30 10 523 136 0.00 2.39
20 40 10 1366 171 0.39 8.55
25 50 10 1925 158 3.35 14.08
30 60 10 2486 171 0.29 21.30
35 70 10 5407 167 0.45 53.17
40 80 10 6402 219 0.61 79.35
45 90 10 8936 202 0.09 123.95
50 100 10 15,518 197 0.00 246.58
55 110 10 20,213 228 0.00 392.73
60 120 10 14,694 249 16.47 289.47

2772 I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774
Now we compare the results obtained with respect to
the number of nodes and the number of VPN endpoints.
We can see that the CPU time increases with the number
of terminals. For example, for Waxman 5, Waxman 18
and Waxman 27 (60 nodes and respectively 5, 7 and 10 ter-
minals), the CPU time is respectively 434 s, 506 s and 583 s.
This can be explained by the number of valid cut inequal-
ities which increases with the number of VPN endpoints.
The algorithm may then spend more time in the cut con-
straints separation phase. Note that, even if the number
of cut inequalities increases with the VPN endpoints, the
polyhedral investigation of the problem yields a reduction
of the necessary cut inequalities generated during the
Branch-and-Cut algorithm. Thus, the small total CPU time
let us suppose that the algorithm can solve to optimality
large instances (with more than 120 nodes and 10 de-
mands) in a reasonable amount of time, and give, in the
worst case good lower and upper bound to the optimal
solution.
5. Conclusions

The problem of designing virtual private networks has
been widely studied in the literature but its resolution is
actually limited to heuristic algorithms.

In this paper we give an efficient exact algorithm to
solve this problem. The newly proposed algorithm gives
an exact optimal solution, i.e. a VPN tree which connects
all the terminals of the VPN and having the minimal allo-
cated bandwidth. Our algorithm relies on a Branch-and-
Cut method with an efficient separation procedure based
on the problem of maximum flow with nonnegative lower
bounds algorithm. It also relies on a polyhedral investiga-
tion of the problem for describing and using facet-defining
inequalities in the algorithm. The small CPU time and Gap
achieved during the computational study show that the
proposed algorithm can efficiently solve the problem.

The Branch-and-Cut algorithm can be improved by per-
forming a deep polyhedral investigation and find new valid
inequalities for the Steiner tree problems. Also, the algo-
rithm may be improved by dividing primal heuristics and
solve to optimality very large sized instances.

Appendix A. Proofs for separation results

Proof 5.1 (Proof of Lemma 3.1). First, suppose that, for all
k = 2, . . . ,r, the cut constraint induced by the node set Ck

and any j 2 P, is satisfied by ðx; y; zÞ. Then, we have

ze P
X
i2Ck

xij; for all j 2 P; k ¼ 2; . . . ; r:

Since Ck is a connected component of G(barz), we have thatP
e2dðCkÞze ¼ 0 P

P
i2Ck

xij. As xij P 0, for all i 2 V, j 2 P, we
obtain xij ¼ 0, for all i 2 Ck, k = 2, . . . ,r and for all j 2 P.

Now suppose that for some k0 2 {2, . . . ,r} and j0 2 P, the
cut constraint induced by Ck0

and j0 is violated by ðx; y; zÞ.
Then, we have that

P
e2dðCk0

Þze <
P

i2Ck0
xij. Since Ck0

is a

connected component of GðzÞ, and hence
P

e2dðCk0
Þze ¼ 0,

we get
P

i2Ck0
xij > 0. Thus, xi0j0

> 0 for some node

i0 2 Ck0
. h
Proof 5.2 (Proof of Lemma 3.2). If there exists a node setbV(C1, with v 2 C1 n bV and a terminal j0 2 P, such that the
cut constraint induced by bV and j0 is violated by ðx; y; zÞ,
then the result is obvious. Thus, suppose that there exists
a node set bV # V , with v R bV , and a terminal j0 2 P which
induce a violated cut constraint for ðx; y; zÞ, that isX
e2dðbV ze <

X
i2Ck0

xij: ðA:1Þ

Let bV k ¼ bV \ Ck; k ¼ 1; . . . ; r. Clearly, we have that

bV ¼ [r

k¼1

bV k:

Thus,
P

e2dðbV Þze and
P

i2dðbV Þxij can be written as

X
e2dðbV Þze ¼

Xr

k¼1

z½bV k;Ck n bV k� ðA:2Þ

andX
i2bV xij0 ¼

Xr

k¼1

X
i2bV k

xij0 : ðA:3Þ

Since the cut constraints induced by Ck, k = 2, . . . ,r, by Lem-
ma 3.1, we have that xij0 ¼ 0, for all i 2 bV k; k ¼ 2; . . . ; r.
Thus,

I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774 2773
X
i2bV xij0 ¼

X
i2bV 1

xij0 : ðA:4Þ

By combining Eqs. (A.1), (A.2) and (A.4), we get

Xr

k¼1

z½bV k;Ck n bV k� <
X
i2bV 1

xij0 :

As ze P 0, for all e 2 E, we get

zð½bV 1;C1 n bV 1�Þ ¼ zðdðbV 1ÞÞ 6
Xr

k¼1

z½bV k;Ck n bV k� <
X
i2bV 1

xij0 :

Moreover, v R bV 1 since v R bV . This implies, that the cut
constraint induced by bV 1 and j0 is violated by ðx; y; zÞ,
and the result holds. h
Proof 5.3 (Proof of Lemma 3.3). First suppose that ðx; y; zÞ
satisfies all the cut constraints. We are going to show that
there exists a feasible flow with lower and upper bounds
between every node i0 2 Vn{v} and v. For this, we trans-
form the flow problem into a circulation problem by add-
ing in Gj an arc (v, i0) from v to i0 with bounds (0,1). Note
that by, Theorem 3.1, there is a feasible circulation if and
only if the cut conditions Eq. (6) hold for every node set
W # V.

Let W # V. If v 2W, then d+(W) contains at least one arc
(v, i1), with i1 – i0. Hence, at least one arc of d+(W) have an
infinite capacity. Since the lower bound of every arc of Gj is
finite, we have thatX
ða;bÞ2½W;W�

Uab >
X

ða;bÞ2½W ;W �

Lab: ðA:5Þ

If v 2W , then dþðWÞ ¼ ½W;W� is composed only of arcs
with bounds ð0; zeÞ, while d�ðWÞ ¼ ½W;W� is composed of
arcs with bounds ð0; zeÞ and ðxijÞ. Also, if i0 2W, then
d�(W) may contain the extra arc (v, i0), with bounds (0,
1). Thus, we have thatX
ða;bÞ2½W;W�

Uab ¼
X

ab2½W;W�

zab

andX
ða;bÞ2½W;W�

Lab ¼
X
i2W

xij:

Since ðx; y; zÞ satisfies all the cut constraints, then we have
that

zðdðWÞÞ ¼
X

ab2½W ;W �

zab P
X
i2W

xij:

Thus, we getX
ða;bÞ2½W;W�

Uab P
X

ða;bÞ2½W;W �

Lab: ðA:6Þ

Therefore, Eqs. (A.5) and (A.6) implies that, for all W # V,
the cut condition holds, and hence, there is a feasible flow
between i0 and v in Gj.

Now suppose that there exist a cut constraint, induced
by a node set W and a terminal j 2 P, and violated by
ðx; y; zÞ. We will show that the flow with lower and upper
bounds between some node i0 2 Vn{v} and v is not feasible.
Let i0 be a node of W. As W induce a valid cut constraint for
the problem, we have that v R W andX
ab2½W;W �G

zab <
X
i2W

xij: ðA:7Þ

Since v R W, the cut corresponding to W in the graph Gj

satisfiesX
ða;bÞ2½W;W�Gj

Uab ¼
X

ab2½W;W �G

zab

andX
ða;bÞ2½W;W�Gj

Lab ¼
X
i2W

zab:

With inequality Eq. (A.7), we getX
ða;bÞ2½W;W�Gj

Uab <
X

ða;bÞ2½W ;W�Gj

Lab;

implying that the cut conditions induced by W is not satis-
fied and the flow problem with lower and upper bounds is
not feasible. h
References

[1] A. Gupta, J. Kleinburg, A. Kumar, R. Rastogi, B. Yener, Provisioning a
virtual private network: a network design problem for
multicommodity flow, in: Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing (STOC), 2001.

[2] A. Kumar, R. Rastogi, A. Silberschatz, B. Yener, Algorithms for
provisioning virtual private networks in the hose model, IEEE/ACM
Transactions on Networking 10 (4) (2002) 565–578.

[3] Giuseppe F. Italiano, Stefano Leonardi, Gianpaolo Oriolo, Design of
networks in the hose model, in: Proceedings of the 3rd Workshop on
Approximation and Randomization Algorithms in Communication
Networks (ARACNE), 2002, pp. 65–76.

[4] T. Erlebach, M. Ruegg, Optimal bandwidth reservation in hose model
VPNs with multi-path routing, in: IEEE Infocom, 2004.

[5] Haibo Wang, Gee-Swee Poo, Availability guaranteed service
provisioning in hose model VPNs with multi-path routing, in: ICC
’06 3, 2006, pp. 1014–1019.

[6] Guy Even, Moti Medina, Gregor Schaffrath, Stefan Schmid,
Competitive and deterministic embeddings of virtual networks, in:
ICDCN, 2012, pp. 06–121.

[7] M. Chowdhury, M.R. Rahman, R. Boutaba, ViNEYard: virtual network
embedding algorithms with coordinated node and link mapping, in:
ACM/IEEE ToN, 2011.

[8] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S. Shenker,
Extending networking into the virtualization layer, in: Proc. 8th ACM
Workshop on Hot Topics in Networks (HotNets), 2009.

[9] M. Ghobadi, S. Ganti,G.C. Shoja, Hierarchical provisioning algorithm
for virtual private networks using the hose model, in: Global
Telecommunications Conference, 2007, pp. 2467–2471.

[10] M. Ghobadi, S. Ganti, G.C. Shoja, Resource optimization to provision
a virtual private network using the hose model, in: Proceedings of
the IEEE International Conference on Communications, 2007, pp.
512–517.

[11] Yu-Liang Liu, Yu-Ting Chin, Traffic engineering for provisioning
VPNs with time-varying bandwidth requirements, in: Electronics
and Information Engineering (ICEIE), 2010 International Conference,
vol. 2, 2010, pp. 309–313.

[12] Dong Wang, Yunfeng Peng, Keping Long, A novel iterative clustering
steiner tree algorithm for optimal resource reservation in hose based
VPN, Optical Internet (COIN) (2010) 1–3.

[13] B. Thabti, H. Youssef, A. Meddeb, A.R. Mahjoub, Evolutionary
algorithm for provisioning VPN trees based on pipe and hose
workload models, Natural Computation (ICNC) 4 (2011) 2058–2064.

[14] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory
Algorithms and Applications, Prentice Hall, New Jersey, 1993.

http://refhub.elsevier.com/S1389-1286(13)00193-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0015
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0015
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0015
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0020
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0020
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0020

2774 I. Diarrassouba et al. / Computer Networks 57 (2013) 2766–2774
[15] A.L. Barabasi, R. Albert, Emergence of scaling in random networks,
Science (1999) 509–512.

[16] COIN-OR. <www.coin-or.org>.
[17] N.G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K.K.

Ramakrishnan, Jacobus E. van der Merwe, A flexible model for
resource management in virtual private networks, in: Proceedings of
ACM SIGCOMM, 1999.

[18] B. Korte, J. Vygen, Combinatorial Optimization: Theory and
Algorithms, third ed., Springer, 2006.

[19] A.R. Mahjoub, Polyhedral approaches, in: V. Paschos (Ed.), Concepts
of Combinatorial Optimization, ISTE-WIELY, 2010, pp. 261–324.

[20] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE: an approach to
universal topology generation, in: IEEE/ACM MASCOTS, 2001, pp.
346–356.

[21] C. Swamy, A. Kumar, Primal–dual algorithms for connected facility
location problems, in: Proceedings of the 5th International
Workshop on Approximation Algorithms for Combinatorial
Optimization, 2002.

[22] B.M. Waxman, Routing of multipoint connections, IEEE Journal on
Selected Areas in Communications 6 (9) (1988) 1617–1622.

[23] L. A. Wolsey, Integer Programming, Wiley-Interscience, first ed.,
1998.

[24] F. Eisenbrand, E. Happ, Provisioning a virtual private network under
the presence of non-communicating groups, in: Proceedings of the
6th International Conference on Algorithms and Complexity, Lecture
Notes in Computer Science, vol. 3998, 2006, pp. 105–114.

[25] J. Chu, C.-T. Lea, Optimal link weights for IP-based networks
supporting hose-model VPNs, IEEE/ACM Transactions on
Networking 17 (3) (2009) 778–788.

Ali Lourimi was born in Sousse, Tunisia, in
1978. He received the bachelor’s degree in
applied mathematics from the University of
Monastir, Tunisia, in 2000 and master’s
degree in Telecommunications from the
Higher School of Communications of Tunis,
Tunisia, in 2002. In 2006, he joined the
PRINCE Research Unit, University of Sousse,
Tunisia. His current research interests include
VPN design and Combinatorial Optimization
techniques. He is actually an assistant in the
University of Gafsa.
A. Ridha Mahjoub is a Professor of Operation
Research and Combinatorial Optimisation at
the LAMSADE laboratory of the University of
Paris-Dauphine. Prior to that, he was a Pro-
fessor at the University of Brest, France, from
1991 to 1998, then at the University of Cler-
mont, France, from 1998 to 2007. Professor
Mahjoub earned a Maı̂trise in mathematics
from the Faculty of Sciences of the University
of Tunis, a Doctorat 3éme Cycle and a Docto-
rat d’Etat, both from the University of Greno-
ble, France. His research interests are related

to the theory and applications of polyhedral approaches for hard com-
binatorial optimisation problems, linear programming and integer pro-
gramming approaches, graph theory and the complexity of algorithms.
His research works have addressed numerous combinatorial problems
such as the maximum cut problem or bipartite subgraph problem. Some
of his recent work has focused on the development of efficient branching
cut algorithms for network design problems. Professor Mahjoub has
published expensively in top rated journals like Mathematical Program-
ming, Mathematics of Operations Research, SIAM Journal on Discrete
Mathematics, Discrete Mathematics, Discrete Applied Mathematics,
Operations Research Letters, Networks, Discrete Optimization. Further,
Professor Mahjoub has held several positions. He is curently the Co-
Director of Département de Formation et de Recherche de Mathéma-
tiques et Informatique at Dauphine. He is also the Editor of the journal
RAIRO-Operations Research.

Dr. Ibrahima Diarrassouba recieves his Ph.D.
in Operations Research from Blaise Pascal
University of Clermont-Ferrand, France. He is
also graduated in Computer Engineering from
ISIMA Engineering School. Actually, He is
Assistant Professor at University of Le Havre
and works in the field of Combinatorial Opti-
mization and especially in Network Design
and in Logistics and Transportation.
Dr. Habib Youssef received a Diplôme
d’Ingénieur en Informatique from the Faculté
des Sciences de Tunis, University of El-Manar,
Tunisia in June 1982 and a Ph.D. in computer
science from the University of Minnesota,
USA, in January 1990. From September 1990
to January 2001 he was a Faculty member of
the computer engineering department of King
Fahd University of Petroleum & Minerals
(KFUPM), Saudi Arabia (Assistant Professor
from 1990 to 1995 and Associate Professor
from September 1995 to January 2001). From

February 2001 to June 2002, he was a Maitre de Conférences en infor-
matique at the Faculté des Sciences de Monastir (FSM), University of
Monastir, Tunisia. From July 2002 to August 2005, he served as the

Director of the Institut Supérieur d’Informatique et Mathematiques of the
University of Monastir, and from July 2007 to August 2011 as the Director
of the Institut Supérieur d’Informatique et des Technolgies de Commu-
nication of the University of Sousse, where he is currently serving as a
Professor of computer science.
He has over 160 publications to his credit in the form of books, book
chapters, and journal and conference papers. He is the author with S. Sait
of two books, (1) ‘‘VLSI Physical Design Automation: Theory and Practice’’,
McGraw-Hill 1995, (also co-published by IEEE Press 1995), and reprinted
with corrections by World Scientific in 1999, and (2) ‘‘Iterative Computer
Algorithms with Applications in Engineering’’, IEEE CS Press 1999, and
since 2003 published by John Wiley & Sons, which has also been trans-
lated into Japanese. His current research interests are computer networks,
performance evaluation of computer systems, and combinatorial opti-
mization.

http://refhub.elsevier.com/S1389-1286(13)00193-X/h0025
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0025
http://www.coin-or.org
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0040
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0040
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0040
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0045
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0045
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0045
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0045
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0050
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0050
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0060
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0060
http://refhub.elsevier.com/S1389-1286(13)00193-X/h0060

	Hose workload based exact algorithm for the optimal design of virtual private networks
	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Notations

	2 Integer programming formulation for the problem
	3 Branch-and-Cut algorithm
	3.1 Description
	3.2 Separation of the cut constraints

	4 Experimental study
	4.1 Network topology
	4.2 Computational results

	5 Conclusions
	Appendix A Proofs for separation results
	References

