
1 23

Annals of Telecommunications

ISSN 0003-4347
Volume 73
Combined 1-2

Ann. Telecommun. (2018) 73:5-28
DOI 10.1007/s12243-017-0622-3

k-node-disjoint hop-constrained survivable
networks: polyhedral analysis and branch
and cut

Ibrahima Diarrassouba, Meriem
Mahjoub, A. Ridha Mahjoub & Hande
Yaman

1 23

Your article is protected by copyright and all

rights are held exclusively by Institut Mines-

Télécom and Springer International Publishing

AG, part of Springer Nature. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

https://doi.org/10.1007/s12243-017-0622-3

k -node-disjoint hop-constrained survivable networks: polyhedral
analysis and branch and cut

Ibrahima Diarrassouba1 ·MeriemMahjoub2,3 · A. Ridha Mahjoub2 ·Hande Yaman4

© Institut Mines-Télécom and Springer International Publishing AG, part of Springer Nature 2018

Abstract
Given a graph with weights on the edges, a set of origin and destination pairs of nodes, and two integers L ≥ 2 and k ≥ 2, the
k-node-disjoint hop-constrained network design problem is to find a minimumweight subgraph ofG such that between every
origin and destination there exist at least k node-disjoint paths of length at most L. In this paper, we consider this problem
from a polyhedral point of view. We propose an integer linear programming formulation for the problem for L ∈ {2, 3} and
arbitrary k, and investigate the associated polytope. We introduce new valid inequalities for the problem for L ∈ {2, 3, 4},
and give necessary and sufficient conditions for these inequalities to be facet defining. We also devise separation algorithms
for these inequalities. Using these results, we propose a branch-and-cut algorithm for solving the problem for both L = 3
and L = 4 along with some computational results.

Keywords k-node-disjoint hop-constrained paths · Survivable network · Polytope · Valid inequalities · Facets ·
Separation · Branch-and-cut

1 Introduction

The design of survivable networks is an important issue
in telecommunications. The aim is to conceive cheap,
efficient, and reliable networks with specific characteristics
and requirements on the topology. Survivability is generally

� Ibrahima Diarrassouba
diarrasi@univ-lehavre.fr

Meriem Mahjoub
meriem.mahjoub@dauphine.fr

A. Ridha Mahjoub
ridha.mahjoub@lamsade.dauphine.fr

Hande Yaman
hyaman@bilkent.edu.tr

1 Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335,
76600 Le Havre, France

2 PSL, CNRS UMR 7243 LAMSADE, Université
Paris-Dauphine, Place du Maréchal De Lattre de Tassigny,
75775 Cedex 16, Paris, France

3 Faculté des Sciences de Tunis, URAPOP, Université Tunis
El Manar, UR13ZS38, Tunis, Tunisia

4 Department of Industrial Engineering, Bilkent University,
Bilkent 06800 Ankara, Turkey

expressed in terms of connectivity in the network. The
level of connectivity depends on the type of each telecom-
munication network. It is common to require several disjoint
paths to link each pair of nodes to ensure the transmission in
case of disconnection or breakdown, all this at the cheapest
possible cost.

The most frequent and useful case in practice is the
uniform topology. This means that the nodes of the network
have all the same importance and it is required that between
every pair of nodes there are at least k edge (node-) disjoint
paths, where k is a given positive integer. Thus, the network
will be still functional when at most k−1 edges (nodes) fail.

However, this connectivity requirement may not unfor-
tunately be sufficient to guarantee a high survivability and
a routing quality. In fact, for some special networks such
as VPN (virtual private networks), we may need a higher
degree of connectivity. Moreover, the alternative routing
path in the network may be too long and costly and this
may cause a significant degradation in the transfer speed. In
order to limit the rerouting length and guarantee a high QoS,
it is commonly required that the length (number of edges) of
the paths between an origin-destination pair is bounded by
a given number L depending on technological parameters.

The problem is then to determine, given weights on
the possible links of the network, and pairs of origin-
destinations, a minimum weight network containing at least

Annals of Telecommunications (2018) 73:5–28

Received: 19 October 2016 / Accepted: 17 December 2017 / Published online: 16 January 2018

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-017-0622-3&domain=pdf
http://orcid.org/0000-0001-9263-6863
mailto:diarrasi@univ-lehavre.fr
mailto:meriem.mahjoub@dauphine.fr
mailto:ridha.mahjoub@lamsade.dauphine.fr
mailto:hyaman@bilkent.edu.tr

k edge (node) disjoint paths between each pair of origin-
destination of length no more than L. This paper deals with
the node connectivity case of the problem.

Consider an undirected graph G = (V , E) with weights
c(e), e ∈ E, on the edges, an integer L ≥ 2, and a set
of demands D ⊂ V × V . Each demand is an ordered pair
(s, t) of nodes, with s �= t . Node s is called the source
(or origin) of the demand and t its destination. The k-node-
disjoint hop-constrained network design problem (kNDHP
for short) is to find a minimum weight subgraph of G

containing at least k node-disjoint L-st-paths, that is, paths
from s to t with at most L edges (also called hops), between
each pair of nodes (s, t) ∈ D. The edge version of the
problem has been widely studied in the literature. However,
the kNDHP has been only considered for k = 2.

1.1 Node version with bounds

In [12], Diarrassouba et al. consider the kNDHP for k = 2.
Here it is supposed that the two paths are node-disjoint and
each path does not exceedL edges for a fixed integerL ≥ 1.
They investigate the structure of the associated polytope
and describe several classes of valid inequalities when L ≤
3. Based on this, they devise a branch-and-cut algorithm.
Huygens and Mahjoub [24] study the problem when L = 4
and k = 2. They show that the so-called cut and L-path-cut
inequalities suffice for formulating the problem in this case.
In [6], Chimani et al. consider {0, 1, 2}-survivable network
design problems with node connectivity constraints. Given
an edge-weighted graph and two customer sets R1 and R2,
they look for a minimum cost subgraph that connects all
customers, and guarantees 2-node connectivity for the R2

customers. They give a graph characterization of 2-node-
connected graphs via orientation properties. Using this,
they propose integer programming formulations based on
directed graphs.

1.2 Edge version with bounds

The edge version of the problem has also been studied
by several authors when L = 2, 3. In particular, in
[26] Huygens et al. give a complete and minimal linear
description of the corresponding polytope when L = 2, 3
and |D| = 1. In [25], Huygens et al. consider the problem
when |D| ≥ 2 and two edge-disjoint paths are required
for each demand. They show that the problem is strongly
NP-hard even when the demands in D are rooted at some
node s and the costs are unitary. However, if the graph
is complete, they prove that the problem in this case
can be solved in polynomial time. They give an integer
programming formulation of the problem in the space of
the design variables when L = 2, 3, and they study the
associated polytope. Moreover, they describe several classes

of valid inequalities along with necessary and/or sufficient
conditions to be facet defining, and propose a branch-and-
cut algorithm.

In [2], Bendali et al. consider the more general k edge-
disjoint hop-constrained problem (kEDHP) when k edge-
disjoint paths are required. They discuss a branch-and-cut
algorithm for the problem when L = 2, 3. Huygens and
Mahjoub [24] study the kEDHP when L = 4 and k = 2.
They introduce a new general class of valid inequalities.
Using this, they give an integer programming formulation
of the problem in the natural space of variables. In [7],
Dahl considers the hop-constrained path problem, that is the
problem of finding between two distinguished nodes s and
t a minimum cost path with no more than L edges when L

is fixed. He gives a complete description of the dominant
of the associated polytope when L ≤ 3 and a class of
facet defining inequalities for k ≥ 4. Dahl and Gouveia
[9] consider the directed hop-constrained shortest path
problem. They describe valid inequalities and characterize
the associated polytope when L = 2, 3. A related problem
is considered in Dahl et al. [8], the hop-constrained walk
problem. The authors discuss the associated polytope in
directed graphs when L = 4.

In [18], Gouveia and Leitner consider the network design
problem with vulnerability constraints. The solutions to
the problem are subgraphs containing a path of length at
most Hst for each commodity {s, t} and a path of length
at most H ′

st between s and t after at most k − 1 edge
failures. They give characterizations of feasible solutions
and propose integer programming formulations. In [19],
Gouveia et al. consider the problem with bounded lengths
in the context of an MPLS (multi-protocol label switching)
network design model. They discuss two models involving
one set of variables associated to each path between each
pair of demand nodes (a standard network flow model
with additional cardinality constraints and a model with
hop-indexed variables) and a third model involving one
single set of hop-indexed variables for each demand pair.
They show that the aggregated more compact hop-indexed
model produces the same linear programming bound as the
multi-path hop-indexed model.

1.3 Extended formulations for the edge version
with bounds

In [4], Botton et al. consider the hop-constrained survivable
network design problem with reliable edges, i.e., edges
that are not subject to failure. They study two variants, a
static problem where the reliability of the edges is given
and an upgrading problem where edges can be upgraded
to the reliable status at a given cost. They adapt for the
two variants an extended formulation proposed in Botton
et al. [5] for the case without reliable edges. They use

6 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Benders decomposition to accelerate the solution process.
Their computational results indicate that these two variants
appear to be more difficult to solve than the original
problem (without reliable edges). In [32], Mahjoub et al.
propose an extended formulation for the rooted case,
when all the demands have a common vertex, called hop-
level multicommodity flow formulation, inspired from the
formulation given in [5]. The authors introduce the concept
of solution level. To each solution of the problem, a partition
of the node set into L+2 levels can be associated according
to the distance to the root in the solution. Then, they reduce
the problem to a specific multicommodity flow problem in
an auxiliary layered directed graph.

In Table 1, a summary of the previously studied hop-
constrained network design problems is presented.

1.4 Edge and node versions without bounds

The k-node-connected subgraph problem without bounds
on the paths has been considered in the literature. In [31],
Mahjoub and Nocq discuss structural properties of the 2-
node-connected polytope (see also [1]). Grötschel et al. [20–
23] study the problem within a more general survivability
model. In [21], Grötschel et al. introduce the concept of
connectivity types. With each node s ∈ V of G, it is
associated a nonnegative integer rs , called the type of s.
A subgraph of G is said to be survivable if for each pair
of distinct nodes s, t ∈ V , the subgraph contains at least
rst = min{rs, rt } edge (node) disjoint (s, t)-paths. Grötschel
et al. study the problem from a polyhedral point of view and
propose cutting plane algorithms [21–23]. In [28], Kerivin
et al. propose branch-and-cut algorithms for both versions of
the {1, 2} survivable network design problem. Here, the type

of each node is either 1 or 2. In [29], Mahjoub et al. consider
the k-node-connected subgraph problem. They give valid
inequalities and propose a branch-and-cut algorithm.

The uniform edge case without hop constraints has been
widely investigated. The reader can be referred to [3, 14, 15,
20–23] for more details.

In Table 2, we show the studied survivable network
models with node versus edge connectivity.

As indicated in Table 2, the kNDHP has not been
considered for k ≥ 3. The aim of this paper is to discuss
this case for L = 2, 3 from a polyhedral point of view.
We present new valid inequalities along with separation
algorithms. We discuss conditions for these inequalities to
define facets. Using these results, we propose a branch-and-
cut algorithm for solving the problem in this case.

In the rest of this section, we give some notations. We
will denote an undirected graph by G = (V , E) where V

is the node set and E is the edge set. Given a set of nodes
Z ⊂ V , we denote by G \ Z the subgraph obtained from
G by deleting the nodes in Z and all their incident edges.
For W ⊆ V , we let W = V \ W . The set δG(W) will
denote the set of edges in G having one node in W and
the other in W . We will write δ(W) if the meaning is clear
from the context. For W ⊂ V , we denote by E(W) the set
of edges of G having both endnodes in W and by G[W]
the subgraph induced by W . Given disjoint node subsets
W1, . . . , Wp ⊂ V , p ≥ 2, we denote by δG(W1, . . . , Wp)

the set of edges of G between the sets W1, . . . , Wp. And we
will denote by [Vi, Vj] the set of edges between Vi and Vj .
Given F ⊆ E, c(F) will denote

∑

e∈F

c(e) and the incidence

vector of F , denoted by xF , is the 0 − 1 vector which takes
1 if e ∈ F and 0, if not.

Table 1 State of the art of the hop-constrained survivable network design problem

Connectivity Type of paths Reference Results

k = 1 – Dahl and Gouveia [9] Valid inequalities for the directed hop-constrained

shortest path problem. Complete linear

characterizations of the hop-constrained path

polytope when L = 2, 3

k = 2 Edge/node-disjoint Huygens and Mahjoub [24] IPF in the space of the design variables, for

the node case when L ≤ 4

k = 2 Edge/node-disjoint Huygens et al. [25] IPF, valid inequalities and branch-and-cut

algorithm for L = 2, 3

k ≥ 1 Edge-disjoint Bendali et al. [2] Characterization of the associated polytope for

L = 3 and |D| = 1

k ≥ 1 Edge-disjoint Diarrassouba et al. [13] Valid inequalities and branch-and-cut and

branch-and-cut-and-price algorithms

for L = 2, 3

k = 2 Node-disjoint Diarrassouba et al. [12] Valid inequalities and branch-and-cut algorithm

for L = 3

Ann. Telecommun. (2018) 73:5– 728

Author's personal copy

Table 2 Models of survivable networks with node versus edge connectivity

Connectivity Bound Edge case results Node case results

k = 2 L = ∞ ILP formulation, valid inequalities, ILP formulation, valid

separation, branch-and-cut, polytope inequalities, separation,

characterization [1, 20, 22, 23, 27, 30] branch-and-cut [20, 22, 23, 27, 31]

k ≥ 3 L = ∞ ILP formulation, valid inequalities, ILP formulation, separation

separation, branch-and-cut, polytope valid inequalities,

characterization [1, 20, 23, 27, 30] branch-and-cut [3, 8, 20, 23]

k = 2 L = 2, 3 ILP formulation, valid inequalities, ILP formulation, valid inequalities

separation, branch-and-cut [25, 26] polyhedral study,

branch-and-cut [2, 8, 20, 23]

k = 2 L = 4 ILP formulation, valid inequalities, ILP formulation, valid inequalities

separation, branch-and-cut [24, 25] branch-and-cut [24]

k ≥ 3 L = 2, 3 ILP formulation, valid inequalities, Considered in this paper

separation, branch-and-cut, extended

formulation [2, 4, 5, 7–9, 13]

The remaining of the paper is organized as follows. In
Section 2, we give an integer programming formulation
for the problem. In Section 3, we investigate the kNDHP
polytope and present several classes of valid inequalities.
Then, in Section 4, we discuss conditions under which these
inequalities define facets. Using these results, we propose,
in Sections 5 and 6, branch-and-cut algorithms for the
problem when k ≥ 3 and L = 3, and when L = 4
and k = 2, respectively, and present computational results.
Finally, we give some concluding remarks in Section 7.

2 Integer programming formulation

Let G = (V , E) be a graph and F ⊆ E an edge set which
induces a solution of the kNDHP. As F is a solution of
the problem, the subgraph induced by F , say GF , contains
k edge-disjoint st-paths for every (s, t) ∈ D. Thus, by
Menger’s theorem [33], every st-cut of GF contains at least
k edges. Consequently, the incidence vector of F satisfies
the following inequalities

x(δG(W)) ≥ k, for all st-cut δ(W) and (s, t) ∈ D. (1)

Inequalities (1) are called st-cut inequalities.
Dahl [7] introduces a class of valid inequalities as

follows.
Let (V0, . . . , VL+1) be a partition of V with s ∈ V0,

t ∈ VL+1, and Vi �= ∅ for all i ∈ {1, . . . L}. Let T be the set
of edges uv ∈ E such that u ∈ Vi , v ∈ Vj and |i − j | > 1,
that is,

T = δ(V0, . . . , VL+1) \
L⋃

i=0

[Vi, Vi+1].

The set T is called an L-st path-cut. Then, the inequality

x(T) ≥ 1

is valid for the L-st-path polyhedron. Using similar type
of partitions, we can generalize these inequalities to the
kNDHP as

x(T) ≥ k, for every L-st-path-cut T of G,

for any (s, t) ∈ D. (2)

Inequalities of type (2) are called L-st-path-cut inequali-
ties (Fig. 1).

Inequalities (1) and (2) can be easily adapted in order to
ensure the existance of k node-disjoint paths of length at
most L. Given node subsets Z ⊂ V \ {s, t} for (s, t) ∈ D,
and W ⊂ V \ Z, the st node-cut δG\Z(W) of G is the st-cut
induced by W in G\Z. Any L-st path-cut in G\Z is called
an L-st-node path-cut of G.

A solution x ∈ R
E of the kNDHP also satisfies the

following inequalities

x(δG\Z(W)) ≥ k − |Z|, for all st-node-cut δG\Z(W),

Z ⊂ V \ {s, t} such that

1 ≤ |Z| ≤ k − 1, and

(s, t) ∈ D, (3)

x(TG\Z) ≥ k − |Z|, for all L-st-node-path-cut

TG\Z of G \ Z,Z ⊂ V \ {s, t}
such that 1 ≤ |Z| ≤ k − 1,

and (s, t) ∈ D. (4)

Inequalities (3) and (4) are called, respectively, st-
node-cut and L-st-node-path-cut inequalities. Moreover, the

8 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Fig. 1 Support graph of an
L-st-path-cut with L = 3 and T

formed by the solid edges

incidence vector of an edge set F inducing a solution of the
kNDHP satisfies

x(e) ≥ 0, for all e ∈ E, (5)

x(e) ≤ 1, for all e ∈ E. (6)

In the following, we show that the st-cut, st-node-cut,
L-st-path-cut, L-st-node-path-cut, and trivial inequalities,
together with integrality constraints, suffice to formulate the
kNDHP as a 0 − 1 linear program when L ∈ {2, 3}.

For this, we consider, for each demand (s, t) the directed
G̃st = (Ṽst, Ãst) obtained as follows (see also [2] and [11]).
The node set Ṽst is formed by the nodes s, t , the node set of
V \ {s, t} and a copy u′ for each node u ∈ V \ {s, t}. The
set of arcs Ãst is obtained as follows. For each edge su ∈ E

(resp. ut ∈ E), we add in Ãst an arc (s, u′) (resp. (u′, t)). For
each edge uv ∈ E, with u, v �= s, t , we add two arcs (u, v′)
and (v, u′) in Ãst. Finally, for each node u ∈ V \ {s, t},
we add an arc (u, u′) in Ãst. It is not hard to see that every
st-dipath of G̃st corresponds to a 3-st-path of G, and vice-
versa. Also, two node-disjoint 3-st-path of G correspond
to two directed node-disjoint st-path of G̃st. However, the
converse is not true, that is two node-disjoint st-dipaths of
G̃st may not correspond to node-disjoint 3-st-paths ofG (see
Fig. 2 for illustration).

Bendali et al. [2] show that every st-cut and 3-st-path-cut
C ⊆ E can be associated with a directed st-cut C̃ ⊆ Ãst

which does not contain an arc of the form (u, u′), with
u ∈ V \ {s, t}, and vice-versa. Moreover, they show that a
solution x ∈ R

E can be associated with a solution y ∈ R
Ãst

such that x(C) = y(C̃).
Now, we give the following theorem.

Theorem 1 Let x ∈ {0, 1}E be an integral solution, which
satisfies all the cut and 3-st-path-cut inequalities (1) and
(2). Then, x induces a solution of the kNHDP if and only
if it satisfies all the st-node-cut and 3-st-node-path-cut
inequalities.

Proof As the st-node-cut and the 3-st-node-cut inequalities
are valid for the kNDHP, if x is a solution of the kNDHP,
then it satisfies these inequalities.

Now suppose that x does not induce a feasible solution of
the kNHDP, that is the subgraph of G induced by x, denoted
by G(x) = (V , E(x)) does not contain k node-disjoint 3-
st-paths for some demand (s, t) ∈ D. We are going to
show that there exists an st-node-cut or a 3-st-node-path-cut
inequality which is violated by x.

Let G̃st be the directed graph associated with (s, t) as
described above, and let ỹ ∈ R

Ãst be a weight vector such that

ỹ(a) =
⎧
⎨

⎩

1 if a corresponds to edge e and e ∈ E(x),

0 if a corresponds to edge e and e /∈ E(x),

+∞ if a = (u, u′) for all u ∈ V \ {s, t}.
Remark that, as G is simple, that it is does not contain

parallel edges, if two 3-st-paths P1 and P2 are not node-
disjoint, then they are of the form P1 = (s, u, v, t) and P2 =
(s, v, z, t)with u, v, z ∈ V \{s, t} and u �= v �= z. These two
paths correspond in G̃st to paths (s, u, v′, t) and (s, v, z′, t).
Conversely, two paths (s, u, v′, t) and (s, v, z′, t) of G̃st

correspond to two paths (s, u, v, t) and (s, v, z, t) which are
not node-disjoint. Consequently, when x is not feasible for

Fig. 2 Construction of the graph H for L = 3

Ann. Telecommun. (2018) 73:5– 928

Author's personal copy

the kNHDP, any maximum set of disjoint st-dipaths of the
graph G̃st, will contain two paths of the form (s, u, v′, t) and
(s, v, z′, t), with u, v, z ∈ V \ {s, t} and u �= v �= z �= u.

Now we introduce the following procedure, that we call
Procedure BuildZ, which aims to build a node set Z ⊆ V ,
from which we will obtain the violated st-node-cut or 3-st-
node-path-cut inequalities. Let Z ⊆ V be a node set of G

and denote by Z̃ the nodes of G̃st corresponding to those of
Z, that is Z̃ = {u, u′ such that u ∈ Z}. At the begining of the
procedure Z = ∅. Now compute a maximum flow from s to
t in G̃st \ Z̃, with each arc a ∈ Ãst having the capacity ỹ(a).
This gives a maximum set P̃ of node-disjoint st-dipaths in
G̃st \ Z̃, as the flow going in or out of a node v ∈ W \{s′, t ′}
is either 0 or 1. Indeed, each node v ∈ W \{s′, t ′} has at most
one arc going in from s′ and at most one arc going out to
t ′. Remark that some of these paths may correspond to non
node-disjoint 3-st-paths of G, that is they are of the form
(s, u, v′, t) and (s, v, z′, t). Let P̃ ′ be the set of these paths.
Also let P ′ be the set of paths of G corresponding to those
of P̃ ′ and U ⊆ V the set of nodes of G which are shared by
two paths of P ′. Now, add to Z the nodes of U and repeat
this procedure until |Z| ≥ k or U = ∅. It should be noticed
that when U = ∅, the arc-disjoint st-dipaths obtained by the
computation of the maximum flow in G̃st \ Z̃ correspond to
node-disjoint 3-st-paths of G \ Z.

The identification of the nodes of U can be easily done
by simply considering, for each node u ∈ V \ Z, the arcs
entering and leaving nodes u and u′ with flow value 1.
Namely, consider a node v ∈ U . This means that after the
maximum flow computation, there are two paths (s, u, v′, t)
and (s, v, z′, t). Since the arc capacities are either 0 or 1,
this means that

– the flow value on arc (s, v) is 1,
– the flow value on arc (v, v′) is 0,
– the flow value on arc (v′, t) is 1.

Figure 3 illustrates the above remark. The solid lines
represent arcs having flow value 1 and dashed lines
represent arcs with flow value 0. The flow value of the arcs
represented by dotted lines may be 0 or 1.

Thus, let Z ⊆ V \ {s, t} be the node set obtained by the
application of procedure BuildZ. It is not hard to see that
by the construction of Z, the graph G(x) contains |Z| st-
paths of the form (s, u, t), for all u ∈ Z. Clearly, these paths
are node-disjoint. This also implies that |Z| ≤ k − 1, for
otherwise, G(x) would contain at least k node-disjoint 3-
st-paths, which is not possible. Now compute a maximum
flow from s to t in G̃st \ Z̃, and let f be the value of that
flow. By the construction ofZ, this later flow corresponds to
a set of f disjoint 3-st-paths of G which are node-disjoint.
Moreover, these paths are node-disjoint from those induced
by Z. Thus, together with the paths induced by Z, we obtain
|Z|+f node-disjoint 3-st-paths in G(x). As by assumption,

Fig. 3 Two st-dipaths of G̃st \ Z̃ inducing non node-disjoint 3-st-paths
in G \ Z

G(x) does not contain k node-disjoint 3-st-paths, we have
that |Z| + f < k, that is f < k − |Z|.

Now, as f is the value of the maximum flow of G̃st \ Z,
the weight of a minimum cut C̃ of G̃st\Z is ỹ(C̃) = f < k−
|Z|. Finally, as shown by Bendali et al. [2], C̃ corresponds to
an edge set C which is either an st-cut or a 3-st-path-cut of
G\Z, that isC corresponds to an st-node-cut or a 3-st-node-
path-cut ofGwhose weight is x(C) = ỹ(C̃) = f < k−|Z|.
Consequently, the st-node-cut or 3-st-node-cut induced by
C is violated by x.

From Theorem 1 the kNDHP is equivalent to

min{cx|x satisfies (1) − (6) and x ∈ Z
E+}. (7)

We will call inequalities (1)–(6) basic inequalities. Here,
basicmeans that they are necessary in the basic formulation
of the problem.We will denote by kNDHP(G, L) the convex
hull of all the integer solutions of Eqs. 1–6, and call
kNDHP(G, L) the k-node-disjoint hop-constrained problem
polytope.

Formulation (7) is no longer valid for L ≥ 5. Consider
for example the graph shown in Fig. 4. For k = 2, its
incidence vector satisfies inequalities (1)–(6) but the graph
does not contain two node-disjoint st-paths of length at most
L = 5. This example is borrowed from [24].

Fig. 4 Infeasible solution of the 2NDHP with L = 5 and D = {(s, t)}

10 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

3 Polytope and valid inequalities

In this section, we present several classes of valid
inequalities inspired from the kEDHP (k-edge-disjoint hop-
constrained problem) that have been introduced in the
literature. Since any solution of the kNDHP is also solution
of the kEDHP, any valid inequality for the kEDHP polytope
on G is also valid for kNDHP(G, L). Also note that if
S ⊆ E is a solution of kNDHP in G and Z ⊂ V , such
that |Z| ≤ k − 1, then the restriction of S on G \ Z is a
solution of the (k − |Z|)NDHP on G \ Z with respect to
origin-destination pairs contained in G \ Z.

Lemma 1 Let Z ⊂ V , and let D′ ⊆ D be a subset of
origin-destination pairs in G \ Z. Suppose that y �= ∅. If an
inequality ax ≥ α(k) is valid for kNDHP(G, L) in G with
respect to D then the inequality yx ≥ α(k − |Z|) is valid
for kNDHP(G \ Z, L), with respect to D′, where a′ is the
restriction of a on G \ Z.

Note that in Lemma 1, we consider α(k) as a right-hand
side in the inequality ax ≥ α(k) just to express the fact that
the right-hand side of a valid inequality of the kNDHP may
depend of k.

3.1 Generalized L-st-path-cut inequalities

Dahl and Gouveia [9] introduce the so-called generalized
L-st-path-cut inequalities for the problem of finding an L-
st-path between two nodes s and t . They are defined as
follows. Let (s, t) ∈ D and π = (V0, . . . , VL+r), r ≥ 1, be
a partition of V such that s ∈ V0 and t ∈ VL+r . Then, the
generalized L-st-path-cut inequality induced by (s, t) and π

is

∑

e∈[Vi,Vj],i �=j

min(|i − j | − 1, r)x(e) ≥ r . (8)

These inequalities can be easily extended to the kNDHP
by replacing the right-hand-side of inequality (8) by (k −
|Z|)r , with Z ⊂ V , |Z| ≤ k − 1, yielding

∑

e∈[Vi,Vj],i �=j

min(|i − j | − 1, r)x(e) ≥ (k − |Z|)r . (9)

Inequality (9) is valid for kNDHP(G, L). A jump is an
edge between two non-consecutive sets of π . Inequality
(9) gives the minimum number of jumps in a partition
π = (V0, . . . , VL+r) needed in a solution of the problem.
Inequalities of type (9) will also be called generalized
L-st-path-cut inequalities.

3.2 Double cut inequalities

Huygens et al. [25] introduce the so-called double cut
inequalities for the 2EDHP for L = 3. They are defined as
follows. Consider the partition π = (V 1

0 , V 2
0 , V1, . . . , V4)

of V such that (V 1
0 , V 2

0 ∪V1, V2, V3, V4) induces a 3-st-path-
cut, and V1 induces a valid st-cut in G. If F ⊆ [V 2

0 ∪ V1 ∪
V4, V2] is chosen such that |F | is odd, then the double cut
inequality can be written as follows:

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4])
+x([V1, V3 ∪ V4]) + x([V 2

0 ∪ V1 ∪ V4, V2]) ≥
⌈

3 − |F |
2

⌉

(10)

We now generalize these inequalities for the kNDHP
for L ≥ 2. Let Z ⊂ V \ {s, t}, for (s, t) ∈
D, and V0, . . . , Vi0−1, V

1
i0
, V 2

i0
, Vi0+1, . . . , VL+1 be a fam-

ily of node subsets of V \ Z such that π =
(V0, . . . , Vi0−1, V

1
i0
, V 2

i0
∪Vi0+1, . . . , VL+1) induces a parti-

tion of G \ Z (see Fig. 5 for illustration). Suppose that

1. there exists an (s, t) ∈ D such that V 1
i0

∪ V 2
i0
induces an

st-node-cut in G \ Z and s ∈ V 1
i0
or t ∈ V 1

i0
,

2. there exists an (s, t) ∈ D such that Vi0+1 induces an
st-node-cut in G \ Z,

3. there exists an (s, t) ∈ D such that π induces an L-st-
node-path-cut in G \ Z with s ∈ V0 (resp. t ∈ V0) and
t ∈ VL+1 (resp. s ∈ VL+1).

Let E = [Vi0−1, V
1
i0
] ∪ [Vi0+2, V

2
i0

∪ Vi0+1] ∪
(

⋃

k,l /∈{i0,i0+1},|k−l|>1
[Vk, Vl]

)

and F ⊆ E such that |F | and
k − |Z| have different parities.

Let also Ê =
(

i0−2⋃

i=0
[Vi, Vi+1]

)

∪
(

L⋃

i=i0+2
[Vi, Vi+1]

)

∪F .

Then, we have the following inequality.

x(δ(π) \ Ê) ≥
⌈
3(k − |Z|) − |F |

2

⌉

(11)

Theorem 2 Inequalities (11) are valid for kNDHP(G, L).

Proof Let TG\Z be the L-st-node-path-cut of G\Z induced
by the partition π and Z. Thus, the following inequalities
are valid for kNDHP(G, L),

xG\Z(T) ≥ k − |Z|,
x(δG\Z(V 1

i0
∪ V 2

i0
)) ≥ k − |Z|,

x(δG\Z(Vi0+1)) ≥ k − |Z|,
−x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ E \ F . (12)

Ann. Telecommun. (2018) 73:5–28 11

Author's personal copy

Fig. 5 A double cut with L = 3
and t1 = t

By summing these inequalities, dividing by 2 and
rounding up the right-hand side, we obtain inequality
(11).

These inequalities will also be called double cut
inequalities.

If L = 3 and i0 = 0, inequality (11) can be written as
follows:

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4])
+x([V1, V3 ∪ V4]) + x([V 2

0 ∪ V1 ∪ V4, V2] \ F)

≥
⌈
3(k − |Z|) − |F |

2

⌉

. (13)

Here, π = (V 1
0 , V 2

0 ∪ V1, V2, V3, V4) and F ⊆ [V 2
0 ∪ V1 ∪

V4, V2] such that |F | and k − |Z| have different parities.

3.3 Triple path-cut inequalities

Huygens et al. [25] introduce the so-called triple path-cut
inequalities for the 2EDHP for L = 3. They are defined for
a partition (V0, V1, . . . , V5) of V with s1, s2 ∈ V0, t1 ∈ V4

and t2 ∈ V5. Then, the triple path-cut inequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3])
+x([V0 ∪ V1 ∪ V2 ∪ V3, V4 ∪ V5] \ {e}) + x([V4, V5]) ≥ 3

(14)

where e ∈ [V2 ∪ V3, V4] ∪ [V3, V5], is valid for
2EDHP(G, 3).

We now generalize these inequalities for the kNDHP for
L = 3.

Theorem 3 LetZ ⊂ V \RD , whereRD is the set of terminal
nodes ofG. Let (V0, . . . , V3, V

1
4 , V 2

4 , V 1
5 , V 2

5) be a family of
node sets of V \Z such that (V0, . . ., V3, V

1
4 ∪V 2

4 , V 1
5 ∪V 2

5)

induces a partition of V \ Z and there exist two demands
{s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2

4 and t2 ∈ V 2
5 .

The sets V 1
4 and V 1

5 may be empty and s1 and s2 may be
the same. Let also V4 = V 1

4 ∪ V 2
4 , V5 = V 1

5 ∪ V 2
5 and

F ⊆ [V2, V
2
4]∪[V3, V4∪V5] such that |F | and k−|Z| have

different parities. Then, the inequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3])
+x([V0 ∪ V1, V4 ∪ V5]) + x([V4, V5])
+x([V2, V5]) + x(([V2, V4] ∪ [V3, V4 ∪ V5]) \ F)

≥
⌈
3(k − |Z|) − |F |

2

⌉

(15)

is valid for kNDHP(G, 3).

Proof Let T1 be the 3-s1t1-node-path-cut induced by the
partition (V0, V1 ∪ V5, V2, V3 ∪ V 1

4 , V 2
4) and Z, and T2 and

T3 be the 3-s2t2-node-path-cuts induced by the partitions
(V0, V1 ∪ V4, V2, V3 ∪ V 1

5 , V 2
5) and (V0, V1, V2, V3 ∪ V4 ∪

V 1
5 , V 2

5), respectively, and Z. The following inequalities are
valid for kNDHP(G, 3).

xG\Z(T1) ≥ k − |Z|,
xG\Z(T2) ≥ k − |Z|,
xG\Z(T3) ≥ k − |Z|,

−x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ ([V2, V
2
4] ∪ [V3, V4 ∪ V5]) \ F .

(16)

By summing these inequalities, dividing by 2 and
rounding up the right-hand side, we obtain inequality
(15).

Inequalities (15) will also be called triple-path-cut
inequalities. Figure 6 gives an illustration.

3.4 Steiner partition inequalities

Let RD be the set of terminal nodes of G. Let Z ⊂ V \ RD ,
and (V0, V1, . . . , Vp), p ≥ 2, be a partition of V \ Z

12 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Fig. 6 A triple path-cut with
k = 2, L = 3 and s1 = s2

such that V0 ⊆ V \ RD , and for all i ∈ {1, . . . , p} there
is a demand {s, t} ∈ D such that Vi induces an st-cut
of G. We can see that V0 may be empty. The partition
(V0, V1, . . . , Vp) is called a Steiner partition. And we have
the following inequality

x(δG\Z(V0, . . . , Vp)) ≥
⌈

(k − |Z|)p
2

⌉

. (17)

Inequalities of type (17) will be called Steiner partition
inequalities.

Theorem 4 Inequalities (17) are valid for kNDHP(G, L).

Proof The following inequalities are valid for kNDHP(G, L).

xG\Z(Vi) ≥ k − |Z|, for i = 1, . . . , p,

x(e) ≥ 0, for all e ∈ δ(V0). (18)

By adding them, we obtain

2x(δG\Z(V0,, Vp)) ≥ (k − |Z|)p.
By dividing by 2 and rounding up the right-hand side, we
get inequality (17).

3.5 Steiner SP-partition inequalities

Diarrassouba et al. [13] introduced the so-called Steiner SP-
partition inequalities for the kEDHP. In what follows, we
extend these inequalities to the kNDHP. They are defined as
follows. Let Z ⊂ V \ RD , where RD is the set of terminal
nodes of G. Consider a partition π = (V1, . . . , Vp), p ≥ 3,
of V \ Z, such that the graph Gπ = (Vπ , Eπ) is series-
parallel (Gπ is the graph obtained by contracting the sets Vi ,
i = 1, . . . p). Suppose that Vπ = {v1, . . . , vp} where vi is
the node of Gπ obtained after the contraction of the set Vi ,
i = 1, . . . , p. The partition π is called a Steiner SP partition
if and only if π is a Steiner partition and either

1. p = 3 or

2. p ≥ 4 and there exists a node vi0 ∈ Vπ incident
to exactly two nodes vi0−1 and vi0+1 such that after
the contraction of the sets Vi0 , Vi0−1 and Vi0 , Vi0+1,
the partitions π1 and π2 obtained from π are also
Steiner-SP-partitions.

Theorem 5 [13] Let π = (V1, . . . , Vp), p ≥ 3, be a
partition of V such that Gπ is series-parallel. The partition
π is a Steiner-SP-partition of G if and only if the subgraph
of GD induced by π is connected.

From Theorem 5, note that if the demand graph is
connected, then every Steiner partition of V \ Z inducing a
series-parallel subgraph of G \ Z is a Steiner-SP -partition
of V \ Z. With a Steiner-SP-partition (V1, . . . , Vp), p ≥ 3,
we associate the following inequality

x(δG\Z(V1, . . . , Vp)) ≥
⌈

k − |Z|
2

⌉

p − 1. (19)

Inequalities of type (19) are called Steiner-SP-partition
inequalities.

Theorem 6 Inequalities (19) are valid for kNDHP(G, L).

Proof Let π = (V1, . . . , Vp) be a Steiner-SP-partition. The
proof is by induction on p. If p = 3, as π is a Steiner
partition then we associate with π the inequality

x(δG\Z(V1, V2, V3)) ≥
⌈
3(k − |Z|)

2

⌉

= 3

⌈
(k − |Z|)

2

⌉

−1.

(20)

Now suppose that every inequality (19) induced by a
Steiner-SP-partition of p elements, p ≥ 3, is valid for
kNDHP(G, 3) and let π = (V1, . . . , Vp, Vp+1) be a Steiner-
SP-partition. Since Gπ is series-parallel, then there exists
a node set Vi0 of π such that it is incident to exactly two
elements of π , Vi0−1 and Vi0+1. Let T1 = [Vi0 , Vi0+1] and

Ann. Telecommun. (2018) 73:5–28 13

Author's personal copy

T2 = [Vi0 , Vi0−1]. As π is a Steiner-SP-partition, it is also
a Steiner partition. As Vi0 and Z ⊂ V \ {s, t} induce a
valid st-node-cut inequality, for some {s, t} ∈ D. Thus,
x(T1) + x(T2) ≥ k − |Z|. W.l.o.g., we suppose that

x(T1) ≥
⌈

(k − |Z|)
2

⌉

. (21)

Let π ′ = (V1, . . . , Vi0−2, Vi0−1 ∪ Vi0 , Vi0+1, . . . , Vp+1) be
a partition. As π is a Steiner-SP-partition which contains
more than three elements, π ′ is also a Steiner-SP-partition
with p elements. Then, by the induction hypothesis, we have
the following valid Steiner-SP-partition inequality induced
by π ′.

x(δG\Z(V1, . . . , Vi0−2, Vi0−1 ∪ Vi0 , Vi0+1, . . . , Vp+1))

≥
⌈

k − |Z|
2

⌉

p − 1. (22)

By summing the inequalities (21) and (22), we get

x(δG\Z(V1, . . . , Vp, Vp+1)) ≥
⌈

k − |Z|
2

⌉

(p+1)−1. (23)

Hence, we have the result.

3.6 The rooted partition inequalities

A further class of valid inequalities is the rooted partition
inequalities. We consider p demands, |D| ≥ p ≥ 2, of the
form (s, ti), i = 1, . . . p, for s ∈ V and ti ∈ V \ {s}. Let
(V0, V1, . . . , Vp) be a partition of V such that s ∈ V0 and
ti ∈ Vi , for all i ∈ {1, . . . , p}. This partition is called a
rooted partition. Huygens et al. [25] showed that, for any
L ≥ 2, the following inequality is valid for the 2EDHP
polytope.

x(δ(V0, V1, . . . , Vp)) ≥
⌈

(L + 1)p

L

⌉

. (24)

For a subset Z ⊂ V with |Z| = k − 2, the following
inequality is valid for kNDHP(G, L).

x(δG\Z(V0, V1, . . . , Vp)) ≥
⌈

(L + 1)p

L

⌉

. (25)

3.7 st -jump inequalities

Theorem 7 Suppose that |V | ≥ 5 and L = 3. Let (s, t) ∈
D,Z ⊂ V , and consider the partition π = (V0, V1, . . . , V4)

of V \ Z such that s ∈ V0 and t ∈ V4. Let Ui be a set of

nodes of Vi , i = 1, 2, 3, such that |Ui | = k − 1. Then the
st-jump inequality

2∑

i=0

x([Vi, Vi+2]) +
1∑

i=0

4∑

j≥i+3

2x([Vi, Vj])

+
1∑

i=0

x([Vi, Vi+1 \ Ui+1])

+
3∑

i=2

x([Vi \ Ui, Vi+1]) ≥
⌈
4k + 3

5

⌉

(26)

is valid for the kNDHP(G, 3).

Proof Let U1 ⊂ V1, U2 ⊂ V2, and U3 ⊂ V3 and
let T1, T2, T3, and T4, be the L-st-path-cuts induced by
(V0, U1, V2∪V1\U1, V3, V4), (V0, V1, U2, V3∪V2\U2, V4),
(V0, V1 ∪ V2 \ U2, U2, V3, V4), and (V0, V1, V2 ∪ V3 \
U3, U3, V4), respectively. Then, by summing the L-st-path-
cut inequalities induced by Ti , i = 1, . . . , 4, and the
following st-node-cut inequalities induced by V0 and U1,
V0 ∪ V1 and U2, and V4 and U3,

x(δG\{U1}(V0)) ≥ k − 1,

x(δG\{U2}(V0 ∪ V1)) ≥ k − 1,

x(δG\{U3}(V4)) ≥ k − 1,

we obtain the inequality

4∑

i=1

x(Ti) + x(δG\{U1}(V0)) + x(δG\{U2}(V0 ∪ V1))

+x(δG\{U3}(V4)) ≥ 4k + 3.

This together with

x(e) ≥ 0, for all e ∈ δ(V1 \ U1, V3) ∪ δ(V2 \ U2, V4)

∪ δ(V1, V3 \ U3),

3x(e) ≥ 0, for all e ∈ δ(V0, V1 \ U1 ∪ V4) ∪ δ(V1, V2 \ U2)

∪ δ(V3 \ U3, V4),

4x(e) ≥ 0, for all e ∈ δ(V0 ∪ V2 \ U2 ∪ V3) ∪ δ(V1, V4),

gives the inequality

2∑

i=0

5x([Vi, Vi+2]) +
1∑

i=0

4∑

j≥i+3

10x([Vi, Vj])

+
1∑

i=0

5x([Vi, Vi+1 \ Ui+1])

+
3∑

i=2

5x([Vi \ {ui}, Vi+1]) ≥ 4k + 3.

Dividing the resulting inequality by 5, and rounding up the
right-hand side, we obtain inequality (26).

14 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

4 Facets of the kNDHP polytope

In this section, we investigate the conditions under which
the inequalities presented in the previous section define
facets of kNDHP(G, L). First, we discuss the dimension of
kNDHP(G, L).

An edge e ∈ E is said to be essential if there is no
solution of the kNDHP on the graph obtained by deleting
the edge e from G. Therefore, e is essential if and only
if it belongs to either an st-cut or an L-st-path-cut of
cardinality k, or, to an st-node-cut or an L-st-path-node-cut
of cardinality k−|Z|. Then, we have the following theorem.

Theorem 8 dim(kNDHP(G, L)) = |E| − |E∗|, where |E∗|
is the set of essential edges.

Proof We have that the edges ofE∗ belong to every solution
of the problem, meaning that, xF (e) = 1, for all e ∈ E∗,
and every solution F ⊆ E of the problem. Then, we have
dim(kNDHP(G, L)) ≤ |E|− |E∗|. By considering the edge
sets E and Ef = E \ {f }, for every f ∈ E \ E∗, we can
clearly see that they form |E|− |E∗|+1 solutions, and their
incidence vectors are affinely independent. Therefore, dim
(kNDHP(G, L)) ≥ |E| − |E∗|, and the result follows.

Corollary 1 kNDHP(G, L) is full dimensional if G =
(V , E) is complete and |V | ≥ k + 2.

In the rest of the paper, we assume that G is complete and
has at least k + 2 nodes. By Corollary 1, kNDHP(G, L) is
then full dimensional.

Now, we investigate the conditions under which the
trivial and basic inequalities define facets.

Theorem 9 Inequality x(e) ≤ 1 defines a facet of
kNDHP(G, L) for every e ∈ E.

Proof For all f ∈ E \ {e}, consider the edge sets Ef =
E \ {f }. Hence, E and the edge sets Ef constitute a set of
|E| solutions of the kNDHP. Furthermore, their incidence
vectors satisfy x(e) = 1 and are affinely independent.

Theorem 10 Inequality x(e) ≥ 0, with e = uv ∈ E,
defines a facet of kNDHP(G, L) if one of the following
conditions hold.

1) |V | ≥ k + 3,
2) |V | = k + 2, |D| ≤ k − 1 and (u, v) /∈ D.

Proof Suppose that |V | = k + 2, |D| ≤ k − 1, and
(u, v) /∈ D. Then, the edge sets E\{e} and Ef = E\{e, f },

for all f ∈ E\{e}, are solutions of kNDHP whose incidence
vectors satisfy x(e) = 0 and are affinely independent.

Now, suppose that |V | ≥ k+3. Then, for all the demands
(s, t) ∈ D, the graph G contains k + 2 node-disjoint st-
paths (edge st and the k + 1 paths of the form (s, u, t), u ∈
V \ {s, t}). Thus, the sets E \ {e} and Ef = E \ {e, f }, for
all f ∈ E \ {e}, form a set of |E| solutions of the kNDHP.
Moreover, their incidence vectors satisfy x(e) = 0 and are
affinely independent. Hence, x(e) ≥ 0 defines a facet of
kNDHP(G, L).

In what follows, we investigate the conditions under
which the st-cut and the st-node-cut inequalities define
facets of kNDHP(G, L).

Theorem 11 The st-cut inequalities x(δ(W)) ≥ k define
facets of kNDHP(G, L) when |D| = 1.

Proof We denote by ax ≥ α the st-cut inequality induced
by W , and let F = {x ∈ kNDHP(G, L)|ax = α}. Suppose
there exists a defining facet inequality bx ≥ β such that
F ⊆ F ′ = {x ∈ kNDHP(G, L)|bx = β}. We will prove
that there is a scalar ρ such that b = ρa. As |V | ≥ k + 2,
there exists W1 ⊆ W \ {s} and W2 ⊆ W \ {t} such that
|W1| + |W2| = k. Let E1 = {sv, v ∈ W2} ∪ {ut, u ∈
W1} and T1 = E1 ∪ E0 where E0 = E(W) ∪ E(W).
Clearly, T1 is a solution of the kNDHP, and its incidence
vector satisfies ax ≥ α with equality. Consider an edge
e ∈ E1. It is not hard to see that T2 = (T1 \ {e}) ∪ {st}
is a solution of the kNDHP and its incidence vector also
satisfies ax ≥ α with equality. Thus, bxT1 = bxT2 . Since
bxT2 = bxT1 − b(e) + b(st), we obtain that b(e) = b(st).
As e is an arbitrary edge in E1, this implies that

b(e) = b(st) = ρfor some ρ ∈ R for all e ∈ E1. (27)

Now consider an edge f = uv ∈ δ(W) \ E1, with
u ∈ W \ {s} and v ∈ W \ {t}. We distinguish two cases.

Case 1 u ∈ W1, v ∈ W2.

Consider T3 = (T1 \ {sv, ut}) ∪ {f, st}. Clearly, T3 is
a solution of the kNDHP and its incidence vector satisfies
ax = α. Hence, we have that bxT3 = bxT1 . This implies
that b(sv) + b(ut) = b(f) + b(st). From Eq. 27, it follows
that b(f) = ρ.

Case 2 u ∈ W1 (resp. u ∈ W\(W1∪{s})), v ∈ W\(W2∪{t})
(resp. v ∈ W2).

Consider the edge set T4 = (T1 \ {tu}) ∪ {f }. It is easy
to see that T4 is a solution of kNDHP such that axT4 = α.
Hence, bxT4 = β. As bxT1 = β, it follows that b(f) =
b(tu) = ρ.

Ann. Telecommun. (2018) 73:5–28 15

Author's personal copy

If u ∈ W \ (W1 ∪ {s}) and v ∈ W2, we also obtain by
symmetry that b(f) = ρ.

Thus, together with Eq. 27, we obtain that b(e) = ρ for
all e ∈ δ(W).

Now consider an edge e ∈ E0, and suppose, w.l.o.g.,
that e ∈ E(W). If e does not belong to an L-st-path of T1,
then the edge set T5 = T1 \ {e} also induces a solution of
the kNDHP and satisfies axT5 = α. Hence, we have that
bxT5 = bxT1 implying b(e) = 0. If e belongs to an L-st-
path of T1, say (su, ut) where e = su, then the edge set
T6 = (T1 \ {su, ut}) ∪ {st} induces a solution of the kNDHP,
and its incidence vector satisfies axT6 = α. Consequently,
bxT7 = bxT1 and therefore, b(st) = b(su) + b(ut). As (27),
b(ut) = b(st), it follows that b(su) = 0.

Hence, b(e) = 0 for all e ∈ E0.
Finally, we have that

b(e) =
{

ρ for all e ∈ δ(W),

0 if not.

Consequently, b = ρa with ρ ∈ R, which finishes the
proof.

Theorem 12 If |V | ≥ 2k+1 and |D| = 1withD = {(s, t)},
then every st-node-cut inequality x(δG\Z(W)) ≥ k − |Z|
where Z ⊂ V \ {s, t}, and such that s ∈ W , t /∈ W and
W \ {s} �= ∅ �= V \ ((W ∪ Z) \ {t}), defines a facet of
kNDHP(G, L).

Proof Let us denote by ax ≥ α the inequality (3) induced
by W and Z, and let bx ≥ β be a facet defining inequality of
kNDHP(G, L) such that {x ∈ kNDHP(G, L) : ax = α} ⊆
{x ∈ kNDHP(G, L) : bx = β}. As before, we will show
that there exists a scalar ρ ∈ R such that b = ρa.

The idea of the proof is to use the fact that x(δG\Z(W)) ≥
k − |Z| is a valid cut inequality for (k − |Z|)NDHP(G \
Z,L), and hence, by Theorem 11, defines a facet of
(k − |Z|)NDHP(G \ Z, L). Thus, there exist dim((k −
|Z|)NDHP(G \ Z, L)) solutions of the (k − |Z|)NDHP
on G \ Z whose incidence vectors satisfy x(δG\Z(W)) ≥
k − |Z| with equality and are affinely independent. In what
follows, we will use these solutions to build |E| solutions
of the kNDHP on G satisfying x(δG\Z(W)) ≥ k − |Z|
with equality and which are affinely independent. Notice
that as G is complete, |Z| ≤ k − 1 and |V | ≥ 2k + 1,
G \ Z is also complete with |V \ Z| ≥ k + 2. Thus, by
Corollary 1, the polytope (k − |Z|)NDHP(G \ Z, L) is full
dimensional, and hence dim ((k −|Z|)NDHP(G \Z,L)) =
|E| − |δ(Z)| − |E(Z)|.

As x(δG\Z(W)) ≥ k − |Z| defines a facet of (k −
|Z|)NDHP(G\Z,L), there must exist m′ = |E|− |δ(Z)|−

|E(Z)| solutions of the (k − |Z|)NDHP on G \ Z, denoted
by T ′

i , i = 1, . . . , m′, whose incidence vectors are affinely
independent and satisfy x(δG\Z(W)) = k − |Z|.

The edge sets Ti = T ′
i ∪ δ(Z) ∪ E(Z), for all i ∈

{1, . . . , m′}, induce solutions of the kNDHP. Indeed, since
G is complete, the paths (s, z, t), z ∈ Z, form a set of |Z|
st-paths of length 2 in G. As these st-paths are node-disjoint
and do not intersect V \ (Z ∪ {s, t}), they form with the s-
paths of T ′

i a set at least k node-disjoint st-paths in G, for
i = 1, . . . , m′. Which implies that Ti , i = 1, . . . , m′ are
solutions of kNDHP. Furthermore, their incidence vectors
satisfy x(δG\Z(W)) = k−|Z| and are affinely independant.

Let a′ and b′ be the restriction on E \ (δ(Z) ∪ E(Z))

of a and b, respectively. Thus, we have a′xTi = α, for
i = 1, . . . , m′. Therefore, b′xTi = β, for i = 1, . . . , m′.
As xTi , i = 1, . . . , m′, are affinely independent and α �= 0,
it follows that xTi , i = 1, . . . , m′, are linearly independent.
Consequently, a is the unique solution of the system a′xTi =
α, for i = 1, . . . , m′. Let ρ be such that β = ρα. It then
follows that b′ = ρa′. This implies that b(e) = 0 for all
e ∈ E(W) ∪ E(W).

Now we will show that b(e) = 0 for all e ∈ δ(Z)∪E(Z).
Let us denote the edges of E(Z) ∪ δ(Z) \ ⋃

z∈Z

{sz, zt} by ej ,

j = 1, . . . , |δ(Z)| + |E(Z)| − 2|Z|. Consider the edge sets
�m′+j = Tm′ \ {ej }, for j = 1, . . . , |δ(Z)|+ |E(Z)|− 2|Z|.
We can see that these sets induce solutions of the kNDHP,
and their incidence vectors satsify x(δG\Z(W)) = k − |Z|.
As axTm′ = ax

�m′+j = α, it follows that bxTm′ = bx
�m′+j =

β. Hence, b(ej) = 0 for j = 1, . . . , |δ(Z)|+|E(Z)|−2|Z|.
Let T1 be the set among T1, . . . , Tm′ containing the edge

st. Such a set exists since the inequality defines a facet of
kNDHP(G\, L) on G \Z different from a trivial inequality.
As W \ {s} �= ∅ �= V \ ((W ∪ Z) \ {t}). Let u1 ∈ W \ {s},
u2 ∈ (V \ (W ∪ Z)) \ {t} and z ∈ Z. Consider the edge sets
T0 = (T1 \{sz})∪{su1, u1z} and T ′

0 = (T1 \{zt})∪{sz, zu2}.
T0 and T1 are solutions of the kNDHP (recall that the path
(sz, zt) belongs to Ti). Moreover we have axT0 = axT1 = α.
Thus bxT1 = bxT0 = bxT ′

0 = β. As b(su1) = b(u1z) =
b(zu2) = b(u2t) = 0, it follows that b(sz) = b(zt) = 0.

Therefore, b = ρa, which ends the proof of the
theorem.

In what follows, we describe conditions under which the
L-st-path and L-node-st path-cut inequalities define facets
when L = 3.

Theorem 13 If |D| = 1, a 3-st-path inequality (2) induced
by a partition π = (V0, . . . V4) with s ∈ V0 and t ∈ V4,
defines a facet of kNDHP(G, 3) if and only if

(1) |V0| = |V4| = 1,
(2) |[s, V1]| + |[V3, t]| ≥ k.

16 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Proof Let T be the 3-path-cut induced by π = (V0, . . . , V4)

such that s ∈ V0 and t ∈ V4. Let us denote by ax ≥ α

the L-st-path inequality induced by T , and let F = {x ∈
kNDHP(G, 3)|ax = α}.
Necessity (1) We will show that if |V0| ≥ 2, inequality
x(T) ≥ k does not define a facet. The case where |V4| ≥ 2
follows by symmetry. Suppose that |V0| ≥ 2 and consider
the partition π ′ = (V ′

0, . . . , V
′
4) given by

V ′
0 = {s},

V ′
1 = V1 ∪ (V0 \ {s}),

V ′
i = Vi, i = 2, 3, 4.

The partition π ′ produces a 3-path-cut inequality
x(T ′) ≥ k, where T ′ = T \ [V0 \ {s}, V2]. Since G is
complete, [V0\{s}, V2] �= ∅ and T ′ is strictly contained in T .
Thus, x(T) ≥ k is redundant with respect to the inequalities

x(T ′) ≥ k,

x(e) ≥ 0 for all e ∈ [V0 \ {s}, V2],
and cannot define a facet.

(2) Suppose that Condition (1) holds, and that F is a
facet of kNDHP (G, 3) different from a trivial inequality.
Thus, there exists a solution F of the kNDHP such that
xF ∈ F and F ∩ [V1, V3] �= ∅. If this is not the case,
then F would be equivalent to a facet defined by any of the
inequalities x(e) ≥ 0, e ∈ [V1, V3]. Note that, since each
3-st-path of F intersects T at least once and |F ∩ T | = k,
F necessarily contains exactly k node-disjoint 3-st-paths.
Moreover, each of these paths intersects T only once. If ui is
a node of Vi , i = 1, . . . , 3, this implies that every 3-st-path
of F is of the form

(i) (su1, u1u2, u2t), (su2, u2u3, u3t), (su1, u1t),
(su3, u3t), (st) or

(ii) (su1, u1u3, u3t).

If P is one of these st-paths, then |P ∩ A| = 1 (resp.
|P ∩ A| = 2) if P is of type (i) (resp. (ii)), where A =
[s, V1] ∪ [V3, t] ∪ {st}. As F ∩ [V1, V3] �= ∅, it follows
that F contains at least one path of type (ii) and therefore
|F ∩ A| ≥ k + 1. Hence |[s, V1]| + |[V3, t]| ≥ k.

Sufficiency Suppose that Conditions (1) and (2) hold. Now
suppose that there exist a facet defining inequality bx ≥ β

such that F ⊆ {x ∈ kNDHP(G, 3)|bx = β}. As before, we
will show that there exists a scalar ρ �= 0 such that b = ρa.

As |[s, V1]| + |[V3, t]| ≥ k, there exist two node sets
U1 ⊆ V1 and U3 ⊆ V3 such that |U1| + |U3| = k.
Consider the edge subset S1 formed by the st-paths (su, ut),
u ∈ U1 ∪ U3. Clearly, these st-paths form a set of k node-
disjoint 3-st-paths. Moreover, each of these paths intersects
T only once. Thus, S1 induces a solution of kNDHP and its
incidence vector belongs to F .

Let e ∈ S1 ∩ T . Let S2 = (S1 \ {e}) ∪ {st}. Since S2 is
a solution of the kNDHP whose incidence vector belongs to
F , we have bsS2 = bxS1 = β, implying that b(e) = b(st).
As e is an arbitrary edge, we obtain that

b(e) = ρ for all e ∈ (S1 ∩ T) ∪ {st}, for some ρ ∈ R. (28)

Consider now e ∈ E \ T . If e /∈ S1, clearly S3 = S1 ∪ {e}
is a solution of kNDHP. Moreover, its incidence vector
belongs to F . Hence, b(e) = bxS3 −bxS1 = 0. If e ∈ S1\T ,
then e is either of the form su, u ∈ U1, or vt, v ∈ U3.
Suppose, w.l.o.g., that e = su, the case where e = vt is
similar. Note that, by the definition of S1, ut also belongs to
S1. Let S4 = (S1 \ {su, ut}) ∪ {st}. We have that S4 induces
a solution of the kNDHP and xS4 ∈ F . Hence, bxS4 =
bxS1 = β and, in consequence, b(su) + b(ut) = b(st). As,
by Eq. 28, b(ut) = b(st), we have that b(su) = 0. Thus, we
obtain that

b(e) = 0 for all e ∈ E \ T . (29)

Now let e ∈ T \ S1. Suppose that e = sv with v ∈ V2.
The case where e ∈ [V2, t] is similar. By construction S1
contains an st-path of the form (su3, u3t) where u3 is a node
of V3. Then the edge set S5 = (S1 \ {su3}) ∪ {e, vu3} is a
solution of the kNDHP whose incidence vector belongs to
F . Thus, bS5 − bS1 = b(e) + b(vu3) − b(su3) = 0. From
Eqs. 28 and 29, we then get b(e) = ρ.

Let e = sv with v ∈ V3. The case where e ∈ [V1, t] is
similar. Consider the edge set S6 = (S1 \ {su3}) ∪ {e, vt |},
where u3 is a node of U3, which induces a solution of
the kNDHP. Moreover, its incidence vector belongs to F .
Hence bxS6 − bxS1 + b(vt) = b(e) − b(su3) + b(vt) = 0.
By Eqs. 28 and 29, we get b(e) = ρ.

Now suppose that e = uv ∈ [V1, V3]. If u ∈ U1 and v ∈
U3, then by considering the edge set S8 = (S1 \ {ut, sv}) ∪
{e, st}, which is a solution of kNDHP with xT8 ∈ F , we get
b(e)+b(st) = b(sv)+b(ut). From Eqs. 28 and 29, we have
that b(e) = ρ. If u /∈ U1 and v ∈ U3, then by considering
the edge set S9 = (S1 \ {sv}) ∪ {su, e}, we obtain along the
same line that b(e) = ρ. If u ∈ U1 and v /∈ U3, it follows
by symmetry that b(e) = ρ. If u /∈ U1 and v /∈ U3, since the
edge set S10 = (S1 \ {su1, u1t}) ∪ {su, e, vt} is a solution of
kNDHP with xT10 ∈ F , we get as before b(e) = ρ. Thus,
we obtain

b(e) = ρ for all e ∈ T \ (S1 ∪ {st}). (30)

From Eqs. 28–30, we have

b(e) =
{

ρ for all e ∈ T ,

0 if not.

Therefore, b = ρa, and the proof is complete.

Theorem 14 If |D| = 1, a 3-st-node-path-cut inequality
(4) induced by a node subset Z ⊂ V , such that |Z| ≤ k − 1,

Ann. Telecommun. (2018) 73:5–28 17

Author's personal copy

and a partition π = (V0, . . . V4) of V \ Z, with s ∈ V0 and
t ∈ V4, defines a facet of kNDHP(G, 3) if and only if

(1) |V0| = |V4| = 1,
(2) |[s, V1]| + |[V3, t]| ≥ k − |Z|.

Proof The idea of the proof is the same as that used in
proving Theorem 12. We can also use the fact that a 3-
st-node-path-cut inequality, x(TG\Z) ≥ k − |Z|, for some
3-st-path-cut T and some node setZ ⊂ V \{s, t}, is valid for
(k − |Z|)NDHP(G \ Z, 3) (recall that (k − |Z|)NDHP(G \
Z, 3) is the polytope associated with the 3-hop-constrained
st-path problem on the graph G \ Z).

Note as before that G is complete, |Z| ≤ k − 1 and
|V | ≥ 2k + 1, then G \ Z is complete with |V \ Z| ≥ k + 2.
By Corollary 1, the polytope (k − Z)NDHP(G \ Z, 3) is
full dimensional. Thus, dim ((k − |Z|)NDHP(G \ Z, 3))=
|E| − |δ(Z)| − |E(Z)|.

As x(TG\Z) ≥ k − |Z| defines a facet of (k −
|Z|)NDHP(G\Z, 3), there exist n′ = |E|−|δ(Z)|−|E(Z)|
solutions of the (k − |Z|)NDHP on G \ Z. We will denote
them by S′

i , i = 1, . . . , n′, their incidence vectors are
affinely independent and satisfy x(TG\Z) = k − |Z|. The
st-paths of S′

i , i = 1, . . . , m, are node-disjoint, hence they
are solutions of the polytope (k − |Z|)NDHP(G \ Z, 3).

The edge sets Si = S′
i ∪ δ(Z) ∪ E(Z), for all i ∈

{1, . . . , n′}, induce solutions of the kNDHP. Since S′
i , i ∈

{1, . . . , n′} is a solution of the (k−|Z|)NDHP onG\Z, there
exist (k − |Z|) st-paths of length at most 3, in the subgraph
of G \ Z induced by S′

i .
We will denote them byHl , l = 1, . . . , k−|Z|. Moreover,

as G is complete, the edges sz and zt, for all z ∈ Z, are in
G, and the sets (s, z, t), z ∈ Z, form |Z| st-paths of length 2
in G. Hence, the paths Hl , l = 1, . . . , k − |Z| and (s, z, t),
z ∈ Z, are node-disjoint. Thus, the sets Si , i = 1, . . . , n′
induce n′ solutions of the kNDHP on G. Furthermore, their
incidence vectors satisfy x(TG\Z) = k − |Z|.

Let a′ and b′ be the restriction on E \ (δ(Z) ∪ E(Z))

of a and b, respectively. Thus, we have a′xSi = α, for
i = 1, . . . , n′. Therefore, b′xSi = β, for i = 1, . . . , n′. As
xSi , i = 1, . . . , n′, are affinely independent and α �= 0, it
follows that xSi �= 0, i = 1, . . . n′, and hence, xSi , i =
1, . . . , n′, are linearly independent. Consequently, a is the
unique solution of the system a′xSi = α, for i = 1, . . . , n′.
Let ρ be such that β = ρα. It then follows that b′ = ρa′.
This implies that b(e) = 0 for all e ∈ E \ T .

Now we will show that b(e) = 0 for all e ∈ δ(Z)∪E(Z).
Let us denote the edges of E(Z) ∪ δ(Z) \ ⋃

z∈Z

{sz, zt} by ej ,

j = 1, . . . , |δ(Z)| + |E(Z)| − 2|Z|. Consider the edge set
�n′+j = Sn′ \ {ej }, for j = 1, . . . , |δ(Z)| + |E(Z)| − 2|Z|.
These sets clearly induce solutions of the kNDHP, and their
incidence vectors satsify x(TG\Z) = k − |Z|. As axSn′ =

ax�n′+j = α, it follows that bxSn′ = bx�n′+j = β. Hence,
b(ej) = 0 for j = 1, . . . , |δ(Z)| + |E(Z)| − 2|Z|.

Let S1 be the set among S1, . . . , Sn′ containing the edge
st. Such a set exists since, as noted before, xSi �= 0 for
i = 1, . . . , n′. Let u1 ∈ V1, u2 ∈ VL and z ∈ Z.
Consider the edge set S0 = (S1 \ {sz}) ∪ {su1, u1z} and
S ′
0 = (S1 \ {zt}) ∪ {sz, zu2}. It clearly induces a solution of

the kNDHP. Moreover, we have x(TG\Z) = k − |Z|. Thus,
bxT1 = bxT0 = bxT ′

0 = β. As b(su1) = b(u1z) = b(zu2) =
b(u2t) = 0, it follows that b(sz) = b(zt) = 0.

Therefore b = ρa, which ends the proof of the
theorem.

Note that Theorems 9, 10, 11, and 12 are valid for L ≥ 4.

Lemma 2 The double cut inequality induced by the node
sets V 1

0 , V 2
0 ∪ V1, V2, . . . , VL+1 of V \ Z, F ⊆ E and

{s, t} ∈ D with s ∈ V 1
0 and t ∈ VL+1, can be written as

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1))

+x(E \ F) − x(F) + |F | ≥ 3(k − |Z|) + 1 (31)

where TG\Z is the L-st-node-path-cut induced by the
partition (V 1

0 , V 2
0 ∪ V1, V2, . . . , VL+1). Moreover, the

double cut inequality (13) is tight for a solution x̃ ∈ R
E if

and only if one of the following conditions holds.

i) x̃(E \ F) − x̃(F) + |F | = 1 and x̃(TG\Z) =
x̃(δG\Z(V 1

0 ∪ V 2
0)) = x̃(δG\Z(V1)) = k − |Z|;

ii) x̃(E \ F) − x̃(F) + |F | = 0 and

a) x̃(TG\Z) = k−|Z|+1, x̃(δG\Z(V 1
0 ∪V 2

0)) = k−|Z|
and x̃(δG\Z(V1)) = k − |Z|;

b) x̃(TG\Z) = k−|Z|, x̃(δG\Z(V 1
0 ∪V 2

0)) = k−|Z|+1
and x̃(δG\Z(V1)) = k − |Z|;

c) x̃(TG\Z) = k − |Z|, x̃(δG\Z(V 1
0 ∪ V 2

0)) = k − |Z|
and x̃(δG\Z(V1)) = k − |Z| + 1;

Proof Let C be the double cut inducing inequality (13).
Then, inequality (13) can be written as

x(C \ E) + x(E \ F) ≥ 3(k − |Z|) − |F | + 1

2
.

Thus, we have

2x(C \ E) + 2x(E) − 2x(F) ≥ 3(k − |Z|) − |F | + 1. (32)

By summing the left-hand side of the L-st-node-path-cut
inequality induced by TG\Z and the node-cut inequalities
induced by δG\Z(V 1

0 ∪ V 2
0) and δG\Z(V1), we obtain

x(TG\Z)+x(δG\Z(V 1
0 ∪V 2

0))+x(δG\Z(V1)) = 2x(C \E)+x(E).

(33)

18 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

By combining Eqs. 32 and 33, we get

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1)) + x(E) − 2x(F)

≥ 3(k − |Z|) − |F | + 1.

Therefore,

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1)) + x(E \ F)

−x(F) + |F | ≥ 3(k − |Z|) + 1.

Hence, the double cut inequality (13) is equivalent to
Eq. 31.

Suppose that the double cut inequality is tight for a
solution x̃, that is

x̃(TG\Z) + x̃(δG\Z(V 1
0 ∪ V 2

0)) + x̃(δG\Z(V1)) + x̃(E \ F

−x̃(F) + |F | = 3(k − |Z|) + 1

As x̃(TG\Z) ≥ k −|Z|, x̃(δG\Z(V 1
0 ∪V 2

0)) ≥ k −|Z| and
x̃(δG\Z(V1)) ≥ k − |Z|, we have that x̃(E \ F) − x̃(F) +
|F | ≤ 1. Thus, if x̃(E \ F) − x̃(F) + |F | = 1, we have that
x̃(TG\Z) = x̃(δG\Z(V 1

0 ∪ V 2
0)) = x̃(δG\Z(V1)) = k − |Z|.

If x̃(E \ F) − x̃(F) + |F | = 0, then either x̃(TG\Z) or
x̃(δG\Z(V 1

0 ∪ V 2
0)) or x̃(δG\Z(V1)) is equal to k − |Z| + 1

and the others are equal to k − |Z|, and the statement
follows.

Theorem 15 The double cut inequality (13) defines a facet
of kNDHP(G, 3) only if

i) |V 1
0 | = |V4| = 1,

ii) |[V 1
0 , V 2

0 ∪ V1] ∪ [V3, V4] ∪ [V 1
0 , V4]| ≥ k − |Z|.

Proof i) Let C be the double cut-inducing inequal-
ity (13). Using the following family of sets 	 =
(V 1

0 , V 2
0 , V1, V2, . . . , V4). Suppose that |V 1

0 | > 1, the case
when |VL+1| > 1 is similar. Consider the family of sets
	′ = {{s}, V 1

0 \ {s}, V 2
0 , V1, . . . , V4}. Let C′ be the double

cut induced by	′ and F . SinceC = C′∪[V 1
0 \{s}, V1], then

the double cut inequality induced by 	 is redundant with
respect to the one induced by 	′, and the trivial inequalities
x(e) ≥ 0 for all e ∈ [V 1

0 \ {s}, V1]. Thus, it does not define
a facet.

(ii) Let F be a facet defining double cut inequality and
let TG\Z be the 3-st-node-path-cut induced by the partition
(V 1

0 , V 2
0 ∪ V1, V2, . . . , V4). As F defines a facet different

from the node-cut inequalities, there exists a solution x0 ∈
F such that x0(δG\Z(V 1

0 ∪ V 2
0)) ≥ k − |Z| + 1. Then by

Lemma 2, x0(T) = k−|Z|. Thus, x0 induces a graph which
contains exactly k − |Z| node-disjoint 3-st-paths, P1, . . . ,
Pk−|Z|. Furthermore, each Pi , i = 1, . . . , k − |Z| intersects
TG\Z in only one edge. Thus, either Pi ∩ [V0, V4] �= ∅ or
Pi uses at least one edge between two non-consecutive set
of the partition (V 1

0 , V 2
0 , V1, V2, . . . , V4). In the latter case,

Pi must intersect either [V 1
0 , V 2

0 ∪ V1] or [V3, V4] or both.

Hence, we have that |[V 1
0 , V 2

0 ∪V1]∪[V3, V4]∪[V 1
0 , V4]| ≥

k − |Z|. Which ends the proof.

5 Branch-and-cut algorithm for the kNDHP
with L = 3 and k ≥ 3

In this section, we present a branch-and-cut algorithm for
the kNDHP when L = 3. First, we present the general
framework of the algorithm and then present the separation
procedures we have devised for the inequalities involved in
the algorithm.

5.1 The general framework

Our algorithm starts by solving the linear relaxation of
Formulation (7), that is,

min{cx|x ∈ R
E+ satisfies (1) − (6)}. (34)

Since inequalities (1), (2), (3), and (4) are exponential
in number in (34), we solve this linear relaxation using the
so-called cutting plane method. We recall that the cutting
plane method finds an optimal solution of a linear program
by solving a series of LPs, each of them containing a subset
of the constraints of the original LP. For our purpose, the
algorithm starts with an LP containing the cut constraints
(1) induced by terminal nodes and the trivial inequalities (5)
and (6)

Min
∑

e∈E

c(e)x(e)

s.t.

x(δ(u)) ≥ k, for all u ∈ RD,

x(e) ≥ 0, for all e ∈ E,

x(e) ≤ 1, for all e ∈ E.

Then, it iteratively adds the inequalities (1)–(4) that are
violated by the solution x∗ of the current LP. The cutting
plane algorithm stops when all the inequalities (1)–(4) are
satisfied by x∗. In this case, x∗ is optimal for Eq. 34). For
finding inequalities (1)–(4) that are violated by x∗, if there
is any, we solve the so-called separation problem associated
with these inequalities. Recall that the separation problem
associated with a family of inequalities F and a solution
x is to verify if x satisfies all the inequalities of F , and
if not, to exhibit at least one of them which is violated by
x. An algorithm solving a separation problem is called a
separation algorithm.

At the end of the cutting plane algorithm, if x∗ is integral,
then it is optimal for the problem (7). If x∗ is fractional, then
we reinforce the linear relaxation of the problem by adding,
if possible, further valid inequalities. For this, we also
add the Steiner SP-partition inequalities (19), the double

Ann. Telecommun. (2018) 73:5–28 19

Author's personal copy

cut inequalities (11) and the Steiner partition inequalities
(17) in the cutting plane algorithm. The separation of
the inequalities used in the branch-and-cut algorithm are
performed in the following order

1. st-cut and L-st-path-cut inequalities,
2. st-node-cut and L-st-node-path-cut inequalities (only

for integral solutions),
3. Steiner SP-partition inequalities,
4. double cut inequalities,
5. Steiner partition inequalities.

Notice that the st-node-cut and L-st-node-path-cut
inequalities are separated only for integral solutions. Indeed,
as we will see in the next subsection, these two families of
inequalities can be efficiently separated when the solution
x∗ is integral.

All the inequalities that are added during the branch-and-
cut algorithm are considered as global (i.e., valid at every
node of the branch-and-cut tree), and we may add several
inequalities at each iteration. Furthermore, we proceed to
the separation of a class of inequalities only when the
separation of the previous class of inequalities has not found
any violated inequalities.

In the following, we describe the separation algorithms
we have devised for the inequalities (1)–(4), the Steiner SP-
partition inequalities (19), the double cut inequalities (11),
and the Steiner partition inequalities (17).

5.2 Separation procedures

5.2.1 Separation of st-cut and 3-st-path-cut inequalities

We discuss first the separation of the st-cut and 3-st-path-cut
inequalities (1) and (2). We give the theorem below which
shows that the separation problem of these inequalities
reduces to computing a maximum flow in a special graph,
and hence can be solved in polynomial time.

Theorem 16 The separation problem of st-cut and 3-st-
path-cut inequalities (1) and (2) reduces to computing
maximum flows in a special graph and can be solved in
O(|D||E|2|V |) time.

Proof Let x ∈ R
E be the solution for which we are

separating the natural inequalities (1) and (2). To separate
them, we consider the following graph transformation from
[2] (see also [13]). Let (s, t) ∈ D and let Vst = V \{s, t}, V ′

st
be a copy of Vst and Ṽst = Vst ∪ V ′

st ∪ {s, t}. The copy in V ′
st

of a node u ∈ Vst will be denoted by u′. From G and (s, t),
we build the directed graph G̃st = (Ṽst, Ãst). Its arc set Ãst

is obtained as follows. For an edge of the form st ∈ E, we
add an arc (s, t) in Ãst. For each edge su ∈ E, u �= t , (resp.

vt ∈ E, v �= s), we add in Ãst an arc (s, u), u ∈ Vst (resp.
(v′, t), v′ ∈ V ′

st). For each edge uv ∈ E, with u, v /∈ {s, t},
we add two arcs (u, v′) and (v, u′) in Ãst, with u, v ∈ Vst

and u′, v′ ∈ V ′
st. Finally, for each node u ∈ V \ {s, t}, we

add an arc (u, u′) in Ãst (see Fig. 7 for an illustration).
Notice that for each (s, t) ∈ D, |Ṽst| = 2|V | − 2 and

|Ãst | = 2|E| − |δ(s)| − |δ(t)| + |[s, t]|.
Bendali et al. [2] showed that there is a one-to-one

correspondence between the st-cuts and the 3-st-path-cuts
in G and the st-dicuts in G̃st which do not contain arcs of
the form (u, u′), for all u ∈ V \ {s, t}. Moreover, if each
arc a ∈ Ãst, corresponding to an edge e ∈ E, is assigned
the capacity c̃(a) = x(e) and each arc of the form (u, u′)
is assigned an infinite capacity, then the weight of an st-cut
or 3-st-path-cut in G with respect to x is the same as that
of the corresponding st-dicut in G̃st with respect to capacity
vector c̃. Thus, for a given (s, t) ∈ D, there is an st-cut or
3-st-path-cut inequality violated by x if and only if there is
an st-dicut in G̃st whose capacity is < k. Moreover, if there
is a violated st-cut or 3-st-path-cut inequality induced by an
edge set C ⊆ E, that is there is an st-dicut C̃ ⊆ Ãst whose
weight is < k, then the edges of C are those corresponding
to the arcs of C̃. Therefore, the separation problem of the st-
cut and the 3-st-path-cut inequalities reduces to computing a
minimum st-dicut in G̃st with respect to the capacity vector
c̃. By the max-flow min-cut theorem, this can be done by
computing a maximum flow from s to t in G̃st.

Finally, the maximum flow computation in G̃st can
be handled by the Edmonds-Karp algorithm [16] which
runs in O(|Ãst|2|Ṽst|) = O(|E|2|V |) time. Since this
procedure is performed |D| times (one for each demand),
the whole separation algorithm can be implemented to run
in O(|D||E|2|V |) time, and hence is polynomial.

Our separation algorithm for st-cut and 3-st-path-cut
inequalities is based on Theorem 16. It starts, for each
demand (s, t) ∈ D, by building the graph G̃st and then,
computing a minimum weight st-dicut, say C̃, w.r.t. weight
vector c̃. If the weight of such a st-dicut is < k, then the
edge set C of G corresponding to the arcs of C̃ corresponds
to either a st-cut or a 3-st-path-cut which induces a violated
inequality. The separation algorithm stops when it finds,
for a given demand, a violated inequality or when all the
demands have been considered without finding any violated
inequality. From Theorem 16, this algorithm solves the
separation problem of inequalities (1) and (2) in polynomial
time.

5.2.2 Separation of st-node-cut and 3-st-node-path-cut
inequalities

Now, we discuss the separation problem of st-node-cut and
3-st-node-path-cut inequalities (3) and (4). We also assume

20 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Fig. 7 Construction of graphs G̃st with D = {(s1, t1), (s1, t2), (s3, t3)}

that the solution x is integral and satisfies all the st-cut and
3-st-path-cut inequalities (1) and (2). From Theorem 1, the
separation problem of inequalities (3) and (4), for a demand
(s, t) ∈ D, reduces to check if there is a node set Z ⊆
V \{s, t} and an st-cut C̃ of G̃st \Z̃ such that |Z| ≤ k−1 and
ỹ(C̃) < k − |Z|. Moreover, the computation of both Z and
C̃ can be done after the application of procedure BuildZ (see
the proof of Theorem 1 for more details). Finally, notice that
procedure BuildZ reduces to compute at most k maximum
flows in auxililliary graphs G̃st \ Z̃.

Now we describe our separation algorithm for st-node-
cut and 3-st-node-path-cut inequalities when x is integral
and satisfies all the st-cut and 3-st-path-cut inequalities.
For each demand (s, t) ∈ D, we build the graph G̃st and
let c̃ be the associated weight vector. Then we build, using
Procedure BuildZ, the node set Z and let f be the weight
of a minimum weight cut of G̃st \ Z̃, w.r.t. weight vector
c̃. If |Z| ≤ k − 1 and f < k − |Z|, then, by Theorem
1, there is an st-node-cut or a 3-st-node-path-cut C ⊆ E

which induces an inequality (3) or (4) violated by x. If
|Z| ≥ k or f ≥ k − |Z|, then we move to another demand.
The algorithm stops when it has found a violated inequality
(3) or (4) for some demand (s, t) ∈ D or when all the
demands have been explored without finding any violated
inequality.

If we use Edmonds-Karp algorithm for each maximum
flow computation, then the separation algorithm can be
implemented to run in O(|D|k|E|2|V |) time, which is
polynomial.

5.2.3 Separation of double cut, Steiner SP-partition, and
partition inequalities

Now, we consider the separation of inequalities (11), (19)
and (17). For our purpose, we look for those inequalities
(11), (19), and (17) defined with a node set Z = ∅. To
separate them, we use the separation heuristics developed in
[11].

The heuristic developed for the double
cut inequalities is implemented to run in

O
(
|V |3 log |V | (2|V |+|Dsource|+|Ddest|)2

(|V |−1)(|V |+|Dsource|+|Ddest|)
)

time. Here

Dsource and Ddest denote the sets of nodes which are,
respectively, the source, and destination in a demand, which
is polynomial.

For SP-partition inequalities (19), the heuristic proposed
by [11] is implemented to run in O(|V ||E|+|D|), while the
separation heuristic for partition inequalities (17) proposed
by [11] is implemented to run in O(|V ||E| + |R|2(|E| +
|D|)), where R is the set of terminal nodes.

Clearly, the three heuristics run in polynomial time.

5.3 Computational results

We have implemented our branch-and-cut algorithm in
C++, using CPLEX 12.5 and concert technology [10]. It
was tested on a Xeon Quad-Core E5507 machine with a
2.27 GHz processor and 8GB RAM, running under Linux.
The maximum CPU time has been fixed to 5 h. Each
instance is composed of a graph from TSPLIB [34] and

Ann. Telecommun. (2018) 73:5–28 21

Author's personal copy

a set of demands. TSPLIB graphs are complete Euclidean
graphs, that is each node is assigned coordinates in the
plane, and the weight of each edge is given by the Euclidean
distance between its endnodes. The demands used in the
instances are randomly generated. Each set of demands is
either rooted, that is, of the form {(s, ti) : i = 1, . . . , d} (s
is the root node of the demands), or arbitrary.

The computational results are given in Tables 3, 4, 5, 6, 7,
and 8. Each instance is described by the number of nodes
of the graph and the number of demands. The number of
nodes is preceded either by “r” if the demands are rooted or
“a” if they are not rooted. The entries of the various tables
presented below are:

|V | : the number of nodes of the graph,
|D| : the number of demands,
C-LPC : the number of generated st-cut and 3-st-path-

cut inequalities,
NC-NLPC : the number of generated st-node-cut and

3-st-node-path-cut inequalities,
SP : the number of generated Steiner SP-partition

inequalities,
DC : the number of generated double cut inequali-

ties,
DC : the number of generated Steiner partition

inequalities,
COpt : value of the best upper bound obtained,
Gap : the relative error between the best upper

bound and the lower bound obtained at the root
node of the branch-and-cut tree,

NSub : the number of nodes in the branch-and-cut
tree,

CPU : total CPU time of the first run in
hours:min.sec.

Note that for some instances, the algorithm spends all
the CPU time (5 h) without finding any feasible solution.
In this case, the best upper bound (COpt) and the error
with the lower bound achieved at the root node of the
Branch-and-Cut tree (Gap) are indicated with “-”.

Our first series of experiments concerns the kNDHP with
k = 3 and L = 3. The results are given in Tables 3 and 4.

We can see that for the rooted instances (Table 3), the
algorithm has solved to optimality 4 instances out of 13,
with graphs having up to 30 nodes and with 15 demands,
and the CPU time varying from 4 to 18 mins. The gap
achieved between the best upper bound (that is, the optimal
solution) and the lower bound at the root node of the branch-
and-cut tree (gap) is relatively small (less than 10%) for
these instances. For the instances that have not been solved
to optimality, the value of the gap are also relatively small:
less than 10% for 5 of them and less 31% for the 4 other
instances. Table 3 also shows that a very large number of
st-cut and 3-st-path-cut inequalities have been generated
during the resolution. Also, a large number of st-node-cut
and 3-st-node-path-cut inequalities have been generated for
all the instances. We can also see that several Steiner SP-
partition have been generated but no double cut and Steiner
partition inequalities have been generated.

For the arbitrary demands, the algorithm has solved to
optimality only one instance (d-21-11) over nine and has
spent all the CPU for the other instances. Also, it has
not found even a feasible solution for 5 instances. For the
instances r-21-10, d-30-10 and d-30-15, that have not been
solved to optimality, the gap between the lower bound at
the root node of the branch-and-cut tree and the best upper
bound is less than 12%. We can also see, as for the rooted
instances, that a very large number of st-cut and 3-st-path-
cut inequalities have been generated, but less st-node-cut
and 3-st-node-path-cut inequalities have been generated.

Table 3 Results for k = 3, L = 3 and rooted demands

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

r 21 15 11775 74 10 0 0 5526 9.23 2265 00:04:46

r 21 17 22356 228 0 0 0 5939 9.4 4518 00:18:24

r 21 20 71354 116 0 0 0 6466 9.54 17673 03:10:39

r 30 15 15599 264 14 0 0 10109 6.87 1521 00:12:06

r 30 20 58659 1516 12 0 0 11376 8.41 15280 05:00:00

r 30 25 80999 615 18 0 0 12661 12.33 14281 05:00:00

r 48 20 51038 1632 26 0 0 18337 18.1 6133 05:00:00

r 48 30 66277 898 10 0 0 25437 28.68 5305 05:00:00

r 48 40 69242 257 2 0 0 31693 30.17 5628 05:00:00

r 52 20 49717 1674 22 0 0 11170 9.15 5707 05:00:00

r 52 30 62698 1692 18 0 0 14626 17.11 3845 05:00:00

r 52 40 68794 1024 16 0 0 17920 21.86 4953 05:00:00

r 52 50 77808 142 0 0 0 20873 24.49 4397 05:00:00

22 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Table 4 Results for k = 3, L = 3 and arbitrary demands

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

a 21 10 56593 2 0 483 0 6680 8.66 9191 05:00:00

a 21 11 29325 2 0 375 1 6770 6.8 2614 00:57:32

a 30 10 44057 25 18 38 0 10354 6.64 13274 05:00:00

a 30 15 53545 86 0 462 0 13936 11.69 6399 05:00:00

a 48 15 34047 0 0 20 0 – – 1119 05:00:00

a 48 20 28329 0 2 10 0 – – 229 05:00:00

a 48 24 23975 0 0 11 0 – – 103 05:00:00

a 52 20 30157 108 6 41 0 – – 1735 05:00:00

a 52 26 24217 0 0 96 0 – – 307 05:00:00

We can also notice that some Steiner SP-partition and a
quite large number of double cut inequalities have been
generated in the resolution.

Our next series of experiments concerns the kNDHP with
k = 4 and L = 3. The results are given in Tables 5 and 6.
Notice that in this case, the Steiner SP-partition and Steiner
partition inequalities are not included in the branch-and-
cut algorithm as they are redundant w.r.t. st-cut inequalities.
Thus, the corresponding columns in Tables 5 and 6 are omitted.

The results of Table 5 show that for the rooted instances,
4 instances over 13 have been solved to optimality. For the
other instances, the gap is less than 9% for three instances
and less than 22% for six instances. The results also
show that a very large number of st-cut and 3-st-path-cut
inequalities are generated while a large number of st-node-
cut and 3-st-node-path-cut inequalities are generated for all
the instances. Also, no double cut inequalities are generated
for all the instances we have considered.

For arbitrary demands (Table 6), all the instances have
not been solved to optimality within the CPU time limit.

Also, for five instances (from d-48-15 to d-52-26) over
nine, the algorithm has not found a feasible solution. For
the others, the gap is less than 13%. Contrarily to rooted
demands, a quite large number of double cut inequalities
have been generated.

Nowwe turn out attention to the resolution of the kNDHP
with k = 5 and L = 3. The results are given in Tables 7
and 8 below.

We can see from Table 7, that for the rooted instances,
the algorithm has solved to optimality three instances over
13. For the other ten instances, the gaps is less than 10%,
for only three of them. For the remaining instances, the
gaps are between 10 and 35%. Also, we notice that a large
number of st-cut, 3-st-path-cut, st-node-cut and 3-st-node-
path-cut inequalities are generated. However, no Steiner
SP-partition, double cut and Steiner partition inequalities
are generated. For the arbitrary demands (Table 8), all the
instances have not been solved to optimality, and, for four
instances, the algorithm has not found a feasible solution.
We also notice that few Steiner SP-partition and Steiner

Table 5 Results for k = 4, L = 3 and rooted demands

|V | |D| C-LPC NC-NLPC DC COpt Gap NSub CPU

r 21 15 4923 52 0 7322 4.57 1078 00:00:50

r 21 17 5732 24 0 7826 4.56 1186 00:01:06

r 21 20 35317 9 0 8556 5.32 17991 01:11:08

r 30 15 48473 2266 0 14315 6.66 10718 05:00:00

r 30 20 23784 0 0 15041 4.19 5664 00:35:22

r 30 25 54445 595 0 16379 5.93 11631 05:00:00

r 48 20 40090 1784 0 26131 20.86 6929 05:00:00

r 48 30 43988 621 0 29806 16.86 4140 05:00:00

r 48 40 51107 232 0 40037 24.77 4302 05:00:00

r 52 20 39125 1346 0 15480 8.72 5106 05:00:00

r 52 30 42750 2760 0 20976 20.28 5192 05:00:00

r 52 40 49499 831 0 24343 21.52 4865 05:00:00

r 52 50 56313 282 0 26541 17.92 4472 05:00:00

Ann. Telecommun. (2018) 73:5–28 23

Author's personal copy

Table 6 Results for k = 4, L = 3 and arbitrary demands

|V | |D| C-LPC NC-NLPC DC COpt Gap NSub CPU

a 21 10 50711 108 858 9339 10.37 9674 05:00:00

a 21 11 55432 127 703 9864 12.52 10221 05:00:00

a 30 10 36595 116 152 14582 6.3 9817 05:00:00

a 30 15 39442 37 319 18961 10.19 4593 05:00:00

a 48 15 24750 0 20 – – 589 05:00:00

a 48 20 20007 0 4 – – 137 05:00:00

a 48 24 16095 0 2 – – 47 05:00:00

a 52 20 21556 0 54 – – 867 05:00:00

a 52 26 14635 0 35 – – 215 05:00:00

partition inequalities and a quite large number of double cut
inequalities have been generated.

In these experiments, we have also tried to check the
impact of the different classes of inequalities we have
considered in our algorithm. As we can see in the various
tables, Steiner SP-partition and double cut inequalities are
generated in quite large number, and very few Steiner
partition inequalities are found. We also observe that in
the three cases k = 3, 4, 5, the double cut inequalities
are not generated when the demands are rooted, and
several of them are generated when the demands are
arbitrary. In contrast with double cut inequalities, Steiner
SP-partition inequalities are mainly generated when the
demands are rooted, and few of them are generated for
arbitrary demands. This observation can be compared with
those of Diarrassouba et al. [12] who devised a branch-
and-cut algorithm for the kNDHP with k = 2. In their
experiments, they showed that the double cut inequalities
were mainly generated when the demands are arbitrary. This
suggests that the double cut inequalities (11) are mainly
involved in the resolution of the problem when the demands

are arbitrary, and when the demands are rooted, Steiner SP-
partition inequalities may play an important role in solving
the problem.

To conclude this experimental study, we have checked
the impact of the connectivity on the resolution of the
problem. Such a comparison has been made by Bendali
et al. [3], for the k-edge-connected subgraph problem, and
by Diarrassouba et al. [13], for the kEHDP, that is the hop-
constrained survivable network design problem in which
the L-st-paths are required to be edge-disjoint, for each
demand (s, t) ∈ D. In both studies, the computational
results suggest that the problem becomes easier to solve
when the connectivity increases. However, for the kNDHP,
our computational results do not allow to make the same
conclusion. Indeed, by comparing Tables 3, 8 and 7, we
can see that most of the instances that have not been solved
to optimality for k = 3 have also not been solved to
optimality for k = 4 and k = 5. Also, the number of
nodes in the branch-and-cut tree is quite large in the three
cases. Also, the different gaps achieved do not allow to see
if the problem becomes easier when k increases. In fact,

Table 7 Results for k = 5, L = 3 and rooted demands

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

r 21 15 8854 173 0 0 0 9560 3.24 3283 00:03:45

r 21 17 23490 804 0 0 0 10235 3.93 19537 00:54:09

r 21 20 31742 958 0 0 0 11095 4.1 59210 03:18:34

r 30 15 80055 6007 0 0 0 19624 10.01 25045 05:00:00

r 30 20 87973 838 0 0 0 20444 5.78 19283 05:00:00

r 30 25 77565 670 0 0 0 21604 5.31 23220 05:00:00

r 48 20 55964 4334 0 0 0 32753 18.53 11308 05:00:00

r 48 30 59897 1414 0 0 0 41200 22.3 9979 05:00:00

r 48 40 68991 319 0 0 0 48194 20.02 7758 05:00:00

r 52 20 55456 5330 0 0 0 28222 34.95 10387 05:00:00

r 52 30 56528 3283 0 0 0 31443 31.67 9388 05:00:00

r 52 40 61465 1330 0 0 0 30645 20.24 7997 05:00:00

r 52 50 77724 275 0 0 0 33994 17.27 8225 05:00:00

24 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Table 8 Results for k = 5, L = 3 and arbitrary demands

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

a 21 10 71158 279 0 645 0 11703 7.8 23196 05:00:00

a 21 11 74831 516 0 1097 1 12533 11.58 24980 05:00:00

a 30 10 49032 305 4 0 0 18613 2.94 20559 05:00:00

a 30 15 56285 242 0 589 0 24043 8.29 9227 05:00:00

a 48 15 37209 91 0 8 0 – – 2479 05:00:00

a 48 20 28574 0 0 2 0 – – 303 05:00:00

a 48 24 24246 0 0 0 0 – – 113 05:00:00

a 52 20 33492 29 0 0 0 30754 17.31 2065 05:00:00

a 52 26 25465 0 0 20 0 – – 347 05:00:00

for some instances, like r-21-20, the gap decreases as k

increases, while for some other instances, like r-30-15, the
gap is better when k = 4 than when k = 3 and k = 5.
Even, for some instances, like r-48-20, the gaps increase as
k increases. The observations are the same for the arbitrary
demands, that is, we cannot conclude from Tables 4, 6 and 8
that the resolution of the kNDHP becomes easier when the
connectivity k increases.

6 Branch-and-cut algorithm for the kNDHP
with L = 4 and k = 2

In this section, we present a branch-and-cut algorithm
for the kNDHP when L = 4 and k = 2, based
on the formulation presented in [24]. The formulation
uses inequalities (1)–(6). First, we present the general
framework of the algorithm and then present the separation
procedures we have devised for the inequalities involved in
the algorithm.

6.1 The general framework

The general framework of the algorithm is similar to the one
presented before. To reinforce the linear relaxation of this
problem, we add the rooted partition inequalities (25) in the
cutting plane algorithm. The separation of the inequalities
used in the branch-and-cut algorithm are performed in the
following order

1. st-cut and st-node-cut inequalities,
2. rooted partition inequalities,
3. L-st-path-cut inequalities and L-st-node-path-cut

inequalities (only for integral solutions).

We apply the rooted partition inequalities (25) for the
rooted 2NDHP (that is, when the set of demands is rooted

in a single node), and do not apply them when arbitrary
demands are considered.

Notice that the L-st-path-cut and L-st-node-path-cut
inequalities are separated only for integral solutions. Indeed,
as we will see in the next subsection, these two families of
inequalities can be efficiently separated when the solution
x∗ is integral.

In the following, we describe the separation algorithms
we have devised for the inequalities (1)–(4) and the rooted
partition inequalities (25).

6.2 Separation procedures

6.2.1 Separation of st-cut inequalities and st-node-cut

It is well-known that the separation of the st-cut inequalities
(1) (resp. the st-node-cut inequalities (3)) reduces to
computing a minimum weight cut in G (resp. in G \ z

for all z ∈ V \ {s, t}) with respect to weight vector y.
Indeed, there is a violated cut inequality (1) (resp. st-node-
cut inequality (3)) if and only if the minimum weight of
a cut, w.r.t. weight vector y, is < 2 (resp. < 1). One can
compute a minimumweight cut in polynomial time by using
any minimum cut algorithm, and especially by using the
Gomory-Hu algorithm [17] which computes the so-called
Gomory-Hu cut tree. This algorithm consists in |V | − 1
maximum flow computations.

6.2.2 Separation of 4-st-path-cut and 4-st-node-path-cut
inequalities

Now, we discuss the separation problem of 4-st-path-
cut and 4-st-node-path-cut inequalities (2) and (4). As
mentioned before, we consider the separation problem of
these inequalities only in the case where the considered
solution x ∈ R

E , is integral.

Ann. Telecommun. (2018) 73:5–28 25

Author's personal copy

The idea is similar to the one presented in the proof of the
formulation in [24]. Consider an edge subset F ⊆ E, and let
GF be the graph induced by F . First we compute a Dijkstra
algorithm to obtain a shortest st-path (in number of hops),
say P0, in G. If |P0| > 4, then we detect a violated 4-path-
cut inequality. We define Vi , i = 0, . . . , 4, as the subset of

nodes at distance i from s in G, and V5 = V \
(

4⋃

i=0
Vi

)

. We

add the corresponding 4-path-cut inequality induced by the
partition (V1, . . . , V5) to the LP. If |P0| ≤ 4, then we look
for a second shortest path inG\{st}, say P1, such that P0 and
P1 are node-disjoint. If |P1| ≤ 4, then F induces a solution
for the 2NDHP. If |P1| > 4, there are two cases. The first
case is when |P0| = 1, that is P0 = (st), we define a 4-path-
cut inequality in the same way as in the previous case, and
we add the violated inequality to the LP. The second case
is when |P0| > 1, in that case we remove the nodes of P0,
say v

P0
i , i = 1, . . . , |P0|, one by one, then we define the

corresponding 4-node-path-cuts in G \ v
P0
i in the same way,

and add them to the LP.

6.2.3 Separation of rooted partition inequalities

To separate inequalities (25), we use the separation heuristic
presented in [25]. This heuristic has been implemented to
run in polynomial time.

6.3 Computational results

The same computational environment presented in the
previous section is used for these experiments. Note that

the rooted partition inequalities (25) are only used for the
instances with rooted demands.

The computational results are given in Tables 9 and 10.
The entries of these two tables are the same as those of
Section 5.3, except for Table 10, for which we add the entry

RP : the number of generated rooted partition inequalities.

We can see that for the rooted demands (Table 10), the
algorithm has solved to optimality 7 instances out of 19
within the time limit. We can observe that the gaps obtained
are quite large for most of the instances, but it is less
than 30% for the relatively small instances. Table 10 also
shows that a very large number of st-cut and 3-st-path-
cut inequalities have been generated during the resolution,
and a large number of st-node-cut and 3-st-node-path-cut
inequalities have been generated for all the instances. We
can also see that several rooted partition inequalities have
been generated for some instances.

For the arbitrary demands, the algorithm has solved to
optimality 6 instances, with graphs having up to 14 nodes
and with 7 demands, and has spent all the CPU for the other
instances. We can also see, as for the rooted demands, that
a very large number of st-cut and 3-st-path-cut inequalities
have been generated, and as much st-node-cut and 3-st-
node-path-cut inequalities have been generated. We also
note that the number of nodes in the branch-and-cut tree is
quite large for the two types of demands. Also, the different
gaps achieved are important for the big instances. Finally,
we notice that for the arbitrary demands, the algorithm ran
out of memory for 4 instances, and did not find a feasible
solution.

Table 9 Results for k = 2, L = 4 and arbitrary demands

|V | |D| C-NC LPC-NLPC COpt Gap NSub CPU

a 5 2 1 0 2314 0 1 0:00:01

a 10 3 17 15 2358 1.64 23 0:00:01

a 10 4 30 175 2773 10.1 186 0:00:01

a 10 5 15 326 3219 11.14 615 0:00:01

a 14 5 46 102 3326 7.18 356 0:00:01

a 14 7 195 1604 3796 9.72 6439 0:00:08

a 17 8 3589 45507 3079 31.71 608368 5:00:00

a 21 10 2361 37423 4720 40.59 334898 5:00:00

a 21 11 2893 36324 4770 41.44 334084 5:00:00

a 48 10 26795 19456 57349 87.33 154736 5:00:00

a 48 15 22343 32540 – – 145813 5:00:00

a 48 24 17236 30632 – – 245307 5:00:00

a 52 10 33319 16521 19769 74.6 107555 5:00:00

a 52 15 29114 15508 32592 81.2 124780 5:00:00

a 52 20 14288 33394 – – 162161 5:00:00

a 52 26 10778 33464 – – 198811 5:00:00

26 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

Table 10 Results for k = 2, L = 4 and rooted demands

|V | |D| C-NC LPC-NLPC RP COpt Gap NSub CPU

r 10 5 41 24 36 2358 1.35 17 0:00:01

r 10 7 18 18 22 2848 4.09 23 0:00:01

r 10 9 15 565 19 3481 12.28 588 0:00:01

r 14 5 520 444 0 2601 7.9 383 0:00:01

r 14 7 862 4177 882 2998 17.61 5820 0:00:36

r 14 10 622 3481 668 3662 7.04 10540 0:00:31

r 17 16 3202 83928 0 2700 22.65 380463 5:00:00

r 21 7 717 1272 0 1789 6.59 425 0:00:02

r 21 10 15721 35009 0 2570 25.91 431618 5:00:00

r 30 29 7391 200914 0 13549 54.59 163377 5:00:00

r 48 10 60181 46849 0 27557 77.47 81057 5:00:00

r 48 15 69824 71232 0 37962 82.38 77855 5:00:00

r 48 20 89805 86653 0 27814 72.68 70272 5:00:00

r 48 30 87560 158432 0 38629 79.03 105848 5:00:00

r 52 10 85786 59630 0 23916 83.1 62374 5:00:00

r 52 20 116638 109693 0 19426 72.81 50496 5:00:00

r 52 30 111091 174649 0 22143 72.07 63565 5:00:00

r 52 40 43333 262234 0 22378 70.09 109805 5:00:00

r 52 50 18217 281265 0 20731 64.4 120560 5:00:00

7 Conclusion

In this paper, we have studied the k-node-disjoint hop-
constrained network design problem (kNDHP) when L ∈
{2, 3, 4}. We have introduced an integer programming
formulation for the problem when L ∈ {2, 3} and
investigated the associated polytope. We have presented
several classes of valid inequalities and presented conditions
under which these inequalities define facets. Then, we
have devised a branch-and-cut algorithm for solving the
problem based on the inequalities we have presented before.
In particular, we have discussed the separation problem
of the st-cut, 3-st-path-cut, st-node-cut, 3-st-node-path-cut
inequalities, as well as that of the Steiner SP-partition,
Steiner partition, and double cut inequalities. Finally, we
have presented branch-and-cut and computational results
for the problem when L = 3 and k = 3, 4, 5 on one hand,
and when L = 4 and k = 2 on the other hand.

The experiments we have done in this paper have shown
that the branch-and-cut algorithm is quite efficient for
solving the kNDHP when L = 3 and k = 3, 4, 5, and this,
for both rooted and arbitrary sets of demands. They also
pointed out that the large size instances are still difficult to
solve within 5 hours of CPU time, but the gaps achieved, are
in most cases quite interesting. Moreover, the experiments
have shown the importance of Steiner SP-partition and
double cut inequalities (17) and (11) are important in

solving the problem, and that Steiner partition inequalities
(19) seems to be less effective.

It should also be noticed that, contrarily to the survivable
network design problem without hop constraints (or the
kNCSP with L ≥ |V | − 1), our experiments cannot
permit to conclude on the impact of an increasing of
the connectivity k on the resolution of the problem.
In fact, previous experiments done for the survivable
network design problem (see [3] and [29], for example)
have concluded that the problem without considering hop
constraints seems to become easier when k increases. In our
case (the kNDHP with L < |V | − 1), the impact of the
connectivity on the resolution is less clear. It even seems,
when comparing the results for L = 3 and L = 4, that the
kNDHP becomes more difficult to solve when L increases.

The computational study pointed out that a very large
number of st-cut and 3-st-path-cut inequalities are generated
during the resolution of the problem. This can be an issue
since it yields the branch-and-cut algorithm to manage a
huge pool of constraints and can imply an excessive CPU
time consumption for constraints management. This can
even yield the branch-and-cut algorithm to solve linear
programs with a large number, but still polynomial, number
of constraints. Finally, all this may prevent the algorithm
from a good exploration of the branch-and-cut tree.

The above observations suggests that an efficient
algorithm for the kNDHP requires a tighter formulation for

Ann. Telecommun. (2018) 73:5–28 27

Author's personal copy

the problem, which may efficiently include simultaneously
both the disjoint paths and the hop contraints. Also, it may
require a deeper investigation of the polytope of the problem
in order to provide more facet defining inequalities and yield
an efficient branch-and-cut algorithm.

For theoretical purposes, it should be interesting to study
the polyope of the kNDHP in some special cases, like for
example when the graph is series-parallel. Also, one could
investigate the problemwith respect to the distribution of the
demands, since it may influence the polyhedral description
of the solutions of the problem, and probably the efficiency
of resolution algorithms.

Another question which would be of interest is to see
whether one can use directed models for the kNDHP.
This may provide stronger integer linear programming
formulations. This is one of our research lines in the future.

Acknowledgements We would like to thank the anonymous referees
for their valuable comments that permitted to correct some flaw in the
previous version and improve the presentation of the paper.

References

1. Barahona F, Mahjoub AR (1995) On two-connected subgraph
polytopes. Discret Math 147:19–34

2. Bendali F, Diarrassouba I, Mahjoub AR, Mailfert J (2010) The
k edge-disjoint 3-hop-constrained paths polytope. Discret Optim
7:222–233

3. Bendali F, Diarrassouba I, Didi Biha M, Mahjoub AR, Mailfert
J (2010) A branch-and-cut algorithm for the k-edge-connected
subgraph problem. Networks 55:13–32

4. Botton Q, Fortz B, Gouveia L (2015) On the hop-constrained
survivable network design problem with reliable edges. Comput
Oper Res 64:159–167

5. Botton Q, Fortz B, Gouveia L, Poss M (2013) Benders
decomposition for the hop-constrained survivable network design
problem. INFORMS J Comput 25:13–26

6. Chimani M, Kandyba M, Ljubic I, Mutzel P (2010) Orientation-
based models for 0, 1, 2-survivable network design: theory and
practice. Math Program 124(1-2):413–439

7. Dahl G (1999) Notes on polyhedra associated with hop-
constrained paths. Oper Res Lett 25:97–100

8. Dahl G, Foldnes N, Gouveia L (2004) A note on hop-constrained
walk polytopes. Oper Res Lett 32:345–349

9. Dahl G, Gouveia L (2004) On the directed hop-constrained
shortest path problem. Oper Res Lett 32:15–22

10. IBM, IBM ILOG CPLEX Optimization studio 12.5 docu-
mentation (2013). Available at: http://www-01.ibm.com/support/
knowledgecenter/SSSA5p 12.5.1/maps/ic-homepage.html

11. Diarrassouba I (2009) Survivable network design problems with
high connectivity requirements, PhD Thesis, Université Blaise
Pascal, France

12. Diarrassouba I, Kutucu H, Mahjoub AR (2016) Two node-
disjoint hop-constrained survivable network design and polyhedra.
Networks 67:316–337

13. Diarrassouba I, Gabrel V, Mahjoub AR, Gouveia L, Pesneau
P (2016) Integer programming formulations for the k-edge-
connected 3-hop-constrained network design problem. Networks
67:148–169

14. Didi Biha M,Mahjoub AR (2004) The k-edge connected subgraph
problem I: polytopes and critical extreme points. Linear Algebra
Appl 381:117–139

15. Didi Biha M, Mahjoub AR (1996) K-edge connected polyhedra
on series-parallel graphs. Oper Res Lett 19:71–78

16. Edmonds J, Karp RM (1972) Theoretical improvements in
algorithmic efficiency for network flow problems. J ACM 19:248–
264

17. Gomory RE, Hu TC (1961) Multi-terminal network flows. JSoc
Ind Appl Math 9:551–570

18. Gouveia Luis, Leitner Markus (2017) Design of survivable net-
works with vulnerability constraints. Eur J Oper Res 258(1):89–
103

19. Gouveia L, Patricio P, de Sousa A (2005) Compact models for
hop-constrained node survivable network design, an application
to MPLS, telecommunications planning: innovations in pricing,
network design and management. Springer 33:167–180

20. Grötschel M, Monma CL, Stoer M (1991) Polyhedral approaches
to network survivability. Series in Discrete Mathematics &
Theoretical Computer Science 5:121–141

21. Grötschel M, Monma CL (1990) Integer polyhedra arising from
certain network design problems with connectivity constraints.
SIAM J Discret Math 3:502–523

22. Grötschel M, Monma CL, Stoer M (1992) Computational results
with a cutting plane algorithm for designing communication
networks with low-connectivity constraints. Oper Res 40:309–330

23. Grötschel M, Monma CL, Stoer M (1995) Polyhedral and com-
putational investigations for designing communication networks
with high survivability requirements. Oper Res 43:1012–1024

24. Huygens D, Mahjoub AR (2007) Integer programming formu-
lations for the two 4-hop-constrained paths problem. Networks
49:135–144

25. Huygens D, Labbé M., Mahjoub AR, Pesneau P (2007) The two-
edge connected hop-constrained network design problem: valid
inequalities and branch-and-cut. Networks 49:116–133

26. Huygens D, Mahjoub AR, Pesneau P (2004) Two edge-disjoint
hop-constrained paths and polyhedra. SIAM J Disc Math 18:287–
312

27. Kerivin H, Mahjoub AR (2015) Design of survivable networks: a
survey. Networks 46:1–21

28. Kerivin H, Mahjoub AR, Nocq C (2004) (1,2)-survivable
networks: facets and branch and cut, The sharpest cut. In:
Grötschel M (ed) MPS/SIAM optimization, pp 121–152

29. Mahjoub M, Diarrassouba I, Mahjoub AR, Taktak R (2017)
The survivable k-node-connected network design problem: valid
inequalities and Branch-and-Cut. Comput Ind Eng 112:690–
705

30. Mahjoub AR (1994) Two-edge connected spanning subgraphs and
polyhedra. Math Program 64:199–208

31. Mahjoub AR, Nocq C (1999) On the linear relaxation of the
2-node connected subgraph polytope. Discret Appl Math 95(1–
3):389–416

32. Mahjoub AR, Simonetti L, Uchoa E (2011) Hop-level flow
formulation for the hop constrained survivable network design
problem. Lect Notes Comput Sci 6701:176–181

33. Menger K (1927) Zur allgemeinen kurventhorie. Fundamanta
Mathematicae 10:96–115

34. TSPLIB (1991). Available at: http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/

28 Ann. Telecommun. (2018) 73:5–28

Author's personal copy

http://www-01.ibm.com/support/knowledgecenter/SSSA5p_12.5.1/maps/ic-homepage.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5p_12.5.1/maps/ic-homepage.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

	k-node-disjoint hop-constrained survivable networks: polyhedral analysis and branch and cut
	Abstract
	Abstract
	Introduction
	Node version with bounds
	Edge version with bounds
	Extended formulations for the edge version with bounds
	Edge and node versions without bounds

	Integer programming formulation
	Polytope and valid inequalities
	Generalized L-st-path-cut inequalities
	Double cut inequalities
	Triple path-cut inequalities
	Steiner partition inequalities
	Steiner SP-partition inequalities
	The rooted partition inequalities
	st-jump inequalities

	Facets of the kNDHP polytope
	Branch-and-cut algorithm for the kNDHP with L=3 and k 3
	The general framework
	Separation procedures
	Separation of st-cut and 3-st-path-cut inequalities
	Separation of st-node-cut and 3-st-node-path-cut inequalities
	Separation of double cut, Steiner SP-partition, and partition inequalities

	Computational results

	Branch-and-cut algorithm for the kNDHP with L=4 and k=2
	The general framework
	Separation procedures
	Separation of st-cut inequalities and st-node-cut
	Separation of 4-st-path-cut and 4-st-node-path-cut inequalities
	Separation of rooted partition inequalities

	Computational results

	Conclusion
	Acknowledgements
	References

