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Abstract

In this paper we consider the k-node connected subgraph problem. We propose
an integer linear programming formulation for the problem and investigate the
associated polytope. We introduce further classes of valid inequalities and discuss
their facial aspect. We also devise separation routines and discuss some reduction
operations that can be used in a preprocessing phase for the separation. Using
those results, we devise a Branch-and-Cut algorithm and present some preliminary
computational results.
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1 Introduction

A graph G = (V,E) is called k-node (resp. k-edge) connected (k ≥ 0) if for
every pair of nodes i, j ∈ V , there are at least k node-disjoint (resp. edge-
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disjoint) paths between i and j. Given a graph G = (V,E) and a weight
function c on E that associates with an edge e ∈ E the weight c(e) ∈ R,
the k-node connected subgraph problem (kNCSP for short) is to find a k-node
connected spanning subgraph H = (V, F ) of G such that

∑
e∈F

c(e) is minimum.

This problem has applications to the design of reliable communication and
transportation networks [1,7].

In this article, we consider the kNCSP from a polyhedral point of view.
We introduce further classes of valid inequalities for the associated polytope,
discuss their facial aspect and devise a Branch-and-Cut algorithm.

The kNCSP is NP -hard for k ≥ 2 [6]. The edge version of the problem
has been widely studied in the literature [1,2,3,7]. However, the kNCSP has
been particulary considered for k = 2 [8]. A little attention has been given for
the high connectivity case where k ≥ 3.

We will denote a graph by G = (V,E) where V is the node set and E is
the edge set. Given F ⊆ E, c(F ) will denote

∑
e∈F

c(e). For W ⊆ V , we let

W = V \W . If W ⊂ V is a node subset of G, then δG(W ) will denote the
set of edges in G having one node in W and the other in W . For W ⊂ V ,
we denote by E(W ) the set of edges of G having both endnodes in W and by
G[W ] the subgraph induced by W . If xF is the incidence vector of the edge
set F of a k-node connected spanning subgraph of G, then xF satisfies the
following inequalities (see [7]):

x(e) ≥ 0 e ∈ E, (1)

x(e) ≤ 1 e ∈ E, (2)

x(δG(W )) ≥ k ∅ �= W ⊆ V, (3)

x(δG\Z(W )) ≥ k − |Z|
∅ �= Z ⊆ V ; |Z| ≤ k − 1,

∅ �= W ⊆ V \Z.
(4)

Conversely, any integer solution of the system above is the incidence vector of
the edge set of a k-node connected subgraph of G. Constraints (3) and (4) are
called cut inequalities and node cut inequalities, respectively. We will denote
by kNCSP(G) the convex hull of all the integer solutions of (1)-(4). It can be
shown that it suffices to suppose that |Z| = k − 1 for inequalities (4).

The kNCSP has been studied by Grötschel et al. [7] within a more general
survivability model. A polyhedral analysis is presented along with a cutting
plane approach. In [5] Diarrassouba et al. consider the 2NCSP with bounded
lengths. Here it is supposed that each path does not exceed L edges for a
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fixed integer L ≥ 1. They investigate the polyhedral structure of the polytope
and propose a Branch-and-Cut algorithm. In [8] Mahjoub and Nocq study
the linear relaxation of the 2NCSP(G).

2 Valid inequalities

In this section, we describe two classes of valid inequalities for kNCSP(G).
Given a partition π = (V1, ..., Vp), p ≥ 2, we will denote by Gπ the subgraph
induced by π, that is, the graph obtained by contracting the sets Vi, i = 1, ...p.
We will denote by δG(V1, ..., Vp) the edge set of Gπ.

F-partition inequalities:

Theorem 2.1 Let Z ⊂ V with |Z| ≤ k − 1. Consider a partition (V0, ..., Vp)
of V \Z, and let F be a subset of δG\Z(V0) such that p(k − |Z|) − |F | is odd.
Then the inequality

x(δG\Z(V0, ..., Vp)\F ) ≥ 	
p(k − |Z|)− |F |

2

 (5)

is valid for kNCSP(G).

SP-partition inequalities:
A graph is called serie-parallele if it is not contractible to K4, the complete
graph of four nodes.

Theorem 2.2 Consider a partition π = (V1, ..., Vp) of V . If Gπ is serie-
parallele then the inequality

x(δG(V1, ..., Vp)) ≥ 	
k

2

p− 1 (6)

is valid for the kNCSP.

Inequalities of type (6) are called SP-partition inequalities.

3 Facial aspect

In this section, we discuss the facial aspect for some of the inequalities pre-
sented above. Let G = (V,E) be a graph. We can prove that kNCSP(G) is
full-dimensional if and only if G is (k + 1)-node connected. In the following
we assume that G is (k + 1)-node connected. We have the following results.
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Theorem 3.1 i) Inequalities(2) define facets for kNCSP(G) for every e ∈ E.
ii) Inequalities(1) define facets for kNCSP(G) if and only if e does not belong
to a cut δG\Z(W ) for some Z ⊂ V containing exactly k + 1− |Z| edges.

Proof. i) Easy.
ii) Suppose that e belongs to a cut δG\Z(W ) containing exactly k + 1 − |Z|
edges. Let δG\Z(W )={e,f1,...,fq} be that cut, with q = k−|Z|. Then we have
that x(e) + x(f1) + x(f2) + ... + x(fq) ≥ k + 1 − |Z|. By adding the valid
inequalities −x(fi) ≥ −1, i = 1, ..., q, we obtain that x(e) ≥ 0. So inequality
(1) is redundant and cannot, therefore, define a facet. Let us suppose now
that e does not belong to a cut δG\Z(W ) of cardinality exactly k + 1 − |Z|.
As G is (k + 1)-node connected, any cut δG\Z(W ) of G\Z containing e must
consist of at least k + 2 − |Z| edges. Consider the edge sets Tf = E\{e, f}
for f ∈ E\{e}. We claim that the graphs H = (V, Tf ) are k-node connected.
Indeed, suppose, on the contrary, that this is not the case. Then there must
exist Z ⊂ V and W ⊂ V \Z such that |δH\Z(W )| ≤ k − 1− |Z|. By adding e
and f to H two cases may arise. If e /∈ δG\Z(H), then |δG\Z(W )| ≤ k − |Z|.
But this contradicts the fact that G is (k+1)-node connected. If e ∈ δG\Z(H),
then |δG\Z(H)| ≤ k + 1 − |Z|. But this contradicts the assumption that any
cut δG\Z(W ) containing e must have at least k + 2− |Z| edges. �

The following theorem is given without proof.

Theorem 3.2 Inequality (3) defines facets for kNCSP(G) only if G[W ] and
G[W ] are (	k+1

2

)-edge connected.

A matching of G is a set of pair with nonadjacent edges.

Remark 3.3 LetW andW be a partition ofG such that |W | ≥ k, |W | ≥ k+1
and G[W ] and G[W ] are both k-node-connected. Let {e1, ..., ek} be edges of
δG(W ) forming a matching of G such that every edge ei has ends ui ∈ W
and vi ∈ W . Let S = E(W ) ∪ E(W ) ∪ {e1, ..., ek}. Then S is a solution of
kNCSP(G).

Theorem 3.4 Inequality (3) defines a facets for kNCSP(G) if the following
hold.

i) G[W ] and G[W ] are (k + 1)-node connected,

ii) there exists a matching M containing k edges in δG(W ),

iii) |W | ≥ k + 1, and there exists a node s in W such that s is not incident
to the matching M and it is adjacent to all the nodes of M in W .

Proof.
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Let us denote by ax ≥ α the cut inequality induced by W , and let F =
{x ∈ kNCSP (G)|ax = α}. Suppose there exists a defining facet inequality
bx ≥ β such that F ⊆ F = {x ∈ kNCSP (G)|bx = β}. We will prove
that there is a scalar ρ such that b = ρa. By ii) there exists a matching
M = {e1, ..., ek} in δG(W ) of k edges such that ei = uivi, i = 1, ..., k, with
ui in W and vi in W . Let U1 = {u1, ..., uk} and V1 = {v1, ..., vk}. Let
T1 = E(W )∪E(W )∪M . As by i) G[W ] and G[W ] are (k+1)-node-connected,
by Remark 3.3, T1 is a solution of kNCSP(G). We will show in what follows
that the coefficient be are equal for all e ∈ δG(W ). Let fi = uis, i = 1, ..k. Such
edges exist by iii). Let Si = (T1 − ei) + fi, i = 1, ...k. Note that Si contains
a matching of k edges between W and W . Hence Si is a solution of the
kNCSP(G). Moreover xT1 , xSi ∈ F ⊆ F . Hence bxT1 = bxSi , implying that
bei = bfi = ρ, for i = 1, ...k, for some ρ ∈ R. By symetry, we also obtain that
bg = ρ for all g ∈ [W\U1, V1] ∪ [U1,W\V1] ∪M . Now consider an edge e = uv
such that u ∈ W\U1 and v ∈ W\V1. It is clear that T2 = (T1\{e1}) ∪ {e} is
a solution of the kNCSP(G). Moreover xT2 ∈ F ⊆ F . Hence bxT1 = bxT2 ,
yielding be1 = be = ρ. Finally consider an edge h = uivj , i, j ∈ {1, ..., k},
with i �= j. Consider the subset T3 = (T1\{ei, ej}) ∪ {h, ujs}. We have
that T3 is a solution of kNCSP(G), and xT3 ∈ F ⊆ F . Which implies that
bei + bej = bh + bujs. As bei = bej = bujs = ρ, it follows that bh = ρ. Thus we
obtain that be = ρ for all e ∈ δG(W ). Now we will show that be = 0 for all
e ∈ E\δG(W ). As G[W ] and G[W ] are (k + 1)-node-connected, we have that
T4 = T1\{e} induces a k-node connected graph for all edge e ∈ E(W )∪E(W ).
Moreover xT4 ∈ F ⊆ F . Hence be = 0. Consequently, we have that be = ρ for
all e ∈ δG(W ), and be = 0 for all e ∈ E\δG(W ). Thus b = ρa. �

4 Branch-and-Cut algorithm

Let PE(G) (resp. PN(G)) be the polytope given by inequalities (1)-(3) (resp.
(1)-(4)). In what follows, we are going to describe first some graph reduction
operations which will be utile for our Branch-and-Cut algorithm.

In [4] Didi Biha and Mahjoub introduce the following reduction operations
with respect to a solution x of PE(G).

θ1: Delete an edge e ∈ E such that x(e) = 0.

θ2: Contract a node subset W ⊆ V such that G[W ] is k-edge connected and
x(e) = 1 for all e ∈ E(W ).

θ3: Contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ 2, |δG(W )| = k,
and E(W ) contains at least one edge with fractional value.
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θ4: Contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ 2, G[W ] is
	k
2

-edge connected, |δG(W )| = k + 1, and x(e) = 1 for all e ∈ E(W ).

Starting from a graph G and a solution x ∈ PE(G) and applying θ1, θ2, θ3,
θ4, we obtain a reduced graph G′ and a solution x′ ∈ PE(G

′). Didi Biha and
Mahjoub [4] show that x′ is an extreme point of PE(G

′) if and only if x is an
extreme point of PE(G). We can show that this result also applies for PN(G).

We will use operations θ1, θ2, θ3, θ4 as a preprocessing for the separation
procedures in our Branch-and-Cut algorithm.

We now present our Branch-and-Cut algorithm for the kNCSP. The al-
gorithm has been implemented in C++ using CPLEX 12.5 with the default
settings. All experiments were run on a 2.10GHzx4 Intel Core(TM) i7-4600U
running linux with 16 GB of RAM. We have tested our approach on sev-
eral instances derived from SNDlib 3 and TSPlib 4 topologies. To start the
optimization we consider the following linear program

min
∑

e∈E

c(e)x(e)

x(δG(u)) ≥ k for all u ∈ V,

x(δG\Z(u)) ≥ 1 for all u ∈ V ;Z ⊆ V ; |Z| = k − 1,

0 ≤ x(e) ≤ 1 for all e ∈ E.

The Branch-and-Cut algorithm uses the inequalities previously described
and their separations are performed in the following order: cut inequalities (3),
node cut inequalities (4), SP-partition inequalities (6), F -partition inequalities
(5). Generated inequalities are added by sets of 200 or less inequalities at
a time. The test set consists in complete graphs whose edge weights are
the rounded euclidian distance between the edge’s vertices. The tests were
performed for k = 3, 4, 5. In all our experiments, we have used the reduction
operations described above. A part of our experimental results is presented
in Table 1. Each instance is given by its name followed by an extension
representing the number of nodes of the graph. The other entries of the table
are: The connectivity (k), the number of generated cuts, for inequalities (3)
(#EC) and (4) (#NC), respectively, the number of generated SP-partition
inequalities (6) (#SPC), the number of generated F -partition inequalities (5)
(#FPC), the weight of the optimal solution obtained (COpt), the Gap, that
is the relative error between the best upper bound (the optimal solution if the

3 http://sndlib.zib.de/home.action.
4 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
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problem has been solved to optimality) and the lower bound obtained at the
root node of the Branch-and-Cut tree (Gap), the number of subproblems in
the Branch-and-Cut tree (NSub), and the total CPU time in h:min:sec (CPU).
The maximum CPU time is fixed to 2 hours.

Instance k #EC #NC #SPC #FC COpt Gap(%) NSub CPU

france25 3 250 8 8 17 3229.93 0.39 14 0:00:25

pioro40 3 11 0 0 2 5606.39 0.00 1 0:00:07

berlin52 3 95 14 14 83 12549.1 0.09 6 0:14:23

eil76 3 85 1 9 142 884.722 0.12 6 0:57:57

gr96 3 135 31 18 6 - 4.32 2 2:00:00

france25 4 0 0 - 0 4662.47 0.39 14 0:00:01

pioro40 4 0 5 - 6 8095.94 0.00 1 0:01:59

berlin52 4 4 6 - 0 18267.3 0.00 1 0:01:13

st70 4 14 33 - 4 1624.64 0.00 1 0:38:13

kroA100 4 22 161 - 0 51113.9 0.00 1 1:01:34

france25 5 25 1 0 25 6440.4 0.00 1 0:02:11

pioro40 5 0 23 0 4 10899.3 0.00 1 0:08:43

berlin52 5 0 0 0 0 24673 0.00 1 0:00:01

st70 5 0 0 0 0 2201.31 0.00 1 0:00:06

kroA100 5 55 152 0 31 84123.2 0.00 1 0:05:32

Table 1

Our first series of experiments concerns the kNCSP for k = 3. The in-
stances we have considered have graphs with up to 96 nodes. It appears that
all the instances have been solved to optimality within the time limit except
the instance gr96. For most of the instances, the gap is less than 1%. We
also observe that our separation procedures detect a large enough number of
SP-partition and F -partition inequalities and seem to be quite efficient. Our
next series of experiments concerns the kNCSP with k = 4, 5. The instances
considered have graphs with up to 100 nodes. Note that when k is even, the
SP-partition inequalities are redundant with respect to the cut inequalities
(3). Thus, they are included in the resolution process only when k is odd. We
can observe that the F -partition inequalities also play an important role for
k even. For k = 5, we may observe that the CPU time for all the instances
is relatively small. Moreover most of the instances are solved in the cutting
plane phase. We can observe that the kNCSP becomes easier to solve when
k increases. In fact the instance gr96 has been solved for k = 5 in 1 second,
whereas it could not be solved to optimality for k = 3 after 2 hours. In order
to evaluate the impact of the reduction operations θ1, θ2, θ3, θ4 on the separa-
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tion procedures, we tried to solve the kNCSP without using them. The CPU
time increased for the majority of the instances when the reduction operations
are not used. This implies that our Branch-and-Cut algorithm is less efficient
without the reduction operations.

5 Concluding remarks

In this paper we have studied the k-node connected subgraph problem. We
have proposed an integer linear programming formulation for the problem and
studied the associated polytope. We have introduced new valid inequalities
and discussed some facial aspects. Using this, we devised a Branch-and-Cut
algorithm that has been tested on SNDlib and TSPlib based istances. A
deeper facial investigation and more significant computational results will be
further presented.
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