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Abstract In this paper we consider the 2-layer constrained via minimization prob-
lem and the SNP haplotype assembly problem. The former problem arises in the
design of integrated and printed circuit boards, and the latter comes up in the DNA
sequencing process for diploid organisms. We show that, for any maximum junc-
tion degree, the problem can be reduced to the maximum bipartite induced subgraph
problem. Moreover we show that the SNP haplotype assembly problem can also be
reduced to the maximum bipartite induced subgraph problem for the so-called min-
imum error correction criterion. We give a partial characterization of the bipartite
induced subgraph polytope. Using this, we devise a branch-and-cut algorithm and re-
port some experimental results. This algorithm has been used to solve real and large
instances.
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1 Introduction

For the past few decades, combinatorial optimization techniques have shown to be
powerful tools for formulating, analysing and solving optimization problems aris-
ing from practical decision situations. In particular many problems from VLSI (very
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large scale integrated) circuit design and molecular biology have been formulated as
combinatorial optimization models. A big amount of research has also been done for
designing algorithmic approaches for these problems [6, 16, 24, 26, 32]. However,
for some optimization problems from these areas, for which efficient algorithmic and
computational methods are needed, even an adequate model is still unknown. In this
paper, we give two further applications of combinatorial optimization to VLSI circuit
design and DNA sequencing. We show that the constrained via minimization prob-
lem and the SNP haplotype assembly problem, with respect to the so-called min-
imum error correction criterion, can be reduced to the maximum bipartite induced
subgraph problem. We also discuss the bipartite induced subgraph polytope and de-
vise a branch-and-cut algorithm for solving these problems. In order to present these
problems we first need to give some definitions.

Let G = (V ,E) be a graph. If W ⊂ V , then E(W) denotes the set of all edges of
G with both endodes in W . The graph H = (W,E(W)) is the subgraph of G induced
by W . A graph is called bipartite if its node set can be partitioned into two non empty
disjoint sets V1 and V2 such that no two nodes in V1 and no two nodes in V2 are linked
by an edge. Given a weight function c : V → R that associates with every node v a
weight c(v), the bipartite induced subgraph problem (BISP for short) is to find a
bipartite induced subgraph (W,E(W)) of G such that c(W) = ∑

v∈W c(v) is as large
as possible.

A stable set of a graph is a set of pairwise non adjacent nodes and the stable set
problem consists of finding a stable of maximum weight. The BISP is a generalization
of the maximum stable set problem. In fact, if H = (W,F ) is a graph, then the max-
imum stable set problem in H can be reduced to the BISP in the graph G = (V ,E)

obtained from H by adding for every edge uv of H , a node w with weight M , where
M is a big positive value, and the edges wu and wv. This implies that the BISP is NP-
hard. The BISP has been shown to be NP-hard even in graphs with maximum degree
three and in planar graphs when the maximum degree is ≥4 [10]. The BISP is solv-
able in polynomial time in series-parallel graphs [3] and in planar graphs when the
maximum node degree is limited to three [10]. ( A graph is called series-parallel if it
can be obtained from a graph consisting of one edge by subdivisions and duplications
of edges.)

Let us now describe two applications in which the maximum bipartite subgraph
problem arises in a rather natural way.

One important problem in VLSI design is to reduce the number of vias (holes in a
printed circuit board, contact cut on a chip) of a 2-layer electronic circuit. This prob-
lem, called the constrained via minimization problem (CVMP), has been extensively
investigated in the case where the so-called maximum junction degree d is limited to
three. Hashimoto and Stevens [20] are the first who studied this problem when d ≤ 2.
This case has been shown later to be polynomially solvable by [22]. Chen et al. [9]
and Pinter [29] have independently shown that the CVMP with d ≤ 3 can be reduced
to the max-cut problem in planar graphs, and can then be solved in polynomial time.
Barahona et al. [5] described a cutting plane algorithm for the problem in that case.
Choi et al. [10] showed that the CMVP with d ≥ 4 is NP-complete. However, to the
best of our knowledge, no exact method has been developed for the CVMP when
d ≥ 4.


