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The composition of general bipartite subgraph respectively acyclic subdigraph 
independence systems and in particular of their associated polyhedra by the iden- 
tification of a pair of 3-cycles resp. 2-dicycles together with its implications for an 
algorithmic treatment has been the central subject of recent papers. We generalize 
this kind of composition within the framework of independence systems having a 
certain exchange property with respect to one of their circuits, and extend it to the 
case of independence systems associated with K,-covers of a graph. We discuss its 
implications for associated polyhedra, totally dual integral linear systems describing 
these as well as related optimization problems. As a special result we obtain that 
the K,-cover problem is polynomially solvable in graphs not contractible to K5 - e. 
Particular attention is also given to independence systems, which are linearly 
relaxable (with respect to their circuits), i.e., for which the circuit inequalities 
x(C)< ICI - 1 together with the trivial inequalities O<x,< 1 are sufficient to 
describe P(4), the convex hull of the incidence vectors of members of 9. Q 1991 

Academic Press, Inc. 

1. INTRODUCTION 

The concept of an independence system has turned out to be suitable to 
embrace a large variety of combinatorial structures. It is defined to be an 
ordered pair (E, 9) consisting of a finite ground set E and a nonempty 
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system 9 of subsets of E, which satisfies the following condition of 
“subclusiveness”: 

We call the members of 9 independent sets and those of 2E\Y dependent 
sets, 2E denoting the power set of E. A maximal independent set is a base 
and a minimal dependent set a circuit of (E, 3). The corresponding set 
systems are denoted by W and %?. Throughout the following we restrict our- 
selves to normal independence systems, i.e., those for which {e} E 9 for all 
e E E. The restriction (X, 9”) of (E, 9) to XS E is the independence system 
with Xx= 9 n 2x. With any independence system we may associate an 
optimization problem, the independent set problem (IS’) as follows: 

Given real weights w, on the elements of E find an independent 
set I which has maximum total weight w(Z) = CBS I w,. 

In general, this problem is NP-hard but if we restrict ourselves to special 
classes of independence systems, as for instance matroids, 2-matroid-inter- 
sections, or those given by matchings in a graph, the resulting problem is 
polynomially solvable provided one can test in polynomial time whether a 
given set I is independent or not. Very often the validity of these algorithms 
could be shown by using linear programming tools such as complementary 
slackness or the duality theorem. Necessary for such an approach is an 
explicit knowledge of the associated polytope P(9), defined to be the 
convex hull of the incidence vectors of all members of 9. Whereas the 
pioneering results have been obtained by establishing linear systems 
sufficient to describe P(9) for selected classes of independence systems, 
recent efforts have been made to investigate independence systems, whose 
associated polytopes can be described in a straightforward way. One such 
class is given by independence systems (E, 9), for which the circuit 
inequalities x(C) < ICI - 1, CE %, and the trivial inequalities 0 < x, < 1, 
e E E, are sufficient to describe P(Y). In such a case we will speak of a 
linearly relaxable independence system. By definition, examples are given 
by bipartite subgraph systems in weakly bipartite graphs (cf. Griitschel and 
Pulleyblank [8]) or acyclic subdigraph systems in weakly acyclic digraphs 
(cf. Grotschel, Jiinger, and Reinelt [7]). Both of these are nontrivial 
examples since the first class contains as special case bipartite subgraph 
systems over graphs not contractible to K, (cf. Fonlupt et al. [6]) and 
the second class contains acyclic subdigraph systems over graphs not 
contractible to K,,, (cf. Barahona and Mahjoub [3]). Another well known 
independence system of this type is that given by the stable sets in a 
bipartite graph. 
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Recently, the composition of independence systems arising from bipartite 
subgraphs of graphs (cf. Fonlupt et al. [6]) or from acyclic subdigraphs of 
digraphs (cf. Barahona and Mahjoub [3]) has been studied. For the first 
class a method has been presented, which determines a bipartite subgraph 
of maximum weight in a graph G obtained by composing two given graphs 
G, and G, in a specific way. Moreover, a system of linear inequalities (in 
short, a linear system) sufficient to describe the associated polytope P(Y) 
has been shown to be obtainable from two such systems describing P(Yr) 
and P(YZ). For the special case of a “2-sum” P(Y) could even be charac- 
terized by a minimal such system. Reference [6] also contains a discussion 
of the implications for weakly bipartite graphs. Acyclic subdigraph systems 
in digraphs have been studied much along the same line in [3]. 

We point to the fact that in both cases an “exchange property with 
respect to a circuit” is satisfied, which we are going to study in full detail 
in Section 2. It was especially this property that gave us the motivation to 
write this paper. Its organization is similar to that of [3, 63. Section 2 is 
devoted to a discussion of the “exchange property” and, in particular, the 
composition of independence systems having this property with respect to 
one of its circuits. Section 3 contains our results on the composition of 
associated polyhedra. Algorithmic aspects are treated in Section 4, and our 
results on the K,-cover problem in graphs are presented in Section 5. 
Results on minimal linear systems sufficient to describe the polyhedra and 
on totally dual integral such systems are summarized in the final section. 

2. COMPOSING INDEPENDENCE SYSTEMS BY CIRCUIT IDENTIFICATION 

We are now going to introduce independence systems, whose systems of 
circuits share a certain “exchange property” with respect to one of its 
circuits. Given an independence system (E, V) and a circuit C E %?, which 
we call a distinguished circuit, we say that W has the exchange property with 
respect to C, if the following condition holds: 

For all C,, C2 E V such that Cn C, and Cn C2 constitute 
a partition of C there exists a circuit C3 ~$9 that is con- 
tained in (C, u C,)\C. (1) 

Using a simple counting argument it can be shown that this property is 
shared by elementary cycles of odd cardinality in a graph with respect to 
any such cycle as the distinguished one. A similarly easy argument based 
on the orientations of edges can be used to verify the property for elemen- 
tary dicycles and any distinguished one in a digraph. 

For general stable set independence systems over graphs we have 
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PROPOSITION (2.1). Let G = [V, E] be a finite, undirected graph, let 
Ki = [Vi, Ei] for i = 1, . . . . m denote its connected components, and let (V, 9) 
be the independence system given by all stable sets of G with E as its system 
bf circuits. Then E satisfies condition (1) with respect to all of its edges if and 
only $ the components Ki induce complete bipartite graphs. 

Proof. If Ki does not contain an odd elementary cycle let (Vi, Vf) be 
a partition of Vi such that every edge from Ei connects an element of V j 
to one of Vf . If the nodes v1 , v2 E Vi, Vf , respectively, are not connected 
by such an edge, by connectedness of Ki and the circuit-exchange property 
we obtain a contradiction. If Ki does contain an odd elementary cycle C of 
length say 2k + 1, k 2 2, then again by the circuit-exchange property 
applied to a halfcycle of C having 4 nodes we obtain an elementary cycle 
of length 2k - 1 and repeated application shows the existence of a triangle 
in Ki, a contradiction to our circuit-exchange property and the fact that the 
independence systems we are considering are normal. 1 

A further example arises from K,-covers in a graph G = [V, E], i.e., those 
subsets F of E which contain at least one edge from every triangle in G. 
Clearly, the collection of all (triangle-free) sets E\F induces an inde- 
pendence system over E which we denote by (E, d(G)) and whose system 
% of circuits is exactly the collection of edge sets of triangles in G. Clearly, 
V has the exchange property with respect to all triangles. For a comprehen- 
sive study of K,-covers, related optimization problems, and polyhedra see 
Conforti et al. [4]. Also note that triangle-free graphs play a role in finding 
a maximum weight clique in certain classes of graphs (cf. Balas et al. [ 11). 

Assume now we are given two independence systems (E, , YI), (E2, &), 
both having property (1) with respect to C, E %?i, C2 E $ as distinguished 
circuits, respectively, such that the following conditions hold: 

there exist partitions (S, T) of C, [(U, V) of C,] such that 
for every circuit C E %,\C, [CE ‘&\C,] the set C n Cl 
[C n C,] is either empty or coincides with S or T [U 
or V]; 

the sets S and U (T and V) have the same cardinality. 

(2) 

(3) 

Now let 599; be the family obtained from y by identifying the elements of 
U ( V) with those of S (T) and consider the independence system (E,, y) 
defined as 
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where 

It is easily seen that (E3, %$) again has properties (1) and (2) with respect 
to Ci. However, is (E,, ‘ik;) a proper generalization of the bipartite 
subgraph independence system over the 2-sum of two given graphs? 

To see this consider the 2-sum of two graphs G, = [Y,, El], 
Gz = [V,, EJ with respect to the edges cl, e4 as illustrated in Fig. (2.2). 
The elementary odd cycles in this 2-sum are of 3 types: 

(i) an odd elementary cycle in G,; 

(ii) an odd elementary cycle in GZ; 

(iii) the union of the edge set of an odd elementary path P, (con- 
necting the endpoints of e,) in G1 and that of an even elementary path P, 
(connecting the endpoints‘ of e4) in GZ, or vice versa. 

Now, if P, is such an odd path in G,, its edge set plus the edge e, forms 
an even elementary cycle, which is not a circuit of the associated bipartite 
subgraph independence system. If, however, we add edges e,, e3 to form 
a triangle with e,, we can complete P, to an odd elementary cycle. 
Moreover, if (E,, %?i) denotes the bipartite subgraph independence system 
over the modification of G, , it can be verified that (E,, %?i) satisfies 
conditions (1) and (2) with respect to the triangle {e,, e,, e3}. A similar 
reasoning holds for G2 and two new edges e5, e6. Finally, we form the 3-sum 
of the two modified graphs by identifying the 2 triangles (cf. Fig. (2.2)) and 
we observe that the collection of odd elementary cycles in this 3-sum 

@(JJ a 
the P-sum of G, and G2 

the d-sum of G, and G2 
(or the composition by 

identification of a triangle) 

FIGURE (2.2) 
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corresponds exactly to the collection of circuits as delined by our composi- 
tion. For further details we refer the reader to [S]. 

The same idea of identifying two triangles can be used for the composi- 
tion of two independence systems (E,, d(G,)), (E2, d(G,)) arising from G, 
and GZ. Note that in this case the system Wi will be empty. The approach 
undertaken by Barahona and Mahjoub in [3] for the acyclic subdigraph 
independence system is exactly along the same line. 

To conclude this section we would like to formulate a result, which is of 
a more technical nature and which will be useful for many of the proofs to 
follow. For this let (E, 9) be an independence system having %? as a system 
of circuits. Moreover, let C E % and (8, T) be a partition of C such that (1) 
and (2) hold with respect to (E, 9), C, and (S, T). Then we have 

LEMMA (2.3). Any base of (E, 9) conrains ICI’1 - 1 many elements of C. 

Proof Suppose there is a base BE Z% containing less than 1 Cl - 1 many 
elements from C. 

Case 1. ScB or T&B. Suppose ScB, i.e., IBnTIclTl-1 by sup- 
position. Since B is a base, there is a circuit in B u {e} for every e E E\B. 
So let e, E T\B and C’ be a circuit contained in B u {e,}. Then C’ contains 
at most I TI - 1 many elements from C, a contradiction to property (2) with 
respect to C and (S, T). 

Case 2. S 0 B and T $ B. Let e, E S\B and e2 E T/B. If now (B n S) v 
{e,}#Sor(BnT)u{e,}#T, we can use the same argument as in Case 1. 
Therefore, we may suppose that 

(BnS)u (el>=S and (BnT)u{e,}=T. 

Since B is a base, there are two circuits C’ and c” such that 

Cc Bu {eI} (and, moreover, S = C’ n C), 

C”cBu {e2} (and, moreover, T = C” n C). 

By property (1) there exists a circuit C3 in (C’ u C”)\C, a contradiction to 
the independence of B. 1 

3. COMPOSING ASSOCIATED POLYHEDRA 

The main subject of this section will be the composition of polyhedra 
associated with independence systems as they have been studied in the last 
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section. It will turn out that in particular the operation of “mixing” circuits 
in Section 2 has a straightforward counterpart in terms of linear 
inequalities. First of all let us introduce some basic notions from polyhedral 
theory. 

A polyhedron P c R” is the intersection of a finite number of halfspaces 
in R”, i.e., sets of points of the form (x E 08” : arx 6 a,}, where a E R”\(O) 
and a, E R. If P is bounded or, equivalently, the convex hull of finitely 
many points we speak of a polytope. A linear inequality aTx<a, with 
UEIR~\{O}, u~EIW, is said to be ualidfor P, if P~{x~W’:a~x~u~}. A 
subset F of P is called a face of P, if there exists an inequality aTx < a, 
valid for P such that F= {XE P : aTx= uO}. We also say that aTx < a, 
defines F. A face F is called proper, if F # P. A proper, nonempty face 
maximal (minimal) with respect to set-inclusion is called a facet (extreme 
point or vertex) of P. Since we only deal with full-dimensional polytopes, 
any such P has a representation of the form P = {x E !R” : Ax < b}, where 
Ax < b is unique up to positive multiples. We will particularly deal with 
P(9), the convex hull of incidence vectors of independent sets in a given 
independence system (E, 9). For this and throughout the following an 
inequality of the type x, 3 0 or x, < 1, eE E, will be called a trivial 
inequality. Finally, expressions of the form Ce. c x, will be abbreviated 
by x(C). 

So let (E, 9) be an independence system, V its system of circuits, C E %, 
and (S, T) a partition of C such that conditions (1) and (2) hold with 
respect to (E, U), C, and (S, T). The following lemma is the first of a 
sequence of lemmata, leading to the main result of this section: 

LEMMA (3.1). If aTx <a, is a nontrivial facet-defining inequality for 
P(9), then a, > 0 for all e E E. 

Proof: Suppose a, c 0 for some e E E. Since aTx < a, is different from 
the inequality x, > 0, there exists an independent set ZEN such that e E Z 
and a’~‘= a,. Now define I’ to be Z\{e>. Clearly, I’ E 9. However, 
a*x” > aO, which contradicts the validity of aTx 6 a, for P(9). 1 

The next lemma concerns the support s(a) of certain inequalities 
aTx < a,, which is defined to consist of all those elements e E E, for which 
a,#O. 

LEMMA (3.2). The only facet-defining inequality for P(9) having a sup- 
port containing C is x(C) < IC( - 1. For any other nontrivial such inequality 
having support s the set s n C is either empty or coincides with S or T, and 
the coefficients in s n C have all the same value. 

Proof Let us first show that the inequality x(C) < ICI - 1 defines a 
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facet of P(9). Clearly, it is valid for P(9). Furthermore, by Lemma (2.3), 
for every e E E\C there exists a base B, of (E, 9) that contains e and 
ICI - 1 many elements of C. We define 

1 = C\{e>, if eEC, 
e 

B,n(Cu {e>), if eEE\C. 

It is clear that for all e E E the sets Z, are independent, that their incidence 
vectors are linearly independent, and that they satisfy x(C) < ICI - 1 with 
equality. Second, suppose that there is a facet-defining inequality for P(9), 
say aTx < ao, which is different from x(C) < ICI - 1 and whose support 
contains C. From Lemma (3.1) we know that a, 2 0 for all e E E. We now 
claim that any independent set Z, whose incidence vector x’ satisfies 
aTx < a,, with equality, also contains I Cl - 1 many elements of C. Suppose 
this is not the case for a particular Z. Then by Lemma (2.3) there is a base 
B that contains Z and at least one other element of C\Z. But since a, > 0 
for all e E C we obtain that aTxE > aTxz= a,, a contradiction. This proves 
our claim. It now follows that the inequalities aTx G a, and x(C) < I Cl - 1 
define the same facet of P(9)), a contradiction. This completes the proof of 
the first part of our assertion. 

For the second part let aTx < a0 be a facet-defining inequality for P(f), 
different from x(C) < ICI - 1, and having support s(a). Suppose that 
0 # [s(a) n S] # S, where ISI 2 2 can be assumed, and let e, E s(a) n S. 
Since aTx < a, is nontrivial, there is an independent set Z not containing eo, 
whose incidence vector satisfies a’x*=a,. By Lemma (2.3), Z can be 
enlarged to a base B which contains ICI - 1 many elements of C. Since 
a, > 0, B does not contain e, and therefore B u {e,} must contain C. 

Now let e, be an element in S\s(a). We claim that I’ := (B\{e,}) u {e,} 
is independent. If this were not the case I’ must contain a circuit C’. Since 
e, is not contained in C’, by condition (2) it follows that C’ n S= 0, 
and thus c’ c B, a contradiction. Now since a,, > 0 and a,, = 0, 
aTx” > aTxB = a o, a contradiction. Therefore, we can conclude that 
s(a) n S is either empty or coincides with S (or T by symmetry). 

By a similar reasoning we can show that the coefficients a, for 
e E s(a) n S have all the same value. 1 

Using Lemma (3.2) the two polytopes P (9i) and P (YJ can be 
described by linear systems having the following form [Note. E: := E,\C, 
for i = 1, 2; (S, T), (U, V) are the partitions of the distinguished circuits C,, 
Cz, respectively; K, is the index set for all those inequalities, whose support 
has empty intersection with C,, K2 is the index set when the intersection 
equals S, and K, is used for the case that the intersection equals T; the Lis 
are defined similarly.] : 



COMPOSITION OF INDEPENDENCE SYSTEMS 243 

1 six, +x(S) < ad 
ePE; 

‘(‘) ’ c adx, +x(T) < ai 
esq 

x(C,)G IC,I - 1 

OQx,<l 

I O<x,Gl for all eE E,. 

for iEKI 

for ~EK, 

for iEK3 

for all e E E, 

for MEL, 

for jEL2 

for jEL3 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Now let (Es, $,) be the composition of (E,, Yi) and (E,, $z) as defined in 
Section 2. In order to establish a linear system sufficient to describe P(Y3)), 
we need to introduce an additional set of inequalities. 

DEFINITION (3.13). Given a constraint of the type (3.4) and one of type 
(3.10) (resp. one of type (3.5) and (3.9)) the associated mixed constraint is 
given by 

1 aLx,+ 1 bix,<a6+b’,-(IC,I - 1). 
esq S?eEi 

An immediate consequence is 

(3.14) 

LEMMA (3.15). Any mixed constraint (3.14) is oalid for P(Y3). 

ProoJ: Let Z be a member of ,a;. By Lemma (2.3), Z can be enlarged to 
a base B of (E3, 9J), containing lC1 I- 1 many elements of Ci. We define 
Bi := Bn Ei, i= 1, 2. Obviously, B,E 4 for i= 1, 2. Since xBI, xB2 both 
satisfy the constraints for P($,), P(9*) used to form the mixed constraint, 
x’ satisfies this latter constraint. 1 

In order to establish a linear system sufficient to describe P(93) and based 
upon those for P(Y,), P(9*) we will introduce two “auxiliary” independence 
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systems (E3, 9:), (E, , X:), which are defined by the following systems of 
circuits: 

Polyhedral descriptions of these independence systems are now going to be 
presented. For this let us first present some technical lemmas. 

LEMMA (3.16). Given two inequalities of type (3.4) and (3.5), i.e., 

and 

1 a6x,+x(S)<ab, iEK2, 
eaq 

c a$x,+x(T)<ai,jEKg, 
ec.q 

both valid for P($, ), the mixed inequality 

.zi (a6+a~)x,~ab+a~-(IC,l-l) 

is also valid for P(91). 

Proof: In analogy to the proof of Lemma (3.15) any ZE X1 can be 
enlarged to a base B1 of El having [Cl1 - 1 many elements in common with 
C,, the distinguished circuit. The assertion follows immediately. 1 

LEMMA (3.17). Given an equality of type (3.4) (resp. (3.5)), i.e., 

0) Ce~Ei aax,+x(S)<ak, ieK,, (resp. (ii) CeEE;adx,+x(T)<ajo, 

jE Kd 

the inequality 

(i’) CesEi aLx,<ah-(ISI-l), iEKZ, (resp. (ii’) CeeEiaix,< 
a’,--(ITI - l),jEKd, 
is also valid for P(91). A similar statement holds for P(9*) with respect to 
a constraint of type (3.9) (resp. (3.10)). 

Proof. Let Z be a member of Yi . Then by Lemma (2.3), Z can be 
enlarged to a base B of (E,, 9i) containing [Cl1 - 1 many elements of C,. 
Since xB satisfies (i) (resp. (ii)), x1 satisfies (i’) (resp. (ii’)). 1 

Since (ZEY: :Z~,??;}c$i and {ZEN: :ZGE;}~Y~:, it follows from 
Lemmata (3.16) and (3.17) that the following constraints are valid for 
P(J:) and hence for P(YJ): 
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(3.18) 

Now, for (E,, La:), let P: be the polyhedron defined by all constraints of 
type (3.3), (3.4), (3.7), (3.8), (3.9) (with U replaced by S), (3.12) (for 
e E E;), (3.18), and the collection of all possible mixed constraints (3.14). 

We will first show that P(Y:) equals P:. By symmetry, we also obtain 
a linear system suflicient to describe P(YT) and finally, we will prove 
that both these linear systems together with the circuit inequality 
x(C,) < ICi 1 - 1 provide a complete description of P(Y3). 

For this two more technical lemmata are required: 

LEMMA (3.19). Any inequality x(C)< ICI - 1 for CE%‘: is redundant 
with respect to the inequalities defining PT. 

Proof: Let C be a circuit from %?f. If CC E,\T or CG E; v S then the 
associated inequality is redundant with respect to (3.3), (3.4), (3.8), (3.9): 

(i) if CE E;, for any eE T there is a set ZG C with cardinality 
I Cl - 1 such that Zu {e} E 4: (otherwise we would get a contradiction to 
condition (l)), and then x(C) 6 1 Cl - 1 gives rise to a constraint of type 
(3.3) by sequentially applying Padberg’s lifting procedure (cf. [lo]); 

(ii) if C n S, = S, by Lemma (3.2) and the lifting procedure our 
inequality x(C) d ICI - 1 gives rise to a constraint of type (3.4). 

The case that C E E; u S is treated analogously. 

(iii) If Cn E, # @ and Cn E; # 0 by definition of (E3, &), C 
is obtained by mixing two circuits C’ E %?i, C” E &, whose associated 
inequalities give rise to facet-defining inequalities for P(Yl) and P(J$), 
respectively, as in cases (i) and (ii). These latter inequalities must be of type 
(3.4) and (3.10) (or (3.5) and (3.9)). But then the circuit inequality 
x(C) < ICI - 1 can be obtained from a mixed constraint by setting its coef- 
ficients for e $ C to zero. 1 

582b/53:2-7 
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LEMMA (3.20). Let kc { 1,2}. If CePEj u,x,<a, is a facet-defining 
inequality for P($3) such that {erz E, : u, > 0) is contained in Ek, then 
c eE Ek u,x, < a, is facet-defining for P(Yk). 

Proof: Obvious. 

LEMMA (3.21). Let x* be a feasible solution of the linear system deftning 
P: and let at least one of the inequalities (3.4), (3.9), or x(S) < ISI be 
satisfied with equality by x*. Moreover, let 6 := JSI -x*(S) (>O), e, be a 
distinguished element from T resp. V, and 

i 

X,* for e E E,\T, 

x1 *- e .- 1 for eE T\{e,}, 
6 for e=e, 

X,* for e E E,\ V, 

x2 -- e .- 1 for eE V\(eo>, 
6 for e=e,. 

Then x1, x2 are both feasible for P(YI), P(Y2). Furthermore, a mixed con- 
straint (3.14) is satisfied by x* with equality iff the associated inequality of 
type (3.4) is satisfied with equality by x1 and that of type (3.10) is satisfied 
with equality by x2. A similar statement holds for the case that two 
inequalities of type (3.5) and (3.9) define the mixed inequality. 

Proof: Let us first show that x1 E P(YI) (the proof for X*E P(Y2) is 
similar). We claim that x* has to satisfy the inequality x(S) 2 ISI - 1. 
Otherwise, the constraint assumed to be satisfied with equality by x* 
would be of type (3.4) or (3.9). But then 

1 uLx:>ud-(ISI-1) or 
esq 

.g; bLx$ > b& - (I UI - 1 ), respectively. 

By Lemma (3.17) this contradicts the validity of these inequalities with 
“>” replaced by “ < .” Consequently, 0~ 6 < 1 and thus the trivial 
inequalities (3.7) are satisfied by x1. Clearly, the constraints (3.3), (3.4) are 
satisfied by x1. To show that x1 also satisfies the constraints of type (3.5), 
we consider two cases: 

Case 1. x*(S) = ISI. Then 6 = 0. Take a constraint of type (3.5), i.e., 

(iii) CecE; uLx,+x(T)<u6, iEK3. 

By hypothesis, the constraint 

(iv) CesBi uix,Gub-(ITI - 1) 
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is satisfied by x* and, by definition, also by x1. Since 6 =0, x1 also 
satisfies (iii). 

Case 2. x*(S) < ISI. Now there is an inequality of type (3.4) or (3.9) 
which is satisfied by x* with equality, e.g., 

(VI Cesq ayxe* + x*(S) = a; for some i’ E K,. 

Since the inequality 

obtained by mixing inequality (iii) with the one corresponding to (v) is 
satisfied by x*, we get 

(vi) CesEi (a~+a~)x,*<a;+a;-(~c,l-l). 

Subtracting (v) from (vi) we obtain 

c adxe* -x*(s)+ IC,I - 1 <a;, 
eeE; 

which is equivalent to 

This shows that x1 satisfies (iii). 
If, on the other hand, a constraint of type (3.9) is satisfied by x* with 

equality, we can show by a similar reasoning that x1 satisfies (iii). 
Finally, suppose that a mixed constraint (3.14) is satisfied with equality 

by x*, i.e., 

1 a:x,*+ 1 b;x,*=a;+b’o-(IC,I-l). 
ecfq ecEi 

Suppose w.1.o.g. that 

1 ~6x6 +x’(S)<a6 or 
t-EEi 

& b;xf +x’(V) <b& 

By definition of x1 and x2 this yields 

c a;x: + x*(S) + 1 b;x: + IS/ + ITI - 1 -x*(S) < a; + b;. 
eeE’i eeEi 

a contradiction. 1 

We are now able to state the key result of this section: 
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THEOREM (3.22). P(9:) = P:. 

Proof By Lemma (3.19) a point x E Pf is integral iff it is the incidence 
vector of a member of 9:. Since P(9f) is contained in P:, we only have 
to show that every extreme point of Pf’ is integral. For this suppose there 
is an extreme point x* of P: having at least one nonintegral component. 

Case 1. There is an element e’ E S such that 0 < x$ < 1; in this case x* 
must satisfy at least one of the constraints (3.4), (3.9) with equality, for 
otherwise x* would not define an extreme point of PT. Let x1, x2 be 
defined as in Lemma (3.21), by which we have seen that x1 E P(91) and 
x2 E P(Y2). Consequently, there is a representation of the form 

xl = i ViJI!, x2= i pjx': 

i= 1 j=l 

with 

v~,ZA~>O, and Z!E~~;, Z,?~la; for all i,j. 

We note at this place that any constraint of P(&Jl) resp. P(Y*) satisfied by 
x1 
xd, 

resp. x2 with equality is at the same time satisfied with equality by 
i = 1, . . . . z and x’j, j= 1, . . . . s, respectively. In particular, since 

x’(C,) = x2(C2) = ICil - 1, it follows that every set Zi, i = 1, . . . . z, and every 
set ZT, j= 1, . . . . s, contains IC, I - 1 many elements of C, and C2, respec- 
tively. 

Now since xf c 1, there must exist indices iO and j, such that e’ 4 Zk and 
e’$Zi:, (note that we identify S with U and T with V). By the previous 
remark it follows that Tc (Zk n ZjJ. Let Z := (Zk u ZjO)\T. 

CLAIM 1. Z is a member of 9:. 

Proof: Suppose this were not the case. Then there must be a circuit 
C’ E %9: such that C’ E I. Since C’ n f$ # 0 # C’ n ZjO, it follows by delini- 
tion of %T that C’ is obtained by mixmg two circuits C; E %i and C2 E %i, 
where w.1.o.g. S c C; and T c C2. But then Zi:, contains C2, a contradiction. 

CLAIM 2. Any constraint satisfied by x* with equality is at the same time 
satisfied with equality by XI. 

Prooj This is immediately clear for constraints of type (3.3), (3.4), 
(3.8), (3.9), (3.18) as well as the trivial inequalities. So let us consider a 
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mixed constraint (3.14). By Lemma (3.21) the two constraints used for 
getting the mixed one are satisfied with equality by x1 and x2. In addition, 
the incidence vectors of Zf, and ZjO satisfy the inequality x(C,) < IC,I - 1 
with equality, since this is the case for x1 and x2. Therefore, x’ satisfies the 
mixed constraint with equality, too. Since XI # x*, x* cannot define an 
extreme point, a contradiction. 

Case 2. For all e E S we have x,* = 1; in this case there are Z;O and Z,Y 
such that SE ZjO n Zi. Putting Z := (Zt u Zi)\S, we again obtain a member 
of 4:, whose incidence vector satisfies the same constraints with equality 
as x*, a contradiction. 

Case 3. There is an element e’ E S with xf = 0; if there is at least one 
inequality of type (3.4) or (3.9), which is satisfied with equality by x*, Case 
1 applies. Otherwise, we can augment x5 properly to obtain another 
extreme point of PT, which satisfies one of the constraints (3.4) or (3.9) or 
x(S) 6 IS\ with equality. But then again Case 1 applies. 

In a similar way we can derive 

COROLLARY (3.23). Zf G$z is obtained by removing from %$ all those 
circuits which contain S, the linear system given by the inequalities (3.3) 
(3.5), (3.7), (3.8), (3.10) (with T/replaced by T), (3.12) Vor eEE;), (3.18) 
and all mixed inequalities (3.14) fuZly describe the polytope P(Yf). 

We are now able to fully describe P(J$): 

COROLLARY (3.24). The polytope P(33) is fully described by the con- 
straints (3.3), (3.4), (3.5), (3.8), (3.9), (3.10), (3.14), the inequality 
x( C,) < 1 C1 ( - 1, as well as the trivial inequalities 0 < x, < 1 for all e E E3. 

Proof: Since (ES, Ys) satisfies conditions (1) and (2) with respect to C, , 
S, and T, by Lemma (3.2) the constraint x(C,) < I C,I - 1 is the only facet- 
defining one for P(33), whose support contains C,. Moreover, the support 
of any other such inequality coincides with C, in S, T, or the empty set. 

So if the constraints proposed do not s&ice to describe P(3z) an addi- 
tional facet-defining inequality must exist. But such an inequality defines at 
the same time a facet for P(Y:) or P(Yz) (because S: and 4: both 
contain &). Consequently, such an inequality must be one of (3.18). But by 
Lemma (3.20) the inequalities (3.18) are all redundant with respect to the 
trivial ones and those given by (3.3), (3.8). Therefore, they cannot be facet- 
defining for P($S), a contradiction. 1 

The conclusion with particular reference to the class of linearly relaxable 
independence systems is the following: 
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COROLLARY (3.25). If (E,, 91) and (E2, J$) as given above are both 
linearly relaxable, then (Es, YJ) obtained by composition is also linearly 
relaxable. 

4. SOLVING THE INDEPENDENT SET PROBLEM FOR ( E,,X3) 

Having discussed how to compose an independence system ( E3, X3) out 
of (E, , Yi), (E2, YZ) and, in particular, how to obtain a linear system suf- 
ficient to describe P(Y3) once we have such systems for P(Y1) and P(9J we 
are now going to elaborate on algorithmic aspects of our composition. As 
above and throughout this section let (E, , X1), (E2, YJ satisfy conditions 
(1 ), (2), and (3) with respect to distinguished circuits C, E %‘, , C, E y, and 
partitions (S, T), (U, V), respectively, and let (E,, 9J) be the composition 
of these two as defined above. For notational convenience we will write 
Y3 = Y1 A$$;. Moreover, let w: E, + Iw be a weight-function on E3, which 
can be assumed to be nonnegative without loss of generality. In the sequel 
we will show how a maximum-weight independent set (with respect to w) 
within Yj can be determined from maximum-weight independent sets in 91 
and in YZ with respect to two appropriate weight-functions associated with 
9, and &. The method proposed is polynomial in 1 E3 1 provided poly- 
nomial algorithms for solving problem (ISP) over (E, , Yi ) and (E,, 9*) are 
available. Of specific importance is the fact that this method can be 
generalized to a dynamic programming polynomial time algorithm for the 
solution of (BP) over an independence system (E, Y), which is obtained 
by sequentially composing (E,, X,), ,.., (E,, &), where m is polynomial 
in JEJ. 

First observe that by Lemma (2.3) any base of (E3, 9,) contains /Cl1 - 1 
many elements from C,, identified with C,. For the given partition (S, T) 
of C1 let e* E S and e** E T be chosen such that 

w(e*)=min{w(e) :eES) and w(e**) = min{ w(e) : e E T}. 

As a consequence, any maximum-weight base of (E3, X3) can be transformed 
into one containing the whole set C,\(e*, e**} and either e* or e**, but 
not both. This can be achieved by appropriate element exchanges within S 
or T and due to the special structure of the members of g3. 

Let us now consider the restrictions w1 and w* of w  to E, and Ez, respec- 
tively, i.e., the weight-functions wi: Ei + R + given by w’(e) = w(e) for all 
e E E,, i = 1,2. Then let Bf and B :* (B: and B$*) be bases within 9r (J$) 
having maximum total weight of and of* (0: and o:*) with respect to 
w1 (w*) and containing e* and e **, but not both, respectively. If then oj 
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is the maximum total weight of a member I, from & (with respect to w) 
we have 

w3 =max{o: + wz* - w(C,\{e**}), w:* + o:* - w(C,\{e*})}, 

since any such I, decomposes into optimal bases B, ~3‘ and B, ~9~;. We 
should remark at this point that a straightforward way to determine such 
an Z3 would consist just in determining optimal bases B:, Bz and Bf*, 
B;* and comparing the total weights of Bf v Bt and B:* v Bf *, respec- 
tively. This procedure, however, would provide us with an exponential 
algorithm when generalized to the composition of more than 2, say m, 
independence systems, even when m is polynomial in [El. 

As already mentioned the method presented here will require a maximum- 
weight base within 9z with respect to w’~, an appropriate modification of w2. 
We will now develop the details of this modification. First of all by putting 
y := w(C,\{e*, e** } ) and considering the system of 2 equations 

X+y=O:-G 

y+y=o,*-a, 
(4.1) 

in which x, y, (r are parameters, we are able to give a slightly different expres- 
sion for w3 in terms of these parameters. Namely, if (4.1) admits a solution 
with x, y both nonnegative, we get 

o,=o+max{x+o:-w(e*),y+o$*-w(e**)}. 

So if we define 
(4.2) 

a0 :=w:-co:*, x := max{O, a,}, y :=x-ao, 

one easily verifies that together with an arbitrary 0, x and y satisfy the system 
(4.1). As a modification of w2 we now assign the weights x and y to e* and 
e**, respectively, and a weight w(e) + M, M chosen to be sufficiently large 
(for instance M = 2(x + y)) to the remaining elements of Cr. Together with 
w2(e) as weights for all e E E,\C, we hereby obtain a new weight-function w’~ 
over E,, assuring by the choice of M that any maximum weight base of 
(E2, 9*) with respect to w’~ will not contain either e* or e**. The total weight 
of such a base is thus given by 

0; = max{o :-w(e*)+x+M(IC,I-2),o:*-w(e**)+y+M(IC,I-2)) 

=M(IC,I-2)+max{x+o:-w(e*),y+o:*-w(e**)} 

implying by (4.2) 

o,=o+w;-M(IC,I -2). (4.3) 

This allows us to derive the following result: 
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THEOREM (4.4). Let w’* be given as just introduced and B2 be a maximum- 
weight base within (E2, X2) with respect to w’*. Moreover, let B, be a subset of 
E, defined as follows: 

(i) ife* E B; then B, := B; u BT, 
(ii) ife** EB; then B, := B; u B:*. 

Then B, is a maximum-weight independent set within (ES, A) with respect 
to w. 

Proof. Clearly, B, is a member of Y3 by definition of VS. Moreover, for 
w(Bj) we have in case (i) 

w;+o:-y-x-M((C,( -2)=o;+a-M(IC,I -2), 

and in case (ii) 

o;+o:*-y-y-M(IC,J -2)=o;+a-M(IC,I -2), 

which in both cases equals o3 by (4.3). fl 

Let us now reflect on the situation that an independence system (E, 9) is 
the composition of more than two appropriate ( Ei, 4). For convenience let 

H, := &, H”-i :=H,-i+l d&i, i = 1, . . . . n-l,andY:=H,. 

4, A 42 A 43 A A 4n-1 A %l 
I 1 I 

+ .l w=w 

6, 4-- B2 & - B,., - B, 

FIGURE (4.5) 
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By Theorem (4.4), a maximum-weight independent set with respect to w  and 
(E, 9) can be found by determining B T, B:* as already considered above 
and by solving (ISP) over H, with respect to a modified weight-function w’*. 
This latter problem can now be “decomposed” identically and so on until we 
reach the point to determine an optimal independent set within & with 
respect to a weight-function wfn. Together with B,*- r, BX!‘, this yields by 
application of Theorem (4.4) an optimal solution for (ISP) over H,, and so 
on until we obtain such a solution for H,, which equals 9. Figure (4.5) 
illustrates this procedure schematically, the Bi representing maximum-weight 
independent sets within Hi and with respect to weight-functions wfi for 
i=n,n-1 1. 3 . . . . 

5. ONTHEK~-COVERPROBLEMIN GRAPHSNOTCONTRACTIBLETO~L-e 

The K,-cover problem in a graph G = [ V, E] is the task to find an edge set 
FL E not containing a triangle and having maximum total weight with 
respect to a weight-function w: E -+ R + . The induced independence system 
(E, d(G)) has already been introduced in Section 2, and what we are now 
going to study is the polytope P(d(G)), i.e., the convex hull of all incidence 
vectors of triangle-free edge sets in G. For this we need some further defini- 
tions. If G = [V, E] is a graph (without loops and multiple edges), and if e 
is an edge of G, let G-e be the graph obtained from G by deleting edge e. 
Contracting edge e in G means identification of the endnodes of e, deletion of 
one of the two parallel edges, which may arise by this operation and deletion 
of e from the resulting graph. G is said to be contractible to a graph H if H 
can be obtained from G by repeated applications of deletion and contrac- 
tions. In this section we will consider the class of all those graphs which are 
not contractible to K, - e, the complete graph on 5 vertices with one edge 
deleted (as depicted in Fig. (5.1)). This class has also been studied by 
Barahona and Griitschel [2] with respect to the travelling salesman problem. 

Some examples of such graphs are illustrated in Fig. (5.2). 
A constructive characterization of graphs not contractible to K5 -e has 

been given by Wagner [ 111: 

THEOREM (5.3). Each maximal (w.r.t. its edge set) graph G not contrac- 
tible to K, -e can be obtained by taking repeated l- or 2-sums of the graphs 
shown in Fig. (5.2). 

Let us study the implications of Wagner’s theorem and of the previous 
section for the composition of associated polyhedra. If G, and G, are two 
graphs, their associated polyhedra P(d(G,)) and P(d(G,)) are given by the 
systems of linear inequalities A ‘x1 < 6’ and A2x2 6 b2, and G, is the l-sum 
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FIGURE (5.1) 

of these two graphs, then P(d(G,)) is fully described by the system 
A’x’ <b’ A2,y2 < b2. 

No; a&me $at G3 is the 2-sum of G1 and G2 with respect to e, E E, 
and e4 E E, (cf. Section 2). Recall that the independence system (E;, d(G;)) 
is the composition of (E;, d(G;)) and (EL, d(G;)) with respect to 
Cl = {e19 e2, e3}, S= {e,}, T= { e2, +>, and C2= {e4, e5, e6}, U= {e4>, 
V= {es, e6}, the G: denoting the modifications of the Gi by adding e2, e3 

the Prisma wn 

FIGURE (5.2) 
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and e5, e6 as shown in Fig. (2.2). We claim that apart from the 
distinguished inequality x( C,) d 2, [x(C,) 6 23 there is no facet-defining 
inequality for P(d(G;)) [P(d(G;))], whose support contains {e,, e3} 
[(e,, e,>]. If on the contrary there would be one for, say, P(d(G;)), each 
incidence vector of a triangle-free edge set in G;, which satisfies this 
inequality with equality, would have to satisfy x(C,) = 2, a contradiction. 
Consequently, there is no mixed inequality necessary to define P(d(G;)), 
and by Corollary (3.22) a full description of this polytope is given by 
A’x’ <b’, A’x’* < b2, and x(C,) < 2, where A2x’* < b2 is the linear system 
obtained from A2x2 d b2 by identifying e,, e2, e3 with e4, e5, e6, respec- 
tively. This also implies that P(d(G,)) is fully described by A’x’ d b’, 
A*x* <b*. 

Whit about the polyhedra associated with the basic graphs as shown in 
Fig. (5.2)? First of all let us notice that for any graph G, P(d(G)) is full- 
dimensional, which implies that (up to multiplication by a constant) the 
defining linear system is unique. Moreover, Conforti et al. [4] have shown 
that for a graph G = [V, E] the following inequalities define facets of 
W(G)): 

x(C) < 2 V triangles C in G; (5.4) 

x(W,)<3k+l V n-wheels W,,, n = 2k + 1, and k E N; (5.5) 

O<x,d 1 V edges e in G. (5.6) 

It is not difficult to verify that for the graphs K, , K2, K3, K,,, the prisma, 
and W, with n even, the polyhedron P(A(G)) is fully described by the 
linear inequalities of type (5.4) and (5.6). It remains to establish a system 
of linear inequalities sufftcient to describe the polyhedron associated with 
an n-wheel W,, where n > 3 and odd. 

THEOREM (5.7). Given an n-wheel W,,, n = 2k + 1, k E N, the polyhedron 
P(A( W,)) is fully described by the inequalities (5.4), (5.5), (5.6). 

ProoJ: Let aTx da, be a nontrivial facet-defining inequality of 
P(A( W,)). Then by Lemma (3.1) we know that a 2 0. We will show that 
this inequality is necessarily of type (5.4) or (5.5). Let us denote by 

- E, the edge set of W,, ; 

- H that subgraph of W,,, which is induced by the set 
{eEE,:a,>O}; 

- 9 the collection of those triangle-free edge sets of W,, for which 
aTx = a,. 

Then the only equations satisfied by all members of Y are positive multi- 
ples of a’x=a,. 
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FIGURE (5.8) 

Case 1. There is an edge e E E,, such that a, = 0. Since aTx 6 a, is at the 
same time facet-defining for P(d(H)), which in this case is fully described 
by inequalities of type (5.4), (5.6), our inequality aTx < a, is of type (5.4). 

Case 2. a, > 0 for all e E E,,. Then aTx < a, is not a triangle inequality. 
Let e,,e,,...,e,,+,,f,,f,,...,f,,,, denote the edges of W,, such that ei 
and ei+, are incident at a common node and { ei, fi, fi, i } form a triangle 
for i= 1 , . . . . 2k + 1 (the indices are taken modulo 2k + 1; see Fig. (5.8) for 
an illustration). 

Remark. By validity of aTx < a,,, if ZE Y is triangle-free such that either 
fi or f2 is not in Z, then necessarily e, E I. 

CLAIM 1. There is a T, E F containing both fi, f2. 

Proof. If this is not the case then, by our previous remark, every 
triangle-free set T E Y contains e, . But then we have xz = 1 for all TE F-, 
a contradiction. 

CLAIM 2. There is a T2 E F containing neither fi nor f2. 

Proof: If this is not the case then for every TE Y the following holds: 

fi4T*e~~f2~T9 

f24T*el,fieT. 

Thus xT( {ei, f,, f,}) = 2 for all TE Y, a contradiction. 
Now consider the edge sets E’ := (T,\{f,}) u {e,}, E2 := 

(Tl\{f2>)u {e,>, h w  ere T, is the edge set exhibited by Claim 1. Clearly, 
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E’, E2 are triangle-free and their incidence vectors satisfy arx 6 a,. This 
implies that 

0) 4, G afl 9 af2. 

Considering e2, we obtain 

(ii) ae2 G af2 y ah. 

Now we consider the edge set T2 exhibited in Claim 2. We must have 
e2, f3 E Tz. Otherwise, T; := T2 u (f2} is triangle-free but violates 
arx<a,. Let E3 :=(T2\{e2})u {f2}, E4:=(T2\{f3})u {fi}. Again E3, 
E4 are triangle-free and we obtain 

(iii) afi<a,,, 
(iv) 92 daf,. 

From (ii) and (iii) we get arz = ue2, and by symmetry 

(v) ~1,~ = ar for i= 1, . . . . 2k + 1. 

From (iv) and again by symmetry we get 

(vi) af,<af,< f-. <arzk+,<ah. 

Altogether, this yields a, = 1 for all e E E, and some A E IX,. Therefore, 
arx <a, is of the form (5.5). 1 

From Theorems (5.3), (5.7), and the above remarks concerning the 
polytopes associated with the graphs shown in Fig. (5.2) we obtain the 
following 

THEOREM (5.9). For each graph G not contractible to K, - e the polytope 
P(d(G)) is fully described by the constraints (5.4), (5.5), (5.6). 

In [4] Conforti et al. have presented a polynomial algorithm for the 
solution of the separation problem for 2k + l-wheel constraints. This and 
Theorem (5.9) allow us to state the following result: 

THEOREM (5.10). The K,-cover problem is polynomially solvable in 
graphs not contractible to K, - e. 

6. FINAL REMARKS 

The following question has also been studied intensively: If we are given 
minimal linear systems sufficient to describe P(Y,) and P(Y& will the 
linear system sufficient to describe P($3) as derived in Section 3 also be a 
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minimal one? We are able to show that the answer to this question is in 
the affirmative. 

Another interesting property of linear systems has been studied within 
this context. Call a linear system Ax <b totally dual integral (TDI) if the 
dual to the linear program 

Maximize crx subject to Ax d b 

has an integral optimum solution for each integral c for which an optimum 
exists. This important concept goes back to Hoffman [9] and Edmonds 
and Giles [S]. Our main result in this area can be stated as follows. 

If the linear systems (3.3)-(3.7) and (3.8k(3.12) are TDI, then the linear 
system given by the inequalities (3.3~(3.5), (3.8)-(3.10), (3.14), the circuit 
inequality x(C,) < lC,l, and all trivial inequalities is also a TDI-linear 
system. 

What are the consequences of this when looking at the linear system 
(5.4), (5.5), (5.6) associated with K,-covers in graphs not contractible to 
K, - e? It can easily be seen that for the basic graphs K,, K2, K3, K3,3 and 
the prisma the set of inequalities (5.4), (5.6) constitute TDI-linear systems. 
If we could show that for an n-wheel W,, 3 < n odd, the linear system (5.4), 
(5.5), (5.6) is TDI, then we could conclude that this linear system for any 
graph not contractible to K, - e would also be TDI. Similar results 
certainly hold for linear systems associated with bipartite subgraph systems 
or acyclic subdigraph systems. 
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