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Abstract 

Fonlupt, J., A.R. Mahjoub and J.P. Uhry, Compositions in the bipartite subgraph polytope, 

Discrete Mathemaics 105 (1992) 73-91. 

In this paper we study the max-cut problem and the related bipartite subgraph polytope in 

graphs which are decomposable by clique-articulation having at most three nodes. If G 

decomposes into G,, , G,, we show that there exists a polynomial time algorithm to solve 

the max-cut problem in G provided that such an algorithm is known for appropriate graphs 

defined from G,, . , G.. If G decomposes into G, and GZ, we derive a linear system of 

inequalities which defines the bipartite subgraph polytope of G from two linear systems related 

to G, and G2. Using this, we show that if the two graphs defined from G, and G, are weakly 

bipartite then G is also weakly bipartite. By combining this and a theorem of Wagner, we show 

that graphs noncontractible to K, are weakly bipartite. Further classes of weakly bipartite 

graphs are also discussed. 

The graphs we consider are finite, undirected, loopless and without multiple 

edges. We denote a graph by G = (V, E) where V is the node set and E is the 

edge set of G. 

Given a graph G = (V, E) and two subgraphs G1 = (V,, E,) and G2 = (V,, E2) 

of G, G is called a k-sum of G, and G2 (denoted by G = G,(k)G,) if V = V, U V,, 

IV, n V,j = k, 0 <k E N and the subgraph (V, n V,, El n E2) is complete. 

In this paper we study the max-cut problem and the related bipartite subgraph 

polytope in graphs which are decomposable by means of k-sums, 16 k s 3. If G 

decomposes into G,, . . . , G,, we show that there exists a polynomial time 

algorithm to solve the max-cut problem in G provided that such an algorithm is 

known for appropriate graphs defined from Gi, . . . , G,. If G decomposes into G, 
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and G2, we derive a linear system of inequalities which defines the bipartite 
subgraph polytope of G from two linear systems related to G, and G2. Using this, 
we show that if the two graphs defined from Gi and G2 are weakly bipartite then 
G is also weakly bipartite. By combining this and a theorem of Wagner, we show 
that graphs noncontractible to K, are weakly bipartite. Further classes of weakly 
bipartite graphs are also discussed. 

Given a graph G = (V, E), if e E E, is an edge with endnodes Vi and Vjui, we also 
write vivj to denote the edge e. A graph H = (U, 8’) is called subgraph of G if 
U c V and F GE. A graph G is called bipartite if its node set may be partitioned 
into two non-empty disjoint sets VI and V, such that all edges have one node in V, 

and the other in V,. The set of edges of a bipartite graph will be called a bipartite 

edge set. 

Let G = (V, E) be a graph. Given W E V we denote by 6(W) the set of edges 
having exactly one end in W. The edge set 6(W) is called a cut. 

Given a graph G = (V, E) with edge weights c(e) > 0 for all e E E, then the 
mux-cut problem (MCP for short) is to find a cut 6( CJ) in G such that 

C(6(U)) := cEzu, C(e) is maximum. 

This problem has been extensively investigated in the past few years and has 
many real-world applications [ 1,2,7-91. 

If G = (V, E) is a graph and F G E an edge set then the O-l vector xF E lRIE’ 
with x”(e) = 1 if e E F, and x”(e) = 0 if e I$ F is called the incidence vector of F. 

The convex hull P,(G) of the incidence vectors of all edge sets of bipartite 
subgraphs of G is called the bipartite subgraph polytope of G, i.e., 

P,(G) = conv{xF E RIE’ ( (V, F) is a bipartite subgraph of G}. 

Clearly, every edge set of a bipartite subgraph of G is contained in a cut of G. 
This implies that the MCP in G is equivalent to the following linear program 

Max{cx, x E P,(G)}. (1.1) 

Hence whenever problem (1.1) can be solved in polynomial time, the MCP can 
also be solved in polynomial time. 

Since the MCP is NP-complete [28], we cannot expect to find a complete 
explicit characterization of P,(G) for all graphs G. This characterization is known 
only for certain classes of graphs such as planar graphs [2] and weakly bipartite 
graphs [22]. It may however be that for certain classes of graphs G, the polytope 
P,(G) can be described by means of a few classes of linear inequalities and that 
for these classes of inequalities, polynomial time separation algorithms can be 
designed so that the MCP for these graphs can be solved in polynomial time. In 
[5], Barahona, Grotschel and Mahjoub gave various classes of facet defining 
inequalities of this polytope in the general case. Some of these classes have 
polynomial time separation algorithms as shown by Gerards [21]. 
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We use the standard notation of polyhedral theory. If a E 0%” - {0}, a, E R, 
then the inequality aTx c a, is said to be valid with respect to a polyhedron 
PcR” if P~{x~R” )aTx~a,}. We say that a valid inequality uTx s a, 
supports P or defines a face of P if 0 fp rl {x 1 uTx = a,} #P. In this case, the 
polyhedron P II {x 1 uTx = a,} is called the face associated with uTx c uO. A valid 
inequality uTx S a,, defines a facet of P if it defines a face of P and if the 
dimension of P fl {x ) uTx = uo} is one less than the dimension of P. 

Let G = (V, E) be a graph. Given b : E + R and F 5 E, b(F) will denote 
C,,,b(e). The support of b will be Eb = {e E E ) b(e) #O}. 

It is well known that a graph is bipartite if and only if it does not contain odd 
cycles. Thus if (V, F) is a bipartite subgraph of G = (V, E), then xF, the 
incidence vector of F, must satisfy the inequalities 

O=%x(e)cl foralleEE, (1.2) 

x(C) s 1C) - 1 for all odd cycles C in G. (1.3) 

Barahona [2] showed that constraints (1.2) and (1.3) define facets for P,(G). (We 
call the inequalities (1.2) trivial and the inequalities (1.3) odd cycles constraints). 
Using matching theory, Grotschel and Pulleyblank [21] devised a polynomial time 
algorithm for the separation problem associated with the constraints (1.2), (1.3) 
(i.e., an algorithm which decides in polynomial time whether a given vector x 
satisfies (1.2) and (1.3), and if not, finds a violated inequality). Thus, the ellipsoid 
method [22] implies that there is a polynomial time algorithm for the solution of 
(1.1) whenever P,(G) is completely determined by the trivial inequalities (1.2) 
and the odd cycle inequalities (1.3). Grotschel and Pulleyblank called such graphs 
weakly bipartite. A complete characterization of this class of graphs is not known. 
Two classes of graphs have been shown to be weakly bipartite, cf. Barahona 
[2,4], planar graphs and graphs G that contain two nodes which cover all the 
odd cycles of G. In this paper we extend this to the class of graphs 
noncontractible to KS. 

Given a graph G = (V, E), the cutpolytope P,(G) of G is the convex hull of the 
incidence vectors of all edge sets of cuts of G, i.e., 

P,(G) = conv{XF E lVE’ 1 F is a cut of G}. 

Thus, the MCP is also equivalent to the linear program 

max{cx, x E P,(G)}. (1.4) 

The polytope P,(G) has been the subject of intensive investigations in the last 
few years [2,3,6,14-181. It is easy to see that the following inequalities are valid 
for P,(G). 

0 Sx(e) s 1 for all e E E, (1.5) 

x(F) -x(C -F) 6 IFI - 1 for each cycle C, F 5 C, IFI odd. (1.6) 
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In [6], Barahona and Mahjoub showed that the constraints (1.5) and (1.6) 
completely describe the polytope P,(G) if and only if G is noncontractible to Kg. 
Furthermore, they devised a polynomial time algorithm for solving the separation 
problem associated with the constraints (1.6). By the ellipsoid method, this yields 
a polynomial time cutting plane algorithm for the MCP in the class of graphs 
noncontractible to KS. As will turn out, this class of graphs is strictly contained in 
the class of weakly bipartite graphs. Since the MCP is also polynomial in weakly 
bipartite graphs, it would then be interesting to characterize this class of graphs, 
or to identify further classes of weakly bipartite graphs. This was, in fact, our 
motivation for studying the bipartite subgraph polytope P,(G). 

In Section 2, we study the bipartite subgraph polytope in graphs decomposable 
by means of k-sums, 1 <k s 3. In Section 3 we discuss some applications to 
weakly bipartite graphs. Results on the algorithmic aspect of the 
composition/decomposition are summarized in the final section. The remainder 
of this section is devoted to more definitions and notations. 

Throughout, if G = G,(3)G, (resp G = G1(2)G2) where G, = (V,, E,) and 
G2 = (V,, E2), we let TO = El n E2 = (e,, e2, e3} (resp El fl E2 = {e,}). We denote 
by G1 = (vi, I?,) and GZ = (v., &) respectively the graphs obtained from G1 and 
G2 by adding between the nodes of each edge ei, i = 1, 2, 3 (resp. e,) a path 
consisting of two edges e[, el (resp. e2, e3). 

If G = (V, E) is a graph and e an edge then G - e denotes the graph obtained 
by removing e. If U c V is a node set, then G - U denotes the graph obtained 
from G by removing the nodes of U and all the edges adjacent to them. 

A graph G is said to be contractible to a graph H, if H may be obtained from G 
by a sequence of elementary removal and contractions of edges. A contraction 
consists of identifying a pair of adjacent vertices and of preserving all other 
vertices and of preserving all other adjacencies between vertices (multiple edges 
arising from the identification are replaced by single edges). 

2. k-Sums and the polytope P,(G) 

In this section we shall study the bipartite subgraph polytope in graphs 
decomposable by means of k-sums, 13 k 3 3. 

As mentioned above, a complete description of the bipartite subgraph polytope 
P,(G) by a finite system of linear inequalities is not known in the general case. 
However for a graph G which is the k-sum, 1 s k s 3, of two graphs G, and G,, it 
will turn out that such a description can be obtained whenever the polytopes 
Ps(G1) and P,(GZ) are known. If G is a l-sum of G, and G2, then P,(G) is given 
by the juxtaposition of P,(Gi) and P,(GJ. In what follows we study the case 
when G is a 3-sum of G, and G2. The case when G is a 2-sum of Gi and GZ may 
be obtained as a special case of the second one. For this, we first state some 
structural properties concerning the facet inducing graphs of the polytope Ps(G). 
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2.1. On the facet inducing graphs for P,(G) 

Throughout this section and the remainder of the paper, given a graph 
G = (V, E), we let 

/3(G) = {B c_ E ( (V, B) is bipartite}, 

denote the set of bipartite edge sets of G. If aTx =S a is a facet defining inequality 
of P,(G), we denote by /3a the set 

PO = {B E /3(G) 1 aTxB = cr}. 

Remark 2.1. Since P(G) defines an independence system, if aTx c a is a facet 
defining inequality of P,(G) with a > 0, then a 2 0. 

Let G = (V, E) be an arbitrary graph and aTx s (Y be a nontrivial facet defining 
inequality for P,(G). Then (Y > 0 and hence a 2 0. Let us denote by G, the graph 
induced by this inequality (i.e., induced by the support of a, E,). Since P,(G) is 
full dimensional [5], which implies that P,(G) has a unique (up to positive 
scaling) nonredundant defining linear inequality system, then the only equations 
satisfied by all members of BU are positive multiples of aTx = a. We then have the 
following lemma. 

Lemma 2.2. (i) If G, contains a path (uv, VW) such that v is of degree two, then 

a(uv) = a(vw). 
(ii) G, does not contain a node of degree one. 

(iii) Let p, q be two nodes of G,. If G, is not an odd cycle then at most one path 
in G, which joins p and q can have all internal nodes of degree two. 

Proof. (i) and (ii) are easily seen to be true. 
(iii) Assume the contrary. Let PI and P2 be the two paths between p and q. Let 

C be the cycle defined by PI and P2. 
Consider a bipartite edge set B E 0”. Since B induces a maximum edge set in 

G,, for fl, i = 1,2, we have either 

Case a: C is even 

(2.1) 

Then P, and P2 have the same parity. And if B E pa, we have 

P, c B e P2 c B. (2.2) 

Suppose lP,l c lPzl and let y = lP2j - lP,l. From (2.1) and (2.2), for all B E Ba the 
following holds: 

IB n PII = IB n &I+ Y @ ez, xB(e) - ez2 x”(e) = Y. 
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Since the above equation has both positive and negative coefficients, this 
inequality cannot be a positive multiple of aTx s (Y, a contradiction. 

Case b: C in odd. 

It is clear in this case that if B E /3. then 

Since G, # C, we then have a contradiction and our lemma is proved. 0 

2.2. 3su?nS 

Consider a graph G = (V, E) which is a 3-sum of two graphs Gi = (VI, E,) and 
G2 = (V,, E2) (see Fig. 1). Lemma 2.2 implies that the polytopes Z’,(G,) and 
P,(GJ can be assumed to be described by two minimal linear inequality systems 
of the following forms, having respectively Z and .Z nontrivial constraints. 

PtJ(GI) = 
OSx(e)Sl for all eEE1, (2.3) 

ez, a’(e)x(e) + .=F.. 3 ak(k)(x(e;) + x(ez) s I_Y~, i = 1, . . . , I, (2.4) 
. , 

0 S x(e) S 1 for all e E E2, (2.5) 

P&) = ez, bj(e)x(e) + c bj(k)(x(e;) +x(ei) =S pj, j = 1, . . . , J. (2.6) 
k=1,...,3 

Note that by Remark 2.1, all the coefficients in (2.4) and (2.6) are nonnegative. 
Given a nonnegative Z-row vector n = (n,, . . . , n,) (resp. J-row vector 

P = (P,, . * . 9 pJ)), let [n] (resp. [p]) denote the constraint, linear combination of 
the constraints (2.4) (resp. (2.6)) with respect to n (resp. p), given by 

bl := Z, a@, e)-W + .=F.. 3 a(Jd, kK4e.L) + 44)) c 4JG), (2.7) 
, > 

resp. 

(2.8) 

Fig. 1. The graphs G (left) and C?$ (right) 
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a(~, e) = C qa’(e) for all e E E,, 
i=l,...,f 

~(JT, k) = C ZiU’(k) for k = 1, 2, 3, 
i=l,...,l 

a(n) = C 7GiQlij 

i=l,...,l 

resp., 

b(p, e) = C pjb’(e) for all e E E,, 
j=l....,J 

b(p, k) = C pjb’(k) for k = 1, 2, 3, 
j=l,...,J 

, PjiBj. 

Definition 2.3. Given a constraint [Ed] of type (2.7) and a constraint [,u] of type 
(2.8), defined respectively with respect to two row vectors Ed = (~dr, . . . , JC!) and 

P=(PIt.. . , p,) which satisfy the following system, 

o(x, e,J 2 b(p, k) 

1 

for k = 1, 2, 3, (2.9) 

b(p, ek) 2 a(n, k) for k = 1,2, 3, (2.10) 

(R Cni+CPji19 (2.11) 
i i 

ni 2 0 for i = 1, . . . , I, (2.12) 

pj G3 0 forj=l,. . . ,.I, (2.13) 

we call mixed constraint of [n] and [P], denoted by [q ,u], the constraint given by 

]~6 PI := 22; 4~6 Me) + X5 WK 444 

+ c @(JG ed + bb ed - 4~ k) 
k=1,...,3 

- bb k)Mek) s a(n) + P(P) 

- 2 c @(JG k) + 0, k)), 
k=1,....3 

where El = Ei - {e,, e2, e,}, i = 1, 2. 

(2.14) 

Remark 2.4. The constraint (2.11) in (I?) is just to ensure that at least one of 
the vectors x and p is nonzero. Moreover, if (n, ,u) # 0 and (JC, P) satisfies (2.9), 
(2.10), (2.12), (2.13) (but (JC, p) does not satisfy (2.11)), then [x, ~1 is a positive 



80 J. Fonlupt et al. 

multiple of the constant [n’, ~‘1 where 

Hence [IG, ~1 can be considered as a mixed constraint and for convenience, we 
will also say that (z, p) is feasible for (R). 

Note that any mixed constraint has a nonnegative coefficients. Moreover we 
have the following. 

Lemma 2.5. Any mixed constraint [JC, p] is valid for P,(G). 

Proof. Easy. 0 

Clearly, the system (R) is a polyhedron in lQ’+J which, in consequence, has a 
finite number of extreme points. Let (P) be the polytope defined by all the mixed 
constraints [z, ~1, where (3~, CL) is an extreme point of (R), together with the 
constraints 

Ocx(e)<l foralleEE. 

The following theorem shows that the bipartite subgraph of G, P,(G) is 

precisely the polytope (P). 

Theorem 2.6. P,(G) = (P). 

The proof of Theorem 2.6 is lengthy and appears in [19]. Although Theorem 
2.6 does not provide a simple linear description of the polytope P,(G), as it will 
turn out, it has very interesting applications to graphs defined by means of 
k-sums, 1 <k c 2 and weakly bipartite graphs. Before showing this, we need to 
state some properties concerning the structure of the mixed constraints of Ps(G). 

2.3. On the mixed constraints of P,(G) 

Having proved that P,(G) = (P), in this subsection we shall discuss the 
structure of the mixed constraints that may define facets for P,(G). We will show 
that any mixed constraint defined from more than four constraints from both 
P,(G,) and P,(G,) is redundant in the description of (P), and hence cannot 
define a facet for P,(G). This will be used in subsequent proofs. 

Definition 2.7. Let G = (V, E) be a graph. Suppose that the polytope P,(G) is 
given by the system {Ax s b; x(e) a 0, e E E} where A is an (m, n) matrix and b 
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is an m-column vector. If aTx c &I and a:x c cu2 are two valid constraints of 
P,(G), then we say that u$ c cu, dominates uTx < ac, if 

(i) there exists an m-row vector y 30 such that cl2 =yA, cu, =yb (i.e., 
a;x > (Ye is a linear combination of the constraints of the system Ax s b), 

(ii) a2 aa,, cu,C Ly1. 
We then have the following lemmas. 

Lemma 2.8. Let aTx s LY be a valid constraint of PB(Gi), i = 1, 2, with a(e;) = 
a(el;.) for k = 1, 2, 3. Then there exists a valid constraint riTx 6 & of P,(C?;), 
i = 1, 2, that dominates aTx s a- such that ti(e;) = C(ei) for k = 1, 2, 3. 

Proof. First notice that if aTx s (Y is a linear combination of the constraints of 
P,(G,), then one can take ti = a, & = LY. Now assume that this is not the case 
and, for instance, that aTx c (Y is valid for P,(C$). Hence, the linear program: 
max{aTx: x E P,(G,)} has an optimal solution x0 such that aTx, < (Y. By 
LP-duality, there exists an optimal dual solution (Ed, Z) 2 0 where Ed = 

(Jr*, . . . 3 nI) and Z = (Z(e), e E E,) such that 

a(n, e) + Z(e) &u(e) for all e E E,, 

I + C Z(e) = aTxo < (Y, 
eeE, 

(recall that a(n, e), e E J!?, and a(n) denote respectively the coefficients and the 
right hand side of the constraint [n]). 

Since the dual of the above linear program is to be minimized and 

a(n, e;) = u(n, e;) for k = 1, 2, 3, 

we then should have 

Let 

Z(e;) = Z(ei) for k = 1, 2, 3. 

ti(e) = a(n, e) + Z(e) for all e E El, 

& = (Y(X) + C Z(e). 
ecE, 

Then tiTx s & is the required constraint. Cl 

Lemma 2.9. Let aTx s (Y be a valid constraint of P,(~i), i = 1, 2, with 
a(e;) = a(e;) for k = 1, 2, 3. Then there exists a valid constraint CTx c & of 
P,(G,), i = 1, 2, that dominates aTx c (Y such that 

C(e) = a(e) for all e E {e;, ez, k = 1, 2, 3). (2.15) 

Proof. By Lemma 2.8, there exists a valid constraint aTx s Cu of P,(G) that 
dominates aTx c LY and such that a(e;) = C(e;) for k = 1, 2, 3. Let us assume that 
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cu is minimum with respect to this property. We then claim that ti satisfies (2.15). 
In fact, if this is not the case then by letting 

pk = fi(e;) - a(e;), for k = 1, 2, 3, 

we obtain that 

Set 

c Pk’O. 
k=1,2,3 

a,(e) = Z(e) for all e E Ei, 

Gil(e) = 8(e) - pk for all e E {e;, e;, k = I, 2, 3}, 

&l=&- c pk. 
k=1,2,3 

The constraint a:x < &r is easily seen to be valid for P,(G,). Consequently, by 
Lemma 2.8 there exists a valid constraint CSTX s ii2 of Ps(~i) that dominates 
ZT_X G &, and hence dominates aTx G (Y with ti,(e;) = (i2(ei) for k = 1, 2, 3 and 
g2 6 &i < &, a contradiction. 0 

Lemma 2.10. Let [n, ~1 be a mixed constraint. If [7c, p] is nonredundunt in the 

description of (I’), then 

u(Jd, ek)u(.7d, k) = 0, k = 1, 2, 3, 

b(p, ek)b(p, k) = 0, k = 1, 2, 3. 
(2.16) 

Proof. Let us suppose that (2.16) does not hold. Since (n, ,u) is feasible for the 
system (R), we may w.l.o.g., assume that there is y E (1, 2, 3) such that 
a(~, eY) 2 a(~, y) > 0. We will show that [n, ,u] is then redundant in (P). For 
this, let us assume that b(p, e,,) 2 b(p, l). (The case where b(p, e,) < b(p, y) can 
be treated in a similar way.) It is clear that constraint [n] (resp. [p]) can be 
obtained by summing the two constraints: 

ezi U(% e)x(e) + zy U(& ek)dek) + @b ey) - dny Y>btey) 

and 

+ kTy~(x, k)(x(eL) + x(e;)) s a(n) - 24~ Y), (2.17) 

U(G y)((x(e,) +x(e;) + x(eF)) s 2u(nn, y), (2.18) 

resp., 

and 

C W e) + k;y %b ek)x(ek) + (OCL, ey) - bb r))+,) 
C?eEJ 

+ c 0, k)(xMJ +x(49) s B(P) - Wru, Y), 
k+y 

b(p) r)(x(e,) + 44) +x(G)) =Z 2U Y) 

(2.19) 

(2.20) 
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Notice that all the coefficients of (2.17) and (2.19) are nonnegative. We claim that 
(2.17) (resp. (2.19)) is valid for Ps(C$) (resp. P,(G,)). In fact, consider a 
bipartite edge set B of G, (resp. CT) which may be assumed maximal. Then 
IB n {e;, e;, ei}l = 2 for k = 1, 2, 3. Since xB satisfies [JC] (resp. [cl]), it also 
satisfies (2.17) (resp. 2.19). 

Now let us denote (2.17) (resp. 2.20) by aTx < (Y (resp. bTx s 8). In 
consequence, by Lemma 2.9 together with Definition 2.7, there is a vector 

(n’, Z) = (Jr;, . . . , JC;; Z(e), e fz E,) 2 0 

resp., 

(P’, 0 = (A,. . . , pi; f(e), e E E2) 3 0) 

such that 

I 
a(~‘, e) + Z(e) > a(e) for all e E E,, 

a(~‘, k) + Z(e) = u(e) 

for all e E {e;, e;}, k = 1, 2, 3, 

cu(n’) + 2 Z(e)G cy, 
esh, 

(2.21) 

resp., 

b(p’, e) + t(e) 2 b(e) for all e E E2, 

b(p’, k) + t(e) = b(e) 

for all e E {e;, ei}, k = 1, 2, 3, 
(2.22) 

We assume that (Y(JC’) (resp. /3(~‘)) is minimum with respect to (2.21) (resp. 
(2.22)). By Lemma 2.9 together with Definition 2.7, it is not difficult to show that 
(x’, p’) is feasible for (R). 

Now let GTx < Cu be the constraint obtained by summing the following 
constraints: 

[Jr’, cl’], 
Z(e)x(e) <Z(e) for all e E El, 

t(e)x(e) C f(e) for all e E E2. 

It is easily seen that CTx c ii dominates [n, ~1. From (2.21) it follows that 
~(JG’, y) = 0, hence (n’, p’) f (J-C, ,u). Which implies that the constraint [;rd, ,u] is 
redundant in (P) and we are done. 0 

Lemma 2.11. Let [q p] be a nonredundant mixed constraint in the description of 

(P). Then (n, p) h as at most four positive components. 
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Proof. Since [n, ~1 is nonredundant in (P), then (2.16) holds. Let (R’) be the 
system obtained from (R) as follows: For k = 1, 2, 3, if a(~, ek) = 0 (resp. 
a(n, k) = 0) delete the constraint of (2.9) (resp. 2.10) that corresponds to k. Thus 
(R’) is a polytope having at most four constraints together with the nonnegative 
constraints. We claim that (n, p) is an extreme point of (R’). In fact, if not, there 
are two solutions (n’, cl’), (n2, cl’) of (R’) such that (Ed’, CL’) f (n2, y’) and 
(Ed, p) = $(J$, p’) + i(n2, p2). Therefore, for k = 1, 2, 3, if a(~, e,J = 0 (resp. 
u(~d, k) = 0, b(p, ek) = 0, 6(y, k) = 0), then a(n’, ek) = 0 (resp. a(~?, k) = 0, 
6(pi, ek) = 0, b($, k) = 0) for i = 1, 2. This implies that (nl, cl’) and (n2, p2) are 
feasible for (R) and thus (rc, p) is not an extreme point of (R). This contradicts 
the fact that [Ed, ~1 is a constraint of (I’). As a consequence, (n, p) cannot have 
more than four nonzero components. Cl 

Remark 2.12. Lemma 2.11 implies that every nonredundant mixed constraint 
[it, ~1 of P,(G), when n #Of p, can be obtained by mixing at most four 
constraints from (2.4) and (2.6). 

2.3. Z-Sums 

Now, consider a graph G = (V, E) which is a 2-sum of two graphs Gr = (V,, E,) 
and G2 = (V,, E,) (see Fig. 2). As mentioned above, the characterization of the 
polytope P,(G) in this case may be obtained as a special case of the 3-sum. 

Lemma 2.2 shows that PB(G,,) can be described by a minimal linear system 
having the following form (where Q’, Z2y, Z,Y denote respectively the index sets of 
all the constraints of PB(GY) whose support does not intersect ?& contains e, but 

Fig. 2. The graphs G (top left), C?z (top right), G’ (bottom left) and c?* (bottom right). 
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not e2, e3, contains e2, e3 but not e,) 

0 S x(e) S 1, 

x(er) + x(ez) +x(+) s 2, 

i 

for all e E EY (2.23) 

(2.24) 

C ui(e)x(e) S u$, for i E IT, (2.25) 
P,(G,) = eeE; 

E, ak(e)x(e) + x(er) c au, for i E J2y, (2.26) 

ez’ al(e)x(e) + x(e2) +x(+) c (~1, for i E 1;. (2.27) 
; 

for y = 1, 2, where EI = Ei - {e,}, i = 1, 2. 

2.3.1. Thepolytope P,(G) 

Let G’ = (V’, E’) be the 3-sum of G, and Gz, obtained by identifying the 
triangle To (see Fig. 2). (Notice that G’ is also the graph obtained from G by 
adding the path (e,, e3) between the nodes of e,.) 

Lemma 2.2 implies that any facet defining inequality of PB(GY) (see Fig. 2 for 

G*), CZ’$V s ‘Ye whose support intersects both EC and the edge set {e,, e;, ex; 
k = 1, 2, 3) has one of the following forms: 

ez, a,(e)x(e) + x(ez) + x(e;) + x(e;) s a;/, 

.zy a,(e)x(e) + x(e3) + x(e;) + x(e’;) s a,, 
; 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

L ez aJe)x(e) + x(el) +x(4) +x(4) + x(4) s cq, 
; 

(2.33) 

for y = 1, 2. 
The following theorem, given by Barahona, Grotschel and Mahjoub [5], shows 

that if we replace an odd path of a facet defining inequality by an edge, we get 
another facet defining inequality. 

Theorem 2.13. Let H = (W, F) be a graph and aTx 6 (Y be a nontrivial facet 

defining inequality for P,(H). Suppose the support of a contains a path 

P(vv,, VlV2,. . . , vp-lvp, v,w) of odd length p + 123 with a(ij) = y for all ij E P 

and where the degree of all nodes vI , . . . , up in the support of a is 2. Let 
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H’ = (W’, F’) be the graph obtained from H by removing the nodes v,, . . . , up 

and adding the edge VW (if VW is not already contained in H). Let 6 E R’E’l’ be 
defined as follows: 

d(ij) = a(ij) for all ij E F fl F’, 

ti(vw) = y, &= cu-py. 

Then iiTx s ck defines a facet of P,(H’). 

Now we may make the following remarks. 

Remark 2.14. The polytope P,(G) can be obtained from P,(G’) by deleting the 
constraints whose support intersects the edge set {e,, es}. 

Remark 2.15. From Lemma 2.11 and Theorem 2.13, it follows that for the 
constraints of type (2.31), (2.32) and (2.33), the constraints 

ez a,(eb(e) + x(ed s my - 2, 
; 

and 

also define facets for Z’,(G,), for y = 1, 2. 

Remark 2.16. If we mix one (resp. two or three) constraints of S, with two or 
three (resp. one) constraints of S, we obtain a constraint whose support intersects 
{e2, e3}, hence it cannot define a facet of P,(G). 

Remark 2.17. A mixed constraint of Z’,(G’), defined from two constraints of S, 
and two constraints of S, whose support does not intersect {e2, e3} can be written 
as a sum of two mixed constraints. Thus it cannot define a facet of P,(G). 

Remark 2.18. A mixed constraint of P,(G’) which is defined from one constraint 
of S, and one constraint of S, defines a facet of P,(G) only if it is obtained by 
mixing a constraint of type (2.28) with a constraint of type (2.29). 

Proof. It suffices to show that a mixed constraint which is either obtained by 
(i) mixing (2.31) with (2.32), or 

(ii) mixing (2.30) with (2.33)) 
cannot define a facet of P,(G). Indeed, let us assume that the constraints of types 
(2.30) and (2.31) (resp. (2.32) and (2.33)) are in S, (resp. S,). 

In both cases (i) and (ii) the corresponding mixed constraint is given by 

Zi al(e)x(e) + Ei adeb c a~ + a2 - 4. (2.34) 
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Case (i): By Remark 2.15, the constraint 

ez a,(e)x(e) + x(eJ s Lyv - 2, 
; 

defines a facet for P,(G,), for y = 1, 2. Thus (2.34) is redundant in P,(G’), hence 
it cannot define a facet for P,(G). 

Case (ii): By Remark 2.15, the constraint 

X_ a&)x(e) + x(ez) + x(eg) G @Z - 2, 

defines a facet of P,(C?,). Now it is easy to see that the constraints 

,C, al(e)x(e) s al - 1, 
i 

2; de)x(e) s a2 - 3, 

are valid for P,(G1), P,(G,). Thus (2.34) cannot define a facet for P,(G’), and 
hence for P,(G). 0 

Now, from Remarks 2.16-2.18 together with Remarks 2.12 and 2.14, it follows 
that the mixed constraints of Z’,(G’) that may define facets for P,(G) are those 
obtained by mixing one constraint of type (2.28) with one constraint of type 
(2.29). Thus from Theorem 2.6 together with Remark 2.14 we can state the 
following theorem. 

Theorem 2.19. The polytope P,(G) is dejined by all the constraints (2.29, (2.26), 
0 s x(e) 6 1 for all e E E, and the mixed constraints 

Cz u’&e)x(e) + ,z bi,(e)x(e) s LY; + 0’; - 2 (2.35) 
; ; 

with y, t E { 1, 2}, y # t, (i, j) E Z2y x lj. 

Theorem 2.19 permits one to obtain, in a very simple way, a linear system 
defining P,(G) from those defining P,(G,) and P,(C?,). The following theorem 
shows that this system is also minimal. Its proof follows the same way as other 
proofs given for similar results in [ll, 121, hence it is omitted. 

Theorem 2.20. Inequalities (2.35) define facets of P,(G). 

3. Applications to weakly bipartite graphs 

In this section we shall discuss some applications of the results presented above 
to weakly bipartite graphs. 
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Corollary 3.1. Let G = (V, E) be a k-sum, 1 6 k 6 3, of two graphs G, = (V,, B,) 

and G2 = (V,, E2). Zf G, and G, are weakly bipartite then G is weakly bipartite. 

Proof. This is clear for k = 1, 2. 

Suppose G is a 3-sum of G1 and G2. Since Gi and GZ are weakly bipartite, the 
nontrivial facets of P,(GJ and P,(G,) all come from odd cycles. Let [n, ~1, 
where n # 0 # ,u, be a mixed constraint which defines a nontrivial facet of Ps(G). 
Thus by Remark 2.12, [n, ~1 is obtained by mixing at most four constraints of 
(2.2) and (2.4). 

Let H = (W, F) be the graph induced by [n, ~1. It suffices to show that H is an 

odd cycle. 
- If [Ed, ~1 is defined from one or two constraints of P,(GJ and one or two 

constraints of P,(G,), then H is planar and thus should be an odd cycle. 
- If [JZ, ~1 is defined from, say, one constraint of P,(G,) and three constraints 

of P,(G,), then Let L = F II (E, - { el, e2, e3}). Hence L is a path. If L = 0, then 
H is contained in G, and thus is an odd cycle. If L f 0, then, by Lemma 2.2, the 
coefficients of [x, ~1 which correspond to the edges of L all are equal. If L is 
even (resp. odd), then let H’ be the graph obtained from H by contracting IL1 - 2 
(resp. IL1 - 1) d e ges of L. Clearly H’ is a subgraph of G2. By Theorem 2.13, H’ 
induces a facet for P,(H) and hence for PB(G2). Thus H’is an odd cycle and H so 

is. q 

Now consider a graph G = (V, E) which is obtained by means of k-sums, 
1 s k =S 3, from II graphs Gi = (VI, E,), G2 = (V,, ET), . . . , G,, = (V,, E,). Let 
Gj, i = 1, . . . , n, be the graph obtained from Gi by adding between the vertices of 
every edge e E Ei n Ei, for i # j, a path consisting of two edges. A consequence of 
Corollary 3.1 is the following. 

CoroUary 3.2. Let G be a graph obtained by means of k-sums, 1~ k c 3, starting 

from n graphs G1, . . . , G,,. Zf G,, . . . , C?,, are weakly bipartite, then G is weakly 

bipartite. 

Corollary 3.2 can be seen as a first step toward the characterization of weakly 
bipartite graphs. Indeed, that characterization may need decompositions of 
graphs by means of k-sums, 1 < k s 3 and then one has to make use of Corollary 
3.2. In what follows we shall use Corollary 3.2 to give an alternative proof that 
graphs noncontractible to KS are weakly bipartite. As pointed out by Barahona 
[lo], this can also be obtained from Seymour [25]. 

Wagner [26,27] gave the following characterizations for graphs noncontractible 
to KS and graphs noncontractible to K3,3. 

Theorem 3.3. A graph G = (v, E) is maximally noncontractible to K, (resp. K3,J 

(i.e., G is not contractible to K5 (resp. K3,3) and for ail vi, vi E V such that 
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Fig. 3. The graph V,. 

vivj $ E, G + Vivj is contractible to K5 (resp. K3,3)) if and only if it can be obtained 

by means of k-sums, 1 s k s 3, of maximal planar graphs and copies of V, (resp. 

KS) (V, is the graph shown in Fig. 3). 

Now let v8 (resp. &) be the graph obtained by adding a path consisting of two 
edges between the nodes of each edge in V, (resp. KS). Using the results given in 
[5], it is not difficult to show that v8 is weakly bipartite. Now since planar graphs 
are weakly bipartite, we can deduce the following theorem. 

Theorem 3.4. Graphs noncontractible to KS are weakly bipartite. 

Theorem 3.4 is equivalent to the following result which has been conjectured 
by Johnson and Gastou in [20]. 

Corollary 3.5. Given a graph G = (V, E) noncontractible to K,, the polyhedron 

cTc x(e) 2 1 for all odd cycles C in G, 

x(e) z= 0 for all e E E, 

has all vertices in 0- 1. 

As applications of Corollary 3.2 we also have the following corollaries. 

Corollary 3.6. Let G be a 2-sum of two graphs G, and Gz such that G, is weakly 

bipartite and G2 is bipartite, then G is weakly bipartite. 

Let Q be the class of graphs G such that there exists a node v(, where G - V, is 
bipartite. From [4], the graphs of Q are weakly bipartite. Let G be a graph of Q. 
If we subdivide an edge or a triangle of G, the resulting graph is also in Q. Thus 
from the results above we may state the following corollary. 

Corollary 3.7. The k-sum, 1 s k s 3, of a graph in 52 and a graph noncontractible 

to KS is weakly bipartite. 
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4. Final remarks 

The algorithmic aspect of the composition/decomposition of graphs by means 
of k-sums, 1 <k s 3, introduced in Section 2, has also been studied intensively 
(see [19]). 

Using ideas similar to those of Barahona [3], we showed that if a graph G is a 
k-sum, 1 <k c 3, of two graphs G, and G,, then a max-weight cut in G can be 
obtained from the max-weight cuts in G, and G, with respect to appropriate 
weight systems associated with G, and G,. This yields a kind of decomposition in 
the determination of a max-weight cut in a graph G when G is obtained by means 
of k-sums, 1 <k c 3, of more than two graphs. Moreover, we have the following 
main result: 

Let G = (V, E) be a graph obtained by means of k-sums, 1 <k c 3, of IZ graphs 

G,, . . . , G,. If the MCP is polynomial for the graphs G‘, , . . . , en, then it is 
polynomial for G. 

Since the MCP is polynomial in planar graphs [24] and in v8 (by enumeration 
of solution), by combining our result above and Theorem 3.3, we obtain that the 
MCP is polynomial in graphs noncontractible to KS as shown by Barahona [3]. 
Similarly we also obtain that the MCP is polynomial in graphs noncontractible to 
K 3.3. 
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