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Generating facets for the independence system polytope

Pierre Fouilhoux∗, Martine Labbé†, A. Ridha Mahjoub‡, and Hande Yaman§¶

July 16, 2009

Abstract

In this paper, we present procedures to obtain facet-defining inequalities for the

independence system polytope. These procedures are defined for inequalities which are

not necessarily rank inequalities. We illustrate the use of these procedures by deriving

strong valid inequalities for the acyclic induced subgraph, triangle free induced subgraph,

bipartite induced subgraph, and knapsack polytopes. Finally, we derive a new family

of facet-defining inequalities for the independence system polytope by adding a set of

edges to antiwebs.

Keywords: Integer programming, polyhedral combinatorics, independence system poly-

tope, lifting, non-rank facets

1 Introduction

An independence system (V, I) is the association of a finite set V = {1, ..., n} and a non-

empty family I of subsets such that whenever I ∈ I and J ⊂ I, we have J ∈ I. The

members of I are called independent sets and those of 2V \ I dependent sets. A minimal

dependent set is called a circuit and an independence system is fully characterized by its

family of circuits. Consider now the situation where a weight is associated with every

element of V . The Independence System Problem (ISP) consists of finding an independent

set with maximum total weight.

In this paper, we study the polytope associated with the independence system problem.

We present procedures to obtain facet-defining inequalities for this polytope. These proce-

dures are defined for inequalities which are not necessarily rank inequalities. We illustrate

the use of these procedures by deriving strong valid inequalities for the acyclic induced sub-

graph, triangle free induced subgraph, bipartite induced subgraph, and knapsack polytopes.
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We denote a hypergraph with node set V and (hyper-)edge set E ⊆ 2V by H = (V, E). A

hypergraph where all the edges are of cardinality two is called a graph. For an independence

system (V, I), we define the hypergraph H = (V, E) as the intersection (or conflict) hyper-

graph where E is the set of all circuits of (V, I). A subset I of V is called independent in H

if |I ∩ e| ≤ |e| − 1 for every edge e ∈ E. Observe that there is a one-to-one correspondence

between node subsets that are independent in H and the independent sets of (V, I). In the

sequel, we use the intersection hypergraph to define an independence system.

For a given hypergraph H = (V, E), let P (H) be the convex hull of the incidence vectors

x of the independent sets in H (xi = 1 if node i is in the independent set and xi = 0

otherwise). We refer to the polytope P (H) as the Independence System Polytope of H.

When every dependent set of an independence system is of cardinality two, ISP is called

the stable set (or vertex packing or anticlique) problem. A stable set of a graph is a set

of pairwise non adjacent nodes. The stable set problem consists of finding a stable set of

maximum weight; see [5, 9, 12, 13, 14, 15, 16, 28, 31, 33, 37, 41] for results on the stable set

polytope.

Another important special case of ISP is the knapsack problem, where independent sets

are subsets of V whose incidence vectors satisfy the knapsack constraint
∑

i∈V aixi ≤ α

with ai > 0 for all i ∈ V . The knapsack problem consists in finding an independent set

with maximum weight. The dependent sets are called covers and circuits are called minimal

covers. The knapsack polytope has been studied extensively (see e.g. [1, 4, 24, 25, 29, 38,

39]).

Consider an independence system defined by hypergraph H = (V, E). For S ⊆ V and

a ∈ IR|S|, we define

rH
a (S) = max{

∑

i∈I

ai : I ⊆ S and |I ∩ e| ≤ |e| − 1 for all e ∈ E}

to represent the maximum weight of an independent set in H whose node set is completely

contained in S. Clearly, the inequality
∑

i∈S aixi ≤ rH
a (S) is a valid inequality for P (H).

If each entry of vector a is one, then the function

rH(S) = max{|I| : I ⊆ S and |I ∩ e| ≤ |e| − 1 for all e ∈ E}

is called the rank function and its value is equal to the maximum cardinality of an inde-

pendent set in H whose node set is completely contained in S. The corresponding valid

inequality
∑

i∈S xi ≤ rH(S) for P (H) is called a rank inequality (or boolean inequality). For

instance, cover inequalities for the knapsack polytope are rank inequalities.

Most of the facet-defining inequalities known for the independence system polytope are

rank inequalities that are based on some structured sub-hypergraphs. They generalize the

rank facet-defining inequalities of the stable set polytope. For example, clique inequalities

were generalized to P (H) by Euler et al. [20], Nemhauser and Trotter [28] and Sekiguchi [36].

Odd cycle inequalities were also generalized to P (H) in [20] and [36], while anticycle in-

equalities were generalized to P (H) in [20]. Laurent [26] generalizes the antiweb inequalities

to P (H). Conforti and Laurent [18] study the facial structure of the independence system

polytope by decomposing the underlying independence system into a union of matroids.
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Euler and Mahjoub [21] introduce a composition technique of independence systems by cir-

cuit identification and discuss its implications for the associated polyhedra. More recently,

Easton et al. [19] give a new definition of rank inequalities as hyperclique inequalities and

propose a heuristic separation method for these inequalities. Müller and Schulz [27] study

the polytope associated with the transitive packing problem which generalizes ISP. Their

results, when reduced to the case of ISP, further generalize the rank inequalities of Euler et

al. [20] and Laurent [26].

ISP is known to be equivalent to the set covering problem (SCP). Given a finite set V

and a family F of subsets of V , a set cover is a subset C of V which intersects every subset

in the family F . SCP is to find a set cover of minimum weight. It can also be written

as min{cx : Ax ≥ em, xj ∈ {0, 1}, ∀ j ∈ V } where A = [aij ] is an (m, n) matrix with

aij ∈ {0, 1}, c ∈ IRn and em is the vector in IRm in which all the entries are one. For a

given independence system (V, I), let F be the family of circuits of (V, I). Then I ⊆ V is

independent if and only if V \ I is a set cover. Balas and Ng [2, 3] study the facet-defining

inequalities of the set covering polytope that have coefficients of 0,1 and 2. In [35], Sassano

studies an equivalent formulation of SCP obtained by associating with the (0, 1)-matrix A

of the problem a bipartite graph G = (V, U, E) with V = {v1, . . . , vn}, U = {u1, . . . , um}

and (vi, uj) ∈ E if and only if aij = 1. By associating a weight equal to ci to every node

vi ∈ V and zero to every node in U , SCP is equivalent to finding a minimum weight node

subset C ∈ V such that every node in U is adjacent to at least one node in C. Using this

formulation, Sassano [35] derives several classes of rank facet-defining inequalities for the set

covering polytope, and also discusses some lifting procedures. In [30], Nobili and Sassano

describe further facets and lifting procedures for the set covering polytope.

In this paper, we present facet-generating procedures for the independence system poly-

tope. We first prove some general results based on sequential lifting. These are then applied

in particular cases and yield some procedures which can be used to derive facet-defining

inequalities for the polytopes associated with hypergraphs obtained from other hypergraphs

by adding a set of nodes and edges. Then we propose some other procedures that involve

adding, replacing, or splitting a set of nodes or edges. We generalize similar procedures

proposed by Wolsey [41] for the stable set polytope. Finally, we derive a new family of

facet-defining inequalities for the independence system polytope by adding a set of edges to

antiwebs. We apply our procedures to the polytopes associated with the acyclic induced sub-

graph, triangle free induced subgraph, bipartite induced subgraph, and knapsack problems

and obtain facet-defining inequalities.

The paper is organized as follows. In Section 2, we give the definitions and the notation

that are used throughout the paper. We present lifting results in Section 3 with a set

of applications to special cases. In Section 4, we give further facet-generating procedures

and generalize the results of [41]. A new family of facet-defining inequalities called ghost

inequalities is also introduced in this section. We conclude the paper in Section 5 with

directions for future research.
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2 Definitions and notation

Consider a hypergraph H = (V, E). For S ⊆ V , define E(S) to be the set of all edges of H

whose nodes are subsets of S. An hypergraph (S, E
′
) with S ⊆ V and E

′
⊆ E(S), is called

a sub-hypergraph of H. The hypergraph H(S) = (S, E(S)) is the sub-hypergraph induced

by S. This is the hypergraph that remains when the nodes of V \ S are deleted together

with the edges containing nodes of V \ S. Consequently, the independent sets of H that do

not contain any node of V \ S are exactly the independent sets of H(S).

For an independent set S ⊂ V , we define the neighborhood of S as

NH(S) = {i ∈ V \ S : ∃ e ∈ E with i ∈ e and e \ {i} ⊆ S},

that is, the set of nodes each of which forms an edge with subsets of S. Observe that an

independent set which contains all nodes of S cannot contain any node of NH(S).

Consider the hypergraph HS = (V
′
, E

′
) where V

′
= V \(S∪NH(S)) and E

′
= {e\S : e ∈

E and e ∩ NH(S) = ∅}. We call HS to be the hypergraph reduced by S from H. Observe

that HS is not a sub-hypergraph of H. The hypergraph reduced by S is the hypergraph

that remains when the nodes of S are forced into independent sets. In other words, the

independent sets of H that contain all nodes of S are exactly the sets I ∪ S where I is an

independent set of HS .

For S1, S2 ⊂ V such that (S1 ∪ NH(S1))∩S2 = ∅, HS1(S2) is the hypergraph reduced by S1

and induced by S2. In Figure 1a, we see the hypergraph H = (V, E) where V = {1, . . . , 11}

and E = {e1, e2, e3, e4, e5, e6}. Let S1 = {4, 7}. Note that NH(S1) = {11}. Figure 1b

corresponds to the reduced graph HS1 . We can see that the cardinalities of edges e2, e3 and

e4 have reduced by one as they contained a node of S1. Moreover edges e5 and e6 have been

deleted because they contain a node of NH(S1). Let S2 = {2, 3, 5, 6, 8, 9, 10}. The graph

HS1(S2) is given in Figure 1c. As node 1 is in V \ (S1 ∪ S2 ∪ NH(S1)), it does not appear

in HS1(S2). Also edge e1 has been deleted as node 1 belongs to this edge.

Suppose that we assign a weight to each node i ∈ V . For S1, S2 ⊂ V such that

(S1 ∪ NH(S1)) ∩ S2 = ∅, finding an independent set that contains all nodes in S1, that

does not intersect V \ (S1 ∪ S2) and that has maximum weight is equivalent to finding a

maximum weight independent set in HS1(S2). Moreover, this leads to the following remark

that we will often implicitly use for proving that an inequality is facet-defining for P (H).

Remark 2.1 Let S1, S2 ⊂ V such that (S1 ∪ NH(S1)) ∩ S2 = ∅. Then the polytope

P (HS1(S2)) is a face of P (H) with xi = 1 for i ∈ S1 and xi = 0 for i ∈ V \ (S1 ∪ S2).

We use our facet-generating procedures to derive facet-defining inequalities for some par-

ticular independence system polytopes. We end this section with the definitions of these

problems.

Let D = (V, A) be a directed graph. An induced subgraph is called acyclic if it does

not contain a directed cycle. If each node of V has a weight, then the acyclic induced

subgraph problem (AISP ) is to find an acyclic induced subgraph with maximum weight.

AISP can be seen as a generalization of the stable set problem. In fact, if G = (V, E)

is an undirected graph, the maximum stable set problem in G can be reduced to AISP

4
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Figure 1: An example of reduced and induced hypergraph

in a digraph D = (V, A), where each edge {i, j} ∈ E is replaced by the arcs (i, j) and

(j, i). Barahona and Mahjoub [7, 8] have considered AISP in the context of signed graphs.

In particular, the authors have studied the acyclic induced subgraph polytope AISP (D),

that is the polytope whose extreme points are the incidence vectors of the node sets of the

acyclic induced subgraphs of D. In [7] the authors introduce various classes of facets for

AISP (D). In [8] they describe composition procedures to derive facet-defining inequalities

for AISP (D).

Given a graph G = (V, E), a triangle-free induced subgraph is an induced subgraph contain-

ing no K3. If we associate weights to the nodes in V , triangle-free induced subgraph problem

(TFISP ) is to find a triangle-free induced subgraph whose weight is maximum. This prob-

lem can be seen as a relaxation of the bipartite induced subgraph problem [7, 8, 22]. We

define TFISP (G) to be the polytope associated with TFISP on graph G. To our knowl-

edge, there is no study on TFISP (G). The edge version of this problem has been studied

in [11, 17]. In [17], the authors consider the Ki-cover problem. Given a graph G = (V, E),

an integer 1 ≤ i ≤ |V | and weights associated with the Ki−1’s of G, the problem is to find

a set of Ki−1’s of minimum weight that covers all the Ki’s of G. A K3-cover is the comple-

ment of a triangle-free graph. The authors establish some complexity results and study the

corresponding polytope. In [11], composition techniques are investigated.

A graph is called bipartite if its node set can be partitioned into two non empty disjoint

sets V1 and V2 such that no two nodes in V1 and no two nodes in V2 are linked by an

edge. Given a graph G = (V, E) and weights on its nodes, the bipartite induced subgraph

problem (BISP ) is to find a bipartite subgraph (W, E(W )) of G of maximum weight. We

define BISP (G) to be the polytope associated with BISP on graph G. In BISP , the

dependents are the odd cycles of G. Barahona and Mahjoub [7] exhibit some basic classes

of facet-defining inequalities of BISP (G) and describe lifting methods. In [9], they study a
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composition technique for BISP (G) in graphs which are decomposable by two-node cutsets.

Fouilhoux and Mahjoub [22] describe further classes of facet-defining inequalities and develop

a branch-and-cut algorithm for the problem.

3 Sequential lifting and some extension procedures for ISP

In this section, we present some theoretical results based on sequential lifting (see, e.g.,

Gomory [23], Padberg [31], and Wolsey [40]) and their applications to generate facet-defining

inequalities for the independence system polytope.

In the sequel, we assume that all dependent sets have at least two elements. With this

assumption, it is easy to see that the independence system polytope is full-dimensional. We

call the facet-defining inequalities of the form xi ≥ 0 trivial facet-defining inequalities. In

the remaining part of this paper, we refer to nontrivial facet-defining inequalities simply

as facet-defining inequalities. It is known that for an independence system polytope, if

inequality
∑

i∈V aixi ≤ α is facet-defining, then ai ≥ 0 for all i ∈ V and α > 0; see [29].

3.1 Sequential lifting results

Here, we first present a general family of valid inequalities and then provide sufficient con-

ditions for a particular class of these inequalities to be facet-defining for the independence

system polytope.

Theorem 3.1 Let H = (V, E) be a hypergraph, V1 ⊂ V and V2 ⊆ V \ V1. Let a ∈ IR|V1|,

α = rH
a (V1), β = rH(V2). Let S1, . . . , Sm be all independent sets of V2 of cardinality β and

α
′
= maxl=1,...,m rHSl

a (V1). Then inequality

∑

i∈V1

aixi + (α − α
′
)

(

∑

j∈V2

xj − β + 1

)

≤ α (1)

is valid for P (H).

Proof. Let x be the incidence vector of an independent set in H. The fact that β = rH(V2)

implies
∑

j∈V2
xj ≤ β. We can now consider two cases. In the first case,

∑

j∈V2
xj = β.

In this case, {j ∈ V2 : xj = 1} = Sk for some k ∈ {1, . . . , m} and therefore
∑

i∈V1
aixi ≤

rHSk

a (V1). It follows that inequality

∑

i∈V1
aixi + (α − α

′
)

(

∑

j∈V2
xj − β

)

≤ rHSk

a (V1)

≤ maxl=1,...,m rHSl

a (V1)

= α′ ≤ α

is satisfied by x. In the second case,
∑

j∈V2
xj ≤ β − 1. In this case, it is easily seen that

∑

i∈V1
aixi ≤ rH

a (V1) = α. Therefore, since α′ ≤ α, the inequality

∑

i∈V1

aixi + (α − α
′
)

(

∑

j∈V2

xj − β + 1

)

≤ α

6



is satisfied by x. �

Note that if V2 is an independent set, then α
′
= rHV2

a (V1) and inequality (1) becomes

∑

i∈V1

aixi + (α − rHV2

a (V1))

(

∑

j∈V2

xj − |V2| + 1

)

≤ α. (2)

Moreover, inequality (2) can also be written as

∑

i∈V1

aixi + (α − rHV2

a (V1))

(

∑

j∈V2

(xj − 1)

)

≤ rHV2

a (V1),

which suggests that it can be obtained by lifting the inequality
∑

i∈V1
aixi ≤ α sequentially

with the variables xj for j ∈ V2, under some conditions. These conditions are given in the

following theorem.

Theorem 3.2 Let H = (V, E) be a hypergraph, V1 ⊂ V and V2 = V \ V1 be an independent

set. Let a ∈ IR|V1| and α = rH
a (V1) and α

′
= rHV2

a (V1). Inequality (2) is facet-defining for

P (H) if

i.
∑

i∈V1
aixi ≤ α

′
is facet-defining for P (HV2(V1)),

ii. rHV2\{j}

a (V1) = α for all j ∈ V2.

Proof. Order V2 as (j1, j2, ..., j|V2|) and fix the variables xj1 = xj2 = ... = xj|V2|
= 1. Next

we lift the inequality
∑

i∈V1
aixi ≤ α

′
(which is known to be facet-defining for P (HV2(V1))

by assumption) sequentially to obtain

∑

i∈V1

aixi +

|V2|
∑

l=1

γjl
(xjl

− 1) ≤ α
′
.

We will next prove that γjl
= α−α

′
for l = 1, . . . , |V2| by induction on l. We consider the

base case first. The optimal lifting coefficient of xj1 is given by

γj1 = max
x∈P (HV2\{j1}(V1))

∑

i∈V1

aixi − α
′
= rHV2\{j1}

a (V1) − α
′
.

By assumption (ii), γj1 = α − α
′
.

Let 2 ≤ m ≤ |V2|. Assume that γjl
= α − α

′
for l = 1, . . . , m − 1. The optimal lifting

coefficient of xjm is

γjm = max
x∈P (HV2\{j1,...,jm}(V1∪{j1,...,jm−1}))

(

∑

i∈V1

aixi +
m−1
∑

l=1

(α − α
′
)(xjl

− 1)

)

− α
′
.

First observe that

∑

i∈V1

aixi +

m−1
∑

l=1

(α − α
′
)(xjl

− 1) − α
′
≤ (α − α′)

( m−1
∑

l=1

xjl
− (m − 2)

)

, (3)

7



because
∑

i∈V1
aixi ≤ rH

a (V1) = α. The right-hand-side of (3) is nonpositive for all solutions

x ∈ P (HV2\{j1,...,jm}(V1 ∪{j1, . . . , jm−1})) for which
∑m−1

l=1 xjl
≤ m− 2. On the other hand,

if we consider solutions with
∑m−1

l=1 xjl
= m − 1, then

max
x∈P (HV2\{j1,...,jm}(V1∪{j1,...,jm−1})):

Pm−1

l=1
xjl

=m−1

(

∑

i∈V1

aixi +
m−1
∑

l=1

(α − α
′
)(xjl

− 1)

)

− α
′

= max
x∈P (HV2\{jm}(V1))

∑

i∈V1

aixi − α
′
= rHV2\{jm}

a (V1) − α
′
.

Now, by assumption (ii), rHV2\{jm}

a (V1) − α
′

= α − α
′

and this quantity is nonnegative.

Hence γjm = α − α
′
. �

Next, we provide another set of sufficient conditions for inequalities (2) to be facet-defining

for P (H). As in the proof of the above theorem, we again use sequential lifting to obtain

this result.

Theorem 3.3 Let H = (V, E) be a hypergraph, V1 ⊂ V and V2 = V \ V1 be an independent

set. Let a ∈ IR|V1|, α = rH
a (V1) and α

′
= rHV2

a (V1). Inequality (2) is facet-defining for P (H)

if

i.
∑

i∈V1
aixi ≤ α is facet-defining for P (H(V1)),

ii. there exists j1 ∈ V2 such that HV2\{j1}(V1) = H(V1),

iii. rHV2\{j}

a (V1) = α for all j ∈ V2.

Proof. We first prove that inequality

∑

i∈V1

aixi + (α − α
′
)xj1 ≤ α (4)

is facet-defining for P (HV2\{j1}(V1 ∪ {j1})). First observe that N(V2 \ {j1}) ∩ V1 = ∅ due

to assumption (ii). If xj1 = 0 then (4) simplifies to
∑

i∈V1
aixi ≤ α which is valid by

assumption. If xj1 = 1, then xi = 0 for all i ∈ N(V2) and
∑

i∈V1\N(V2) aixi ≤ rHV2

a (V1) = α
′
.

So (4) is valid for P (HV2\{j1}(V1 ∪ {j1})).

Since by assumption (i),
∑

i∈V1
aixi ≤ α is facet-defining for P (H(V1)) and the dimension

of P (H(V1)) is |V1|, there exist independent sets Q1, . . . , Q|V1| in H(V1) whose incidence

vectors are affinely independent and satisfy
∑

i∈V1
aixi = α. Let Q

′

m = Qm ∪ V2 \ {j1} for

m = 1, . . . , |V1|. It follows from the definition of α′ that there exists an independent set Q

in HV2(V1) whose incidence vector satisfies
∑

i∈V1
aixi = α

′
. Let Q

′

|V1|+1 = Q ∪ V2. The

sets Q
′

1, . . . , Q
′

|V1|+1 are independent in HV2\{j1}(V1 ∪{j1}). Further, their incidence vectors

are affinely independent and satisfy (4) at equality. So inequality (4) is facet-defining for

P (HV2\{j1}(V1 ∪ {j1})).

Now we order V2 as (j1, j2, ..., j|V2|). We will lift inequality (4) with respect to xj2 , . . . , xj|V2|

sequentially to obtain

∑

i∈V1

aixi + (α − α
′
)xj1 +

|V2|
∑

l=2

γjl
(xjl

− 1) ≤ α.

8



We will prove that the optimal lifting coefficient of xjl
, γjl

, is α−α
′
for l = 2, . . . , |V2| by

induction on l. Consider the base case first. The optimal lifting coefficient of xj2 is given by

γj2 = max
x∈P (HV2\{j1,j2}(V1∪{j1}))

(

∑

i∈V1

aixi + (α − α
′
)xj1

)

− α.

We consider separately the cases where xj1 = 0 and xj1 = 1. Let

γ0
j2

= max
x∈P (HV2\{j1,j2}(V1))

∑

i∈V1

aixi − α

and

γ1
j2

= max
x∈P (HV2\{j2}(V1))

∑

i∈V1

aixi − α
′
.

Then γj2 = max{γ0
j2

, γ1
j2
}.

Since γ0
j2

= rHV2\{j1,j2}

a (V1) − α ≤ rH
a (V1) − α = 0 and γ1

j2
= rHV2\{j2}

a (V1) − α′ = α − α′

by assumption (iii), then γj2 = α − α
′
.

We now prove the induction step. Let 3 ≤ m ≤ |V2|. Assume that the optimal lifting

coefficient of xjl
is α−α

′
for l = 2, . . . , m− 1. The optimal lifting coefficient of xjm is given

by

γjm = max
x∈P (HV2\{j1,...,jm}(V1∪{j1,...,jm−1}))

(

∑

i∈V1

aixi + (α − α
′
)xj1 +

m−1
∑

l=2

(α − α
′
)(xjl

− 1)

)

− α.

Again, we consider the two cases where xj1 = 0 and xj1 = 1. Let

γ0
jm

= max
x∈P (HV2\{j1,...,jm}(V1∪{j2,...,jm−1}))

(

∑

i∈V1

aixi +
m−1
∑

l=2

(α − α
′
)(xjl

− 1)

)

− α

and

γ1
jm

= max
x∈P (HV2\{j2,...,jm}(V1∪{j2,...,jm−1}))

(

∑

i∈V1

aixi +
m−1
∑

l=2

(α − α
′
)(xjl

− 1)

)

− α
′
.

Then γjm = max{γ0
jm

, γ1
jm

}.

Observe that γ0
jm

≤ 0 and
∑

i∈V1
aixi +

∑m−1
l=2 (α − α

′
)(xjl

− 1) ≤ α
′

for any x ∈

P (HV2\{j2,...,jm}(V1 ∪ {j2, . . . , jm−1})) with
∑m−1

l=2 xjl
≤ m − 3. So we have that γ1

jm
=

maxx∈P (HV2\{jm}(V1))

∑

i∈V1
aixi−α

′
. By assumption (iii), γ1

jm
= α−α

′
. Hence, γjm = α−α

′
.

�

Example 3.1 Figure 2 gives an application of Theorem 3.2 for the bipartite induced sub-

graph polytope. Let G = (W, F ) be the graph of Figure 2a where W = {u1, ..., u6}. Let

V1 = {u1, ..., u5} which induces an odd cycle and V2 = {u6} which is adjacent to every node

of V1. Figure 2b gives the conflict hypergraph H corresponding to the circuits of G. Note

that the circuit corresponding to the odd cycle induced by {1, 2, 3, 4, 5} is represented by a

gray area. Moreover Figure 2c gives HV2(V1). We can see that all the circuits of HV2(V1)

are of cardinality two and consequently P (HV2(V1)) is the stable set polytope for an odd

cycle of 5 nodes. It is well-known that
∑5

i=1 xi ≤ 2 is facet-defining for that polytope and

if we set a1 = ... = a5 = 1, rHV2

a (V1) = 2. Moreover rH
a (V1) = 4 = rHV2\{u6}

a (V1). The

assumptions of Theorem 3.2 are verified and
∑5

i=1 xi +2x6 ≤ 4 defines a facet of BISP (G).
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Figure 2: A facet-defining inequality for the bipartite induced subgraph polytope

3.2 Applications: Extension procedures

In general, it may not be easy to compute α
′

used in Theorems 3.1, 3.2, and 3.3. In this

section, we apply the above lifting results in particular cases where the computation of α
′

is simple. We refer to the resulting procedures as extension procedures as they extend the

initial hypergraph by adding a set of nodes and a set of edges.

Let V1, V2 ⊂ V , V1 ∩ V2 = ∅. Let k be a natural number such that k ≤ |V1|. V2 is called

k-universal to V1 if S ∪ V2 is an edge of H for every S ⊆ V1 with |S| = k.

3.2.1 Extension with a 1-universal independent set

Corollary 3.4 Let H = (V1, E) be a hypergraph and
∑

i∈V1
aixi ≤ α be a facet-defining

inequality for P (H). Let V2 be a new node set and consider the hypergraph H ′ = (V ′, E′)

where V ′ = V1 ∪ V2 and E
′
= E ∪ {V2 ∪ {i} : i ∈ V1}. Then

∑

i∈V1

aixi + α

(

∑

i∈V2

xi − |V2| + 1

)

≤ α (5)

is facet-defining for P (H ′).

Proof. Since α
′

= rH′V2

a (V1) = 0 and H ′V2\{j}(V1) = H for every j ∈ V2, it follows from

Theorem 3.3 that (5) is facet-defining for P (H ′). �
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This result provides a generalized description of the wheel inequalities for several polytopes

such as the stable set polytope, the bipartite subgraph polytope [6] and the bipartite induced

subgraph polytope [22].

Example 3.2 Figure 3 gives an example of a facet-defining inequality for the polytope

associated with TFISP . Let T = (V, E) be a triangle where T = {1, 2, 3}. Inequality
∑3

i=1 xi ≤ 2 is facet-defining for TFISP (T ). We add a node set V2 = {4, 5} and edges such

that these two nodes form a triangle with every other node of the triangle induced by V .

Thus we obtain the graph of Figure 3a, that we refer to as T
′
. Figure 3b gives the conflict

hypergraph representation H ′ of T ′. By Corollary 3.4, inequality
∑3

i=1 xi + 2(x4 + x5) ≤ 4

is facet-defining for TFISP (T
′
).

1 2

3a) b)

2

4 5

3

1

4 5

T ′ H ′

Figure 3: A facet-defining inequality for TFISP (T
′
)

3.2.2 Extension with a 1-universal clique

Applying Corollary 3.4 repeatedly, we can handle the case where a clique is added such that

every node of the clique is 1-universal to the nodes of the initial hypergraph.

Corollary 3.5 Let H = (V1, E) be a hypergraph and
∑

i∈V1
aixi ≤ α a facet-defining in-

equality for P (H). Consider a new set of nodes V2 and the hypergraph H ′ = (V ′, E′) where

V ′ = V1 ∪ V2 and E
′
= E ∪ {{i, j} : i ∈ V2, j ∈ V1 ∪ V2, i 6= j}. Then inequality

∑

i∈V1

aixi + α
∑

j∈V2

xj ≤ α (6)

is facet-defining for P (H ′).

Proof. The result can be obtained by repeatedly applying Corollary 3.4. �

Example 3.3 Let p ≥ 2 and D = (V1, A) where V1 = {1, . . . , p} and A = {(i, i + 1) : i ∈

V1 \ {p}} ∪ {(p, 1)}. Here we use our result for defining a class of wheel inequalities for
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AISP (D). Inequality
∑p

i=1 xi ≤ p − 1 is facet-defining for AISP (D). We add a diclique

of q nodes V2 = {p + 1, ..., p + q} and arcs such that each node of V2 forms a diclique of

two nodes with every other node of the cycle induced by V1. For p = 5 and q = 2, we

obtain the graph of Figure 4a, that we refer as D
′
= (V = V1 ∪ V2, E

′). Figure 4b gives the

corresponding conflict hypergraph H ′. By Corollary 3.5, inequality

p
∑

i=1

xi + (p − 1)

q
∑

i=p+1

xi ≤ p − 1 (7)

is facet-defining for AISP (D
′
). These inequalities will be called acyclic wheel inequalities.

1

2

4

5

6

7

b)a)

6 7

2 3

4

5

1

3

D′ H ′

Figure 4: A wheel facet-defining inequality for AISP (D)

3.2.3 Extending a rank inequality with a k-universal independent set

Finally, we consider the case where a rank inequality is extended by adding an independent

set that is k-universal to the initial set of nodes.

Corollary 3.6 Let H = (V1, E) be a hypergraph and
∑

i∈V1
xi ≤ α a facet-defining inequal-

ity for P (H). Consider a new node set V2, a positive integer k ≤ |V1| and the hypergraph

H ′ = (V ′, E′) where V ′ = V1 ∪ V2 and E
′
= E ∪ {V2 ∪ S : S ⊆ V1, |S| = k}. Then inequality

∑

i∈V1

xi + max{0, α − k + 1}

(

∑

i∈V2

xi − |V2| + 1

)

≤ α (8)

is facet-defining for P (H ′).

Proof. Since α
′

= rH′V2 (V1) = min{α, k − 1} and H ′V2\{j}(V1) = H for every j ∈ V2, it

follows from Theorem 3.3 that (8) is facet-defining for P (H ′). �

Example 3.4 In order to illustrate Corollary 3.6 we present in this example a facet-defining

inequality for the polytope associated to the multidimensional knapsack problem which is a
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generalization of the knapsack problem by considering several knapsack constraints. Con-

sider first the set V = {1, ..., 4} of items and the knapsack constraint
∑4

i=1 xi ≤ 3 which is

a facet-defining cover inequality for the knapsack polytope. Let V2 = {5, 6} be two addi-

tional items and add to the problem the 6 inequalities xi + xj + x5 + x6 ≤ 3 for every pair

(i, j) of distinct items in V . Figure 5 gives the corresponding conflict hypergraph (where

the 6 new edges are drawn both in dashed and solid lines). By Corollary 8, inequality
∑4

i=1 xi + 2x5 + 2x6 ≤ 5 is facet-defining for the multidimensional knapsack polytope.

1 2

34

5 6

Figure 5: A facet-defining inequality for the multidimensional knapsack polytope

4 Further facet-generating procedures for ISP

In this section, we present some further facet-generating procedures for the independence

system polytope. Some of the procedures of this section involve extending the hypergraph

by adding a set of nodes and edges as the procedures of the previous section. But we also

propose other procedures where some of the nodes and edges of the initial hypergraph are

replaced with new ones.

We first give a substitution procedure where a node of the hypergraph is replaced with

an independent set of nodes. We later use this procedure often to prove other results.

Then we propose a second procedure where an independent set of nodes is added with the

same edges as the ones of another independent set. This procedure generalizes the idea of

creating a copy of a node. The next four procedures are based on the results of Wolsey [41]

on the stable set polytope. The first procedure extends the hypergraph by adding p + 1

independent sets. The second procedure replaces an edge with a path of three edges. The

last two procedures involve splitting nodes and sets of nodes. We conclude this section with

a new family of facet-defining inequalities that are obtained by adding edges to antiwebs.

4.1 Substitution of an independent set for a node

First, we present a substitution procedure which is helpful in proving most of the results in

this section. This procedure consists in replacing a node with an independent set of nodes.
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Theorem 4.1 Let H = (V, E) be a hypergraph and let
∑

i∈V aixi ≤ α be facet-defining for

P (H). For j ∈ V , construct H
′
= (V

′
, E

′
) such that V

′
= V \ {j} ∪ S where S is a new

nonempty node set and E
′

= E \ {e ∈ E : j ∈ e} ∪ {e \ {j} ∪ S : e ∈ E, j ∈ e}. Then

inequality

∑

i∈V \{j}

aixi + aj

(

∑

i∈S

xi − |S| + 1

)

≤ α (9)

is facet-defining for P (H
′
).

Proof. The validity of inequality (9) is trivial. Therefore we only prove that (9) is sat-

isfied at equality by sufficiently many feasible solutions. Let Q1, . . . , Q|V | be indepen-

dent sets of H whose incidence vectors satisfy
∑

i∈V aixi = α and are affinely indepen-

dent. Denote the elements of S by {l1, . . . , l|S|}. Consider the sets Q′
i = Qi \ {j} ∪ S

if j ∈ Qi and Q
′

i = Qi ∪ S \ {l|S|} otherwise, for i = 1, . . . , |V |. In addition, consider

the sets Q
′

|V |+i
= Qm ∪ S \ {li} for some m ∈ {1, . . . , |V |} such that j 6∈ Qm and for all

i = 1, . . . , |S| − 1. As inequality
∑

i∈V aixi ≤ α is facet-defining for P (H), Qm exists. It is

easy to see that the sets Q
′

1, . . . , Q
′

|V ′ |
are independent sets of H

′
. Moreover, their incidence

vectors are affinely independent and satisfy inequality (9) at equality. �

4.2 Copying the dependencies of a set of nodes

Here we present an extension procedure where a new independent set of nodes which copies

the dependencies of an existing independent set is added to the hypergraph. In case both

sets are singletons, this procedure can be interpreted as cloning a node. The result is based

on Theorems 3.3 and 4.1.

Corollary 4.2 Let H = (V, E) be a hypergraph and let
∑

i∈V aixi ≤ α be a facet-defining

inequality for P (H). Let V1 ⊂ V such that ai = σ for all i ∈ V1 and there exists an

independent set Q in H such that V1 ⊆ Q and
∑

i∈Q ai = α. Consider a new node set V2

and the hypergraph H ′ = (V ′, E′) where V ′ = V ∪V2, E
′
= E∪{(e\V1)∪V2 : e ∈ E, e∩V1 6=

∅} ∪ {e1} and e1 = V1 ∪ V2. Then inequality

∑

i∈V

aixi + σ

(

∑

i∈V2

xi − |V2| + 1

)

≤ α (10)

is facet-defining for P (H ′).

Proof. Consider the case where V2 is a singleton. Observe first that conditions of Theo-

rem 3.3 are satisfied. Because of edge e1, rH′V2

a (V1) = σ(|V1|−1). Let Q1 be an independent

set in H ′V2(V1) with total weight σ(|V1|−1). As H ′V2(V \V1) = HV1(V \V1) and there exists

an independent set Q in H such that V1 ⊆ Q and
∑

i∈Q ai = α, rH′V2

a (V \ V1) = α − σ|V1|.

Let Q2 be an independent set in H ′V2(V \V1) with total weight α−σ|V1|. Observe first that

Q1 ∪ Q2 is independent in H ′V2(V ) and so has maximum weight. Hence α
′
= α − σ. Now

replace the single node of V2 with an independent set using Theorem 4.1. �
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Example 4.1 We give an illustration of Corollary 4.2 for the acyclic induced subgraph

problem. We start from a directed cycle G of 5 nodes V = {1, 2, 3, 4, 5} given on Figure 6a.

The inequality
∑5

i=1 xi ≤ 4 is facet-defining for AISP (G). We now copy the dependency

of nodes V1 = {1, 2} for a new node set V2 = {6, 7}. We then construct the graph G′ of

Figure 6a by adding the nodes of V2 such that {1, 6, 7, 2} and {6, 7, 5, 4, 3} form two directed

cycles, i.e., V2 forms one circuit with V1 and one with V \ V1. Figure 6b gives the conflict

hypergraph associated with G′. Since V1 is contained in the independent set Q = {1, 2, 3, 4},

it follows from Theorem 4.2 that inequality
∑7

i=1 xi ≤ 5 defines a facet of AISP (G′).

6 7 6 7

b)a)

1 2

3

4

5

1 2

35

4

G′ H ′

Figure 6: Copying the dependencies of a set of nodes

In [41], Wolsey gives three facet-generating procedures for the stable set polytope and

mentions that these are also valid for independence systems. In the next three theorems,

we generalize these procedures. The corresponding proofs use ideas developed in [41].

4.3 Extension with p + 1 independent node sets

The first procedure is an extension procedure where p + 1 independent node sets and 2p

edges are added to the initial hypergraph.

Theorem 4.3 Let H = (V, E) be a hypergraph and V1, . . . , Vp be a partition of V such that

Vj is independent for j = 1, . . . , p. Suppose that inequality
∑

i∈V aixi ≤ α is facet-defining

for P (H) and for j = 1, . . . , p all elements of Vj have the same coefficient, i.e., ai = σj

for all i ∈ Vj for some scalars σj. Suppose each maximal independent set of H uses at

least |Vj | − 1 nodes of Vj for j = 1, . . . , p. Consider p + 1 new nonempty disjoint node sets

T0, T1, . . . , Tp. Let H
′

= (V
′
, E

′
) be the hypergraph obtained from H in such a way that

V
′

= V ∪p
j=0 Tj and E

′
= E ∪ {e1, . . . , e2p} where ej = Vj ∪ Tj and ep+j = Tj ∪ T0 for

j = 1, . . . , p. Then inequality

∑

i∈V

aixi +

p
∑

j=1

σj

(

∑

i∈Tj

xi − |Tj | + 1

)

+

(

∑

i∈V

ai − α

)(

∑

i∈T0

xi − |T0| + 1

)

≤
∑

i∈V

ai (11)

is facet-defining for P (H
′
).
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Proof. We give the proof for the case where T0, T1, . . . , Tp are singletons, namely Tj = {tj}

for i = 0, 1, . . . , p. The proof for the general case is obtained using Theorem 4.1.

Let Q be an independent set in H
′
. If t0 ∈ Q, then Q does not contain tj for j = 1, . . . , p,

and then Q \ {t0} is independent in H. Thus the incidence vector of Q satisfies inequality

(11). Now suppose that t0 6∈ Q. If Q contains tj then it cannot contain all nodes of Vj for

j = 1, . . . , p. Therefore, inequality (11) is satisfied.

Let Q1, . . . , Q|V | be independent sets of H whose incidence vectors satisfy
∑

i∈V aixi = α

and are affinely independent. Consider the sets Q′
i = Qi ∪ {t0} for i = 1, . . . , |V |. As

inequality
∑

i∈V aixi ≤ α is facet-defining for P (H), for j = 1, . . . , p, there exists a maximal

independent set Q such that Vj ⊆ Q. For each l = 1, . . . , p such that l 6= j, remove a node of

Vl∩Q if Vl ⊆ Q and add tl to obtain Q
′

|V |+j
. Now, Q

′

|V |+j
∩Vj = Vj , |Q

′

|V |+j
∩Vl| = |Vl|−1 and

tl ∈ Q
′

|V |+j
for all l = 1, . . . , p with l 6= j. Finally consider an independent set Q of H which

includes exactly |Vl| − 1 nodes of Vl for each l = 1, . . . , p. Let Q
′

|V |+p+1 = Q ∪ {t1, . . . , tp}.

Sets Q
′

1, . . . , Q
′

|V |+p+1 are independent in H
′
, their incidence vectors satisfy inequality (11)

at equality and are affinely independent. Therefore inequality (11) is facet-defining for

P (H
′
). �

Next we give an illustration of this result for the polytope associated with TFISP .

Example 4.2 Consider the wheel G given in Figure 7a and the corresponding TFISP

polytope. Figure 7b shows the associated conflict hypergraph H. It is shown in [17] that

inequality
∑5

i=1 xi + 3x6 ≤ 5 defines a facet of TFISP (G). The graph G′ of Figure 7b

is obtained from G by adding the node sets T0 = {19}, T1 = {7, 8}, T2 = {9, 10}, T3 =

{11, 12}, T4 = {13, 14}, T5 = {15, 16} and T6 = {17, 18} such that Ti forms a triangle with

Vi = {i} and T0 for i = 1, . . . , 6. Note that σj = 1 for j = 1, . . . , 5 and σ6 = 3. Figure 7d

represents the corresponding conflict hypergraph H ′ except the edges of H. It follows from

Theorem 4.3 that inequality
∑5

i=1 xi +
∑16

i=7 xi + 3x6 + 3x17 + 3x18 + 3x19 ≤ 16 defines a

facet of TFISP (G
′
).

4.4 Replacing an edge with a path of three edges

In the next procedure, we add two independent sets and replace an edge with a path of

three edges. Different from the extension procedures presented so far, here we modify the

edge set of the initial hypergraph. This is also the case for the following two procedures.

Theorem 4.4 Let H = (V, E) be a hypergraph and let
∑

i∈V aixi ≤ α be facet-defining

for P (H). Let e0 ∈ E and S1 and S2 be a partition of e0 into two nonempty independent

sets. Suppose that inequality
∑

i∈V aixi ≤ α is different from
∑

i∈S1∪S2
xi ≤ |S1 ∪ S2| − 1

and that each maximal independent set of H intersects Si in at least |Si| − 1 nodes for

i = 1, 2. Now consider the hypergraph H
′
= (V

′
, E

′
) which is obtained from H as follows.

Consider two new nonempty disjoint node sets T1 and T2 and let V
′

= V ∪ T1 ∪ T2 and

E
′

= E \ e0 ∪ {e1, e2, e3} where e1 = S1 ∪ T1, e2 = T1 ∪ T2 and e3 = T2 ∪ S2. Let Z be

the maximum weight of an independent set of the hypergraph (V, E \ {e0}) where node i has

weight ai for i ∈ V and let α
′

= Z − α. Suppose there exists a solution of weight Z that
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Figure 7: Adding p + 1 independent node sets

contains S1 and S2. Then inequality

∑

i∈V

aixi + α
′

(

∑

i∈T1

xi − |T1| + 1

)

+ α
′

(

∑

i∈T2

xi − |T2| + 1

)

≤ α + α
′

(12)

is facet-defining for P (H
′
).

Proof. We give the proof for the case where T1 and T2 are singletons, i.e., T1 = {t1} and

T2 = {t2}. The general case can be obtained using Theorem 4.1.

Let Q be an independent set in H
′
. If t1 ∈ Q, then t2 6∈ Q and |Q ∩ S1| ≤ |S1| − 1.

So Q \ {t1} is independent in H and
∑

i∈Q\{t1}
ai ≤ α. Hence the incidence vector of Q

satisfies inequality (12) since
∑

i∈T1
xi = |T1| and

∑

i∈T2
xi = [T2| − 1. The case where

t2 ∈ Q is similar. If t1 and t2 are not in Q, then Q is an independent set in the hypergraph

(V, E\{e0}) and the weight of Q is at most Z = α+α
′
. Therefore inequality (12) is satisfied.

Let Q1, . . . , Q|V | be independent sets of H whose incidence vectors satisfy
∑

i∈V aixi = α

and are affinely independent. Consider the sets Q′
i = Qi ∪ {t1} if S1 \ Qi 6= ∅ and

Q
′

i = Qi ∪ {t2} otherwise for i = 1, . . . , |V |. As inequality
∑

i∈V aixi ≤ α is facet-defining

for P (H) and different from
∑

i∈S1∪S2
xi ≤ |S1 ∪S2|−1, it is satisfied at equality by a point

for which
∑

i∈S1∪S2
xi ≤ |S1 ∪ S2| − 2. Since, each maximal independent set of H intersects

Si in at least |Si| − 1 nodes for i = 1, 2, this point corresponds to an independent set Q in

H such that |Q ∩ S1| = |S1| − 1 and |Q ∩ S2| = |S2| − 1 and
∑

i∈Q ai = α. Consider the

set Q
′

|V |+1 = Q ∪ {t2}. Let Q
′

|V |+2 be an independent set in the hypergraph (V, E \ {e0})
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that contains S1 and S2 and that has weight equal to Z. Now the sets Q
′

1, . . . , Q
′

|V
′
|

are

independent sets of H
′
, their incidence vectors satisfy inequality (12) at equality and are

affinely independent. Hence inequality (12) is facet-defining for P (H
′
). �

We give an illustration of this result by lifting a diclique inequality for the AISP (D).

Example 4.3 Figure 8a shows a diclique D on four nodes which is the support graph of the

facet-defining inequality
∑4

i=1 xi ≤ 1 for AISP (D). The corresponding conflict hypergraph

is given on Figure 8b. Let e0 = {1, 2}, S1 = {1}, S2 = {2}, T1 = {5, 6} and T2 = {7, 8}.

We obtain a new graph D
′
(see Figure 8c on 8 nodes by deleting the arcs between nodes 1

and 2 and adding three directed cycles (1, 5, 6), (5, 6, 7, 8) and (2, 7, 8). The corresponding

hypergraph is given on Figure 8d. By Theorem 4.4, inequality
∑8

i=1 xi ≤ 4 is facet-defining

for AISP (D
′
). By sequential application of this operation, we obtain the graph of Figure 8e.

It follows from Theorem 4.4 that
∑20

i=1 xi ≤ 13 is facet-defining for the associated polytope.
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Figure 8: Adding two independent node sets

4.5 Two splitting procedures

Here we present a result on splitting a set of nodes. Then we give a corollary, where we first

split a node and then replace it with an independent set.

Theorem 4.5 Let H = (V, E) be a hypergraph and S ⊆ V an independent set such that

e∩S is either S or the empty set for all e ∈ E. Suppose that each maximal independent set

of H contains at least |S|−1 elements of S. Suppose also that the inequality
∑

i∈V aixi ≤ α

is facet-defining for P (H) and ai = σ for all i ∈ S for some scalar σ. Let E1 and E2 be a

partition of edges that contain S. Let S1 and S2 be two new nonempty node sets and consider

the hypergraph H
′
= (V

′
, E

′
) such that V

′
= V ∪S1∪S2 and E

′
= E \(E1∪E2)∪{e∪S1\S :
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e ∈ E1} ∪ {e ∪ S2 \ S : e ∈ E2} ∪ {e1, e2} where e1 = S ∪ S1 and e2 = S ∪ S2. Suppose that

there exists Qj ⊆ V whose incidence vector satisfies
∑

i∈V aixi = α and Qj ∪ S1 ∪ S2 \ {lj}

is independent in H
′
for some lj ∈ Sj for j = 1, 2. Then inequality

∑

i∈V

aixi + σ

(

∑

i∈S1

xi − |S1| + 1

)

+ σ

(

∑

i∈S2

xi − |S2| + 1

)

≤ α + σ (13)

is facet-defining for P (H
′
).

Proof. Consider the case where S = {s}, S1 = {s1} and S2 = {s2} are singletons. The

general result is obtained using Theorem 4.1.

Let Q be an independent set in H
′

such that {s1, s2} ∩ Q = ∅. Then Q \ {s} is an

independent set for H and so
∑

i∈Q\{s} ai ≤ α. Therefore inequality (13) is satisfied. Now

let Q be an independent set in H
′
containing node s1 but not node s2. Then s 6∈ Q. Again

as
∑

i∈Q∩V ai ≤ α, inequality (13) is satisfied. The case where Q contains s2 but not s1 is

similar. Finally, let Q be an independent set in H
′
that contains both s1 and s2. Remark

that Q \ {s1, s2} ∪ {s} is independent in H. Hence
∑

i∈V ∩Q ai ≤ α − σ and the incidence

vector of Q satisfies inequality (13).

Let Q1, . . . , Q|V | be independent sets of H whose incidence vectors satisfy
∑

i∈V aixi = α

and are affinely independent. If s ∈ Qi, then let Q′
i = Qi ∪ {s1, s2} \ {s} and otherwise let

Q′
i = Qi ∪ {s} for i = 1, . . . , |V |. Let Q

′

|V |+i
= Qi ∪ {s1, s2} \ {si} for i = 1, 2. Observe that

the sets Q
′

1, . . . , Q
′

|V |+2 are independent in H
′
, their incidence vectors are affinely indepen-

dent and satisfy inequality (13) at equality. So inequality (13) is facet-defining for P (H
′
). �

Example 4.4 Figure 9a shows a diclique D of 4 nodes. Inequality
∑4

i=1 xi ≤ 1 is facet-

defining for AISP (D). Let S = {1}. On Figure 9b, which gives the corresponding conflict

hypergraph, the edges in doted and dashed lines indicate a partition of the edges containing

S. Let S1 = {5, 6} and S2 = {7, 8}. We remove all directed cycles containing S and

introduce new directed cycles as seen in Figure 9c. These operations are also shown in the

hypergraph representation of Figure 9d. Let D
′

be the new digraph obtained after this

operation. By Theorem 4.5, inequality
∑8

i=1 xi ≤ 4 is facet-defining for AISP (D
′
).

Corollary 4.6 Let H = (V, E) be a hypergraph and let s ∈ V . Suppose that inequality
∑

i∈V aixi ≤ α is facet-defining for P (H). Let E1 and E2 be a partition of edges that

contain s. Let S1, S2 and S3 be three new nonempty node sets and consider the hypergraph

H
′
= (V

′
, E

′
) such that V

′
= V \ {s} ∪S1 ∪S2 ∪S3 and E

′
= E \ (E1 ∪E2)∪ {e∪S1 \ {s} :

e ∈ E1}∪{e∪S2 \{s} : e ∈ E2}∪{e1, e2} where e1 = S3∪S1 and e2 = S3∪S2. Suppose that

there exists Qj ⊆ V whose incidence vector satisfies
∑

i∈V aixi = α and Qj ∪ S1 ∪ S2 \ {lj}

is independent in H
′
for some lj ∈ Sj for j = 1, 2. Then inequality

∑

i∈V \{s} aixi + as

(

∑

i∈S1
xi − |S1| + 1

)

+ as

(

∑

i∈S2
xi − |S2| + 1

)

+as

(

∑

i∈S3
xi − |S3| + 1

)

≤ α + as (14)

is facet-defining for P (H
′
).
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Proof. By Theorem 4.5, inequality

∑

i∈V

aixi + as

(

∑

i∈S1

xi − |S1| + 1

)

+ as

(

∑

i∈S2

xi − |S2| + 1

)

≤ α + as

is facet-defining for P (H
′′
) where H

′′
= (V

′′
, E

′′
), V

′′
= V ∪ S1 ∪ S2, E

′′
= E \ (E1 ∪ E2) ∪

{e ∪ S1 \ {s} : e ∈ E1} ∪ {e ∪ S2 \ {s} : e ∈ E2} ∪ {e
′

1, e
′

2}, e
′

1 = {s} ∪ S1 and e
′

2 = {s} ∪ S2.

Now we replace s with S3 using Theorem 4.1 to obtain the result. �

Example 4.5 Figure 10a shows the support graph G of the inequality
∑5

i=1 x1 + 3x6 ≤ 5

which induces a facet of TFISP (G). Figure 10b gives the corresponding conflict hypergraph.

We can lift this inequality by applying Corollary 4.6 on node 1. We then obtain the graph of

Figure 10c where node 1 is replaced by the three sets S1 = {1
′
}, S2 = {7, 8} and S3 = {1

′′
}.

We call this new graph G
′
. Inequality x1′ + x1′′ + x2 + x3 + x4 + x5 + 3x6 + x5 + x8 ≤ 7

is facet-defining for TFISP (G
′
). The corresponding hypergraph is shown in Figure 10d.

We can also repeat iteratively this operation for every node i = 2, ..., 5 and obtain the

graph of Figure 10e. Let G
′′

be this graph and V the set of nodes of G
′′
. Then inequality

3x6 +
∑

i∈V \{6} xi ≤ 15 is facet-defining for TFISP (G
′′
).

4.6 Adding edges to antiwebs

Finally, we propose an extension procedure which keeps the same set of nodes and adds new

edges. We use this idea to derive a family of facet-defining inequalities that we call ghost

inequalities for the independence system polytope.
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Laurent [26] gives the following class of facet-defining inequalities for the independence

system polytope. Let n, t, q be integers such that n ≥ t ≥ q ≥ 2, W = {1, ..., n} and

W i = {i, i + 1, ..., i + t − 1}, for all i ∈ {1, ..., n} (the indices are taken modulo n). The

hypergraph (W,AW(n, t, q)) is called an (n, t, q)-generalized antiweb if

AW(n, t, q) =
{

C ⊆ W : |C| = q and C ⊆ W i for some i ∈ {1, ..., n}
}

.

This large class of hypergraphs contains many special cases known in the literature: the

antiwebs (when q = 2) [37], the generalized cliques (when n = t) [20], the generalized odd

cycles (when q = t and t does not divide n) [20] and the generalized anti-cycles (when

n = qt + 1) [20].

Laurent [26] proves that the inequality

∑

i∈W

xi ≤

⌊

n(q − 1)

t

⌋

(15)

is valid for P ((W,AW(n, t, q))) and defines a facet of this polytope if and only if n = t or t

does not divide n(q − 1).

We present next a family of facet-defining inequalities for hypergraphs which include

antiwebs with q = 2 and additional edges.

Theorem 4.7 Let W = {1, . . . , n}, t ≥ 2, k = ⌊n
t
⌋ ≥ 3 and consider the hypergraph

H = (W,AW(n, t, 2) ∪ e1 ∪ . . . ∪ en) where ei = {i, i + t, . . . , i + (k − 1)t} (the indices are

taken modulo n) for i = 1, . . . , n. The ghost inequality

∑

i∈W

xi ≤ k − 1 (16)
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is facet-defining for P (H).

Proof. We first prove that (16) is valid for P (H). The cardinality of the largest independent

set in (W,AW(n, t, 2)) is k. As edges e1 ∪ . . . ∪ en cover all independent sets of cardinality

k of (W,AW(n, t, 2)), the independence number reduces to k − 1.

We now prove that (16) is facet-defining for P (H). For i = 1, . . . , n, consider sets S1
i =

{i, i + t, . . . , i + (k − 2)t} and S2
i = S1

i \ {i + (k − 2)t} ∪ {i + (k − 2)t + 1}. Observe that

there are n − (k − 2)t − 2 nodes from node i + (k − 2)t + 1 to node i excluding these two

nodes. This number is greater than or equal to t as n − kt = n − ⌊n
t
⌋t ≥ 0 and t ≥ 2. As a

result nodes i and i + (k − 2)t + 1 do not form an edge of the antiweb. Since, in addition,

|ej ∩S1
i | ≤ k − 1 and |ej ∩S2

i | ≤ k − 1 for all j = 1, . . . , n, we can conclude that sets S1
i and

S2
i are independent sets.

Assume by contradiction that all vectors x ∈ P (H) which satisfy
∑

i∈W xi = k − 1 also

satisfy ax = α which is not a multiple of
∑

i∈W xi = k − 1. For i ∈ {1, . . . , n}, as the inci-

dence vectors of both S1
i and S2

i satisfy
∑

i∈W xi = k − 1, we have ai+(k−2)t = ai+(k−2)t+1.

This proves that ai = ρ for all i = 1, . . . , n and for some ρ ∈ IR. Then α = (k − 1)ρ. So

ax = α is a multiple of
∑

i∈W xi = k − 1, which is the desired contradiction. �

Note that the antiweb inequality is facet-defining if and only if n = t or t does not divide

n whereas we do not need any condition on n with respect to t for inequality (16) to be

facet-defining.

Example 4.6 Figure 11a shows the support graph D of a ghost inequality with n = 6 and

t = 2 for AISP (D). The corresponding hypergraph is depicted in Figure 11b. If we remove

arcs (1, 5), (5, 3), (3, 1), (6, 4), (4, 2) and (2, 6), the remaining graph D
′
defines a generalized

antiweb where n = 6, t = 2 and q = 2. The corresponding antiweb inequality
∑6

i=1 xi ≤ 3

is not facet-defining for AISP (D
′
). However, if the removed arcs are considered, we can

obtain the ghost inequality
∑6

i=1 xi ≤ 2 which defines a facet of AISP (D).
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D H

Figure 11: Support graph of a ghost inequality for AISP
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5 Conclusion

In this paper, we have presented new procedures to derive facet-defining inequalities for the

independence system polytope. We first used sequential lifting to derive general results and

then considered particular cases where the computation of the best lifting coefficients was

simple. As a result of this investigation, we obtained three extension procedures. Then we

presented other procedures some of which involved extending the initial hypergraph whereas

others involved replacing and splitting nodes and edges.

The facet-generating procedures introduced in this paper have two important features.

First, they can be applied to both rank and non-rank facet-defining inequalities. As most

of the results on the facets of the independence system polytope known so far are on rank

inequalities, these procedures have the potential of generating new families of non-rank facet-

defining inequalities. Second, the existing procedures consider adding or replacing a single

node or nodes that are contained in edges of cardinality two. Our lifting procedures permit

the modification of an hypergraph by adding or replacing sets of nodes (not necessarily

singletons) and edges with cardinality different than two. Such procedures can prove to

be useful in problems such as the triangle free-induced subgraph problem where all circuits

have cardinality three.

Our procedures can be helpful in practice to generate new families of facet-defining in-

equalities for known or unknown particular independence system polytopes, like we have

done in this article for several ones. The generated inequalities may then be used to solve

instances of the independence system problems within the framework of cutting-plane based

methods. The key ingredients of these methods are separation algorithms. The separation

problem for a class of inequalities consists of deciding whether a given vector x̄ ∈ IR|V |

satisfies the inequalities of this class, and if not, finding an inequality that is violated by x̄.

In what follows, we devise a polynomial time algorithm for the acyclic wheel inequalities

(7) when q is fixed. This polynomial time separation algorithm gives an example of how

the the facet-defining inequalities generated by our procedures can be identified and used in

practice. Similar separation algorithms can be devised for other generated inequalities and

then be integrated in cutting-plane based methods dedicated to particular independence

system problems.

For a given vector x̄ ∈ IR|V | and a given q, separating the acyclic wheel inequalities consists

of finding, in an oriented graph G = (V, A), two disjoint node sets C and K such that C

induces a directed cycle and K a diclique of q nodes such that each node of K forms a two-

node diclique with the nodes of C and x̄(C)+ (|C|−1)x̄(K) > |C|−1. This can be done by

testing the node subsets of q nodes to induce a diclique. First note that one may suppose

that the diclique inequalities x̄(K) ≤ 1, induced by dicliques K of size q +1, are all satisfied

by x̄. Now, for a given diclique K0 of q nodes, we set σ0 = x̄(K0) and define W0 to be the set

of nodes w such that K0 ∪{w} induces a diclique. Let x′(w) = 1−σ0 − x̄(w) for every node

w ∈ W0. Clearly, x′(w) is nonnegative. The separation problem then reduces to finding a

node subset C in W0, inducing a directed cycle and satisfying x̄(C) + |C|σ0 > |C| − 1 + σ0,

i.e., x′(C) < 1 − σ0. Thus our separation problem reduces to finding in W0 an induced

directed cycle C∗ whose weight with respect to x′ is minimum. In fact, if x′(C∗) < 1 − σ0
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then we have found an acyclic wheel inequality violated by x̄, otherwise no acyclic wheel

inequality is violated by x̄. Such a cycle can be found in the subgraph of G induced by W0

by searching, for every node u ∈ W0, the shortest path tree from u to every predecessor of

u. As x′ is nonnegative, each tree can be found using Dijkstra’s shortest path algorithm in

O(|A| + |V |log(|V |)) time. Thus the whole procedure consists in finding, for every diclique

of size q, a shortest directed cycle, which can be then done using |V | times a shortest path

algorithm in O(|V ||A| + |V |2log(|V |)) time. Consequently, our separation algorithm, for

acyclic wheel inequalities (7), runs in O(|V |q+1|A| + |V |q+2log(|V |)) time, when q is fixed.

One future research direction is to devise separation algorithms for the classes of inequal-

ities presented in this paper and to investigate their computational potential in solving

independent set problems. These algorithms may be tested on well-known problems that

have very specific structure like the knapsack and stable set problems as well as on other

independence system problems.

Another interesting direction is to devise new facet-generating procedures on hypergraphs

with particular structures and investigate the possibilities of generating new families of

facet-defining inequalities for known independence system polytopes.
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